EP3322638B1 - Carrying out remote controlled underwater works - Google Patents

Carrying out remote controlled underwater works Download PDF

Info

Publication number
EP3322638B1
EP3322638B1 EP16738760.4A EP16738760A EP3322638B1 EP 3322638 B1 EP3322638 B1 EP 3322638B1 EP 16738760 A EP16738760 A EP 16738760A EP 3322638 B1 EP3322638 B1 EP 3322638B1
Authority
EP
European Patent Office
Prior art keywords
underwater vehicle
connection
unmanned
interface
autonomously operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16738760.4A
Other languages
German (de)
French (fr)
Other versions
EP3322638A1 (en
Inventor
Christian FRÜHLING
Hendrik Brandt
Axel Panoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP3322638A1 publication Critical patent/EP3322638A1/en
Application granted granted Critical
Publication of EP3322638B1 publication Critical patent/EP3322638B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical

Definitions

  • the invention relates to a device and a method for performing remote-controlled underwater work.
  • the object of the invention is to provide an underwater vehicle which can autonomously control a device which is, for example, below an ice sheet, and can carry out work thereon, the work being carried out remotely. This requires, in particular, secure and powerful data transmission.
  • the advantage of the unmanned underwater vehicle according to the invention is the optimal use of the advantages of the three vehicle types used.
  • the unmanned underwater vehicle can preferably accommodate the remote-controlled underwater vehicle and the autonomously operating underwater vehicle for the route to the operational area.
  • a flow-optimized unmanned underwater vehicle can be used.
  • Remote-controlled underwater vehicles are regularly designed so that they are not suitable for long distances. Because of their intended use, remote-controlled underwater vehicles often have a plurality of manipulators (remote-controlled tools). To be able to carry out their work, remote-controlled underwater vehicles are usually rather compact. These are therefore not regularly flow-optimized and are not suitable for covering longer distances. In terms of drive technology, these are regularly optimized for maneuverability and usually do not have their own energy supply.
  • the power supply is carried out in parallel with the remote control via cable.
  • remote-controlled underwater vehicles cannot be used without a mother or carrier vehicle.
  • the unmanned underwater vehicle for the shipment of the remote-controlled underwater vehicle must also be suitable over long distances, it is difficult to connect it directly to an on-site interface, because the unmanned watercraft cannot have the necessary maneuverability due to its practical orientation.
  • the unmanned underwater vehicle is comparatively large in order to be able to pick up and transport the autonomously operating underwater vehicle and the remote-controlled underwater vehicle.
  • the unmanned underwater vehicle has energy storage and / or generation devices and a drive system for long distances. This means that the unmanned underwater vehicle is comparatively large and less maneuverable.
  • the unmanned underwater vehicle In order to establish the connection to an on-site interface, the unmanned underwater vehicle has an autonomously operating underwater vehicle. Autonomously operating submersibles can take on simple tasks from the outside without further control. In the present case, the task of the autonomously operating underwater vehicle, after being released by the unmanned underwater vehicle, is to locate an on-site interface, to control it and to establish a data connection.
  • the autonomously operating underwater vehicle is therefore more agile than the significantly larger unmanned underwater vehicle.
  • the autonomously operating underwater vehicle has a limited energy store, which is sufficient to fulfill the task assigned to it.
  • the energy storage device of the autonomously operating underwater vehicle can be charged by this, for example, during transport in the unmanned underwater vehicle.
  • the unmanned underwater vehicle preferably has a first interior storage space (first garage) in which the remote-controlled underwater vehicle can be accommodated, and a second interior storage space (second garage) in which the autonomously operating submersible vehicle can be accommodated. Due to the internal storage, flow optimization of the unmanned underwater vehicle is possible.
  • the third connection is used for data exchange, this data exchange ultimately taking place between the remote-controlled underwater vehicle and the location of the remote control.
  • a direct data exchange via the autonomously operating underwater vehicle or with the autonomously operating underwater vehicle is not necessary.
  • the autonomously operating underwater vehicle only serves to establish the data connection.
  • the autonomously operating underwater vehicle has a first interface, the first interface being designed for data exchange with an underwater device.
  • the first interface is preferably designed to be able to receive and transmit data electrically, acoustically or optically.
  • An electrical interface preferably works without power transmission.
  • the data are particularly preferably transmitted acoustically or optically, since in this way the use of electrical contacts in a corroding environment can be dispensed with.
  • the interface is particularly preferably a glass fiber plug connection.
  • a connection must be established between the remote-controlled underwater vehicle and a control center, which enables real-time, for example, to transmit image data of the remote-controlled underwater vehicle to the control center and to transmit control commands from the control center to the remote-controlled underwater vehicle in the opposite direction.
  • the data rates required for control can be achieved with the regularly very long connections, preferably using fiber optic technology.
  • the control center can be located at a great distance, especially on land.
  • the control center has technical facilities for communication with the remote-controlled underwater vehicle, whereby the communication can take place directly or via the unmanned underwater vehicle.
  • the control center can have devices for data acquisition, data evaluation and / or data storage.
  • the control center can have an operating device via which the remote-controlled underwater vehicle can be manually remote-controlled.
  • control center can have a device for automatically controlling the remote-controlled underwater vehicle.
  • the advantage of this embodiment is the significantly greater computing power compared to an autonomously operating underwater vehicle, which can be integrated into a control center. Data can be stored, for example, for documentation and / or evidence preservation.
  • first connection and the second connection are implemented in a common connecting line, for example in a multi-core cable. It is also possible that both power supply and data exchange take place via the same mechanical cable, as is known, for example, from the use of power lines for a LAN.
  • the unmanned underwater vehicle has a first cable management system for the first connection and the second connection and a second cable management system for the third connection. While the underwater vehicle typically maintains its position in the operating area, the remote controlled underwater vehicle will often change its position to be able to do its work.
  • the first connection and the second connection exist between the unmanned underwater vehicle and the remote-controlled underwater vehicle. This is advantageously actively tracked due to the changing relative position of the remote-controlled underwater vehicle to the unmanned underwater vehicle. In the simplest case, this can be done by rolling up the connections. Since the distance between the unmanned underwater vehicle and the autonomously operating underwater vehicle also depends on the respective situation, active tracking is preferred for the third connection.
  • the unmanned underwater vehicle has an energy generating device.
  • the energy generating device is preferably a fuel cell or a diesel generator which is independent of outside air. Very high energy storage densities can be achieved by using a fuel cell or a diesel generator that is independent of outside air. Since the unmanned underwater vehicle should in particular also be designed for use under a closed ice cover, systems independent of outside air are advantageous, since no oxygen or combustion air from the surface, e.g. through a snorkel, can be provided.
  • the unmanned underwater vehicle has an energy storage device. It is also possible that the unmanned underwater vehicle has as the only energy source an energy storage device, for example a battery or an accumulator. It is common and preferred, however, that an energy storage device is provided in parallel with an energy generating device. A combination of a fuel cell and an accumulator is particularly preferably used. As a result, the fuel cell can be operated at a continuous energy generation level, load peaks when the remote-controlled underwater vehicle is used are cushioned by the energy storage device.
  • the unmanned underwater vehicle has a dynamic positioning system. It is also conceivable for the unmanned underwater vehicle to hold its position, for example by means of an anchor. However, since there are regular underwater installations in the area of use, it is preferable not to use an anchor to avoid damaging the underwater installations. In order to be able to hold the position nonetheless, the unmanned underwater vehicle has a dynamic positioning system, which preferably consists of a plurality of thruster drives, which can also be pivoted. The thruster drives can be individually controlled and swiveled for positioning tasks.
  • the dynamic positioning system can, for example, be implemented independently of the main drive system for long distances, which has the advantage that both systems can be optimized independently for the respective application.
  • At least one connection between the unmanned underwater vehicle and the autonomously operating submersible is so stable that normal loads of anchoring to the ground can be transmitted without damaging the connection, and the autonomously operating submersible has means for a load-bearing connection to be carried out with an underwater installation, in particular this underwater installation is an interface for a data connection.
  • the autonomously operating underwater vehicle can have anchor means. With this configuration, the autonomously operating underwater vehicle can perform the additional task of securing the position of the underwater vehicle.
  • the unmanned underwater vehicle has a data processing device in order to be able to decrypt, unpack and / or amplify the communication signals arriving from the control center.
  • the unmanned underwater vehicle has a data processing device in order to be able to encrypt, pack and / or amplify the communication signals which are to be sent from the remote-controlled underwater vehicle to the control center.
  • the control center has a corresponding device for encrypting and / or decrypting or for packing and / or unpacking.
  • the data processing device of the unmanned underwater vehicle can also change the type of data transmission.
  • the type of data transmission between the unmanned underwater vehicle and the remote-controlled underwater vehicle can be electrical and the data transmission between the unmanned underwater vehicle and the control center can be optical.
  • the unmanned underwater vehicle has a control unit, the control unit being able to remotely control the remote-controlled underwater vehicle.
  • the control unit can be used for remote control of the remote-controlled underwater vehicle if the data transmission to the control center is interrupted or disrupted.
  • the control unit is preferably used to carry out rudimentary operations, for example in order to bring the remote-controlled underwater vehicle into a safe position when the remote control is interrupted by the control center or to bring it back to the unmanned underwater vehicle.
  • the remote-controlled underwater vehicle can be held in position by the control unit of the unmanned underwater vehicle until the connection to the control center has been re-established.
  • control unit of the unmanned underwater vehicle can be designed to autonomously carry out control tasks for certain work processes.
  • simple tasks or routine tasks of the remote-controlled underwater vehicle can be carried out autonomously by the control unit of the unmanned underwater vehicle without interaction with the control center.
  • the task of laying a cable from a first point to a second point could be transmitted from the control center to the unmanned underwater vehicle.
  • the control unit of the unmanned underwater vehicle would autonomously remotely control the remote-controlled underwater vehicle and do the job.
  • the advantage of this embodiment is the significant reduction in data transmission to the control center.
  • a conventional remote-controlled one Can be used underwater vehicle that does not have to have an autonomous ability to work.
  • the third connection is designed as a pure data transmission connection.
  • it is a fiber optic connection.
  • the unmanned underwater vehicle, the autonomously operating underwater vehicle and the remote-controlled underwater vehicle are supplied with energy exclusively by the unmanned underwater vehicle.
  • the advantage of this embodiment is that the connection line to the control center works practically without power. This enables a comparatively simple design that is optimized for data transmission.
  • the unmanned underwater vehicle has at least one first remote-controlled underwater vehicle and at least one second remote-controlled underwater vehicle.
  • Embodiments with three or more remote-controlled underwater vehicles are also conceivable.
  • the various remote-controlled underwater vehicles can be of the same type. As a result, tasks can be carried out in parallel and therefore faster overall.
  • different remote-controlled underwater vehicles can also be used, wherein the different remote-controlled underwater vehicles can be optimized for different tasks.
  • the remote-controlled underwater vehicle to be used for a task is selected according to the specialization.
  • the invention relates to a system for carrying out remote-controlled underwater work, the system for carrying out remote-controlled underwater work consisting of an unmanned underwater vehicle according to the invention, a control center, a connection line between the control center and a location where the remote-controlled underwater work is to be carried out.
  • the connecting line has a second interface at the underwater end, the second interface being designed for data exchange with a first interface of the autonomously operating underwater vehicle of the unmanned underwater vehicle.
  • the control center is preferably land based.
  • the system according to the invention allows complex underwater work to be carried out remotely.
  • the advantage of a fixed connection line between the (preferably land-based) control center and the area of application is, on the one hand, a comparatively high data transmission rate.
  • a permanently laid connection line is significantly safer than a one-time connection laid by the unmanned underwater vehicle.
  • Such single-use connections are usually very thin glass fibers, which can be used, for example, for the remote control of torpedoes. However, these are susceptible to damage and are usually only suitable for short-term use.
  • the systems are used for the extraction of raw materials under water for a very long time, so that maintenance or repair measures must be carried out regularly over the life of the systems.
  • the one-time installation can also save costs.
  • step a) the unmanned underwater vehicle first drives independently into the operation area.
  • the remote-controlled underwater vehicle and the autonomously operating underwater vehicle are preferably located within the unmanned underwater vehicle.
  • step b After the operating area has been reached by the unmanned underwater vehicle, the autonomously operating underwater vehicle is uncoupled in step b).
  • step c) the autonomously operating underwater vehicle autonomously controlled the second interface.
  • Communication between the second interface and the autonomously operating underwater vehicle is particularly preferred, for example the autonomously operating underwater vehicle sends out a first acoustic signal, which leads to the acoustic remote station transmitting a second acoustic signal at the second interface and thus to the operate autonomously underwater vehicle enables navigation.
  • a connection is established between the first interface and the second interface.
  • a mechanical connection is preferably also established between the autonomously operating underwater vehicle and the second interface in order to anchor the autonomously operating underwater vehicle at the second interface.
  • the connection for data exchange can be established, for example, by establishing a plug connection. Alternatively, the connection can also be established by exchanging sound or light signals.
  • step e a connection is established in step e) from the control center via the unmanned underwater vehicle to the remote-controlled underwater vehicle.
  • step f the remote-controlled underwater work is then carried out.
  • the unmanned underwater vehicle takes over the energy supply for the remote-controlled underwater vehicle, while the control is carried out by the control center. This also makes lengthy and highly complex work possible.
  • an unmanned underwater vehicle 10 is first dispatched there, as in FIG Fig. 1 shown.
  • the underwater vehicle 10 has a remote-controlled underwater vehicle 20 and an autonomously operating underwater vehicle 30.
  • the autonomously operating underwater vehicle 30 is uncoupled from the unmanned underwater vehicle 10.
  • the autonomously operating underwater vehicle 30 controls autonomously, as in FIG Fig. 2 shown, the second interface 40 and, as in Fig. 3 shown a connection.
  • a connection from the control center to the remote-controlled underwater vehicle 20 can now be established via the connecting line 50, the second interface 40, the autonomously operating underwater vehicle 30, the third connection 14, the unmanned underwater vehicle 10 and the first connection 16.
  • the remote-controlled underwater vehicle 20 is then controlled via this connection and, as in FIG Fig. 4 shown, the underwater work on the underwater installation 60 to be performed. So that the unmanned underwater vehicle 10 can hold its position in the area of the underwater installation 60, it has a dynamic positioning system 12.
  • the remote-controlled underwater vehicle 20 After completion of the underwater work, the remote-controlled underwater vehicle 20 returns to the unmanned underwater vehicle 10, the connection between the second interface 40 and the autonomously operating underwater vehicle 30 is released and the autonomously operating underwater vehicle 30 also returns to the unmanned underwater vehicle 10.
  • the unmanned underwater vehicle 10 can travel to its starting point or another location.

Description

Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Durchführung ferngesteuerter Unterwasserarbeiten.The invention relates to a device and a method for performing remote-controlled underwater work.

Durch die zunehmende Nutzung von Offshore-Ressourcen besteht zunehmend die Notwendigkeit Einrichtungen, welche sich unter Wasser befinden, zu warten oder zu reparieren. Typische Beispiele für die Nutzung von Offshore-Ressourcen sind Offshore-Windparks, die Gewinnung von Erdöl und Erdgas, aber auch zunehmend die Gewinnung von anderen Rohstoffen, beispielsweise Erzen. Es sind große Rohstoffvorräte bekannt, welche sich in der Arktis befinden. Hier ergibt sich das zusätzliche Problem, dass diese Gebiete nicht rund ums Jahr eisfrei sind. Es ist daher schwierig bis ausgeschlossen, ein Überwasserschiff zu entsenden, welches mit einem ferngesteuerten Unterwasserfahrzeug (Remotely Operated Vehicle, ROV) notwendigen Arbeiten ausführt.With the increasing use of offshore resources, there is an increasing need to maintain or repair facilities that are under water. Typical examples of the use of offshore resources are offshore wind farms, the extraction of oil and natural gas, but also increasingly the extraction of other raw materials, such as ores. Large stocks of raw materials are known, which are located in the Arctic. The additional problem arises here that these areas are not free of ice all year round. It is therefore difficult, if not impossible, to send a surface ship to do the necessary work with a remotely operated vehicle (ROV).

Aus der WO 2015/049678 A1 ist ein unbemanntes Unterwasserfahrzeug bekannt, wobei das unbemannte Unterwasserfahrzeug ein weiteres unbemanntes Unterwasserfahrzeug aufweist. Bei dem hier beschriebenen Unterwasserfahrzeug handelt es sich jedoch um ein Unterwasserfahrzeug zum Beispiel zur Minenräumung. Das Unterwasserfahrzeug ist nicht für oftmals hochkomplexe Arbeiten, welche daher regelmäßig ferngesteuert durchgeführt werden, ausgebildet.From the WO 2015/049678 A1 an unmanned underwater vehicle is known, the unmanned underwater vehicle having a further unmanned underwater vehicle. However, the underwater vehicle described here is an underwater vehicle, for example for clearing mines. The underwater vehicle is not designed for often highly complex work, which is therefore carried out regularly by remote control.

Aus der WO 2014/180590 A1 ist ein System zur Meereserkundung bekannt. Das System weist eine Mehrzahl an Docks und ein unbemanntes Unterwasserfahrzeug auf. Das System verfügt auch über eine Datenkommunikation zum Land, diese ist jedoch nicht für die permanente Datenübertragung ausgerüstet, welche für ferngesteuerte Unterwasserarbeit notwendig wäre.From the WO 2014/180590 A1 a system for marine exploration is known. The system has a plurality of docks and an unmanned underwater vehicle. The system also has data communication with the land, but this is not equipped for permanent data transmission, which would be necessary for remote-controlled underwater work.

Aus der US 6,260,504 B1 ist ein System zum Absetzen eines ferngesteuerten Fahrzeugs bekannt.From the US 6,260,504 B1 a system for depositing a remote-controlled vehicle is known.

Aus der US 2009/01141040 A1 ist eine Vorrichtung zur Unterstützung von Unterwasseroperationen bekannt.From the US 2009/01141040 A1 a device for supporting underwater operations is known.

Aus der US 3,621,911 A ist ein System zu Unterwasserförderung von Mineralien bekannt.From the US 3,621,911 A. a system for underwater mining of minerals is known.

Aus der US 2015/0112513 A1 ist ein ferngesteuertes Fahrzeug bekannt.From the US 2015/0112513 A1 a remote controlled vehicle is known.

Aus der US 6854410 B1 ist ein ferngesteuertes Unterwasserfahrzeug bekannt.From the US 6854410 B1 a remote controlled underwater vehicle is known.

Aufgabe der Erfindung ist es, ein Unterwasserfahrzeug zu schaffen, welches autonom eine Einrichtung ansteuern kann, welche beispielsweise unterhalb einer Eisdecke liegt, und an dieser Arbeiten ausführen kann, wobei die Arbeiten ferngesteuert erfolgen. Hierzu ist insbesondere eine sichere und leistungsstarke Datenübertragung erforderlich.The object of the invention is to provide an underwater vehicle which can autonomously control a device which is, for example, below an ice sheet, and can carry out work thereon, the work being carried out remotely. This requires, in particular, secure and powerful data transmission.

Gelöst wird diese Aufgabe durch das System mit den in Anspruch 1 angegebenen Merkmalen sowie das Verfahren mit den in Anspruch 11 angegebenen Merkmalen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den Zeichnungen.This object is achieved by the system with the features specified in claim 1 and the method with the features specified in claim 11. Advantageous further developments result from the subclaims, the following description and the drawings.

Das erfindungsgemäße unbemannte Unterwasserfahrzeug weist ein ferngesteuertes Unterwasserfahrzeug und ein autonom operierende Unterwasserfahrzeug auf. Das unbemannte Unterwasserfahrzeug weist eine erste Verbindung zum ferngesteuerten Unterwasserfahrzeug auf, wobei die erste Verbindung zum Datenaustausch dient. Ferner weist das unbemannte Unterwasserfahrzeug eine zweite Verbindung zum ferngesteuerten Unterwasserfahrzeug auf, wobei die zweite Verbindung zur Energieversorgung dient. Das unbemannte Unterwasserfahrzeug weist weiter eine dritte Verbindung zum autonom operierenden Unterwasserfahrzeug auf, wobei die dritte Verbindung dem Datenaustausch dient.The unmanned underwater vehicle according to the invention has a remote-controlled underwater vehicle and an autonomously operating underwater vehicle. The unmanned underwater vehicle has a first connection to the remote-controlled underwater vehicle, the first connection being used for data exchange. Furthermore, the unmanned underwater vehicle has a second connection to the remote-controlled underwater vehicle, the second connection serving for energy supply. The unmanned underwater vehicle also has a third connection to the autonomously operating underwater vehicle, the third connection being used for data exchange.

Vorteil des erfindungsgemäßen unbemannten Unterwasserfahrzeugs ist die optimale Ausnutzung der Vorzüge der drei verwendeten Fahrzeugtypen. Für den Weg zum Einsatzgebiet kann das unbemannte Unterwasserfahrzeug vorzugsweise das ferngesteuerte Unterwasserfahrzeug und das autonom operierende Unterwasserfahrzeug in sich aufnehmen. Hierdurch kann ein strömungsoptimiertes unbemanntes Unterwasserfahrzeug verwendet werden. Ferngesteuerte Unterwasserfahrzeuge sind regelmäßig so aufgebaut, dass diese nicht für größere Fahrstrecken geeignet sind. Aufgrund ihres Verwendungszwecks weisen ferngesteuerte Unterwasserfahrzeuge oftmals eine Mehrzahl an Manipulatoren (ferngesteuerten Werkzeugen) auf. Um ihre Arbeit ausführen zu können, sind ferngesteuerte Unterwasserfahrzeuge regelmäßig eher kompakt gebaut. Diese sind somit regelmäßig nicht strömungsoptimiert und nicht geeignet, größere Strecken zurück zu legen. Antriebstechnisch sind diese regelmäßig auf Wendigkeit optimiert und weisen für gewöhnlich keine eigene Energieversorgung auf. Die Energieversorgung wird parallel zur Fernsteuerung kabelgebunden übernommen. Somit sind ferngesteuerte Unterwasserfahrzeuge nicht ohne einen Mutter- oder Trägerfahrzeug verwendbar. Da das unbemannte Unterwasserfahrzeug für die Verbringung des ferngesteuerten Unterwasserfahrzeugs auch über große Strecken geeignet sein muss, ist es schwierig dieses direkt an eine vor Ort befindliche Schnittstelle anzubinden, da das unbemannte Wasserfahrzeug aufgrund seiner praktischen Ausrichtung nicht die notwendige Wendigkeit aufweisen kann. Insbesondere ist das unbemannte Unterwasserfahrzeug vergleichsweise groß, um das autonom operierende Unterwasserfahrzeug und das ferngesteuerte Unterwasserfahrzeug aufnehmen und transportieren zu können. Ferner weist das unbemannte Unterwasserfahrzeug Energiespeicher und/oder - erzeugungseinrichtungen sowie einen Antriebssystem für große Strecken auf. Somit ergibt sich, dass das unbemannte Unterwasserfahrzeug vergleichsweise groß und weniger wendig ist. Um die Verbindung zu einer vor Ort befindlichen Schnittstelle herzustellen weist das unbemannte Unterwasserfahrzeug ein autonom operierendes Unterwasserfahrzeug auf. Autonom operierende Unterwasserfahrzeuge können ohne weitere Steuerung von außen einfache Aufgaben übernehmen. Im vorliegenden Fall ist die Aufgabe des autonom operierenden Unterwasserfahrzeugs, nach der Freigabe durch das unbemannte Unterwasserfahrzeug, eine vor Ort befindliche Schnittstelle ausfindig zu machen, diese anzusteuern und eine Datenverbindung herzustellen. Das autonom operierende Unterwasserfahrzeug ist somit wendiger als das deutlich größere unbemannte Unterwasserfahrzeug. Das autonom operierende Unterwasserfahrzeug verfügt über einen begrenzten Energiespeicher, der ausreichend ist, um die ihm gestellte Aufgabe zu erfüllen. Der Energiespeicher des autonom operierenden Unterwasserfahrzeugs kann beispielsweise während des Transportes im unbemannten Unterwasserfahrzeug durch dieses aufgeladen werden.The advantage of the unmanned underwater vehicle according to the invention is the optimal use of the advantages of the three vehicle types used. The unmanned underwater vehicle can preferably accommodate the remote-controlled underwater vehicle and the autonomously operating underwater vehicle for the route to the operational area. As a result, a flow-optimized unmanned underwater vehicle can be used. Remote-controlled underwater vehicles are regularly designed so that they are not suitable for long distances. Because of their intended use, remote-controlled underwater vehicles often have a plurality of manipulators (remote-controlled tools). To be able to carry out their work, remote-controlled underwater vehicles are usually rather compact. These are therefore not regularly flow-optimized and are not suitable for covering longer distances. In terms of drive technology, these are regularly optimized for maneuverability and usually do not have their own energy supply. The power supply is carried out in parallel with the remote control via cable. Thus, remote-controlled underwater vehicles cannot be used without a mother or carrier vehicle. As the unmanned underwater vehicle for the shipment of the remote-controlled underwater vehicle must also be suitable over long distances, it is difficult to connect it directly to an on-site interface, because the unmanned watercraft cannot have the necessary maneuverability due to its practical orientation. In particular, the unmanned underwater vehicle is comparatively large in order to be able to pick up and transport the autonomously operating underwater vehicle and the remote-controlled underwater vehicle. Furthermore, the unmanned underwater vehicle has energy storage and / or generation devices and a drive system for long distances. This means that the unmanned underwater vehicle is comparatively large and less maneuverable. In order to establish the connection to an on-site interface, the unmanned underwater vehicle has an autonomously operating underwater vehicle. Autonomously operating submersibles can take on simple tasks from the outside without further control. In the present case, the task of the autonomously operating underwater vehicle, after being released by the unmanned underwater vehicle, is to locate an on-site interface, to control it and to establish a data connection. The autonomously operating underwater vehicle is therefore more agile than the significantly larger unmanned underwater vehicle. The autonomously operating underwater vehicle has a limited energy store, which is sufficient to fulfill the task assigned to it. The energy storage device of the autonomously operating underwater vehicle can be charged by this, for example, during transport in the unmanned underwater vehicle.

Vorzugsweise verfügt das unbemannte Unterwasserfahrzeug über einen ersten innenliegenden Lagerraum (erste Garage), in welchen das ferngesteuerte Unterwasserfahrzeug aufgenommen werden kann, und über einen zweiten innenliegenden Lagerraum (zweite Garage), in welchen das autonom operierende Unterwasserfahrzeug aufgenommen werden kann. Durch die innenliegende Lagerung ist eine Strömungsoptimierung des unbemannten Unterwasserfahrzeugs möglich.The unmanned underwater vehicle preferably has a first interior storage space (first garage) in which the remote-controlled underwater vehicle can be accommodated, and a second interior storage space (second garage) in which the autonomously operating submersible vehicle can be accommodated. Due to the internal storage, flow optimization of the unmanned underwater vehicle is possible.

Die dritte Verbindung dient dem Datenaustausch, wobei dieser Datenaustausch letztendlich zwischen dem ferngesteuerten Unterwasserfahrzeug und dem Ort der Fernsteuerung erfolgt. Ein direkter Datenaustausch über das autonom operierende Unterwasserfahrzeug bzw. mit dem autonom operierenden Unterwasserfahrzeug ist nicht notwendig. Das autonom operierende Unterwasserfahrzeug dient lediglich zur Herstellung der Datenverbindung.The third connection is used for data exchange, this data exchange ultimately taking place between the remote-controlled underwater vehicle and the location of the remote control. A direct data exchange via the autonomously operating underwater vehicle or with the autonomously operating underwater vehicle is not necessary. The autonomously operating underwater vehicle only serves to establish the data connection.

Erfindungsgemäß weist das autonom operierende Unterwasserfahrzeug eine erste Schnittstelle auf, wobei die erste Schnittstelle zum Datenaustausch mit einer Unterwassereinrichtung ausgebildet ist. Vorzugsweise ist die erste Schnittstelle ausgebildet, um elektrisch, akustisch oder optisch Daten empfangen und senden zu können. Eine elektrische Schnittstelle arbeitet bevorzugt ohne Leistungsübertragung. Besonders bevorzugt werden die Daten akustisch oder optisch übertragen, da auf diese Weise auf die Verwendung elektrischer Kontakte in einer korrodierenden Umgebung verzichtet werden kann. Besonders bevorzugt handelt es sich bei der Schnittstelle um eine Glasfaser-Steckverbindung. Um ferngesteuerte Arbeiten ausführen zu können, muss zwischen dem ferngesteuerten Unterwasserfahrzeug und einem Kontrollzentrum eine Verbindung hergestellt werden, welche in Echtzeit ermöglicht, beispielsweise Bilddaten des ferngesteuerten Unterwasserfahrzeugs an das Kontrollzentrum zu übertragen und in Gegenrichtung Steuerbefehle vom Kontrollzentrum an das ferngesteuerte Unterwasserfahrzeug zu übertragen. Die für eine Steuerung notwendigen Datenraten lassen sich bei den regelmäßig sehr langen Verbindungen vorzugsweise mittels Glasfasertechnik erreichen. Das Kontrollzentrum kann in einer großen Entfernung, insbesondere an Land, angeordnet sein. Das Kontrollzentrum verfügt über technische Einrichtungen zur Kommunikation mit dem ferngesteuerten Unterwasserfahrzeug, wobei die Kommunikation direkt oder über das unbemannte Unterwasserfahrzeug erfolgen kann. Das Kontrollzentrum kann über Vorrichtungen zur Datenerfassung, Datenauswertung und/oder Datenspeicherung verfügen. Das Kontrollzentrum kann über eine Bedieneinrichtung verfügen, über welche das ferngesteuerte Unterwasserfahrzeug manuell fernsteuerbar ist. Alternativ oder zusätzlich kann das Kontrollzentrum über eine Vorrichtung zur automatischen Steuerung des ferngesteuerten Unterwasserfahrzeugs verfügen. Vorteil dieser Ausführungsform ist die im Vergleich zu einem autonom operierenden Unterwasserfahrzeug deutlich größere Rechenleistung, die in ein Kontrollzentrum integriert werden kann. Eine Datenspeicherung kann zum Beispiel zur Dokumentation und/oder Beweissicherung erfolgen.According to the invention, the autonomously operating underwater vehicle has a first interface, the first interface being designed for data exchange with an underwater device. The first interface is preferably designed to be able to receive and transmit data electrically, acoustically or optically. An electrical interface preferably works without power transmission. The data are particularly preferably transmitted acoustically or optically, since in this way the use of electrical contacts in a corroding environment can be dispensed with. The interface is particularly preferably a glass fiber plug connection. In order to be able to carry out remote-controlled work, a connection must be established between the remote-controlled underwater vehicle and a control center, which enables real-time, for example, to transmit image data of the remote-controlled underwater vehicle to the control center and to transmit control commands from the control center to the remote-controlled underwater vehicle in the opposite direction. The data rates required for control can be achieved with the regularly very long connections, preferably using fiber optic technology. The control center can be located at a great distance, especially on land. The control center has technical facilities for communication with the remote-controlled underwater vehicle, whereby the communication can take place directly or via the unmanned underwater vehicle. The control center can have devices for data acquisition, data evaluation and / or data storage. The control center can have an operating device via which the remote-controlled underwater vehicle can be manually remote-controlled. Alternatively or additionally, the control center can have a device for automatically controlling the remote-controlled underwater vehicle. The advantage of this embodiment is the significantly greater computing power compared to an autonomously operating underwater vehicle, which can be integrated into a control center. Data can be stored, for example, for documentation and / or evidence preservation.

In einer weiteren Ausführungsform der Erfindung weist das autonom operierende Unterwasserfahrzeug wenigstens einen ersten Sensor auf, wobei der erste Sensor der autonomen Navigation des autonom operierenden Unterwasserfahrzeugs dient, wobei der erste Sensor ein akustischer Sensor oder ein optischer Sensor ist. Da die Aufgabe des autonom operieren Unterwasserfahrzeugs darin besteht, eine vor Ort befindliche zweite Schnittstelle zu finden und mit dieser eine Verbindung herzustellen, benötigt das autonom operierende Unterwasserfahrzeug einen hierfür geeigneten Sensor. Zur Navigation kann vorzugsweise ein akustisch basiertes Orientierungssystem, beispielsweise ein Sonar, verwendet werde. Alternativ oder auch zusätzlich kann aber auch eine visuelle Navigation erfolgen, wobei das autonom operierende Unterwasserfahrzeug hierzu neben einer Kamera als Sensor eine Lichtquelle aufweist.In a further embodiment of the invention, the autonomously operating underwater vehicle has at least one first sensor, the first sensor serving for autonomous navigation of the autonomously operating underwater vehicle, the first sensor being an acoustic sensor or an optical sensor. Since the task of the autonomously operating underwater vehicle is to find a second interface located on site and to establish a connection with it, the autonomously operating underwater vehicle requires a suitable sensor. An acoustically based orientation system, for example a sonar, can preferably be used for navigation. Alternatively or additionally However, visual navigation can also take place, the autonomously operating underwater vehicle having a light source in addition to a camera for this purpose.

In einer weiteren Ausführungsform der Erfindung sind die erste Verbindung und die zweite Verbindung in einem gemeinsamen Verbindungsstrang, beispielsweise in einem mehradrigen Kabel, ausgeführt. Es ist ebenso möglich, dass sowohl Energieversorgung und Datenaustausch über das gleiche mechanische Kabel erfolgen, wie es beispielsweise aus der Verwendung von Stromleitungen für ein LAN bekannt ist.In a further embodiment of the invention, the first connection and the second connection are implemented in a common connecting line, for example in a multi-core cable. It is also possible that both power supply and data exchange take place via the same mechanical cable, as is known, for example, from the use of power lines for a LAN.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug ein erstes Kabelmanagementsystem für die erste Verbindung und die zweite Verbindung und ein zweites Kabelmanagementsystem für die dritte Verbindung auf. Während das Unterwasserfahrzeug üblicherweise seine Position im Operationsgebiet hält, wird das ferngesteuerte Unterwasserfahrzeug seine Position oft ändern, um seine Arbeiten ausführen zu können. Zwischen dem unbemannten Unterwasserfahrzeug und dem ferngesteuerten Unterwasserfahrzeug besteht die erste Verbindung und die zweite Verbindung. Diese wird aufgrund der sich ändernden relativen Position des ferngesteuerten Unterwasserfahrzeugs zum unbemannten Unterwasserfahrzeug vorteilhafter Weise aktiv nachgeführt. Im einfachsten Fall kann dieses durch Aufrollen der Verbindungen erfolgen. Da ebenso der Abstand zwischen dem unbemannten Unterwasserfahrzeug und dem autonom operierenden Unterwasserfahrzeug von der jeweiligen Situation abhängig ist wird auch hier für die dritte Verbindung eine aktive Nachführung bevorzugt.In a further embodiment of the invention, the unmanned underwater vehicle has a first cable management system for the first connection and the second connection and a second cable management system for the third connection. While the underwater vehicle typically maintains its position in the operating area, the remote controlled underwater vehicle will often change its position to be able to do its work. The first connection and the second connection exist between the unmanned underwater vehicle and the remote-controlled underwater vehicle. This is advantageously actively tracked due to the changing relative position of the remote-controlled underwater vehicle to the unmanned underwater vehicle. In the simplest case, this can be done by rolling up the connections. Since the distance between the unmanned underwater vehicle and the autonomously operating underwater vehicle also depends on the respective situation, active tracking is preferred for the third connection.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug eine Energieerzeugungsvorrichtung auf. Bevorzugt ist die Energieerzeugungsvorrichtung eine Brennstoffzelle oder ein außenluftunabhängiger Dieselgenerator. Durch die Verwendung einer Brennstoffzelle oder eines außenluftunabhängigen Dieselgenerators können sehr hohe Energiespeicherdichten erreicht werden. Da das unbemannte Unterwasserfahrzeug insbesondere auch für den Einsatz unter einer geschlossenen Eisdecke ausgebildet sein sollte, sind außenluftunabhängige Systeme vorteilhaft, da kein Sauerstoff bzw. Verbrennungsluft von der Oberfläche, z.B. durch einen Schnorchel, zur Verfügung gestellt werden kann.In a further embodiment of the invention, the unmanned underwater vehicle has an energy generating device. The energy generating device is preferably a fuel cell or a diesel generator which is independent of outside air. Very high energy storage densities can be achieved by using a fuel cell or a diesel generator that is independent of outside air. Since the unmanned underwater vehicle should in particular also be designed for use under a closed ice cover, systems independent of outside air are advantageous, since no oxygen or combustion air from the surface, e.g. through a snorkel, can be provided.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug eine Energiespeichereinrichtung auf. Es ist auch möglich, dass das unbemannte Unterwasserfahrzeug als einzige Energiequelle eine Energiespeichereinrichtung aufweist, beispielsweise eine Batterie oder einen Akkumulator. Üblich und bevorzugt ist jedoch, dass eine Energiespeichereinrichtung parallel zu einer Energieerzeugungsvorrichtung vorhanden ist. Besonders bevorzugt wird eine Kombination aus einer Brennstoffzelle und einem Akkumulator verwendet. Hierdurch kann die Brennstoffzelle auf einem kontinuierlichen Energieerzeugungsniveau betrieben werden, Lastspitzen beim Einsatz des ferngesteuerten Unterwasserfahrzeugs werden über die Energiespeichereinrichtung abgefedert.In a further embodiment of the invention, the unmanned underwater vehicle has an energy storage device. It is also possible that the unmanned underwater vehicle has as the only energy source an energy storage device, for example a battery or an accumulator. It is common and preferred, however, that an energy storage device is provided in parallel with an energy generating device. A combination of a fuel cell and an accumulator is particularly preferably used. As a result, the fuel cell can be operated at a continuous energy generation level, load peaks when the remote-controlled underwater vehicle is used are cushioned by the energy storage device.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug ein dynamisches Positioniersystem auf. Es ist auch denkbar, dass das unbemannte Unterwasserfahrzeug seine Position beispielsweise mittels eines Ankers hält. Da aber im Einsatzgebiet regelmäßig Unterwasserinstallationen vorhanden sind, ist bevorzugt keinen Anker zu verwenden, um eine Beschädigung der Unterwasserinstallationen zu vermeiden. Um dennoch die Position halten zu können, verfügt das unbemannte Unterwasserfahrzeug über ein dynamisches Positioniersystem, welches vorzugsweise aus einer Mehrzahl an Strahlruderantrieben, welche auch schwenkbar sein können, besteht. Die Strahlruderantriebe können für Positionieraufgaben einzeln angesteuert und geschwenkt werden. Das dynamische Positioniersystem kann beispielsweise vom Hauptantriebssystem für lange Strecken unabhängig ausgeführt sein, was den Vorteil hat, dass beide Systeme unabhängig auf den jeweiligen Einsatzzweck optimiert werden können.In a further embodiment of the invention, the unmanned underwater vehicle has a dynamic positioning system. It is also conceivable for the unmanned underwater vehicle to hold its position, for example by means of an anchor. However, since there are regular underwater installations in the area of use, it is preferable not to use an anchor to avoid damaging the underwater installations. In order to be able to hold the position nonetheless, the unmanned underwater vehicle has a dynamic positioning system, which preferably consists of a plurality of thruster drives, which can also be pivoted. The thruster drives can be individually controlled and swiveled for positioning tasks. The dynamic positioning system can, for example, be implemented independently of the main drive system for long distances, which has the advantage that both systems can be optimized independently for the respective application.

In einer zusätzlichen oder alternativen Ausführungsform ist zumindest eine Verbindung zwischen dem unbemannten Unterwasserfahrzeug und dem autonom operierenden Unterwasserfahrzeug derart stabil ausgeführt, dass übliche Lasten einer Verankerung am Grund ohne Beschädigung der Verbindung übertragen werden können und das autonom operierende Unterwasserfahrzeug weist Mittel auf, um eine lastaufnehmende Verbindung mit einer Unterwasserinstallation durchzuführen, insbesondere ist diese Unterwasserinstallation eine Schnittstelle für eine Datenverbindung. Alternativ kann das autonom operierende Unterwasserfahrzeug Ankermittel aufweisen. Durch diese Ausgestaltung kann das autonom operierende Unterwasserfahrzeug die zusätzliche Aufgabe der Positionssicherung des Unterwasserfahrzeugs vornehmen.In an additional or alternative embodiment, at least one connection between the unmanned underwater vehicle and the autonomously operating submersible is so stable that normal loads of anchoring to the ground can be transmitted without damaging the connection, and the autonomously operating submersible has means for a load-bearing connection to be carried out with an underwater installation, in particular this underwater installation is an interface for a data connection. Alternatively, the autonomously operating underwater vehicle can have anchor means. With this configuration, the autonomously operating underwater vehicle can perform the additional task of securing the position of the underwater vehicle.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug eine Datenverarbeitungseinrichtung auf, um die Kommunikationssignale, welche vom Kontrollzentrum eintreffen, entschlüsseln, entpacken und/oder verstärken zu können. Alternativ oder zusätzlich weist das unbemannte Unterwasserfahrzeug eine Datenverarbeitungseinrichtung auf, um die Kommunikationssignale, welche vom ferngesteuerten Unterwasserfahrzeug zum Kontrollzentrum gesendet werden sollen, verschlüsseln, packen und/oder verstärken zu können. Im Falle der verschlüsselten und/oder gepackten Datenübertragung verfügt das Kontrollzentrum über eine entsprechende Vorrichtung zum Verschlüsseln und/oder Entschlüsseln bzw. zum Packen und/oder Entpacken. Die Datenverarbeitungseinrichtung des unbemannten Unterwasserfahrzeugs kann auch die Art der Datenübertragung verändern. Beispielsweise kann die Art der Datenübertragung zwischen dem unbemannten Unterwasserfahrzeug und dem ferngesteuerten Unterwasserfahrzeug elektrisch und die Datenübertragung zwischen dem unbemannten Unterwasserfahrzeug und dem Kontrollzentrum optisch erfolgen.In a further embodiment of the invention, the unmanned underwater vehicle has a data processing device in order to be able to decrypt, unpack and / or amplify the communication signals arriving from the control center. Alternatively or additionally the unmanned underwater vehicle has a data processing device in order to be able to encrypt, pack and / or amplify the communication signals which are to be sent from the remote-controlled underwater vehicle to the control center. In the case of encrypted and / or packed data transmission, the control center has a corresponding device for encrypting and / or decrypting or for packing and / or unpacking. The data processing device of the unmanned underwater vehicle can also change the type of data transmission. For example, the type of data transmission between the unmanned underwater vehicle and the remote-controlled underwater vehicle can be electrical and the data transmission between the unmanned underwater vehicle and the control center can be optical.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug eine Kontrolleinheit auf, wobei die Kontrolleinheit das ferngesteuerte Unterwasserfahrzeug fernsteuern kann. Die Kontrolleinheit kann zur Fernsteuerung des ferngesteuerten Unterwasserfahrzeugs verwendet werden, wenn die Datenübertragung zum Kontrollzentrum unterbrochen oder gestört ist. Vorzugsweise dient die Kontrolleinheit zur Durchführung rudimentärer Operationen, beispielsweise um bei einer Unterbrechung der Fernsteuerung durch das Kontrollzentrum das ferngesteuerte Unterwasserfahrzeug in eine sichere Position zu verbringen oder zum unbemannten Unterwasserfahrzeug zurückzuholen. Ebenso kann das ferngesteuerte Unterwasserfahrzeug durch die Kontrolleinheit des unbemannten Unterwasserfahrzeugs in seiner Position gehalten werden, bis die Verbindung zum Kontrollzentrum wiederhergestellt worden ist.In a further embodiment of the invention, the unmanned underwater vehicle has a control unit, the control unit being able to remotely control the remote-controlled underwater vehicle. The control unit can be used for remote control of the remote-controlled underwater vehicle if the data transmission to the control center is interrupted or disrupted. The control unit is preferably used to carry out rudimentary operations, for example in order to bring the remote-controlled underwater vehicle into a safe position when the remote control is interrupted by the control center or to bring it back to the unmanned underwater vehicle. Likewise, the remote-controlled underwater vehicle can be held in position by the control unit of the unmanned underwater vehicle until the connection to the control center has been re-established.

In einer weiteren Ausführungsform der Erfindung kann die Kontrolleinheit des unbemannten Unterwasserfahrzeugs dazu ausgebildet sein, Steuerungsaufgaben für bestimmte Arbeitsvorgänge autonom vorzunehmen. Beispielsweise können einfache Aufgaben bzw. Routineaufgaben des ferngesteuerten Unterwasserfahrzeugs autonom durch die Kontrolleinheit des unbemannten Unterwasserfahrzeugs ohne Interaktion mit dem Kontrollzentrum vorgenommen werden. Beispielsweise könnte die Aufgabe zur Verlegung eines Kabels von einem ersten Punkt zu einem zweiten Punkt vom Kontrollzentrum an das unbemannte Unterwasserfahrzeug übermittelt werden. In diesem Falle würde die Kontrolleinheit des unbemannten Unterwasserfahrzeugs das ferngesteuerte Unterwasserfahrzeug autonom fernsteuern und die Aufgabe erledigen. Vorteil dieser Ausführungsform ist die deutliche Verringerung der Datenübertragung zum Kontrollzentrum. Zum anderen kann weiterhin ein herkömmliches ferngesteuertes Unterwasserfahrzeug verwendet werden, das über keine autonome Arbeitsfähigkeit verfügen muss.In a further embodiment of the invention, the control unit of the unmanned underwater vehicle can be designed to autonomously carry out control tasks for certain work processes. For example, simple tasks or routine tasks of the remote-controlled underwater vehicle can be carried out autonomously by the control unit of the unmanned underwater vehicle without interaction with the control center. For example, the task of laying a cable from a first point to a second point could be transmitted from the control center to the unmanned underwater vehicle. In this case, the control unit of the unmanned underwater vehicle would autonomously remotely control the remote-controlled underwater vehicle and do the job. The advantage of this embodiment is the significant reduction in data transmission to the control center. Secondly, a conventional remote-controlled one Can be used underwater vehicle that does not have to have an autonomous ability to work.

In einer weiteren Ausführungsform der Erfindung ist die dritte Verbindung als reine Datenübertragungsverbindung ausgebildet. Beispielsweise handelt es sich um eine Glasfaserverbindung.In a further embodiment of the invention, the third connection is designed as a pure data transmission connection. For example, it is a fiber optic connection.

In einer weiteren Ausführungsform der Erfindung werden das unbemannte Unterwasserfahrzeug, das autonom operierende Unterwasserfahrzeugs und das ferngesteuerte Unterwasserfahrzeug ausschließlich durch das unbemannte Unterwasserfahrzeug mit Energie versorgt. Vorteil dieser Ausführungsform ist, dass die Verbindungsleitung zum Kontrollzentrum praktisch leistungsfrei arbeitet. Hierdurch ist eine vergleichsweise einfache und auf die Datenübertragung optimierte Ausführung möglich.In a further embodiment of the invention, the unmanned underwater vehicle, the autonomously operating underwater vehicle and the remote-controlled underwater vehicle are supplied with energy exclusively by the unmanned underwater vehicle. The advantage of this embodiment is that the connection line to the control center works practically without power. This enables a comparatively simple design that is optimized for data transmission.

In einer weiteren Ausführungsform der Erfindung weist das unbemannte Unterwasserfahrzeug wenigstens ein erstes ferngesteuertes Unterwasserfahrzeug und wenigstens ein zweites ferngesteuertes Unterwasserfahrzeug auf. Es sind auch Ausführungsformen mit drei oder mehr ferngesteuerten Unterwasserfahrzeugen denkbar. Hierbei können die verschiedenen ferngesteuerten Unterwasserfahrzeuge gleichartig sein. Hierdurch können Aufgaben parallel und somit insgesamt schneller erledigt werden. Zum anderen (alternativ oder zusätzlich) können auch verschiedene ferngesteuerte Unterwasserfahrzeuge eingesetzt werden, wobei die verschiedenen ferngesteuerten Unterwasserfahrzeuge für verschiedene Aufgaben optimiert sein können. Das jeweilig für eine Aufgabe zu verwendende ferngesteuerte Unterwasserfahrzeug wird entsprechend der Spezialisierung ausgewählt.In a further embodiment of the invention, the unmanned underwater vehicle has at least one first remote-controlled underwater vehicle and at least one second remote-controlled underwater vehicle. Embodiments with three or more remote-controlled underwater vehicles are also conceivable. The various remote-controlled underwater vehicles can be of the same type. As a result, tasks can be carried out in parallel and therefore faster overall. On the other hand (alternatively or additionally), different remote-controlled underwater vehicles can also be used, wherein the different remote-controlled underwater vehicles can be optimized for different tasks. The remote-controlled underwater vehicle to be used for a task is selected according to the specialization.

Die Erfindung betrifft ein System zur Durchführung ferngesteuerter Unterwasserarbeiten, wobei das System zur Durchführung ferngesteuerter Unterwasserarbeiten aus einem erfindungsgemäßen unbemannten Unterwasserfahrzeug, einem Kontrollzentrum, einer Verbindungsleitung zwischen dem Kontrollzentrum und einem Ort, an welchem die ferngesteuerten Unterwasserarbeiten ausgeführt werden sollen, besteht. Die Verbindungsleitung weist am Unterwasserende eine zweite Schnittstelle auf, wobei die zweite Schnittstelle zum Datenaustausch mit einer ersten Schnittstelle des autonom operierenden Unterwasserfahrzeugs des unbemannten Unterwasserfahrzeugs ausgebildet ist. Das Kontrollzentrum ist vorzugsweise landgestützt.The invention relates to a system for carrying out remote-controlled underwater work, the system for carrying out remote-controlled underwater work consisting of an unmanned underwater vehicle according to the invention, a control center, a connection line between the control center and a location where the remote-controlled underwater work is to be carried out. The connecting line has a second interface at the underwater end, the second interface being designed for data exchange with a first interface of the autonomously operating underwater vehicle of the unmanned underwater vehicle. The control center is preferably land based.

Das erfindungsgemäße System erlaubt komplexe ferngesteuert durchführbare Unterwasserarbeiten. Der Vorteil einer festen Verbindungsleitung zwischen dem (vorzugsweise landgestützten) Kontrollzentrum und dem Einsatzgebiet ist zum einen eine vergleichsweise hohe Datenübertragungsrate. Zum anderen ist eine fest verlegte Verbindungsleitung deutlich sicherer, als eine durch das unbemannte Unterwasserfahrzeug verlegte Einmalverbindung. Derartige Einmalverbindungen sind üblicherweise sehr dünne Glasfasern, welche zum Beispiel bei der Fernsteuerung von Torpedos eingesetzt werden können. Diese sind jedoch anfällig gegenüber Beschädigung und regelmäßig nur für den kurzfristigen Einsatz geeignet. Des Weiteren werden bei der Gewinnung von Rohstoffen unter Wasser die Anlagen sehr langfristig genutzt, sodass innerhalb der Lebensdauer der Anlagen regelmäßig Wartung- oder Reparaturmaßnahmen ausgeführt werden müssen. Durch die einmalige Verlegung können somit auch Kosten gespart werden.The system according to the invention allows complex underwater work to be carried out remotely. The advantage of a fixed connection line between the (preferably land-based) control center and the area of application is, on the one hand, a comparatively high data transmission rate. On the other hand, a permanently laid connection line is significantly safer than a one-time connection laid by the unmanned underwater vehicle. Such single-use connections are usually very thin glass fibers, which can be used, for example, for the remote control of torpedoes. However, these are susceptible to damage and are usually only suitable for short-term use. Furthermore, the systems are used for the extraction of raw materials under water for a very long time, so that maintenance or repair measures must be carried out regularly over the life of the systems. The one-time installation can also save costs.

In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Durchführung ferngesteuerter Unterwasserarbeiten. Das Verfahren weist folgende Verfahrensschritte auf:

  1. a) Entsenden eines erfindungsgemäßen unbemannten Unterwasserfahrzeugs an den Ort, an welchem die ferngesteuerten Unterwasserarbeiten ausgeführt werden sollen,
  2. b) Abkoppeln des autonom operierenden Unterwasserfahrzeugs von dem unbemannten Unterwasserfahrzeug,
  3. c) autonomes Ansteuern einer zweiten Schnittstelle durch das autonom operierende Unterwasserfahrzeug,
  4. d) Herstellen eine Verbindung zwischen einer ersten Schnittstelle und der zweiten Schnittstelle,
  5. e) Aufbau einer Datenverbindung zwischen dem Kontrollzentrum und dem ferngesteuerten Unterwasserfahrzeug,
  6. f) Durchführen der Unterwasserarbeiten mit dem ferngesteuerten Unterwasserfahrzeug.
In a further aspect, the invention relates to a method for performing remote-controlled underwater work. The process has the following process steps:
  1. a) sending an unmanned underwater vehicle according to the invention to the location where the remote-controlled underwater work is to be carried out,
  2. b) uncoupling the autonomously operating underwater vehicle from the unmanned underwater vehicle,
  3. c) autonomous control of a second interface by the autonomously operating underwater vehicle,
  4. d) establishing a connection between a first interface and the second interface,
  5. e) establishing a data connection between the control center and the remote-controlled underwater vehicle,
  6. f) Carrying out the underwater work with the remote-controlled underwater vehicle.

In Schritt a) fährt zunächst das unbemannte Unterwasserfahrzeug selbständig in das Operationsgebiet. Hierbei befinden sich bevorzugt das ferngesteuerte Unterwasserfahrzeug und das autonom operieren Unterwasserfahrzeug innerhalb des unbemannten Unterwasserfahrzeugs.In step a), the unmanned underwater vehicle first drives independently into the operation area. Here, the remote-controlled underwater vehicle and the autonomously operating underwater vehicle are preferably located within the unmanned underwater vehicle.

Nach Erreichen des Operationsgebietes durch das unbemannte Unterwasserfahrzeug wird in Schritt b) das autonom operierende Unterwasserfahrzeug abgekoppelt.After the operating area has been reached by the unmanned underwater vehicle, the autonomously operating underwater vehicle is uncoupled in step b).

In Schritt c) steuerte das autonom operierende Unterwasserfahrzeug autonom die zweite Schnittstelle an. Besonders bevorzugt kommt es zwischen der zweiten Schnittstelle und dem autonom operieren Unterwasserfahrzeug hierbei zu einer Kommunikation, beispielsweise sendet das autonom operierende Unterwasserfahrzeug ein erstes akustisches Signal aus, welches dazu führt, dass die akustische Gegenstelle an der zweiten Schnittstelle ein zweites akustisches Signal aussendet und so dem autonom operieren Unterwasserfahrzeug die Navigation ermöglicht.In step c), the autonomously operating underwater vehicle autonomously controlled the second interface. Communication between the second interface and the autonomously operating underwater vehicle is particularly preferred, for example the autonomously operating underwater vehicle sends out a first acoustic signal, which leads to the acoustic remote station transmitting a second acoustic signal at the second interface and thus to the operate autonomously underwater vehicle enables navigation.

In Schritt d) wird eine Verbindung zwischen der ersten Schnittstelle und der zweiten Schnittstelle hergestellt. Vorzugsweise wird auch eine mechanische Verbindung zwischen dem autonom operierende Unterwasserfahrzeug und der zweiten Schnittstelle hergestellt, um das autonom operierende Unterwasserfahrzeug an der zweiten Schnittstelle zu verankern. Die Herstellung der Verbindung zum Datenaustausch kann beispielsweise durch Herstellung einer Steckverbindung erfolgen. Alternativ kann die Herstellung der Verbindung aber auch durch den Austausch von Schall- bzw. Lichtsignalen erfolgen.In step d) a connection is established between the first interface and the second interface. A mechanical connection is preferably also established between the autonomously operating underwater vehicle and the second interface in order to anchor the autonomously operating underwater vehicle at the second interface. The connection for data exchange can be established, for example, by establishing a plug connection. Alternatively, the connection can also be established by exchanging sound or light signals.

Nach Herstellung dieser Verbindung wird in Schritt e) eine Verbindung vom Kontrollzentrum über das unbemannte Unterwasserfahrzeug zum ferngesteuerten Unterwasserfahrzeug hergestellt.After this connection has been established, a connection is established in step e) from the control center via the unmanned underwater vehicle to the remote-controlled underwater vehicle.

In Schritt f) werden anschließend die ferngesteuerten Unterwasserarbeiten durchgeführt. Hierbei übernimmt das unbemannte Unterwasserfahrzeug die Energieversorgung des ferngesteuerten Unterwasserfahrzeugs, während die Kontrolle durch das Kontrollzentrum erfolgt. Hierdurch sind auch langwierige und hochkomplexe Arbeiten möglich.In step f), the remote-controlled underwater work is then carried out. Here, the unmanned underwater vehicle takes over the energy supply for the remote-controlled underwater vehicle, while the control is carried out by the control center. This also makes lengthy and highly complex work possible.

Nachfolgend sind das erfindungsgemäße unbemannte Unterwasserfahrzeug sowie das Verfahren zur Durchführung ferngesteuerter Unterwasserarbeiten anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert.

Fig. 1
Anfahrt des unbenannten Unterwasserfahrzeugs an die Unterwasserinstallationen
Fig. 2
autonomes Ansteuern der zweiten Schnittstelle durch das autonom operieren Unterwasserfahrzeug
Fig. 3
Herstellen einer Verbindung zwischen der ersten Schnittstelle und der zweiten Schnittstelle
Fig. 4
Durchführen der ferngesteuerten Unterwasserarbeiten
The unmanned underwater vehicle according to the invention and the method for carrying out remote-controlled underwater work are explained in more detail below on the basis of an exemplary embodiment shown in the drawings.
Fig. 1
Approach of the unnamed underwater vehicle to the underwater installations
Fig. 2
autonomous control of the second interface by the autonomously operating underwater vehicle
Fig. 3
Establishing a connection between the first interface and the second interface
Fig. 4
Carrying out remote-controlled underwater work

Um eine Unterwasserinstallation 60 zu warten, wird zunächst ein unbemanntes Unterwasserfahrzeug 10 dorthin entsendet, wie in Fig. 1 dargestellt. Das Unterwasserfahrzeug 10 weist ein ferngesteuertes Unterwasserfahrzeug 20 und ein autonom operierendes Unterwasserfahrzeug 30 auf. Nach dem Erreichen des Zielgebietes wird das autonom operierende Unterwasserfahrzeug 30 von dem unbemannten Unterwasserfahrzeug 10 abgekoppelt. Das autonom operierende Unterwasserfahrzeug 30 steuert dann autonom, wie in Fig. 2 dargestellt, die zweite Schnittstelle 40 an und stellt, wie in Fig. 3 gezeigt, eine Verbindung her. Jetzt kann über die Verbindungsleitung 50, die zweite Schnittstelle 40, das autonom operierende Unterwasserfahrzeug 30, die dritte Verbindung 14, das unbemannte Unterwasserfahrzeug 10 und die erste Verbindung 16 eine Verbindung vom Kontrollzentrum zum ferngesteuerten Unterwasserfahrzeug 20 aufgebaut werden. Über diese Verbindung wird dann das ferngesteuerte Unterwasserfahrzeug 20 kontrolliert und, wie in Fig. 4 gezeigt, die Unterwasserarbeiten an der Unterwasserinstallation 60 durchgeführt werden. Damit das unbemannte Unterwasserfahrzeug 10 seine Position im Bereich der Unterwasserinstallation 60 halten kann, verfügt dieses über ein dynamisches Positioniersystem 12.In order to maintain an underwater installation 60, an unmanned underwater vehicle 10 is first dispatched there, as in FIG Fig. 1 shown. The underwater vehicle 10 has a remote-controlled underwater vehicle 20 and an autonomously operating underwater vehicle 30. After reaching the target area, the autonomously operating underwater vehicle 30 is uncoupled from the unmanned underwater vehicle 10. The autonomously operating underwater vehicle 30 then controls autonomously, as in FIG Fig. 2 shown, the second interface 40 and, as in Fig. 3 shown a connection. A connection from the control center to the remote-controlled underwater vehicle 20 can now be established via the connecting line 50, the second interface 40, the autonomously operating underwater vehicle 30, the third connection 14, the unmanned underwater vehicle 10 and the first connection 16. The remote-controlled underwater vehicle 20 is then controlled via this connection and, as in FIG Fig. 4 shown, the underwater work on the underwater installation 60 to be performed. So that the unmanned underwater vehicle 10 can hold its position in the area of the underwater installation 60, it has a dynamic positioning system 12.

Nach Abschluss der Unterwasserarbeiten kehrt das ferngesteuerte Unterwasserfahrzeug 20 zum unbemannten Unterwasserfahrzeug 10 zurück, die Verbindung zwischen der zweiten Schnittstelle 40 und dem autonom operierende Unterwasserfahrzeug 30 wird gelöst und auch das autonom operierende Unterwasserfahrzeug 30 kehrt zum unbemannten Unterwasserfahrzeug 10 zurück. Das unbemannte Unterwasserfahrzeug 10 kann zu seinem Ausgangsort oder einem anderen Einsatzort fahren.After completion of the underwater work, the remote-controlled underwater vehicle 20 returns to the unmanned underwater vehicle 10, the connection between the second interface 40 and the autonomously operating underwater vehicle 30 is released and the autonomously operating underwater vehicle 30 also returns to the unmanned underwater vehicle 10. The unmanned underwater vehicle 10 can travel to its starting point or another location.

Bezugszeichenreference numeral

1010
unbemanntes Unterwasserfahrzeugunmanned underwater vehicle
1212
dynamisches Positioniersystemdynamic positioning system
1414
dritte Verbindungthird connection
1616
erste und zweite Verbindungfirst and second connection
2020
ferngesteuertes Unterwasserfahrzeugremote controlled underwater vehicle
3030
autonom operierende Unterwasserfahrzeugautonomously operating underwater vehicle
4040
zweite Schnittstellesecond interface
5050
Verbindungsleitungconnecting line
6060
UnterwasserinstallationUnderwater installation

Claims (11)

  1. System for the execution of remotely controlled underwater works, consisting of an unmanned underwater vehicle (10), a control centre, a connection line (50) between the control centre and a location at which the remotely controlled underwater works are to be performed, wherein the connection line (50) comprises a second interface (40) at the underwater end, wherein the second interface (40) is designed to exchange data with a first interface of the autonomously operating underwater vehicle (30) of the unmanned underwater vehicle (10), wherein the unmanned underwater vehicle (10) comprises a remotely operated underwater vehicle (20), wherein the unmanned underwater vehicle (10) comprises a first connection to the remotely operated underwater vehicle (20), wherein the first connection serves to exchange data, wherein the unmanned underwater vehicle (10) comprises a second connection to the remotely operated underwater vehicle (20), wherein the second connection serves to supply energy, wherein the unmanned underwater vehicle (10) comprises an autonomously operating underwater vehicle (30), wherein the unmanned underwater vehicle (10) comprises a third connection (14) to the autonomously operating underwater vehicle (30), wherein the third connection (14) serves to exchange data, the autonomously operating underwater vehicle (30) comprises a first interface, wherein the first interface is designed to exchange data with an item of underwater equipment.
  2. System according to Claim 1, characterized in that the first interface is designed to receive and send data electrically, acoustically or optically.
  3. System according to either of the preceding claims, characterized in that the autonomously operating underwater vehicle (30) comprises at least one first sensor, wherein the first sensor serves to autonomously navigate the autonomously operating underwater vehicle (30), wherein the first sensor is an acoustic sensor or an optical sensor.
  4. System according to any one of the preceding claims, characterized in that the unmanned underwater vehicle (10) comprises a first cable management system for the first connection and the second connection, and a second cable management system for the third connection (14).
  5. System according to any one of the preceding claims, characterized in that the unmanned underwater vehicle (10) comprises an energy generating device.
  6. System according to Claim 5, characterized in that the energy generating device is a fuel cell or a diesel generator that is non-dependent on external air.
  7. System according to any one of the preceding claims, characterized in that the unmanned underwater vehicle (10) comprises an energy storage means.
  8. System according to any one of the preceding claims, characterized in that the unmanned underwater vehicle (10) comprises a dynamic positioning system (12).
  9. System according to any one of the preceding claims, characterized in that the third connection is realized as a pure data transmission connection.
  10. System according to any one of the preceding claims, characterized in that the unmanned underwater vehicle (10), the autonomously operating underwater vehicle (30) and the remotely operated underwater vehicle (20) are supplied with energy exclusively by the unmanned underwater vehicle (10).
  11. Method for the execution of remotely controlled underwater works with a system according to any one of the preceding claims, wherein the method comprises the following method steps:
    a) dispatching an unmanned underwater vehicle (10) according to any one of Claims 1 to 10 to the location at which the remotely controlled underwater works are to be performed,
    b) decoupling the autonomously operating underwater vehicle (30) from the unmanned underwater vehicle (10),
    c) the autonomously operating underwater vehicle (30) autonomously heading for a second interface (40),
    d) establishing a connection between a first interface and the second interface (40),
    e) setting up a data connection between a control centre and the remotely operated underwater vehicle (20),
    f) executing the underwater works by means of the remotely operated underwater vehicle (20).
EP16738760.4A 2015-07-15 2016-07-13 Carrying out remote controlled underwater works Active EP3322638B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015213293.5A DE102015213293A1 (en) 2015-07-15 2015-07-15 Carrying out remote controlled underwater works
PCT/EP2016/066608 WO2017009367A1 (en) 2015-07-15 2016-07-13 Carrying out remote controlled underwater works

Publications (2)

Publication Number Publication Date
EP3322638A1 EP3322638A1 (en) 2018-05-23
EP3322638B1 true EP3322638B1 (en) 2020-01-15

Family

ID=56411629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16738760.4A Active EP3322638B1 (en) 2015-07-15 2016-07-13 Carrying out remote controlled underwater works

Country Status (4)

Country Link
US (1) US10501159B2 (en)
EP (1) EP3322638B1 (en)
DE (1) DE102015213293A1 (en)
WO (1) WO2017009367A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3619551A4 (en) 2017-05-04 2020-12-30 3D AT Depth, Inc. Systems and methods for monitoring underwater structures
EP3652929A4 (en) * 2017-07-10 2021-07-21 3D AT Depth, Inc. Underwater optical positioning systems and methods
US11934187B2 (en) * 2017-12-01 2024-03-19 Onesubsea Ip Uk Limited Systems and methods of pilot assist for subsea vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854410B1 (en) * 2003-11-24 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Underwater investigation system using multiple unmanned vehicles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621911A (en) 1969-04-01 1971-11-23 Mobil Oil Corp Subsea production system
US6167831B1 (en) * 1999-09-20 2001-01-02 Coflexip S.A. Underwater vehicle
US6260504B1 (en) * 2000-01-21 2001-07-17 Oceaneering International, Inc. Multi-ROV delivery system and method
US7926438B2 (en) 2007-11-05 2011-04-19 Schlumberger Technology Corporation Subsea operations support system
US8075223B2 (en) * 2009-03-27 2011-12-13 The United States Of America As Represented By The Secretary Of The Navy Deployment system for fiber-optic line sensors
US7814856B1 (en) * 2009-11-25 2010-10-19 Down Deep & Up, LLC Deep water operations system with submersible vessel
EP2802092A1 (en) 2013-05-06 2014-11-12 ATLAS Elektronik GmbH System and method for seafloor exploration
IL228660B (en) 2013-10-01 2020-08-31 Elta Systems Ltd Underwater system and method
US9505473B2 (en) * 2013-10-23 2016-11-29 Oceaneering International, Inc. Remotely operated vehicle integrated system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854410B1 (en) * 2003-11-24 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Underwater investigation system using multiple unmanned vehicles

Also Published As

Publication number Publication date
US20180194446A1 (en) 2018-07-12
DE102015213293A1 (en) 2017-02-02
US10501159B2 (en) 2019-12-10
EP3322638A1 (en) 2018-05-23
WO2017009367A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
DE60013930T2 (en) Remote controlled device for launching and recovering remote-controlled watercraft
US6257162B1 (en) Underwater latch and power supply
EP3322638B1 (en) Carrying out remote controlled underwater works
EP2830934B1 (en) Underwater system and method for its operation
EP2598396B1 (en) Method and system for reconnoitering a region under water
DE1756698C3 (en) Devices for positioning a ship
RU2682072C2 (en) Control of unmanned underwater vehicle
DE2516095A1 (en) SYSTEM FOR EXPLORATION AND MONITORING OF THE SEA BOTTOM THROUGH DEVICES WITH EXTERNAL POWER SUPPLY
EP2423102A1 (en) Unmanned submarine and method for operating an unmanned submarine
WO2013143527A1 (en) Method for detecting naval mines and naval mine detection system
EP1827965A1 (en) Device and method for tracking an underwater vessel
DE102011115657A1 (en) Maritime data center and work process
WO2018086767A1 (en) Recovery device
EP3226095A1 (en) System and method of navigation of an autonomously navigated submersible vehicle at entering a catch station
EP3350073B1 (en) Seabed sensor device
EP0678135B1 (en) Installation for transmitting drive power to piling, cut-off or similar devices usable under water
US11292563B2 (en) Methods for subsea vehicles supervised control
CN104315225A (en) Underwater safety isolation device for submarine pipeline
DE102018212561A1 (en) Arrangement and method for wireless data transmission
EP3356220B1 (en) Method for retrieving an underwater vehicle, escort vehicle and a vehicle combination
JPS61122393A (en) Apparatus for minning ore of sea bottom
WO2015027987A1 (en) Coupling device, coupling system, and towing system, and method for uncoupling and coupling an unmanned underwater vehicle
AU2017331495B2 (en) Performing remote inspection at subsea locations
DE2610799A1 (en) DEVICE AND METHOD FOR MANUFACTURING AND LAYING UNDERWATER PIPES
DE102021112739A1 (en) Combination of at least one preferably self-propelled working device and at least one flying sensor unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 25/42 20060101ALN20190510BHEP

Ipc: B63G 8/00 20060101AFI20190510BHEP

17Q First examination report despatched

Effective date: 20190522

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B63G 8/00 20060101AFI20190823BHEP

Ipc: B63H 25/42 20060101ALN20190823BHEP

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008457

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502016008457

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1224945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200416

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008457

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1224945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 8

Ref country code: GB

Payment date: 20230721

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8