EP3254763A1 - Device for separating particles of different conductivity - Google Patents

Device for separating particles of different conductivity Download PDF

Info

Publication number
EP3254763A1
EP3254763A1 EP17173372.8A EP17173372A EP3254763A1 EP 3254763 A1 EP3254763 A1 EP 3254763A1 EP 17173372 A EP17173372 A EP 17173372A EP 3254763 A1 EP3254763 A1 EP 3254763A1
Authority
EP
European Patent Office
Prior art keywords
particles
magnetic field
cylinder
rotating
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17173372.8A
Other languages
German (de)
French (fr)
Inventor
Andreas Hauser
Markus Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Graz
Original Assignee
Technische Universitaet Graz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Graz filed Critical Technische Universitaet Graz
Publication of EP3254763A1 publication Critical patent/EP3254763A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetical field, special shape or generation

Definitions

  • the invention relates to a device for separating particles of different conductivity of a particle present in a fluid mixture, with a substantially upright cylinder, within which a means for generating a rotating, outwardly acting magnetic field is provided, for along the outside of the cylinder after below flowing, separated in the magnetic field particles of suspended in the fluid particle mixture mutually offset recordings are provided
  • eddy current separators already provides valuable services in many areas of raw material extraction and raw material recovery for the separation of non-ferrous metals.
  • rotary magnet arrangements are used which induce eddy currents in particles to be separated, provided they consist of a suitable conductive material, which according to Lenz's rule result in an opposing magnetic field, the generated repulsive force acting on these particles as a result of the influences the eddy currents and the magnetic field of the rotating magnet arrangement, depending on the design of the device, have a radial and a tangential force component.
  • Such force components force the conductive particles away from other, non or less conductive particles.
  • One of the most common methods is the conveyor belt method, in which the sorted material is transported on a conveyor belt to a located below the end region of the conveyor belt, rotating magnet assembly, wherein induced in the appropriate conductive particles depending on the size and conductivity differently strong eddy currents that their opposing magnetic field cause a repulsive force on these particles. Due to the repulsive force generated, these particles undergo additional repulsion which affects the parabolic trajectory of the non-ferrous metals thrown from the end of the conveyor belt such that the non-ferrous metals are thrown over an adjustable sorting edge leaving unaffected non-metals below that sorting edge and separated from the non-ferrous metals.
  • a disadvantage of this method is the short residence time of the sorted material in the area of action of the magnet arrangement and the resulting poor sorting of the particles. Especially smaller particles in the millimeter range develop weak eddy currents and can not be deflected strongly enough due to the short influence time of the magnet arrangement.
  • Another device is in the DE 3200143 A1 described.
  • This is an upright hollow cylinder, at the upper end of an upstanding cone is arranged, wherein the cone is a cylindrical feed positioned, which extends to the transition region between the cone and hollow cylinder and has a certain distance from the latter, so that a A mixture of partially conducting, non-ferromagnetic particles poured from above into the feed is passed through the cone and the feed along the outer wall of the hollow cylinder.
  • rotating pole wheels are arranged one above the other, wherein the variable magnetic field of the pole wheels deflects the conductive, non-ferromagnetic particles of the falling particle stream to the effect that their radial distance from the cylinder wall during the separation process is greater and at the lower end of the hollow cylinder in a cylindrical, circular container to be collected, which is arranged separately from the container for the remaining, unaffected non-metals of the particle flow.
  • the falling particle stream is not guided during the separation process of the device described, an optimal separation of the sorting material can not be guaranteed, and further the entire device can only be operated in an exclusively vertical position.
  • the distance between the sorting material and the hollow cylinder during the separation process for conductive, non-ferromagnetic particles is larger, the influence of the magnetic field on the particles to be separated with distance is weaker, which may require a larger or longer design, if small particles in the Millimeter Scheme to be separated.
  • the electromagnets used cause a much weaker magnetic field than is possible with modern permanent magnets, whereby a sufficient force effect is given only for larger particles as desired in the present invention.
  • a similar device is in the AT 511981 A1 shown, wherein in this a magnet assembly is disposed outside of a cylinder and in this case also the distance between the sorting material and the magnet assembly during the separation process becomes larger.
  • each channel split into two outflow channels is, which have mutually circumferentially offset entry areas for separated different particles and outflow openings for these particles.
  • the means for generating a rotating, outwardly acting magnetic field is a rotating magnet arrangement, it being expedient for the magnet arrangement to have at least one magnetic ring consisting of juxtaposed permanent magnets and two or more magnet rings lying one above the other are provided.
  • the at least one magnetic ring has permanent magnets in a Halbach configuration with outwardly directed field lines.
  • the means for generating a rotating, outwardly acting magnetic field is a coil arrangement for generating a rotating field.
  • the channels are formed between the inner cylinder wall and a boundary wall surrounding this concentrically with separating webs lying therebetween and the split flow channels run parallel between the inner cylinder wall and the surrounding boundary wall.
  • the interior of the cylinder can be sealed against the external environment.
  • the sorting material can be guided close to the magnet throughout the separation process, resulting in a smaller construction of the device, with constant effectiveness compared to other devices of the prior art.
  • Fig.1 is a cylinder 1 can be seen in which outside of an inner cylinder wall 1a channels 2 are arranged, wherein in Fig. 1 to simplify the illustration, only one channel 2 is completely depicted and others are merely indicated by their respective inflow opening 3 .
  • the number of channels 2 can vary depending on the need and size of the design.
  • the channels 2 are limited by limiting bars 4, which are arranged between the inner cylinder wall 1a and an outer cylindrical wall 1b in the circumferential direction and in the radial direction by the inner and outer cylinder wall 1a, 1b.
  • the channels 2 are substantially parallel to the generatrix of the cylinder or to its axis a.
  • the inner cylinder wall 1a may have a diameter of 10 cm to 15 cm, wherein the inner cylinder wall 1a and the outer cylinder wall 1b should have a distance of 0.5 cm to 1 cm.
  • a common feed (not shown, will be provided above the inflow ports 3 of the channels 2 to centrally distribute a particulate mass of non-ferrous metals and nonmetals, preferably suspended in a fluid, into the individual channels 2.
  • a suitable fluid will in many cases be water, with oils or air or other gases also being used.
  • a magnet assembly 5 which is annular, which can rotate about the axis a and consists of juxtaposed permanent magnet 6 , which are arranged in the embodiment shown in a Halbach configuration, wherein the magnetization direction of the permanent magnets 6 used against each other each tilted by 90 ° in the direction of the axis of rotation a, as in Fig. 2
  • the field lines on the side facing the inner cylinder wall 1a are thereby brought closer together, and accordingly an increase in the magnetic flux density is effected.
  • the field lines are less narrow, so that the magnetic field is weakened or completely disappears.
  • the permanent magnets 6 are mounted on a support plate 7, for example made of aluminum, and arranged at the smallest possible distance from the inner cylinder wall 1a, as in Fig. 2 shown, namely without coming into contact with the inner cylinder wall 1a during rotation.
  • a plurality of magnetic rings 5-1, 5-2, 5-3 can be arranged one above the other, as in Fig. 3 is shown for three magnetic rings, which is arranged by means of a mounted on a motor M shaft 8, which is arranged congruent to the axis a of the magnetic rings 5-1, 5-2, 5-3 and within the cylinder in the position of the cylinder axis for rotation to be brought.
  • the rotational speed of the magnetic rings 5-1, 5-2, 5-3 may be, for example, 8000 revolutions per minute, wherein the rotational speed can be adjusted according to the need and size of the design or the properties of the mixture to be separated and the fluid ,
  • the outwardly acting, rotating magnetic field can alternatively be realized by a fixed coil arrangement for generating a rotating field, whereby ferromagnetic cores with pole shoes and an electronically controlled supply of the coil arrangement can be provided.
  • each channel 2 splits into first and second downstream drainage channels 9a, 9b , these outflow channels 9a, 9b being circumferentially offset entry areas 10a, 10b for the different separated particles and drainage openings 11a, 11b therefor Have particles.
  • each one delimiting web 4 passes a transition section 4ü in an offset in the circumferential direction of the cylinder portion 4v through which, 1b forming the first effluent flow channel 9a together with an extending from the transition area 11 downward separation pad 12 and the cylinder walls 1a, wherein in the direction of the direction of rotation of the magnet assembly 5 or in the direction of rotation of the magnetic field (13) is arranged, and the initial channel 2 maintains its original course and the second outflow channel 9b is substantially an extension of the initial channel 2.
  • the transition region 11 is arranged at the level of the magnet assembly 5 and extends at least over the height of these, so guided downstream of the channel 2, suspended in the fluid non-ferrous metals from the beginning of the transition region 11 to the upper edge of the divider 12, due to by the rotating magnetic field Induced eddy currents generated repulsive force are deflected to this in the direction of rotation of the magnet assembly 5 and in the direction of the inlet opening 10a of the first drain channel 9a, with non-metals of the suspended particle mixture of the magnetic field unaffected the channel 2 and the second drain channel 9b further downstream follow.
  • transition region 4ü in its design (height and position relative to the magnetic rings), and the channel widths 9a, 9b and their ratio, and the exact position of the separating web 12 can be adapted to the nature of the separating material.
  • the fluid used in which the particle mixture is suspended can be air or water, as well as any other gaseous or diamagnetic carrier medium.
  • the invention can, in contrast to those in the DE 3200143 A1 and the AT 511981 A1 described devices, not only vertically, but operated at arbitrary angles of tilt to the horizontal. If a liquid fluid is used, horizontal operation is possible in addition to the vertical and inclined orientation, with an added benefit of the generally higher viscosity of liquids over air, as the non-ferrous metals suspended therein may be in the magnetic field more effectively, and This favors a more compact design.
  • particles suspended in a liquid fluid can be separated in the sub-millimeter range because their induced eddy currents are less pronounced, and consequently the developed repulsive force on these particles is lower, and a longer residence time of these particles in the area of action of the magnet assembly 5 favors optimal separation.
  • the discharge opening 11a for the separated non-ferrous metals, wherein the non-metals influenced by the magnetic field are deposited through the discharge opening 11b at the end of the second outflow channel 9b.
  • the discharge openings 11a, 11b open into a respective, not shown catch basin, from which the non-ferrous metals or non-metals can be removed.
  • the device as a whole in a liquid fluid, preferably immersed in water, both vertically, at any tilt angles, as well as horizontally operated, wherein at least in horizontal operation, a fluid flow along the channels 2 must be present.
  • the magnet assembly 5 is separated fluid-tight from the environment within the cylinder 1.
  • the interior of the cylinder 1 can be filled with air or a gas, wherein, if high speeds of the magnet assembly 5 are desired, also a reduced air pressure, typically in the order of a few millibars, comes into question to reduce the friction losses. For a corresponding drive, as well as its cooling is to provide in this application.

Abstract

Vorrichtung zum Trennen von Teilchen unterschiedlicher Leitfähigkeit eines in einem Fluidum vorhandenen Teilchengemenges, mit einem im Wesentlichen aufrecht stehenden Zylinder (1), innerhalb dessen ein Mittel (5) zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes vorgesehen ist, wobei für längs der Außenseite des Zylinders (1) nach unten fließende, im Magnetfeld separierte Teilchen des in dem Fluidum suspendierten Teilchengemenges gegeneinander versetzte Aufnahmen (9a, 9b) vorgesehen sind, wobei außerhalb der inneren Zylinderwand (1a) sich längs dieser erstreckende Kanäle (2) vorgesehen sind, welche je an ihrem oberen Ende eine Zuflussöffnung (3) für das im Fluidum suspendierte Teilchengemenge aufweisen und stromab, im Einflussbereich des rotierenden Magnetfeldes jeder Kanal (2) in zwei Abflusskanäle (9a, 9b) aufgespalten ist, welche gegeneinander in Umfangsrichtung versetzte Eintrittsbereiche (10a, 10b) für voneinander separierte unterschiedliche Teilchen und Abflussöffnungen (11a, 11b) für diese Teilchen aufweisen.Apparatus for separating particles of different conductivity of a mixture of particles present in a fluid, comprising a substantially upright cylinder (1) within which is provided a means (5) for generating a rotating, outwardly acting magnetic field, for along the outside of Cylinders (1) downwardly flowing, in the magnetic field separated particles of suspended in the fluid particle mixture mutually staggered shots (9a, 9b) are provided, outside of the inner cylinder wall (1a) along these extending channels (2) are provided, which ever have at their upper end an inflow opening (3) for suspended in the fluid particle mixture and downstream, in the sphere of influence of the rotating magnetic field each channel (2) in two drainage channels (9a, 9b) is split, which offset from each other in the circumferential direction of entry areas (10a, 10b ) for separated different particles and discharge ports (11a, 11b) for these particles.

Description

Die Erfindung betrifft eine Vorrichtung zum Trennen von Teilchen unterschiedlicher Leitfähigkeit eines in einem Fluidum vorhandenen Teilchengemenges, mit einem im Wesentlichen aufrecht stehenden Zylinder, innerhalb dessen ein Mittel zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes vorgesehen ist, wobei für längs der Außenseite des Zylinders nach unten fließende, im Magnetfeld separierte Teilchen des in dem Fluidum suspendierten Teilchengemenges gegeneinander versetzte Aufnahmen vorgesehen sind,The invention relates to a device for separating particles of different conductivity of a particle present in a fluid mixture, with a substantially upright cylinder, within which a means for generating a rotating, outwardly acting magnetic field is provided, for along the outside of the cylinder after below flowing, separated in the magnetic field particles of suspended in the fluid particle mixture mutually offset recordings are provided

Der Einsatz von Wirbelstromabscheidern leistet schon heute in vielen Bereichen der Rohstoffgewinnung bzw. Rohstoffrückgewinnung für die Abscheidung von Nichteisenmetallen wertvolle Dienste. Dabei finden vor allem rotierende Magnetanordnungen Verwendung, die in abzuscheidenden Teilchen, sofern sie aus einem geeigneten leitfähigen Material bestehen, Wirbelströme induzieren, die gemäß der Lenz'schen Regel ein gegensinniges Magnetfeld zur Folge haben, wobei die erzeugte repulsive Kraft auf diese Teilchen infolge der Einflüsse der Wirbelströme und des Magnetfeldes der rotierenden Magnetanordnung, je nach Bauart der Vorrichtung, eine radiale und eine tangentiale Kraftkomponente aufweisen. Solche Kraftkomponenten drängen die leitfähigen Teilchen von anderen, nicht oder weniger leitfähigen Teilchen weg.The use of eddy current separators already provides valuable services in many areas of raw material extraction and raw material recovery for the separation of non-ferrous metals. In particular, rotary magnet arrangements are used which induce eddy currents in particles to be separated, provided they consist of a suitable conductive material, which according to Lenz's rule result in an opposing magnetic field, the generated repulsive force acting on these particles as a result of the influences the eddy currents and the magnetic field of the rotating magnet arrangement, depending on the design of the device, have a radial and a tangential force component. Such force components force the conductive particles away from other, non or less conductive particles.

Eines der gängigsten Verfahren ist die Förderbandmethode, bei der das Sortiergut auf einem Förderband zu einer meist unterhalb des Endbereichs des Förderbandes gelegenen, rotierenden Magnetanordnung transportiert wird, wobei in den geeigneten leitfähigen Teilchen je nach Größe und Leitfähigkeit unterschiedlich stark ausgeprägte Wirbelströme induziert werden, die durch ihr gegensinniges Magnetfeld eine repulsive Kraft auf diese Teilchen bewirken. Durch die erzeugte repulsive Kraft erfahren diese Teilchen eine zusätzliche Abstoßung, welche die Parabelflugbahn der vom Ende des Förderbandes geschleuderten Nichteisenmetalle derart beeinflusst, dass die Nichteisenmetalle über eine einstellbare Sortierkante geschleudert werden, wobei unbeeinflusste Nichtmetalle unter dieser Sortierkante bleiben und von den Nichteisenmetallen separiert werden.One of the most common methods is the conveyor belt method, in which the sorted material is transported on a conveyor belt to a located below the end region of the conveyor belt, rotating magnet assembly, wherein induced in the appropriate conductive particles depending on the size and conductivity differently strong eddy currents that their opposing magnetic field cause a repulsive force on these particles. Due to the repulsive force generated, these particles undergo additional repulsion which affects the parabolic trajectory of the non-ferrous metals thrown from the end of the conveyor belt such that the non-ferrous metals are thrown over an adjustable sorting edge leaving unaffected non-metals below that sorting edge and separated from the non-ferrous metals.

Ein Nachteil dieser Methode ist die kurze Verweildauer des Sortierguts im Wirkungsbereich der Magnetanordnung und die daraus resultierende schlechte Sortierung der Teilchen. Vor allem kleinere Partikel im Millimeterbereich entwickeln schwache Wirbelströme und können aufgrund der kurzen Einflusszeit der Magnetanordnung nicht stark genug abgelenkt werden.A disadvantage of this method is the short residence time of the sorted material in the area of action of the magnet arrangement and the resulting poor sorting of the particles. Especially smaller particles in the millimeter range develop weak eddy currents and can not be deflected strongly enough due to the short influence time of the magnet arrangement.

Eine andere Vorrichtung ist in der DE 3200143 A1 beschrieben. Hierbei handelt es sich um einen aufrecht stehenden Hohlzylinder, an dessen oberen Ende ein aufrecht stehender Kegel angeordnet ist, wobei um den Kegel eine zylinderförmige Zuführung positioniert ist, die bis zum Übergangsbereich zwischen Kegel und Hohlzylinder reicht und einen gewissen Abstand zu letzterem aufweist, sodass ein von oben in die Zuführung geschüttetes Gemenge aus teilweise leitenden, nichtferromagnetischen Teilchen durch den Kegel und der Zuführung, entlang der äußeren Wand des Hohlzylinders herum geführt wird. Innerhalb dieses Hohlzylinders sind mehrere mit Elektromagneten bestückte, rotierende Polräder übereinander angeordnet, wobei das veränderliche Magnetfeld der Polräder die leitenden, nichtferromagnetischen Teilchen des herabfallenden Teilchenstroms dahingehend ablenkt, dass deren radialer Abstand zur Zylinderwand während des Separationsvorganges größer wird und diese am unteren Ende des Hohlzylinders in einem zylindrischen, kreisförmigen Behälter aufgefangen werden, wobei dieser getrennt zu dem Behälter für die übrigen, unbeeinflussten Nichtmetalle des Teilchenstroms angeordnet ist.Another device is in the DE 3200143 A1 described. This is an upright hollow cylinder, at the upper end of an upstanding cone is arranged, wherein the cone is a cylindrical feed positioned, which extends to the transition region between the cone and hollow cylinder and has a certain distance from the latter, so that a A mixture of partially conducting, non-ferromagnetic particles poured from above into the feed is passed through the cone and the feed along the outer wall of the hollow cylinder. Within this hollow cylinder several equipped with electromagnets, rotating pole wheels are arranged one above the other, wherein the variable magnetic field of the pole wheels deflects the conductive, non-ferromagnetic particles of the falling particle stream to the effect that their radial distance from the cylinder wall during the separation process is greater and at the lower end of the hollow cylinder in a cylindrical, circular container to be collected, which is arranged separately from the container for the remaining, unaffected non-metals of the particle flow.

Da der herabfallende Teilchenstrom während des Separationsvorgangs der beschriebenen Vorrichtung nicht geführt ist, kann eine optimale Trennung des Sortierguts nicht gewährleistet werden, wobei weiters die gesamte Vorrichtung nur in einer ausschließlich vertikalen Position betrieben werden kann. Ebenso wird der Abstand zwischen dem Sortiergut und dem Hohlzylinder während dem Separationsprozess für leitende, nichtferromagnetische Teilchen größer, wobei der Einflussbereich des Magnetfelds auf die zu trennenden Teilchen mit dem Abstand schwächer wird, was eine gegebenenfalls größere bzw. längere Bauweise erfordert, wenn kleine Partikel im Millimeterbereich separiert werden sollen. Schlussendlich bewirken die verwendeten Elektromagnete ein weitaus schwächeres Magnetfeld, als dies mit modernen Permanentmagneten möglich ist, wodurch eine ausreichende Kraftwirkung nur für größere Teilchen als in der vorliegenden Erfindung angestrebt gegeben ist.Since the falling particle stream is not guided during the separation process of the device described, an optimal separation of the sorting material can not be guaranteed, and further the entire device can only be operated in an exclusively vertical position. Likewise, the distance between the sorting material and the hollow cylinder during the separation process for conductive, non-ferromagnetic particles is larger, the influence of the magnetic field on the particles to be separated with distance is weaker, which may require a larger or longer design, if small particles in the Millimeterbereich to be separated. Finally, the electromagnets used cause a much weaker magnetic field than is possible with modern permanent magnets, whereby a sufficient force effect is given only for larger particles as desired in the present invention.

Eine ähnliche Vorrichtung ist in der AT 511981 A1 gezeigt, wobei bei dieser eine Magnetanordnung außerhalb eines Zylinders angeordnet ist und hierbei ebenfalls der Abstand zwischen dem Sortiergut und der Magnetanordnung während des Separationsvorganges größer wird.A similar device is in the AT 511981 A1 shown, wherein in this a magnet assembly is disposed outside of a cylinder and in this case also the distance between the sorting material and the magnet assembly during the separation process becomes larger.

Deshalb ist es eine Aufgabe der Erfindung, unter Vermeidung der oben erwähnten Nachteile und anderer Einschränkungen des Standes der Technik eine Vorrichtung bereitzustellen, die gewährleistet, dass das Sortiergut über den gesamten Separationsvorgang in nahezu gleichbleibenden und möglichst geringen Abstand zu Magneten geführt werden kann.Therefore, it is an object of the invention, while avoiding the above-mentioned disadvantages and other limitations of the prior art, to provide a device which ensures that the sorted material can be guided over the entire separation process at almost the same minimum distance to magnets.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass außerhalb der inneren Zylinderwand sich längs dieser erstreckende Kanäle vorgesehen sind, welche je an ihrem oberen Ende eine Zuflussöffnung für das im Fluidum suspendierte Teilchengemenge aufweisen und stromab, im Einflussbereich des rotierenden Magnetfeldes, jeder Kanal in zwei Abflusskanäle aufgespalten ist, welche gegeneinander in Umfangsrichtung versetzte Eintrittsbereiche für voneinander separierte unterschiedliche Teilchen und Abflussöffnungen für diese Teilchen aufweisen.This object is achieved in that outside the inner cylinder wall are provided along this extending channels, each having at its upper end an inflow opening for suspended in the fluid particle mixture and downstream, in the sphere of influence of the rotating magnetic field, each channel split into two outflow channels is, which have mutually circumferentially offset entry areas for separated different particles and outflow openings for these particles.

Es ist von Vorteil, wenn das Mittel zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes eine rotierende Magnetanordnung ist, wobei es zweckmäßig ist, wenn die Magnetanordnung zumindest einen aus aneinandergereihten Permanentmagneten bestehenden Magnetring aufweist und zwei oder mehr übereinander liegende Magnetringe vorgesehen sind.It is advantageous if the means for generating a rotating, outwardly acting magnetic field is a rotating magnet arrangement, it being expedient for the magnet arrangement to have at least one magnetic ring consisting of juxtaposed permanent magnets and two or more magnet rings lying one above the other are provided.

Bei einer zweckmäßigen Ausgestaltung der Erfindung weist der zumindest eine Magnetring Permanentmagnete in einer Halbachkonfiguration mit nach außen gerichteten Feldlinien auf.In an expedient embodiment of the invention, the at least one magnetic ring has permanent magnets in a Halbach configuration with outwardly directed field lines.

Ebenso kann vorgesehen sein, dass das Mittel zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes eine Spulenanordnung zur Erzeugung eines Drehfeldes ist.Likewise it can be provided that the means for generating a rotating, outwardly acting magnetic field is a coil arrangement for generating a rotating field.

Vorteilhaft ist es, wenn die Kanäle zwischen der inneren Zylinderwand und einer diese konzentrisch umgebenden Begrenzungswand mit dazwischen liegenden Trennstegen ausgebildet sind und die aufgespaltenen Abflusskanäle zwischen der inneren Zylinderwand und der umgebenden Begrenzungswand parallel verlaufen.It is advantageous if the channels are formed between the inner cylinder wall and a boundary wall surrounding this concentrically with separating webs lying therebetween and the split flow channels run parallel between the inner cylinder wall and the surrounding boundary wall.

Beispielsweise kann je ein Begrenzungssteg über einen Übergangsabschnitt in einen in Umfangsrichtung des Zylinders und im Drehsinn des Magnetfeldes versetzten Abschnitt übergehen, der zusammen mit einem von dem Übergangsbereich nach unten verlaufenden Trennsteg und den Zylinderwänden den ersten Abflusskanal bildet.For example, depending on a boundary web over a transition section in a circumferentially offset of the cylinder and in the direction of rotation of the magnetic field pass section, which forms the first outflow channel together with one of the transition region downwardly extending divider and the cylinder walls.

Vorzugsweise kann der Innenraum des Zylinders gegen die äußere Umgebung abgedichtet sein.Preferably, the interior of the cylinder can be sealed against the external environment.

Durch die Bauweise der Kanäle kann das Sortiergut über den gesamten Separationsvorgang nahe am Magneten geführt werden, was in einer kleineren Bauweise der Vorrichtung resultiert, bei gleich bleibender Effektivität im Vergleich zu anderen Vorrichtungen des Stands der Technik.Through the design of the channels, the sorting material can be guided close to the magnet throughout the separation process, resulting in a smaller construction of the device, with constant effectiveness compared to other devices of the prior art.

Im Folgenden ist die Erfindung anhand von Zeichnung näher erläutert. Hierbei zeigen

  • Fig. 1 eine Ausführungsform der Erfindung,
  • Fig. 2 eine Draufsicht auf die Halbbachkonfiguration der Permanentmagnete mit eingezeichneten Nord- Südpolverlauf und
  • Fig. 3 eine Seitenansicht mehrerer Magnetringe.
In the following the invention is explained in more detail with reference to the drawing. Show here
  • Fig. 1 an embodiment of the invention,
  • Fig. 2 a plan view of the Halbbach configuration of the permanent magnets with marked north south pole course and
  • Fig. 3 a side view of several magnetic rings.

Fig.1 ist ein Zylinder 1 zu entnehmen, bei welchem außerhalb einer inneren Zylinderwand 1a Kanäle 2 angeordnet sind, wobei in Fig. 1 zur Vereinfachung der Darstellung nur ein Kanal 2 vollständig abgebildet ist und andere lediglich durch ihre jeweilige Zuflussöffnung 3 angedeutet sind. Die Anzahl der Kanäle 2 kann je nach Bedarf und Größe der Bauform varüeren. Die Kanäle 2 sind durch Begrenzungsstege 4, die zwischen der inneren Zylinderwand 1a und einer äußeren Zylinderwand 1b angeordnet sind, in Umfangsrichtung begrenzt, und in radialer Richtung durch die innere bzw. äußere Zylinderwand 1a,1b. Die Kanäle 2 verlaufen im Wesentlichen parallel zur Erzeugenden des Zylinders bzw. zu dessen Achse a. Fig.1 is a cylinder 1 can be seen in which outside of an inner cylinder wall 1a channels 2 are arranged, wherein in Fig. 1 to simplify the illustration, only one channel 2 is completely depicted and others are merely indicated by their respective inflow opening 3 . The number of channels 2 can vary depending on the need and size of the design. The channels 2 are limited by limiting bars 4, which are arranged between the inner cylinder wall 1a and an outer cylindrical wall 1b in the circumferential direction and in the radial direction by the inner and outer cylinder wall 1a, 1b. The channels 2 are substantially parallel to the generatrix of the cylinder or to its axis a.

In einer beispielsweise realisierten Ausführungsform kann die innere Zylinderwand 1a einen Durchmesser von 10 cm bis 15 cm besitzen, wobei die innere Zylinderwand 1a und die äußere Zylinderwand 1b einen Abstand von 0,5 cm bis 1 cm aufweisen sollte.In an embodiment realized, for example, the inner cylinder wall 1a may have a diameter of 10 cm to 15 cm, wherein the inner cylinder wall 1a and the outer cylinder wall 1b should have a distance of 0.5 cm to 1 cm.

Im Allgemeinen wird eine nicht gezeigte gemeinsame Zuführung oberhalb der Zuflussöffnungen 3 der Kanäle 2 vorgesehen sein, um ein Teilchengemenge aus Nichteisenmetallen und Nichtmetallen, welches vorzugsweise in einem Fluidum suspendiert ist, zentral in die einzelnen Kanäle 2 zu verteilen. Ein geeignetes Fluidum wird in vielen Fällen Wasser sein, wobei Öle bzw. Luft oder andere Gase ebenfalls Verwendung finden können.In general, a common feed, not shown, will be provided above the inflow ports 3 of the channels 2 to centrally distribute a particulate mass of non-ferrous metals and nonmetals, preferably suspended in a fluid, into the individual channels 2. A suitable fluid will in many cases be water, with oils or air or other gases also being used.

Innerhalb des Zylinders 1 ist eine Magnetanordnung 5 vorgesehen, die ringförmig ausgestaltet ist, wobei diese um die Achse a rotieren kann und aus aneinandergereihten Permanentmagneten 6 besteht, die in der gezeigten Ausführungsform in einer Halbachkonfiguration angeordnet sind, bei welcher die Magnetisierungsrichtung der verwendeten Permanentmagnete 6 gegeneinander jeweils um 90° in Richtung der Drehachse a gekippt ist, wie in Fig. 2 dargestellt, wobei dadurch die Feldlinien auf der der inneren Zylinderwand 1a zugewandten Seite enger zusammen gerückt werden, und dementsprechend eine Erhöhung der magnetischen Flussdichte bewirkt wird. Innerhalb der kreisförmigen Magnetanordnung 5 liegen die Feldlinien weniger eng, sodass das magnetische Feld abgeschwächt wird bzw. völlig verschwindet. Die Permanentmagnete 6 sind auf einer Trägerscheibe 7, beispielsweise aus Aluminium, angebracht und in möglichst geringem Abstand von der inneren Zylinderwand 1a angeordnet, wie in Fig. 2 gezeigt, nämlich ohne bei Rotation mit der inneren Zylinderwand 1a in Berührung zu gelangen.Within the cylinder 1, a magnet assembly 5 is provided which is annular, which can rotate about the axis a and consists of juxtaposed permanent magnet 6 , which are arranged in the embodiment shown in a Halbach configuration, wherein the magnetization direction of the permanent magnets 6 used against each other each tilted by 90 ° in the direction of the axis of rotation a, as in Fig. 2 In this way, the field lines on the side facing the inner cylinder wall 1a are thereby brought closer together, and accordingly an increase in the magnetic flux density is effected. Within the circular magnet arrangement 5, the field lines are less narrow, so that the magnetic field is weakened or completely disappears. The permanent magnets 6 are mounted on a support plate 7, for example made of aluminum, and arranged at the smallest possible distance from the inner cylinder wall 1a, as in Fig. 2 shown, namely without coming into contact with the inner cylinder wall 1a during rotation.

Je nach Bedarf können auch mehrere Magnetringe 5-1, 5-2, 5-3 übereinander angeordnet werden, wie in Fig. 3 für drei Magnetringe dargestellt ist, wobei diese mittels einer an einem Motor M angebrachten Welle 8, welche deckungsgleich zur Achse a der Magnetringe 5-1, 5-2, 5-3 und innerhalb des Zylinders in der Position der Zylinderachse angeordnet ist, zur Rotation gebracht werden. In einer Ausführungsform kann die Drehzahl der Magnetringe 5-1, 5-2, 5-3 beispielsweise 8000 Umdrehungen pro Minute betragen, wobei die Drehzahl je nach Bedarf und Größe der Bauform bzw. den Eigenschaften des zu trennenden Gemenges und des Fluidums angepasst werden kann.Depending on requirements, a plurality of magnetic rings 5-1, 5-2, 5-3 can be arranged one above the other, as in Fig. 3 is shown for three magnetic rings, which is arranged by means of a mounted on a motor M shaft 8, which is arranged congruent to the axis a of the magnetic rings 5-1, 5-2, 5-3 and within the cylinder in the position of the cylinder axis for rotation to be brought. In one embodiment, the rotational speed of the magnetic rings 5-1, 5-2, 5-3 may be, for example, 8000 revolutions per minute, wherein the rotational speed can be adjusted according to the need and size of the design or the properties of the mixture to be separated and the fluid ,

Das nach außen wirkende, rotierende Magnetfeld kann alternativ durch eine feststehende Spulenanordnung zur Erzeugung eines Drehfeldes realisiert werden, wobei auch ferromagnetische Kerne mit Polschuhen und eine elektronisch gesteuerte Speisung der Spulenanordnung vorgesehen sein kann.The outwardly acting, rotating magnetic field can alternatively be realized by a fixed coil arrangement for generating a rotating field, whereby ferromagnetic cores with pole shoes and an electronically controlled supply of the coil arrangement can be provided.

Im Einflussbereich des rotierenden Magnetfeldes spaltet sich jeder Kanal 2 in einen ersten und zweiten stromab gelegenen Abflusskanal 9a, 9b auf, wobei diese Abflusskanäle 9a, 9b gegeneinander in Umfangsrichtung versetzte Eintrittsbereiche 10a, 10b für die voneinander separierten unterschiedlichen Teilchen und Abflussöffnungen 11a, 11b für diese Teilchen aufweisen.In the area of influence of the rotating magnetic field, each channel 2 splits into first and second downstream drainage channels 9a, 9b , these outflow channels 9a, 9b being circumferentially offset entry areas 10a, 10b for the different separated particles and drainage openings 11a, 11b therefor Have particles.

In der gezeigten Ausführungsform geht je ein Begrenzungssteg 4 über einen Übergangsabschnitt in einen in Umfangsrichtung des Zylinders versetzten Abschnitt 4v über, der zusammen mit einem von dem Übergangsbereich 11 nach unten verlaufenden Trennsteg 12 und den Zylinderwänden 1a, 1b den ersten Abflusskanal 9a bildet, wobei dieser in Richtung der Drehrichtung der Magnetanordnung 5 bzw. im Drehsinn des Magnetfeldes (13) angeordnet ist, und der anfängliche Kanal 2 seinen ursprünglichen Verlauf beibehält und der zweite Abflusskanal 9b im Wesentlichen eine Verlängerung des anfänglichen Kanals 2 darstellt.In the embodiment shown, each one delimiting web 4 passes a transition section in an offset in the circumferential direction of the cylinder portion 4v through which, 1b forming the first effluent flow channel 9a together with an extending from the transition area 11 downward separation pad 12 and the cylinder walls 1a, wherein in the direction of the direction of rotation of the magnet assembly 5 or in the direction of rotation of the magnetic field (13) is arranged, and the initial channel 2 maintains its original course and the second outflow channel 9b is substantially an extension of the initial channel 2.

Der Übergangsbereich 11 ist auf Höhe der Magnetanordnung 5 angeordnet und erstreckt sich zumindest über die Höhe dieser, sodass stromab des Kanals 2 geführte, im Fluidum suspendierte Nichteisenmetalle vom Anfangsbereich des Übergangbereichs 11 bis zur oberen Kante des Trennsteges 12, aufgrund der durch die vom rotierenden Magnetfeld induzierten Wirbelströme erzeugte repulsive Kraft auf diese in Richtung der Drehrichtung der Magnetanordnung 5 bzw. in Richtung der Eintrittsöffnung 10a des ersten Abflusskanals 9a abgelenkt werden, wobei Nichtmetalle des suspendierten Teilchengemenges vom Magnetfeld unbeeinflusst den Kanal 2 bzw. den zweiten Abflusskanal 9b weiter stromab folgen.The transition region 11 is arranged at the level of the magnet assembly 5 and extends at least over the height of these, so guided downstream of the channel 2, suspended in the fluid non-ferrous metals from the beginning of the transition region 11 to the upper edge of the divider 12, due to by the rotating magnetic field Induced eddy currents generated repulsive force are deflected to this in the direction of rotation of the magnet assembly 5 and in the direction of the inlet opening 10a of the first drain channel 9a, with non-metals of the suspended particle mixture of the magnetic field unaffected the channel 2 and the second drain channel 9b further downstream follow.

Es ist von Vorteil, wenn der Übergangsbereich 4ü in seiner Ausführung (Höhe und Position relativ zu den Magnetringen), sowie die Kanalbreiten 9a, 9b und deren Verhältnis, und die exakte Position des Trennsteges 12 an die Beschaffenheit des Trenngutes angepasst werden können.It is advantageous if the transition region 4ü in its design (height and position relative to the magnetic rings), and the channel widths 9a, 9b and their ratio, and the exact position of the separating web 12 can be adapted to the nature of the separating material.

Wie bereits erwähnt, kann das verwendete Fluidum in dem das Teilchengemenge suspendiert wird Luft bzw. Wasser sein, sowie jedes andere gasförmige oder diamagnetische Trägermedium. Die Erfindung kann, im Gegensatz zu den in der DE 3200143 A1 und der AT 511981 A1 beschriebenen Vorrichtungen, nicht nur vertikal, sondern unter beliebigen Kippwinkeln zur Horizontalen betrieben werden. Falls ein flüssiges Fluidum verwendet wird, ist zusätzlich zur vertikalen und geneigten Ausrichtung ein horizontaler Betrieb möglich, wobei ein zusätzlicher Vorteil durch die allgemein höhere Viskosität von Flüssigkeiten gegenüber Luft gegeben ist, da sich die darin suspendierten Nichteisenmetalle länger im Wirkungsbereich des Magnetfelds aufhalten können, und dadurch eine kompaktere Bauweise begünstigt wird. Ebenso können in einem flüssigen Fluidum suspendierte Teilchen im Submillimeterbereich separiert werden, da deren induzierte Wirbelströme schwächer ausgeprägt sind, und infolgedessen die entwickelte repulsive Kraft auf diese Teilchen geringer ausfällt, und eine längere Verweildauer dieser Teilchen im Wirkungsbereich der Magnetanordnung 5 eine optimale Separation begünstigt.As already mentioned, the fluid used in which the particle mixture is suspended can be air or water, as well as any other gaseous or diamagnetic carrier medium. The invention can, in contrast to those in the DE 3200143 A1 and the AT 511981 A1 described devices, not only vertically, but operated at arbitrary angles of tilt to the horizontal. If a liquid fluid is used, horizontal operation is possible in addition to the vertical and inclined orientation, with an added benefit of the generally higher viscosity of liquids over air, as the non-ferrous metals suspended therein may be in the magnetic field more effectively, and This favors a more compact design. Likewise, particles suspended in a liquid fluid can be separated in the sub-millimeter range because their induced eddy currents are less pronounced, and consequently the developed repulsive force on these particles is lower, and a longer residence time of these particles in the area of action of the magnet assembly 5 favors optimal separation.

Am Ende des ersten Abflusskanals 9a befindet sich die Abflussöffnung 11a für die separierten Nichteisenmetalle, wobei die vom Magnetfeld unbeeinflussten Nichtmetalle durch die Abflussöffnung 11b am Ende des zweiten Abflusskanals 9b abgeschieden werden. Die Abflussöffnungen 11a, 11b münden in ein jeweiliges, nicht dargestelltes Auffangbecken, aus dem die Nichteisenmetalle bzw. Nichtmetalle entnommen werden können.At the end of the first outflow channel 9a is the discharge opening 11a for the separated non-ferrous metals, wherein the non-metals influenced by the magnetic field are deposited through the discharge opening 11b at the end of the second outflow channel 9b. The discharge openings 11a, 11b open into a respective, not shown catch basin, from which the non-ferrous metals or non-metals can be removed.

Weiters kann die Vorrichtung als Ganzes in ein flüssiges Fluidum, vorzugsweise Wasser getaucht, sowohl vertikal, unter beliebigen Kippwinkeln, als auch horizontal betrieben werden, wobei zumindest im horizontalen Betrieb ein Fluidstrom entlang der Kanäle 2 vorhanden sein muss. Ebenso ist es dabei zweckmäßig, wenn die Magnetanordnung 5 innerhalb des Zylinders 1 fluiddicht von der Umgebung abgetrennt ist. Der Innenraum des Zylinders 1 kann dabei mit Luft oder einem Gas gefüllt sein, wobei, falls hohe Drehzahlen der Magnetanordnung 5 erwünscht sind, auch ein reduzierter Luftdruck, typischer Weise in der Größenordnung einiger Millibar, in Frage kommt, um die Reibungsverluste zu reduzieren. Für einen entsprechenden Antrieb, sowie dessen Kühlung ist in diesem Anwendungsfall zu sorgen. Anwendung hierfür wäre zum Beispiel die Separation kleinster Goldteilchen aus Flusssand, wobei hierbei die Vorrichtung in Wasser eingetaucht wird und von oben im vertikalen Betrieb bzw. in Richtung des Flussstroms bei horizontalem Betrieb mit Flusssand befüllt wird. Dabei können die Goldteilchen wie oben beschrieben in den ersten Abflusskanal 9a separiert und durch die zugehörige Abflussöffnung 11a aufgefangen werden, wobei der übrige Flusssand über die Abflussöffnung 11b des zweiten Abflusskanals 9b wieder zu Boden fällt.Furthermore, the device as a whole in a liquid fluid, preferably immersed in water, both vertically, at any tilt angles, as well as horizontally operated, wherein at least in horizontal operation, a fluid flow along the channels 2 must be present. Likewise, it is expedient if the magnet assembly 5 is separated fluid-tight from the environment within the cylinder 1. The interior of the cylinder 1 can be filled with air or a gas, wherein, if high speeds of the magnet assembly 5 are desired, also a reduced air pressure, typically in the order of a few millibars, comes into question to reduce the friction losses. For a corresponding drive, as well as its cooling is to provide in this application. Application for this would be, for example, the separation of minute gold particles from river sand, in which case the device is immersed in water and is filled from above in vertical operation or in the direction of the flow stream in horizontal operation with river sand. The gold particles as described above in the first outflow channel 9a are separated and collected by the associated outflow opening 11a, the rest of the river sand falls over the outflow opening 11b of the second outflow channel 9b back to the ground.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1.....1.....
Zylindercylinder
1a....1a ....
innere Zylinderwandinner cylinder wall
1b....1b ....
äußere Zylinderwandouter cylinder wall
2.....2 .....
Kanalchannel
3.....3 .....
Zuflussöffnunginflow opening
4.....4 .....
Begrenzungssteglimiting web
4ü...4ü ...
ÜbergangsabschnittTransition section
4v...4v ...
in Umlaufrichtung versetzter Abschnittin the circumferential direction offset section
5.....5 .....
Magnetanordnungmagnet assembly
5-1, 5-2, 5-3.....5-1, 5-2, 5-3 .....
Magnetringemagnetic rings
6.....6 .....
Permanentmagnetpermanent magnet
7.....7 .....
Trägerscheibecarrier disc
8......8th......
Wellewave
9a....9a ....
erster Abflusskanalfirst drainage channel
9b....9b ....
zweiter Abflusskanalsecond drainage channel
10a..10a ..
Eintrittsbereich des ersten AbflusskanalsEntry area of the first drainage channel
10b..10b ..
Eintrittsbereich des zweiten AbflusskanalsEntry area of the second drainage channel
11....11 ....
Übergangsbereich der AbflusskanäleTransition region of the drainage channels
11a..11a ..
Abflussöffnung des ersten AbflusskanalsOutflow opening of the first drainage channel
1b..1b ..
Abflussöffnung des zweiten AbflusskanalsOutflow opening of the second outflow channel
12....12 ....
Trennstegdivider
13....13 ....
Drehsinn des MagnetfeldesDirection of rotation of the magnetic field
M....M ....
Motorengine
a.....a .....
Achseaxis

Claims (10)

Vorrichtung zum Trennen von Teilchen unterschiedlicher Leitfähigkeit eines in einem Fluidum vorhandenen Teilchengemenges, mit einem im Wesentlichen aufrecht stehenden Zylinder (1), innerhalb dessen ein Mittel (5) zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes vorgesehen ist, wobei für längs der Außenseite des Zylinders (1) nach unten fließende, im Magnetfeld separierte Teilchen des in dem Fluidum suspendierten Teilchengemenges gegeneinander versetzte Aufnahmen (9a, 9b) vorgesehen sind,
dadurch gekennzeichnet, dass
außerhalb der inneren Zylinderwand (1a) sich längs dieser erstreckende Kanäle (2) vorgesehen sind, welche je an ihrem oberen Ende eine Zuflussöffnung (3) für das im Fluidum suspendierte Teilchengemenge aufweisen und stromab, im Einflussbereich des rotierenden Magnetfeldes jeder Kanal (2) in zwei Abflusskanäle (9a, 9b) aufgespalten ist, welche gegeneinander in Umfangsrichtung versetzte Eintrittsbereiche (10a, 10b) für voneinander separierte unterschiedliche Teilchen und Abflussöffnungen (11a, 11b) für diese Teilchen aufweisen.
Apparatus for separating particles of different conductivity of a mixture of particles present in a fluid, comprising a substantially upright cylinder (1) within which is provided a means (5) for generating a rotating, outwardly acting magnetic field, for along the outside of Cylinder (1) downwardly flowing, in the magnetic field separated particles of suspended in the fluid mixture of particles offset from each other shots (9a, 9b) are provided,
characterized in that
outside the inner cylinder wall (1a) along these extending channels (2) are provided, each having at its upper end an inflow opening (3) for suspended in the fluid particle mixture and downstream, in the sphere of influence of the rotating magnetic field each channel (2) in two outflow channels (9a, 9b) is split, which have mutually circumferentially offset inlet regions (10a, 10b) for separated different particles and outflow openings (11a, 11b) for these particles.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel (5) zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes eine rotierende Magnetanordnung (5) ist.Apparatus according to claim 1, characterized in that the means (5) for generating a rotating, outwardly acting magnetic field is a rotating magnet arrangement (5). Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Magnetanordnung (5) zumindest einen aus in Umfangsrichtung des Zylinders (1) aneinandergereihten Permanentmagneten (6) bestehenden Magnetring (5-1, 5-2, 5-3) aufweist.Device according to claim 2, characterized in that the magnet arrangement (5) has at least one magnetic ring (5-1, 5-2, 5-3) consisting of permanent magnets (6) juxtaposed in the circumferential direction of the cylinder (1). Vorrichtung nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass zwei oder mehr übereinander liegende Magnetringe (5-1, 5-2, 5-3) vorgesehen sind.Apparatus according to claim 1 or 3, characterized in that two or more superimposed magnetic rings (5-1, 5-2, 5-3) are provided. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der zumindest eine Magnetring (5-1, 5-2, 5-3) Permanentmagnete (6) in einer Halbachkonfiguration mit nach außen gerichteten Feldlinien aufweist.Apparatus according to claim 3 or 4, characterized in that the at least one magnetic ring (5-1, 5-2, 5-3) permanent magnets (6) in a Halbach configuration having outwardly directed field lines. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel (5) zur Erzeugung eines rotierenden, nach außen wirkenden Magnetfeldes eine Spulenanordnung zur Erzeugung eines Drehfeldes ist.Device according to claim 1, characterized in that the means (5) for generating a rotating magnetic field acting outwardly is a coil arrangement for generating a rotating field. Vorrichtung nach einer der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kanäle (2) zwischen der inneren Zylinderwand (1a) und einer diese konzentrisch umgebenden äußeren Zylinderwand (1b) mit dazwischen liegenden Begrenzungsstegen (4) ausgebildet sind.Device according to one of claims 1 to 6, characterized in that the channels (2) between the inner cylinder wall (1 a) and a concentrically surrounding these outer cylinder wall (1 b) with intermediate boundary webs (4) are formed. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die aufgespaltenen Abflusskanäle (9a, 9b) zwischen der Zylinderwand (1a) und der umgebenden Begrenzungswand (1b) parallel verlaufen.Device according to claim 7, characterized in that the split discharge channels (9a, 9b) between the cylinder wall (1a) and the surrounding boundary wall (1b) are parallel. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass je ein Begrenzungssteg (4) über einen Übergangsabschnitt (4ü) in einen in Umfangsrichtung des Zylinders und im Drehsinn des Magnetfeldes (13) versetzten Abschnitt (4v) übergeht, der zusammen mit einem von dem Übergangsbereich nach unten verlaufenden Trennsteg (12) und den Zylinderwänden (1a, 1b) den ersten Abflusskanal (9a) bildet.Apparatus according to claim 7 or 8, characterized in that a respective limiting web (4) via a transition section (4ü) in a circumferential direction of the cylinder and in the direction of rotation of the magnetic field (13) offset portion (4v) passes, which together with one of the Transition region downwardly extending divider (12) and the cylinder walls (1a, 1b) forms the first outflow channel (9a). Vorrichtung nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass der Innenraum des Zylinders (1) gegen die äußere Umgebung abgedichtet ist.Apparatus according to claim 1 to 9, characterized in that the interior of the cylinder (1) is sealed against the external environment.
EP17173372.8A 2016-06-08 2017-05-30 Device for separating particles of different conductivity Withdrawn EP3254763A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50526/2016A AT518730B1 (en) 2016-06-08 2016-06-08 Device for separating particles of different conductivity

Publications (1)

Publication Number Publication Date
EP3254763A1 true EP3254763A1 (en) 2017-12-13

Family

ID=58800742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17173372.8A Withdrawn EP3254763A1 (en) 2016-06-08 2017-05-30 Device for separating particles of different conductivity

Country Status (2)

Country Link
EP (1) EP3254763A1 (en)
AT (1) AT518730B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021216720A1 (en) * 2020-04-24 2021-10-28 Bunting Magnetics Company Magnetic separating conveyor output roll
CN114433352A (en) * 2022-02-07 2022-05-06 浙江天力磁电科技有限公司 Crawler-type metal separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE141041C (en) *
GB1548410A (en) * 1976-12-21 1979-07-11 Inst Fiz An Latvssr Method of and apparatus for sorting non-magnetic electrically conductive components
DE3200143A1 (en) * 1982-01-05 1983-09-22 Steinert Elektromagnetbau GmbH, 5000 Köln METHOD AND DEVICE FOR SORTING CONDUCTIVE NON-FERROMAGNETIC COMPONENTS
US5108587A (en) * 1989-10-30 1992-04-28 Walker Erik K Apparatus for the electrodynamic separation of non-ferromagnetic free-flowing material
US5636748A (en) * 1994-12-29 1997-06-10 Arvidson; Bo R. Magnetic drum separator
JP2000176307A (en) * 1998-12-16 2000-06-27 Hitachi Metals Techno Ltd Drum type magnetic material selection and recovery apparatus
US6338903B1 (en) * 1998-11-02 2002-01-15 Fujitsu Limited Resin composition for semiconductor encapsulation, method and apparatus for producing the composition, as well as semiconductor device using the composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047852B4 (en) * 2008-09-18 2015-10-22 Siemens Aktiengesellschaft Separator for separating a mixture of magnetizable and non-magnetizable particles contained in a suspension carried in a separation channel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE141041C (en) *
GB1548410A (en) * 1976-12-21 1979-07-11 Inst Fiz An Latvssr Method of and apparatus for sorting non-magnetic electrically conductive components
DE3200143A1 (en) * 1982-01-05 1983-09-22 Steinert Elektromagnetbau GmbH, 5000 Köln METHOD AND DEVICE FOR SORTING CONDUCTIVE NON-FERROMAGNETIC COMPONENTS
US5108587A (en) * 1989-10-30 1992-04-28 Walker Erik K Apparatus for the electrodynamic separation of non-ferromagnetic free-flowing material
US5636748A (en) * 1994-12-29 1997-06-10 Arvidson; Bo R. Magnetic drum separator
US6338903B1 (en) * 1998-11-02 2002-01-15 Fujitsu Limited Resin composition for semiconductor encapsulation, method and apparatus for producing the composition, as well as semiconductor device using the composition
JP2000176307A (en) * 1998-12-16 2000-06-27 Hitachi Metals Techno Ltd Drum type magnetic material selection and recovery apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021216720A1 (en) * 2020-04-24 2021-10-28 Bunting Magnetics Company Magnetic separating conveyor output roll
CN114433352A (en) * 2022-02-07 2022-05-06 浙江天力磁电科技有限公司 Crawler-type metal separator
CN114433352B (en) * 2022-02-07 2022-10-21 浙江天力磁电科技有限公司 Crawler-type metal separator

Also Published As

Publication number Publication date
AT518730A1 (en) 2017-12-15
AT518730B1 (en) 2019-03-15

Similar Documents

Publication Publication Date Title
EP1616627B1 (en) High gradient magnetic separator
DE3610303C1 (en) Methods and devices for sorting paramagnetic particles in the fine and fine grain range in a strong magnetic field
DE922341C (en) Method and apparatus for classifying a mixture of particles which are carried in a liquid or gaseous medium by a spiral vortex flow
DE60022555T2 (en) Method for cleaning crankcase gases and device suitable for this purpose
DE3038426A1 (en) MAGNETIC SHEATHING METHOD AND MAGNETIC SHEATHING METHOD AND MAGNETIC SEPARATOR FOR CARRYING OUT THE METHOD
DE102017128027A1 (en) separator
DE2840723A1 (en) AEROSOL APPARATUS
AT518730B1 (en) Device for separating particles of different conductivity
EP1970124A2 (en) Agitator ball mill
DE3827252C2 (en)
DE102007056575A1 (en) Centrifuge with a separator plate package and separating plate
EP1153661A1 (en) Mill separator
DE2129786B2 (en) Counterflow gas centrifuge
DE19537268C1 (en) Plate for the spinning drum of centrifuge for the removal of cream from milk
DE2051533C3 (en) Spiral air classifier
DE480213C (en) Method and device for separating components of different sizes in a loose mixture of substances
DE2726051C3 (en) Magnetic separator
EP0360034A1 (en) Apparatus for dividing a flowing liquid-gas mixture into several part currents
DE1657122A1 (en) Centrifugal classifier
DE605639C (en) Device for emulsifying liquids
DE4326604C2 (en) classifier
DE517259C (en) Electromagnetic alternating current separator
AT56030B (en) Mixing compressor with radial movement of the liquid.
DE1129458B (en) Method and device for the quantitative separation of particles suspended in liquids or gases
DE3204222C1 (en) Separating device having loose granular working material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20180607

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200707

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201118