EP3181938B1 - Method for manufacturing a hairspring with a predetermined stiffness by removing material - Google Patents

Method for manufacturing a hairspring with a predetermined stiffness by removing material Download PDF

Info

Publication number
EP3181938B1
EP3181938B1 EP15201330.6A EP15201330A EP3181938B1 EP 3181938 B1 EP3181938 B1 EP 3181938B1 EP 15201330 A EP15201330 A EP 15201330A EP 3181938 B1 EP3181938 B1 EP 3181938B1
Authority
EP
European Patent Office
Prior art keywords
balance spring
fabrication method
predetermined
stiffness
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15201330.6A
Other languages
German (de)
French (fr)
Other versions
EP3181938A1 (en
Inventor
Philipp Niedermann
Olivier Dubochet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54850451&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3181938(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Priority to EP15201330.6A priority Critical patent/EP3181938B1/en
Priority to US15/354,317 priority patent/US10324417B2/en
Priority to JP2016234770A priority patent/JP6343651B2/en
Priority to CN201910652696.9A priority patent/CN110376871A/en
Priority to CN201611164448.2A priority patent/CN106896708B/en
Publication of EP3181938A1 publication Critical patent/EP3181938A1/en
Application granted granted Critical
Publication of EP3181938B1 publication Critical patent/EP3181938B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/10Measuring, counting, calibrating, testing or regulating apparatus for hairsprings of balances

Definitions

  • the invention relates to a method of manufacturing a hairspring of predetermined stiffness and, more precisely, such a hairspring used as a compensating hairspring cooperating with a predetermined inertia beam to form a resonator having a predetermined frequency.
  • the step of etching several spirals in a silicon wafer offers a non-negligible geometrical dispersion between the spirals of the same wafer and a greater dispersion between spirals of two wafers etched at different times.
  • the stiffness of each spiral engraved with the same engraving pattern is variable by creating significant manufacturing dispersions.
  • EP 1 213 628 A shows a method of adjusting the oscillation frequency of a regulator assembly in which a spiral is manufactured with an elastic torque greater than a reference elastic torque corresponding to a reference frequency for the oscillation of said regulator assembly; a balance is assembled to said spiral to form said regulator assembly, and machining said spiral by means of a laser beam to reduce its elastic torque until said oscillation frequency is substantially equal to said frequency of reference.
  • the object of the present invention is to overcome all or part of the disadvantages mentioned above by proposing a manufacturing process a spiral whose dimensions are precise enough not to require retouching.
  • the invention relates to a method of manufacturing a hairspring of a predetermined stiffness according to claim 1.
  • the invention relates to a resonator 1 of the balance 3-spiral type 5.
  • the balance 3 and the spiral 5 are preferably mounted on the same axis 7.
  • the thermal dependence also includes a possible contribution of the maintenance system such as, for example, a Swiss lever escapement (not shown) cooperating with the ankle 9 of the plate 11 also mounted on the axis 7.
  • a Swiss lever escapement (not shown) cooperating with the ankle 9 of the plate 11 also mounted on the axis 7.
  • the invention relates more particularly to a resonator 1 in which the hairspring 5 is used to compensate the whole of the resonator 1, that is to say all the parts and in particular the balance 3.
  • a hairspring 5 is generally called a hairspring compensator. Therefore, the invention relates to a manufacturing method for ensuring a very high dimensional accuracy of the spiral and, incidentally, to ensure a more precise stiffness of said spiral.
  • the compensating spiral 5, 15 is formed based on a material, optionally coated with a thermal compensation layer, and intended to cooperate with a predetermined balance beam 3 of inertia.
  • a material optionally coated with a thermal compensation layer, and intended to cooperate with a predetermined balance beam 3 of inertia.
  • a material for example based on silicon, glass or ceramic, for the manufacture of a hairspring 5, 15 offers the advantage of being precise by the existing methods of engraving and to have good mechanical and chemical properties being in particular very little sensitive to the magnetic fields. It must however be coated or superficially modified to form a compensating hairspring.
  • the silicon-based material used as a compensating spiral may be monocrystalline silicon whatever its crystalline orientation, doped monocrystalline silicon whatever its crystalline orientation, amorphous silicon, porous silicon, polycrystalline silicon, nitride of silicon, silicon carbide, quartz regardless of its crystalline orientation or silicon oxide.
  • monocrystalline silicon whatever its crystalline orientation
  • doped monocrystalline silicon whatever its crystalline orientation
  • amorphous silicon porous silicon
  • polycrystalline silicon polycrystalline silicon
  • nitride of silicon silicon carbide
  • quartz regardless of its crystalline orientation or silicon oxide.
  • other materials can be envisioned as a glass, a ceramic, a cermet, a metal or a metal alloy.
  • the explanation below will be focused on a silicon-based material.
  • Each type of material may be surface-modified or layer-coated to thermally compensate for the base material as explained above.
  • etching spirals in a silicon-based wafer, by means of a deep reactive ion etching (also known as "DRIE"), is the most accurate, phenomena that occur during etching or between two successive engravings can nevertheless induce geometric variations.
  • DRIE deep reactive ion etching
  • FIB localized ion etching
  • galvanic growth growth by chemical vapor deposition or chemical engraving, which are less accurate and for which the process would make even more sense.
  • the invention relates to a method 31 for manufacturing a spiral 5c.
  • the method 31 comprises, as illustrated in FIG. figure 8 a first step 33 intended to form at least one spiral 5a, for example based on silicon, with dimensions Da greater than dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C.
  • the spiral section 5a has a height H 1 and a thickness E 1 .
  • the dimensions Da of the hairspring 5a are substantially between 1% and 20% higher than those Db of the hairspring 5c necessary to obtain said hairspring 5c of a predetermined stiffness C.
  • step 33 is carried out using a deep reactive ion etching in a wafer 23 of a silicon-based material as illustrated in FIG. figure 7 .
  • the opposite faces F 1 , F 2 are corrugated because a deep reactive ion etching of the Bosch type causes a slot etching structured by the successive stages of attack and passivation.
  • step 33 can not be limited to a particular step 33.
  • step 33 could equally well be obtained by chemical etching in a wafer 23 of a material for example based on silicon.
  • step 33 means that one or more spirals are formed, i.e., step 33 makes it possible to form bulk spirals or alternately formed in a wafer of a material.
  • step 33 several spirals 5a may be formed in the same plate 23 in dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 necessary to obtain several spirals 5c of a predetermined stiffness C or several spirals 5c of several predetermined stiffnesses C.
  • Step 33 is not limited to the formation of a hairspring 5a in dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 required to obtain a hairspring 5c of predetermined stiffness C , formed using a single material.
  • step 33 could equally well form a hairspring 5a with dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 needed to obtain a hairspring 5c of stiffness C predetermined in a composite material, that is to say comprising several different materials.
  • the method 31 includes a second step 35 for determining the stiffness of the hairspring 5a.
  • a step 35 may be carried out directly on the hairspring 5a still attached to the wafer 23 or on the hairspring 5a previously detached from the wafer 23, on the whole or on a sample of the spirals still attached to a wafer 23 or on a sample spirals previously detached from a wafer 23.
  • the step 35 includes a first phase intended to measure the frequency f of an assembly comprising the hairspring 5a coupled with a balance having a predetermined inertia I. then, using the relation (5), deduce, in a second phase, the stiffness C spiral 5a.
  • Such a measurement phase can in particular be dynamic and carried out according to the teachings of the document EP 2 423 764 .
  • a static method, carried out according to the teachings of the document EP 2 423 764 can also be used to determine the stiffness C of the spiral 5a.
  • step 35 may also consist of a determination of the average stiffness of a representative sample or of all spirals formed on the same plate.
  • the method 31 comprises a step 37 intended to calculate, using the relation (2), the thickness of the material to be removed on the assembly of the hairspring to obtain the overall dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C , that is to say the volume of material to be withdrawn homogeneously or not on the surface of the hairspring 5a.
  • step 39 for removing the surplus material of the hairspring 5a to the dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C. It is therefore understood that it does not matter that the geometric variations have occurred on the thickness and / or the height and / or the length of the hairspring 5a insofar as, according to equation (2), it is the product h ⁇ E 3 which determines the rigidity of the turn.
  • a uniform thickness over the entire outer surface may be removed, a non-uniform thickness over the entire outer surface may be removed, a uniform thickness only on a portion of the outer surface may be removed or a non-uniform thickness only on a portion the outer surface can be removed.
  • step 37 could consist in removing material only according to the thickness E 1 or the height H 1 of the spiral 5 a.
  • step 39 comprises a first phase d1 intended to oxidize the hairspring 5a in order to transform said thickness of silicon-based material to be removed into silicon dioxide and thus form a spiral 5b oxidized.
  • a phase d1 can, for example, be obtained by thermal oxidation.
  • thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral 5a.
  • the section of the spiral 5b has a height H 2 and a thickness E 2 .
  • the hairspring 5b is formed of a central part 22 based on silicon according to the overall dimensions Db required for the hairspring 5c at said predetermined stiffness C and a peripheral portion 24 made of silicon dioxide.
  • the crenellated form is always reproduced on a portion of the peripheral portion 24 but is no longer or less present the central portion 22.
  • Step 39 ends, as shown in figure 5 , with a second phase d2 intended to remove the oxide of the spiral 5b allowing to obtain a hairspring 5c with the silicon-based single portion 22 with the overall dimensions Db necessary to obtain said predetermined stiffness C , the section comprising in particular a height H 3 and a thickness E 3 .
  • a phase d2 may, for example, be obtained by chemical etching.
  • Such a chemical bath may comprise, for example, a hydrofluoric acid for removing the silicon oxide spiral 5b.
  • step 39 comprises a single d3 phase for chemically etching the spiral 5a to obtain the spiral 5c silicon based the dimensions Db, H 3, E 3 necessary for said predetermined stiffness C.
  • other variants such as laser etching or localized ion etching, for removing the excess material from the hairspring 5a to the dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C , can to be considered.
  • Step 39 may finish process 31. However, after step 39, method 31 may also perform, at least one more time, steps 35, 37 and 39 in order to further refine the dimensional quality of the hairspring .
  • steps 35, 37 and 39 may, for example, be of particular interest when the execution of the first iteration of steps 35, 37 and 39 is performed on the set, or on a sample, of the spirals still attached to a wafer 23, then in a second iteration, on the assembly, or a sample, spirals previously detached from the wafer 23 having undergone the first iteration.
  • the method 31 may also continue with all or part of the process 40 illustrated in FIG. figure 8 comprising optional steps 41, 43 and 45.
  • the method 31 can thus continue with the step 41 intended to form, on at least a part of the hairspring 5c, a portion 28 for forming a hairspring 5 , 15 less sensitive to thermal variations.
  • step 41 may consist of a phase e1 intended to deposit a layer on a portion of the outer surface of said hairspring 5c of a predetermined stiffness C.
  • the e1 phase may consist of oxidizing the spiral 5c to coat it with silicon dioxide to form a spiral which is thermocompensated.
  • a phase e1 can, for example, be obtained by thermal oxidation.
  • thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral 5c.
  • the balance spring 5, 15 as shown in FIG. figure 6 which, advantageously according to the invention, comprises a core 26 based on silicon and a coating 28 based on silicon oxide.
  • the balance spring 5, 15 compensator thus has a very high dimensional accuracy especially as to the height H 4 and the thickness E 4 , and, incidentally, a thermal compensation of the entire resonator 1 very thin .
  • the overall dimensions Db can be found using the teachings of the document EP 1 422 436 to apply it to the resonator 1 which is intended to be manufactured, that is to say to compensate for all the constituent parts of the resonator 1 as explained above.
  • step 41 may consist of a phase e2 intended to modify the structure to a predetermined depth of a portion of the outer surface of said hairspring 5c of a predetermined stiffness C.
  • a phase e2 intended to modify the structure to a predetermined depth of a portion of the outer surface of said hairspring 5c of a predetermined stiffness C.
  • an amorphous silicon it can be expected to crystallize it to a predetermined depth.
  • step 41 may consist of a phase e3 intended to modify the composition to a predetermined depth of a portion of the outer surface of said spring 5c of a stiffness C predetermined.
  • a phase e3 intended to modify the composition to a predetermined depth of a portion of the outer surface of said spring 5c of a stiffness C predetermined.
  • a monocrystalline or polycrystalline silicon it may be provided to dope or to diffuse interstitial or substitutional atoms to a predetermined depth.
  • the method 31 can also comprise step 45 intended to assemble a compensating hairspring 5, 15 obtained during step 41, or a hairspring 5c obtained during step 39, with a predetermined inertia beam obtained during of step 43 to form a resonator 1 of the balance-balance type which is thermally compensated or not, that is to say whose frequency f is sensitive or not to temperature variations.
  • the balance even if it comprises a predefined construction inertia, may comprise movable weights to provide a setting parameter before or after the sale of the timepiece.
  • step 39 and step 41 could be provided in order to deposit a functional or aesthetic layer, such as, for example, a curing layer or a luminescent layer.
  • a functional or aesthetic layer such as, for example, a curing layer or a luminescent layer.
  • step 35 is not systematically implemented.

Description

Domaine de l'inventionField of the invention

L'invention se rapporte à un procédé de fabrication d'un spiral d'une raideur prédéterminée et, plus précisément, un tel spiral utilisé comme spiral compensateur coopérant avec un balancier d'inertie prédéterminée pour former un résonateur comportant une fréquence prédéterminée.The invention relates to a method of manufacturing a hairspring of predetermined stiffness and, more precisely, such a hairspring used as a compensating hairspring cooperating with a predetermined inertia beam to form a resonator having a predetermined frequency.

Arrière-plan de l'inventionBackground of the invention

Il est expliqué dans le document EP 1 422 436 comment former un spiral compensateur comportant une âme en silicium revêtue de dioxyde de silicium et coopérant avec un balancier d'inertie prédéterminée pour compenser thermiquement l'ensemble dudit résonateur.It is explained in the document EP 1 422 436 how to form a compensating hairspring comprising a silicon core coated with silicon dioxide and cooperating with a predetermined inertia beam to thermally compensate the assembly of said resonator.

Fabriquer un tel spiral compensateur apporte de nombreux avantages mais possède également des inconvénients. En effet, l'étape de gravage de plusieurs spiraux dans une plaquette de silicium offre une dispersion géométrique non négligeable entre les spiraux d'une même plaquette et une dispersion plus grande entre des spiraux de deux plaquettes gravées à des moments différents. Incidemment, la raideur de chaque spiral gravé avec le même motif de gravage est variable en créant des dispersions de fabrication non négligeables. EP 1 213 628 A montre un procédé de réglage de la fréquence d'oscillation d'un ensemble régulateur dans lequel on fabrique un spiral avec un couple élastique supérieur à un couple élastique de référence correspondant à une fréquence de référence pour l'oscillation dudit ensemble régulateur; on assemble un balancier audit spiral pour former ledit ensemble régulateur, et on effectue un usinage dudit spiral au moyen d'un faisceau laser de manière à diminuer son couple élastique jusqu'à ce que ladite fréquence d'oscillation soit sensiblement égale à ladite fréquence de référence.Making such a compensating hairspring provides many benefits but also has disadvantages. In fact, the step of etching several spirals in a silicon wafer offers a non-negligible geometrical dispersion between the spirals of the same wafer and a greater dispersion between spirals of two wafers etched at different times. Incidentally, the stiffness of each spiral engraved with the same engraving pattern is variable by creating significant manufacturing dispersions. EP 1 213 628 A shows a method of adjusting the oscillation frequency of a regulator assembly in which a spiral is manufactured with an elastic torque greater than a reference elastic torque corresponding to a reference frequency for the oscillation of said regulator assembly; a balance is assembled to said spiral to form said regulator assembly, and machining said spiral by means of a laser beam to reduce its elastic torque until said oscillation frequency is substantially equal to said frequency of reference.

Résumé de l'inventionSummary of the invention

Le but de la présente invention est de pallier tout ou partie les inconvénients cités précédemment en proposant un procédé de fabrication d'un spiral dont les dimensions sont suffisamment précises pour ne pas nécessiter de retouche.The object of the present invention is to overcome all or part of the disadvantages mentioned above by proposing a manufacturing process a spiral whose dimensions are precise enough not to require retouching.

A cet effet, l'invention se rapporte à un procédé de fabrication d'un spiral d'une raideur prédéterminée selon la revendication 1.For this purpose, the invention relates to a method of manufacturing a hairspring of a predetermined stiffness according to claim 1.

On comprend donc que le procédé permet de garantir une très haute précision dimensionnelle du spiral et, incidemment, de garantir une raideur plus précise dudit spiral. Chaque paramètre de fabrication, pouvant induire des variations géométriques lors de l'étape a), peut ainsi être totalement rectifié pour chaque spiral fabriqué ou rectifié en moyenne pour l'ensemble des spiraux formés en même temps permettant de diminuer drastiquement le taux de rebut.It is therefore clear that the method makes it possible to guarantee a very high dimensional accuracy of the hairspring and, incidentally, to guarantee a more precise stiffness of said hairspring. Each manufacturing parameter, which can induce geometric variations during step a), can be completely rectified for each spiral manufactured or rectified on average for all the spirals formed at the same time to drastically reduce the scrap rate.

Conformément à d'autres variantes avantageuses de l'invention :

  • lors de l'étape a), les dimensions du spiral formé lors de l'étape a) sont entre 1% et 20% supérieures à celles nécessaires pour obtenir ledit spiral à ladite raideur prédéterminée ;
  • l'étape a) est réalisée à l'aide d'un gravage ionique réactif profond ou d'un gravage chimique ;
  • lors de l'étape a), plusieurs spiraux sont formés dans une même plaquette selon des dimensions supérieures aux dimensions nécessaires pour obtenir plusieurs spiraux d'une raideur prédéterminée ou plusieurs spiraux de plusieurs raideurs prédéterminées ;
  • le spiral formé lors de l'étape a) est à base de silicium, de verre, de céramique, de métal ou d'alliage métallique ;
  • l'étape b) comporte les phases b1): mesurer la fréquence d'un ensemble comportant le spiral formé lors de l'étape a) couplé avec un balancier doté d'une inertie prédéterminée et b2) : déduire de la fréquence mesurée, la raideur du spiral formé lors de l'étape a) ;
  • selon une première variante, l'étape d) comporte les phases d1) : oxyder le spiral formé lors de l'étape a) afin de transformer ladite épaisseur de matériau à base de silicium à retirer en dioxyde de silicium et ainsi former un spiral oxydé, et d2) : retirer l'oxyde du spiral oxydé permettant d'obtenir le spiral aux dimensions nécessaires à ladite raideur prédéterminée ;
  • selon une deuxième variante, l'étape d) comporte la phase d3) : graver chimiquement le spiral formé lors de l'étape a) afin d'obtenir le spiral aux dimensions nécessaires à ladite raideur prédéterminée.
  • après l'étape d), le procédé effectue au moins une nouvelle fois les étapes b), c) et d) pour affiner la qualité dimensionnelle ;
  • après l'étape d), le procédé comporte, en outre, l'étape e) : former, sur au moins une partie dudit spiral d'une raideur prédéterminée, une portion permettant de corriger la raideur du spiral et de former un spiral moins sensible aux variations thermiques ;
  • selon une première variante, l'étape e) comporte la phase e1) : déposer une couche sur une partie de la surface externe dudit spiral d'une raideur prédéterminée ;
  • selon une deuxième variante, l'étape e) comporte la phase e2) : modifier la structure selon une profondeur prédéterminée d'une partie de la surface externe dudit spiral d'une raideur prédéterminée ;
  • selon une troisième variante, l'étape e) comporte la phase e3) : modifier la composition selon une profondeur prédéterminée d'une partie de la surface externe dudit spiral d'une raideur prédéterminée.
According to other advantageous variants of the invention:
  • during step a), the dimensions of the hairspring formed during step a) are between 1% and 20% greater than those necessary to obtain said hairspring at said predetermined stiffness;
  • step a) is carried out using deep reactive ion etching or chemical etching;
  • during step a), several spirals are formed in the same plate in dimensions larger than the dimensions necessary to obtain several spirals of a predetermined stiffness or several spirals of several predetermined stiffnesses;
  • the spiral formed during step a) is based on silicon, glass, ceramic, metal or metal alloy;
  • step b) comprises the phases b1): measuring the frequency of an assembly comprising the hairspring formed during step a) coupled with a balance having a predetermined inertia and b2): deducing from the measured frequency, the stiffness of the spiral formed during step a);
  • according to a first variant, step d) comprises the phases d1): oxidizing the spiral formed during step a) in order to transform said thickness of silicon-based material to be removed into silicon dioxide and thus form an oxidized spiral , and d2): removing the oxidized spiral oxide to obtain the spiral to the dimensions necessary for said predetermined stiffness;
  • according to a second variant, step d) comprises phase d3): etching the spiral formed during step a) in order to obtain the hairspring with the dimensions required for said predetermined stiffness.
  • after step d), the method performs at least one more step b), c) and d) to refine the dimensional quality;
  • after step d), the method further comprises the step e): forming, on at least a portion of said hairspring of a predetermined stiffness, a portion for correcting the stiffness of the hairspring and forming a hairspring minus sensitive to thermal variations;
  • according to a first variant, step e) comprises the phase e1): depositing a layer on a portion of the outer surface of said hairspring of a predetermined stiffness;
  • according to a second variant, the step e) comprises the phase e2): modifying the structure according to a predetermined depth of a part of the external surface of said hairspring with a predetermined stiffness;
  • according to a third variant, step e) comprises phase e3): modifying the composition to a predetermined depth of a portion of the outer surface of said hairspring of a predetermined stiffness.

Description sommaire des dessinsBrief description of the drawings

D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :

  • la figure 1 est une vue en perspective d'un résonateur assemblé selon l'invention ;
  • la figure 2 est un exemple de géométrie de spiral selon l'invention ;
  • les figures 3 à 6 sont des sections de spiral à différentes étapes du procédé selon l'invention ;
  • la figure 7 est une représentation en perspective d'une étape du procédé selon l'invention ;
  • la figure 8 est un diagramme du procédé selon l'invention.
Other particularities and advantages will emerge clearly from the description which is given hereinafter, by way of indication and in no way limiting, with reference to the appended drawings, in which:
  • the figure 1 is a perspective view of an assembled resonator according to the invention;
  • the figure 2 is an example of spiral geometry according to the invention;
  • the Figures 3 to 6 are spiral sections at different stages of the process according to the invention;
  • the figure 7 is a perspective representation of a step of the method according to the invention;
  • the figure 8 is a diagram of the process according to the invention.

Description détaillée des modes de réalisation préférésDetailed Description of the Preferred Embodiments

Comme illustré à la figure 1, l'invention se rapporte à un résonateur 1 du type balancier 3 - spiral 5. Le balancier 3 et le spiral 5 sont préférentiellement montés sur le même axe 7. Dans un tel résonateur 1, le moment d'inertie I du balancier 3 répond à la formule : I = mr 2

Figure imgb0001
dans laquelle m représente sa masse et r son rayon de giration qui dépend également de la température par l'intermédiaire du coefficient de dilatation αb du balancier.As illustrated in figure 1 , the invention relates to a resonator 1 of the balance 3-spiral type 5. The balance 3 and the spiral 5 are preferably mounted on the same axis 7. In such a resonator 1, the moment of inertia I of the balance 3 responds to the formula: I = mr 2
Figure imgb0001
in which m represents its mass and r its radius of gyration, which also depends on the temperature via the coefficient of expansion α b of the balance.

De plus, la raideur C du spiral 5 à section constante répond à la formule : C = Eh e 3 12 L

Figure imgb0002
dans laquelle E est le module d'Young du matériau utilisé, h sa hauteur, e son épaisseur et L sa longueur développée.In addition, the stiffness C of the spiral 5 with a constant section corresponds to the formula: C = Well e 3 12 The
Figure imgb0002
in which E is the Young's modulus of the material used, h its height, e its thickness and L its developed length.

De plus, la raideur C d'un spiral 5 à section variable répond à la formule : C = E 12 1 0 L 1 h l e 3 l dl

Figure imgb0003
dans laquelle E est le module d'Young du matériau utilisé, h sa hauteur, e son épaisseur, L sa longueur développée et l l'abscisse curviligne le long de la spire.In addition, the stiffness C of a spiral 5 with a variable section corresponds to the formula: C = E 12 1 0 The 1 h l e 3 l dl
Figure imgb0003
wherein E is the Young's modulus of the material used, h its height, its thickness e, L its developed length and the curvilinear abscissa along the coil.

De plus, la raideur C d'un spiral 5 à épaisseur variable mais à hauteur constante répond à la formule : C = Eh 12 1 0 L 1 e 3 l dl

Figure imgb0004
dans laquelle E est le module d'Young du matériau utilisé, h sa hauteur, e son épaisseur, L sa longueur développée et l l'abscisse curviligne le long de la spire.In addition, the stiffness C of a spiral 5 of varying thickness but at constant height corresponds to the formula: C = Well 12 1 0 The 1 e 3 l dl
Figure imgb0004
wherein E is the Young's modulus of the material used, h its height, its thickness e, L its developed length and the curvilinear abscissa along the coil.

Enfin, la fréquence f du résonateur 1 balancier-spiral répond à la formule : f = 1 2 π C I

Figure imgb0005
Finally, the frequency f of the spring-balance resonator 1 corresponds to the formula: f = 1 2 π C I
Figure imgb0005

Selon l'invention, il est souhaité que la variation de la fréquence en fonction de la température d'un résonateur soit sensiblement nulle. La variation de la fréquence f en fonction de la température T dans le cas d'un résonateur balancier-spiral suit sensiblement la formule suivante : Δ f f = 1 2 E T 1 E + 3 α s 2 α b Δ T

Figure imgb0006
où :

  • Δ f f
    Figure imgb0007
    est la variation relative de fréquence ;
  • ΔT est la variation de la température ;
  • E T 1 E
    Figure imgb0008
    est la variation relative du module d'Young en fonction de la température, c'est-à-dire le coefficient thermoélastique (CTE) du spiral ;
  • αs est le coefficient de dilatation du spiral, exprimé en ppm. °C-1 ;
  • αb est le coefficient de dilatation du balancier, exprimé en ppm. °C-1 ;
According to the invention, it is desired that the variation of the frequency as a function of the temperature of a resonator is substantially zero. The variation of the frequency f as a function of the temperature T in the case of a balance-spring resonator substantially follows the following formula: Δ f f = 1 2 E T 1 E + 3 α s - 2 α b Δ T
Figure imgb0006
or :
  • Δ f f
    Figure imgb0007
    is the relative frequency variation;
  • Δ T is the variation of the temperature;
  • E T 1 E
    Figure imgb0008
    is the relative variation of the Young's modulus as a function of the temperature, that is to say the thermoelastic coefficient (CTE) of the spiral;
  • α s is the spiral expansion coefficient, expressed in ppm. ° C -1 ;
  • α b is the coefficient of expansion of the balance, expressed in ppm. ° C -1 ;

Les oscillations de tout résonateur destiné à une base de temps ou de fréquence devant être entretenues, la dépendance thermique comprend également une contribution éventuelle du système d'entretien comme, par exemple, un échappement à ancre suisse (non représenté) coopérant avec la cheville 9 du plateau 11 également monté sur l'axe 7.Oscillations of any resonator for a time base or frequency to be maintained, the thermal dependence also includes a possible contribution of the maintenance system such as, for example, a Swiss lever escapement (not shown) cooperating with the ankle 9 of the plate 11 also mounted on the axis 7.

On comprend donc, à partir des formules (1)-(6), qu'il est possible d'appairer le spiral 5 avec le balancier 3 afin que la fréquence f du résonateur 1 soit quasiment insensible aux variations de température.It is therefore understood from formulas (1) - (6) that it is possible to match the hairspring 5 with the balance 3 so that the frequency f of the resonator 1 is almost insensitive to temperature variations.

L'invention concerne plus particulièrement un résonateur 1 dans lequel le spiral 5 est utilisé pour compenser l'ensemble du résonateur 1, c'est-à-dire toutes les parties et notamment le balancier 3. Un tel spiral 5 est généralement appelé un spiral compensateur. C'est pourquoi, l'invention se rapporte à un procédé de fabrication permettant de garantir une très haute précision dimensionnelle du spiral et, incidemment, de garantir une raideur plus précise dudit spiral.The invention relates more particularly to a resonator 1 in which the hairspring 5 is used to compensate the whole of the resonator 1, that is to say all the parts and in particular the balance 3. Such a hairspring 5 is generally called a hairspring compensator. Therefore, the invention relates to a manufacturing method for ensuring a very high dimensional accuracy of the spiral and, incidentally, to ensure a more precise stiffness of said spiral.

Selon l'invention, le spiral compensateur 5, 15 est formé à base d'un matériau, éventuellement revêtu d'une couche de compensation thermique, et destiné à coopérer avec un balancier 3 d'inertie prédéterminée. Toutefois, rien n'empêche de prévoir un balancier avec des masselottes déplaçables permettant d'offrir un paramètre de réglage avant ou après la vente de la pièce d'horlogerie.According to the invention, the compensating spiral 5, 15 is formed based on a material, optionally coated with a thermal compensation layer, and intended to cooperate with a predetermined balance beam 3 of inertia. However, nothing prevents to provide a pendulum with movable weights to offer a setting parameter before or after the sale of the timepiece.

L'utilisation d'un matériau, par exemple à base de silicium, de verre ou de céramique, pour la fabrication d'un spiral 5, 15 offre l'avantage d'être précis par les méthodes de gravage existantes et de posséder de bonnes propriétés mécaniques et chimiques en étant notamment très peu sensible aux champs magnétiques. Il doit en revanche être revêtu ou modifié superficiellement pour pouvoir former un spiral compensateur.The use of a material, for example based on silicon, glass or ceramic, for the manufacture of a hairspring 5, 15 offers the advantage of being precise by the existing methods of engraving and to have good mechanical and chemical properties being in particular very little sensitive to the magnetic fields. It must however be coated or superficially modified to form a compensating hairspring.

Préférentiellement, le matériau à base de silicium utilisé comme spiral compensateur peut être du silicium monocristallin quelle que soit son orientation cristalline, du silicium monocristallin dopé quelle que soit son orientation cristalline, du silicium amorphe, du silicium poreux, du silicium polycristallin, du nitrure de silicium, du carbure de silicium, du quartz quelle que soit son orientation cristalline ou de l'oxyde de silicium. Bien entendu d'autres matériaux peuvent être envisagés comme un verre, une céramique, un cermet, un métal ou un alliage métallique. Par simplification, l'explication ci-dessous sera portée sur un matériau à base de silicium.Preferably, the silicon-based material used as a compensating spiral may be monocrystalline silicon whatever its crystalline orientation, doped monocrystalline silicon whatever its crystalline orientation, amorphous silicon, porous silicon, polycrystalline silicon, nitride of silicon, silicon carbide, quartz regardless of its crystalline orientation or silicon oxide. Of course other materials can be envisioned as a glass, a ceramic, a cermet, a metal or a metal alloy. For simplicity, the explanation below will be focused on a silicon-based material.

Chaque type de matériau peut être modifié superficiellement ou revêtu d'une couche afin de compenser thermiquement le matériau de base comme expliqué ci-dessus.Each type of material may be surface-modified or layer-coated to thermally compensate for the base material as explained above.

Si l'étape de gravage de spiraux dans une plaquette à base de silicium, au moyen d'un gravage ionique réactif profond (également connu sous l'abréviation « D.R.I.E. »), est la plus précise, des phénomènes qui interviennent pendant le gravage ou entre deux gravages successifs peuvent néanmoins induire des variations géométriques.If the step of etching spirals in a silicon-based wafer, by means of a deep reactive ion etching (also known as "DRIE"), is the most accurate, phenomena that occur during etching or between two successive engravings can nevertheless induce geometric variations.

Bien entendu, d'autres types de fabrication peuvent être mis en oeuvre, comme le gravage laser, le gravage ionique localisé (connu sous l'abréviation anglaise « F.I.B. »), la croissance galvanique, la croissance par dépôt chimique en phase gazeuse ou le gravage chimique, qui sont moins précis et pour lesquels le procédé aurait encore plus de sens.Of course, other types of manufacturing can be implemented, such as laser etching, localized ion etching (known by the abbreviation "FIB"), galvanic growth, growth by chemical vapor deposition or chemical engraving, which are less accurate and for which the process would make even more sense.

Ainsi, l'invention se rapporte à un procédé 31 de fabrication d'un spiral 5c. Selon l'invention, le procédé 31 comporte, comme illustré à la figure 8, une première étape 33 destinée à former au moins un spiral 5a, par exemple à base de silicium, selon des dimensions Da supérieures aux dimensions Db nécessaires pour obtenir ledit spiral 5c d'une raideur C prédéterminée. Comme visible à la figure 3, la section du spiral 5a comporte une hauteur H1 et une épaisseur E1.Thus, the invention relates to a method 31 for manufacturing a spiral 5c. According to the invention, the method 31 comprises, as illustrated in FIG. figure 8 a first step 33 intended to form at least one spiral 5a, for example based on silicon, with dimensions Da greater than dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C. As visible at figure 3 , the spiral section 5a has a height H 1 and a thickness E 1 .

Préférentiellement, les dimensions Da du spiral 5a sont sensiblement entre 1% et 20% supérieures à celles Db du spiral 5c nécessaires pour obtenir ledit spiral 5c d'une raideur C prédéterminée.Preferably, the dimensions Da of the hairspring 5a are substantially between 1% and 20% higher than those Db of the hairspring 5c necessary to obtain said hairspring 5c of a predetermined stiffness C.

Préférentiellement selon l'invention, l'étape 33 est réalisée à l'aide d'un gravage ionique réactif profond dans une plaquette 23 d'un matériau à base de silicium comme illustré à la figure 7. On s'aperçoit que les faces opposées F1, F2 sont ondulées car un gravage ionique réactif profond du type Bosch occasionne une gravure en créneaux structurée par les étapes successives d'attaque et de passivation.Preferentially according to the invention, step 33 is carried out using a deep reactive ion etching in a wafer 23 of a silicon-based material as illustrated in FIG. figure 7 . It can be seen that the opposite faces F 1 , F 2 are corrugated because a deep reactive ion etching of the Bosch type causes a slot etching structured by the successive stages of attack and passivation.

Bien entendu, le procédé ne saurait se limiter à une étape 33 particulière. A titre d'exemple, l'étape 33 pourrait tout aussi bien être obtenue par un gravage chimique dans une plaquette 23 d'un matériau par exemple à base de silicium. De plus, l'étape 33 signifie que un ou plusieurs spiraux sont formés, c'est-à-dire que l'étape 33 permet de former des spiraux en vrac ou alternativement formés dans une plaquette d'un matériau.Of course, the method can not be limited to a particular step 33. By way of example, step 33 could equally well be obtained by chemical etching in a wafer 23 of a material for example based on silicon. In addition, step 33 means that one or more spirals are formed, i.e., step 33 makes it possible to form bulk spirals or alternately formed in a wafer of a material.

Par conséquent, lors de l'étape 33, plusieurs spiraux 5a peuvent être formés dans la même plaquette 23 selon des dimensions Da, H1, E1 supérieures aux dimensions Db, H3, E3 nécessaires pour obtenir plusieurs spiraux 5c d'une raideur C prédéterminée ou plusieurs spiraux 5c de plusieurs raideurs C prédéterminées.Consequently, during step 33, several spirals 5a may be formed in the same plate 23 in dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 necessary to obtain several spirals 5c of a predetermined stiffness C or several spirals 5c of several predetermined stiffnesses C.

L'étape 33 ne se limite pas non plus à la formation d'un spiral 5a selon des dimensions Da, H1, E1 supérieures aux dimensions Db, H3, E3 nécessaires pour obtenir un spiral 5c d'une raideur C prédéterminée, formé à l'aide d'un unique matériau. Ainsi, l'étape 33 pourrait tout aussi bien former un spiral 5a selon des dimensions Da, H1, E1 supérieures aux dimensions Db, H3, E3 nécessaires pour obtenir un spiral 5c d'une raideur C prédéterminée en un matériau composite, c'est-à-dire comportant plusieurs matériaux distincts.Step 33 is not limited to the formation of a hairspring 5a in dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 required to obtain a hairspring 5c of predetermined stiffness C , formed using a single material. Thus, step 33 could equally well form a hairspring 5a with dimensions Da, H 1 , E 1 greater than the dimensions Db, H 3 , E 3 needed to obtain a hairspring 5c of stiffness C predetermined in a composite material, that is to say comprising several different materials.

Le procédé 31 comporte une deuxième étape 35 destinée à déterminer la raideur du spiral 5a. Une telle étape 35 peut être réalisée directement sur le spiral 5a encore attaché à la plaquette 23 ou sur le spiral 5a préalablement détaché de la plaquette 23, sur l'ensemble ou sur un échantillon des spiraux encore attachés à une plaquette 23 ou sur un échantillon de spiraux préalablement détachés d'une plaquette 23.The method 31 includes a second step 35 for determining the stiffness of the hairspring 5a. Such a step 35 may be carried out directly on the hairspring 5a still attached to the wafer 23 or on the hairspring 5a previously detached from the wafer 23, on the whole or on a sample of the spirals still attached to a wafer 23 or on a sample spirals previously detached from a wafer 23.

Selon l'invention, le spiral 5a étant ou non détaché de la plaquette 23, l'étape 35 comporte une première phase destinée à mesurer la fréquence f d'un ensemble comportant le spiral 5a couplé avec un balancier doté d'une inertie I prédéterminée puis, à l'aide de la relation (5), en déduire, dans une deuxième phase, la raideur C du spiral 5a.According to the invention, the hairspring 5a being detached or not from the wafer 23, the step 35 includes a first phase intended to measure the frequency f of an assembly comprising the hairspring 5a coupled with a balance having a predetermined inertia I. then, using the relation (5), deduce, in a second phase, the stiffness C spiral 5a.

Une telle phase de mesure peut notamment être dynamique et réalisée selon les enseignements du document EP 2 423 764 . Toutefois, alternativement, une méthode statique, réalisée selon les enseignements du document EP 2 423 764 , peut également être mise en oeuvre pour déterminer la raideur C du spiral 5a.Such a measurement phase can in particular be dynamic and carried out according to the teachings of the document EP 2 423 764 . However, alternatively, a static method, carried out according to the teachings of the document EP 2 423 764 can also be used to determine the stiffness C of the spiral 5a.

Bien entendu, comme expliqué ci-dessus, le procédé ne se limitant pas au gravage d'un unique spiral par plaquette, l'étape 35 peut également consister en une détermination de la raideur moyenne d'un échantillon représentatif ou de l'ensemble des spiraux formés sur une même plaquette.Of course, as explained above, the method is not limited to the etching of a single spiral per wafer, step 35 may also consist of a determination of the average stiffness of a representative sample or of all spirals formed on the same plate.

Selon l'invention, à partir de la détermination de la raideur C du spiral 5a, le procédé 31 comporte une étape 37 destinée à calculer, à l'aide de la relation (2), l'épaisseur de matériau à retirer sur l'ensemble du spiral pour obtenir les dimensions globales Db nécessaires pour obtenir ledit spiral 5c d'une raideur C prédéterminée, c'est-à-dire le volume de matériau à retirer de manière homogène ou non sur la surface du spiral 5a.According to the invention, from the determination of the stiffness C of the spiral 5a, the method 31 comprises a step 37 intended to calculate, using the relation (2), the thickness of the material to be removed on the assembly of the hairspring to obtain the overall dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C , that is to say the volume of material to be withdrawn homogeneously or not on the surface of the hairspring 5a.

Le procédé se poursuit avec une étape 39 destinée à retirer la matière excédentaire du spiral 5a jusqu'aux dimensions Db nécessaires pour obtenir ledit spiral 5c d'une raideur C prédéterminée. On comprend donc qu'il importe peu que les variations géométriques soient intervenues sur l'épaisseur et/ou la hauteur et/ou la longueur du spiral 5a dans la mesure où, selon l'équation (2), c'est le produit h·e3 qui détermine la rigidité de la spire.The process is continued with a step 39 for removing the surplus material of the hairspring 5a to the dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C. It is therefore understood that it does not matter that the geometric variations have occurred on the thickness and / or the height and / or the length of the hairspring 5a insofar as, according to equation (2), it is the product h · E 3 which determines the rigidity of the turn.

Ainsi, une épaisseur homogène sur toute la surface externe peut être retirée, une épaisseur non homogène sur toute la surface externe peut être retirée, une épaisseur homogène seulement sur une partie de la surface externe peut être retirée ou une épaisseur non homogène seulement sur une partie de la surface externe peut être retirée. A titre d'exemple, l'étape 37 pourrait consister à ne retirer de la matière que selon l'épaisseur E1 ou selon la hauteur H1 du spiral 5a.Thus, a uniform thickness over the entire outer surface may be removed, a non-uniform thickness over the entire outer surface may be removed, a uniform thickness only on a portion of the outer surface may be removed or a non-uniform thickness only on a portion the outer surface can be removed. By way of example, step 37 could consist in removing material only according to the thickness E 1 or the height H 1 of the spiral 5 a.

Dans une première variante se rapportant à un matériau à base de silicium, l'étape 39 comporte une première phase d1 destinée à oxyder le spiral 5a afin de transformer ladite épaisseur de matériau à base de silicium à retirer en dioxyde de silicium et ainsi former un spiral 5b oxydé. Une telle phase d1 peut, par exemple, être obtenue par oxydation thermique. Une telle oxydation thermique peut, par exemple, être réalisée entre 800 et 1200 °C sous atmosphère oxydante à l'aide de vapeur d'eau ou de gaz de dioxygène permettant de former de l'oxyde de silicium sur le spiral 5a.In a first variant relating to a silicon-based material, step 39 comprises a first phase d1 intended to oxidize the hairspring 5a in order to transform said thickness of silicon-based material to be removed into silicon dioxide and thus form a spiral 5b oxidized. Such a phase d1 can, for example, be obtained by thermal oxidation. Such thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral 5a.

Comme visible à la figure 4, la section du spiral 5b comporte une hauteur H2 et une épaisseur E2. On s'aperçoit que le spiral 5b est formé d'une partie centrale 22 à base de silicium selon les dimensions globales Db nécessaires pour le spiral 5c à ladite raideur C prédéterminée et une partie périphérique 24 en dioxyde de silicium. De plus, il est visible que la forme en créneaux est toujours reproduite sur une portion de la partie périphérique 24 mais n'est plus ou peu présente la partie centrale 22.As visible at figure 4 the section of the spiral 5b has a height H 2 and a thickness E 2 . It can be seen that the hairspring 5b is formed of a central part 22 based on silicon according to the overall dimensions Db required for the hairspring 5c at said predetermined stiffness C and a peripheral portion 24 made of silicon dioxide. In addition, it is visible that the crenellated form is always reproduced on a portion of the peripheral portion 24 but is no longer or less present the central portion 22.

L'étape 39 se termine, comme illustré à la figure 5, avec une deuxième phase d2 destinée à retirer l'oxyde du spiral 5b permettant d'obtenir un spiral 5c avec la partie 22 unique à base de silicium aux dimensions globales Db nécessaires pour obtenir ladite raideur C prédéterminée, la section comportant notamment une hauteur H3 et une épaisseur E3. Une telle phase d2 peut, par exemple, être obtenue par gravage chimique. Un tel bain chimique peut comporter, par exemple, un acide fluorhydrique permettant de retirer l'oxyde de silicium du spiral 5b.Step 39 ends, as shown in figure 5 , with a second phase d2 intended to remove the oxide of the spiral 5b allowing to obtain a hairspring 5c with the silicon-based single portion 22 with the overall dimensions Db necessary to obtain said predetermined stiffness C , the section comprising in particular a height H 3 and a thickness E 3 . Such a phase d2 may, for example, be obtained by chemical etching. Such a chemical bath may comprise, for example, a hydrofluoric acid for removing the silicon oxide spiral 5b.

Dans une deuxième variante, l'étape 39 comporte une unique phase d3 destinée à graver chimiquement le spiral 5a afin d'obtenir le spiral 5c à base de silicium aux dimensions Db, H3, E3 nécessaires à ladite raideur C prédéterminée. Bien entendu, suivant le matériau utilisé, d'autres variantes comme le gravage laser ou le gravage ionique localisé, permettant de retirer la matière excédentaire du spiral 5a jusqu'aux dimensions Db nécessaires pour obtenir ledit spiral 5c d'une raideur C prédéterminée, peuvent être envisagées.In a second variant, step 39 comprises a single d3 phase for chemically etching the spiral 5a to obtain the spiral 5c silicon based the dimensions Db, H 3, E 3 necessary for said predetermined stiffness C. Of course, depending on the material used, other variants such as laser etching or localized ion etching, for removing the excess material from the hairspring 5a to the dimensions Db necessary to obtain said hairspring 5c of a predetermined stiffness C , can to be considered.

L'étape 39 peut finir le procédé 31. Toutefois, après l'étape 39, le procédé 31 peut également effectuer, au moins une nouvelle fois, les étapes 35, 37 et 39 dans le but d'encore affiner la qualité dimensionnelle du spiral. Ces itérations des étapes 35, 37 et 39 peuvent, par exemple, trouver un intérêt particulier quand l'exécution de la première itération des étapes 35, 37 et 39 est réalisée sur l'ensemble, ou sur un échantillon, des spiraux encore attachés à une plaquette 23, puis dans une deuxième itération, sur l'ensemble, ou un échantillon, des spiraux préalablement détachés de la plaquette 23 ayant subi la première itération.Step 39 may finish process 31. However, after step 39, method 31 may also perform, at least one more time, steps 35, 37 and 39 in order to further refine the dimensional quality of the hairspring . These iterations of steps 35, 37 and 39 may, for example, be of particular interest when the execution of the first iteration of steps 35, 37 and 39 is performed on the set, or on a sample, of the spirals still attached to a wafer 23, then in a second iteration, on the assembly, or a sample, spirals previously detached from the wafer 23 having undergone the first iteration.

Le procédé 31 peut également se poursuivre avec tout ou partie du processus 40 illustré à la figure 8 comportant des étapes optionnelles 41, 43 et 45. Avantageusement selon l'invention, le procédé 31 peut ainsi se poursuivre avec l'étape 41 destinée à former, sur au moins une partie du spiral 5c, une portion 28 permettant de former un spiral 5, 15 moins sensible aux variations thermiques.The method 31 may also continue with all or part of the process 40 illustrated in FIG. figure 8 comprising optional steps 41, 43 and 45. Advantageously according to the invention, the method 31 can thus continue with the step 41 intended to form, on at least a part of the hairspring 5c, a portion 28 for forming a hairspring 5 , 15 less sensitive to thermal variations.

Dans une première variante, l'étape 41 peut consister en une phase e1 destinée à déposer une couche sur une partie de la surface externe dudit spiral 5c d'une raideur C prédéterminée.In a first variant, step 41 may consist of a phase e1 intended to deposit a layer on a portion of the outer surface of said hairspring 5c of a predetermined stiffness C.

Dans le cas où la partie 22 est un matériau à base de silicium, la phase e1 peut consister à oxyder le spiral 5c pour le revêtir de dioxyde de silicium afin de former un spiral qui est thermocompensé. Une telle phase e1 peut, par exemple, être obtenue par oxydation thermique. Une telle oxydation thermique peut, par exemple, être réalisée entre 800 et 1200 °C sous atmosphère oxydante à l'aide de vapeur d'eau ou de gaz de dioxygène permettant de former de l'oxyde de silicium sur le spiral 5c.In the case where the portion 22 is a silicon-based material, the e1 phase may consist of oxidizing the spiral 5c to coat it with silicon dioxide to form a spiral which is thermocompensated. Such a phase e1 can, for example, be obtained by thermal oxidation. Such thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral 5c.

On obtient ainsi le spiral 5, 15 compensateur comme illustré à la figure 6 qui, avantageusement selon l'invention, comporte une âme 26 à base de silicium et un revêtement 28 à base d'oxyde de silicium. Avantageusement selon l'invention, le spiral 5, 15 compensateur possède donc une très haute précision dimensionnelle notamment quant à la hauteur H4 et de l'épaisseur E4, et, incidemment, une compensation thermique de l'ensemble du résonateur 1 très fine.This produces the balance spring 5, 15 as shown in FIG. figure 6 which, advantageously according to the invention, comprises a core 26 based on silicon and a coating 28 based on silicon oxide. Advantageously according to the invention, the balance spring 5, 15 compensator thus has a very high dimensional accuracy especially as to the height H 4 and the thickness E 4 , and, incidentally, a thermal compensation of the entire resonator 1 very thin .

Dans le cas d'un spiral à base de silicium, les dimensions globales Db peuvent être trouvées en utilisant les enseignements du document EP 1 422 436 pour l'appliquer au résonateur 1 qui est destiné à être fabriqué, c'est-à-dire pour compenser l'ensemble des parties constituantes du résonateur 1 comme expliqué ci-dessus.In the case of a silicon spiral, the overall dimensions Db can be found using the teachings of the document EP 1 422 436 to apply it to the resonator 1 which is intended to be manufactured, that is to say to compensate for all the constituent parts of the resonator 1 as explained above.

Dans une deuxième variante, l'étape 41 peut consister en une phase e2 destinée à modifier la structure selon une profondeur prédéterminée d'une partie de la surface externe dudit spiral 5c d'une raideur C prédéterminée. A titre d'exemple, si un silicium amorphe est utilisé, il peut être prévu de le cristalliser selon une profondeur prédéterminée.In a second variant, step 41 may consist of a phase e2 intended to modify the structure to a predetermined depth of a portion of the outer surface of said hairspring 5c of a predetermined stiffness C. For example, if an amorphous silicon is used, it can be expected to crystallize it to a predetermined depth.

Dans une troisième variante, l'étape 41 peut consister en une phase e3 destinée à modifier la composition selon une profondeur prédéterminée d'une partie de la surface externe dudit spiral 5c d'une raideur C prédéterminée. A titre d'exemple, si un silicium monocristallin ou polycristallin est utilisé, il peut être prévu de le doper ou d'y diffuser des atomes interstitiels ou de substitution selon une profondeur prédéterminée.In a third variant, step 41 may consist of a phase e3 intended to modify the composition to a predetermined depth of a portion of the outer surface of said spring 5c of a stiffness C predetermined. For example, if a monocrystalline or polycrystalline silicon is used, it may be provided to dope or to diffuse interstitial or substitutional atoms to a predetermined depth.

Avantageusement selon l'invention, il est ainsi possible de fabriquer, comme illustré à la figure 2, sans plus de complexité un spiral 5c, 5, 15 comportant notamment :

  • une ou plusieurs spires de section(s) plus précise(s) que celle obtenue par un unique gravage ;
  • des variations d'épaisseur et/ou de pas le long de la spire ;
  • une virole 17 monobloc ;
  • une spire interne 19 du type à courbe Grossmann ;
  • une attache 14 de pitonnage monobloc ;
  • un élément d'encastrement externe monobloc ;
  • une portion 13 de la spire externe 12 surépaissie par rapport au reste des spires.
Advantageously according to the invention, it is thus possible to manufacture, as illustrated in FIG. figure 2 , without more complexity a spiral 5c, 5, 15 comprising in particular:
  • one or more turns of more precise section (s) than that obtained by a single engraving;
  • variations in thickness and / or pitch along the turn;
  • a shell 17 monobloc;
  • an internal turn 19 of the Grossmann curve type;
  • a one-piece pegging fastener 14;
  • a one-piece external recess element;
  • a portion 13 of the outer turn 12 thickened relative to the rest of the turns.

Enfin, le procédé 31 peut également comporter l'étape 45 destinée à assembler un spiral compensateur 5, 15 obtenu lors de l'étape 41, ou un spiral 5c obtenu lors de l'étape 39, avec un balancier d'inertie prédéterminée obtenu lors de l'étape 43 pour former un résonateur 1 du type balancier - spiral qui est compensé thermiquement ou non, c'est-à-dire dont la fréquence f est sensible ou non aux variations de température.Finally, the method 31 can also comprise step 45 intended to assemble a compensating hairspring 5, 15 obtained during step 41, or a hairspring 5c obtained during step 39, with a predetermined inertia beam obtained during of step 43 to form a resonator 1 of the balance-balance type which is thermally compensated or not, that is to say whose frequency f is sensitive or not to temperature variations.

Bien entendu, la présente invention ne se limite pas à l'exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, comme expliqué ci-dessus, le balancier, même s'il comporte une inertie prédéfinie de construction, peut comporter des masselottes déplaçables permettant d'offrir un paramètre de réglage avant ou après la vente de la pièce d'horlogerie.Of course, the present invention is not limited to the illustrated example but is susceptible of various variations and modifications that will occur to those skilled in the art. In particular, as explained above, the balance, even if it comprises a predefined construction inertia, may comprise movable weights to provide a setting parameter before or after the sale of the timepiece.

De plus, une étape supplémentaire, entre l'étape 39 et l'étape 41, ou entre l'étape 39 et l'étape 45, pourrait être prévue afin de déposer d'une couche fonctionnelle ou esthétique, comme, par exemple, une couche de durcissement ou une couche luminescente.In addition, an additional step, between step 39 and step 41, or between step 39 and step 45, could be provided in order to deposit a functional or aesthetic layer, such as, for example, a curing layer or a luminescent layer.

Il est également envisageable dans le cas où le procédé 31 effectue, après l'étape 39, une ou plusieurs itération(s) des étapes 35, 37 et 39 que l'étape 35 ne soit pas systématiquement mise en oeuvre.It is also conceivable in the case where the method 31 performs, after step 39, one or more iterations (s) of steps 35, 37 and 39 that step 35 is not systematically implemented.

Claims (18)

  1. Method (31) for fabrication of a balance spring (5c) of predetermined thickness (C) comprising the following steps:
    a) forming (33) a balance spring (5a) in dimensions (Da, H1, E1 ) greater than the dimensions (Db, H3, E3 ) necessary to obtain said balance spring (5c) of a predetermined stiffness (C);
    b) determining (35) the stiffness (C) of the balance spring (5a) formed in step a) by measuring the frequency (f) of said balance spring (5a) coupled with a balance having a predetermined inertia;
    c) calculating (37) the thickness of the material to be removed, based on the determination of the stiffness (C) of the balance spring (5a) determined in step b), to obtain the dimensions (Db, H3, E3 ) necessary to obtain said balance spring (5c) of a predetermined stiffness (C);
    d) removing (39) from the balance spring (5a) formed in step a), said thickness of material to obtain the balance spring (5c) having the dimensions (Db, H3, E3 ) necessary for said predetermined stiffness (C).
  2. Fabrication method (31) according to the preceding claim, characterized in that, in step a), the dimensions (Da, H1, E1 ) of the balance spring (5a) formed in step a) are between 1% and 20% greater than those (Db, H3, E3 ) necessary to obtain said balance spring (5c) of said predetermined thickness (C).
  3. Fabrication method (31) according to claim 1 or 2, characterized in that step a) is achieved by means of a deep reactive ion etch.
  4. Fabrication method (31) according to claim 1 or 2, characterized in that step a) is achieved by means of a chemical etch.
  5. Fabrication method (31) according to any of the preceding claims, characterized in that, in step a), several balance springs (5a) are formed in the same wafer (23) in dimensions (Da, H1, E1 ) greater than the dimensions (Db, H3, E3 ) necessary to obtain several balance springs (5c) of a predetermined stiffness (C) or several balance springs (5c) of several predetermined stiffnesses (C).
  6. Fabrication method (31) according to any of the preceding claims, characterized in that the balance spring (5a) formed in step a) is made from silicon.
  7. Fabrication method (31) according to any claims 1 to 5, characterized in that the balance spring (5a) formed in step a) is made from glass.
  8. Fabrication method (31) according to any claims 1 to 5, characterized in that the balance spring (5a) formed in step a) is made from ceramic.
  9. Fabrication method (31) according to any claims 1 to 5, characterized in that the balance spring (5a) formed in step a) is made from metal.
  10. Fabrication method (31) according to any claims 1 to 5, characterized in that the balance spring (5a) formed in step a) is made from metal alloy.
  11. Fabrication method (31) according to any of the preceding claims, characterized in that step b) includes the following phases:
    b1) measuring the frequency (f) of an assembly comprising the balance spring (5a) formed in step a) coupled to a balance having a predetermined inertia;
    b2) deducing from the measured frequency (f), the stiffness (C) of the balance spring (5a) formed in step a).
  12. Fabrication method (31) according to claim 6, characterized in that step d) includes the following phases:
    d1) oxidising the balance spring (5a) formed in step a) in order to transform said thickness of silicon material to be removed into silicon dioxide and thereby form an oxidised balance spring (5b);
    d2) removing the oxide from the oxidised balance spring (5b) to obtain the balance spring (5c) having the dimensions (Db, H3, E3 ) necessary for said predetermined stiffness (C).
  13. Fabrication method (31) according to any of claims 1 to 11, characterized in that step d) includes the following phases:
    d3) chemically etching the balance spring (5a) formed in step a) to obtain the balance spring (5c) having the dimensions (Db, H3, E3 ) necessary for said predetermined stiffness (C).
  14. Fabrication method (31) according to any of the preceding claims, characterized in that, after step d), the method performs, at least once more, steps b), c) and d) to further improve the dimensional quality.
  15. Fabrication method (31) according to any of the preceding claims, characterized in that, after step d), the method also includes the following step:
    e) forming, on at least one part of said balance spring (5c) of a predetermined stiffness (C), a portion for correcting the stiffness of the balance spring (5c) and for forming a balance spring (5, 15) that is less sensitive to thermal variations.
  16. Fabrication method (31) according to claim 15, characterized in that step e) includes the following phase:
    e1) depositing a layer on one part of the external surface of said balance spring (5c) of a predetermined stiffness (C).
  17. Fabrication method (31) according to claim 15, characterized in that step e) includes the following phase:
    e2) modifying the structure, to a predetermined depth, of one part of the external surface of said balance spring (5c) of a predetermined stiffness (C).
  18. Fabrication method (31) according to claim 15, characterized in that step e) includes the following phase:
    e3) modifying the composition, to a predetermined depth, of one part of the external surface of said balance spring (5c) of a predetermined stiffness (C).
EP15201330.6A 2015-12-18 2015-12-18 Method for manufacturing a hairspring with a predetermined stiffness by removing material Active EP3181938B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15201330.6A EP3181938B1 (en) 2015-12-18 2015-12-18 Method for manufacturing a hairspring with a predetermined stiffness by removing material
US15/354,317 US10324417B2 (en) 2015-12-18 2016-11-17 Method for fabrication of a balance spring of a predetermined stiffness by removal of material
JP2016234770A JP6343651B2 (en) 2015-12-18 2016-12-02 How to make a balance spring with a certain stiffness by removing material
CN201910652696.9A CN110376871A (en) 2015-12-18 2016-12-16 Method for manufacturing the balance spring of predetermined stiffness by removal material
CN201611164448.2A CN106896708B (en) 2015-12-18 2016-12-16 Method for manufacturing the balance spring of predetermined stiffness by removal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15201330.6A EP3181938B1 (en) 2015-12-18 2015-12-18 Method for manufacturing a hairspring with a predetermined stiffness by removing material

Publications (2)

Publication Number Publication Date
EP3181938A1 EP3181938A1 (en) 2017-06-21
EP3181938B1 true EP3181938B1 (en) 2019-02-20

Family

ID=54850451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15201330.6A Active EP3181938B1 (en) 2015-12-18 2015-12-18 Method for manufacturing a hairspring with a predetermined stiffness by removing material

Country Status (4)

Country Link
US (1) US10324417B2 (en)
EP (1) EP3181938B1 (en)
JP (1) JP6343651B2 (en)
CN (2) CN110376871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543795A1 (en) 2018-03-20 2019-09-25 Patek Philippe SA Genève Method for manufacturing silicon clock components

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774925B (en) 2018-03-01 2022-08-21 瑞士商Csem瑞士電子及微技術研發公司 Method for manufacturing a spiral spring
TWI796444B (en) 2018-03-20 2023-03-21 瑞士商百達翡麗日內瓦股份有限公司 Method for manufacturing timepiece thermocompensated hairsprings of precise stiffness
EP3543796A1 (en) * 2018-03-21 2019-09-25 Nivarox-FAR S.A. Method for manufacturing a silicon hairspring
EP3557333B1 (en) * 2018-04-16 2020-11-04 Patek Philippe SA Genève Method for manufacturing a timepiece mainspring
EP3654111B1 (en) * 2018-11-15 2022-02-16 Nivarox-FAR S.A. Method for measuring the torque of a clock hairspring and device for such method of measurement
CH716605A1 (en) 2019-09-16 2021-03-31 Richemont Int Sa Method of manufacturing a plurality of resonators on a wafer.
CH716603A1 (en) 2019-09-16 2021-03-31 Sigatec Sa Process for manufacturing watch hairsprings.
EP3882714A1 (en) 2020-03-19 2021-09-22 Patek Philippe SA Genève Method for manufacturing a silicon clock component
EP3882710A1 (en) 2020-03-19 2021-09-22 Patek Philippe SA Genève Method for manufacturing a silicon-based clock component
EP3907565A1 (en) 2020-05-07 2021-11-10 Patek Philippe SA Genève Method for manufacturing a silicon timepiece component
EP3982205A1 (en) 2020-10-06 2022-04-13 Patek Philippe SA Genève Method for manufacturing a timepiece spring with precise stiffness
EP4030243A1 (en) 2021-01-18 2022-07-20 Richemont International S.A. Method for monitoring and manufacturing timepiece hairsprings
EP4030241A1 (en) 2021-01-18 2022-07-20 Richemont International S.A. Method for manufacturing timepiece hairsprings
CN113446340B (en) * 2021-07-09 2022-08-02 永康市海力实业有限公司 Enhanced coil spring of pipe coiling device
EP4202576A1 (en) 2021-12-22 2023-06-28 Richemont International S.A. Method for monitoring and manufacturing timepiece hairsprings
WO2023117350A1 (en) 2021-12-22 2023-06-29 Richemont International Sa Method for testing and producing balance springs for timepieces
EP4273632A1 (en) 2022-05-06 2023-11-08 Sigatec SA Method for manufacturing timepiece components
EP4303668A1 (en) 2022-07-05 2024-01-10 Richemont International S.A. Device for determining the stiffness of a spiral
EP4310598A1 (en) 2022-07-18 2024-01-24 Richemont International S.A. Method for monitoring and manufacturing timepiece hairsprings
EP4312084A1 (en) 2022-07-26 2024-01-31 Nivarox-FAR S.A. Method for manufacturing a silicon hairspring

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1502464A (en) 1966-09-15 1967-11-18 Straumann Inst Ag Device for electrically measuring the moment of force of sprung hairsprings and the moment of inertia of balances
US3782169A (en) 1969-07-11 1974-01-01 Fab D Assortiments Reunies Regulating the frequency of an oscillatory system including a balance and a coiled spring
EP1213628A1 (en) 2000-12-07 2002-06-12 Eta SA Fabriques d'Ebauches Method for adjusting the oscillation frequence of a sprung balance for a mechanical timepiece
DE10127733A1 (en) 2001-06-07 2003-02-06 Silicium Energiesysteme E K Dr Spring elements in form of screw or spiral springs used in semiconductor technology in production of weighing systems, pressure switches or sensors are made from mono-crystalline silicon
EP1422436A1 (en) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
WO2005109639A2 (en) 2004-04-28 2005-11-17 Robert Bosch Gmbh Method for adjusting the frequency of a mems resonator
EP1655642A2 (en) 2003-02-06 2006-05-10 ETA SA Manufacture Horlogère Suisse Balance-spring resonator spiral and its method of fabrication
WO2007000271A1 (en) 2005-06-28 2007-01-04 Eta Sa Manufacture Horlogere Suisse Reinforced micromechanical part
EP1791039A1 (en) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Hairspring made from athermic glass for a timepiece movement and its method of manufacture
WO2009068091A1 (en) 2007-11-28 2009-06-04 Manufacture Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S.A. Mechanical oscillator having an optimized thermoelastic coefficient
EP2154583A1 (en) 2008-07-29 2010-02-17 Rolex Sa Hairspring for sprung balance
CH699780A2 (en) 2008-10-22 2010-04-30 Richemont Int Sa Self-compensating balance spring for mechanical spiral balance-wheel oscillator of e.g. timepiece, has silicon bar with exterior surface, and material in form of cover, where cover partially covers exterior surface
WO2011072960A1 (en) 2009-12-15 2011-06-23 The Swatch Group Research And Development Ltd Resonator thermally compensated for at least the first and second orders
CH702708B1 (en) 2007-04-27 2011-08-31 Sigatec S A Balance-hairspring oscillator assembly for mechanical watch, has balance or hairspring comprising detachable element realized during fabrication of balance or hairspring, where hairspring comprises collet connected to detachable element
CH703051A2 (en) 2010-04-21 2011-10-31 Team Smartfish Gmbh Coil spring for a movement and method of manufacture.
WO2012007460A1 (en) 2010-07-16 2012-01-19 Eta Sa Manufacture Horlogère Suisse Method for adjusting the oscillation frequency, the inertia or the balance of a mobile component in a movement or in a balance and spring assembly of a timepiece
EP2423764A1 (en) 2010-08-31 2012-02-29 Rolex S.A. Device for measuring the torque of a hairspring
EP2455825A1 (en) 2010-11-18 2012-05-23 Nivarox-FAR S.A. Method for matching and adjusting a timepiece subassembly
WO2013034597A1 (en) 2011-09-05 2013-03-14 Nivarox-Far S.A. Method for adjusting the oscillation frequency of a balance-spring assembly
EP2590325A1 (en) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator
EP2597536A1 (en) 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring
EP2607974A1 (en) 2011-12-22 2013-06-26 The Swatch Group Research and Development Ltd. Method for manufacturing a resonator
CH705945A2 (en) 2011-12-22 2013-06-28 Swatch Group Res & Dev Ltd Method for manufacturing resonator e.g. hairspring resonator, for watch, involves modifying structure of zone of substrate to make zone more selective, and engraving zone to selectively manufacture resonator whose arm is formed with recess
EP2613206A1 (en) 2012-01-05 2013-07-10 Montres Breguet SA Hairspring with two spiral springs with improved isochronism
JP2013197856A (en) 2012-03-19 2013-09-30 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and wave clock
DE102013104248B3 (en) 2013-04-26 2014-03-27 Damasko Gmbh Method for manufacturing spiral spring for mechanical clock movements of mechanical clock, involves providing spiral spring with spring axis, where spiral spring has average height in direction parallel to its spring axis
WO2014053336A1 (en) 2012-10-04 2014-04-10 The Swatch Group Research And Development Ltd Illuminated hairspring
WO2014203086A1 (en) 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Oscillating system for mechanical clockwork mechanisms, spiral spring and method for production thereof
WO2015113973A1 (en) 2014-01-29 2015-08-06 Cartier Création Studio Sa Thermally compensated hairspring made from ceramic comprising silicon in the composition of same and method for adjusting same
WO2015132259A2 (en) 2014-03-03 2015-09-11 Richemont International Sa Method for pairing a balance wheel and a hairspring in a regulating member
JP2015179067A (en) 2014-02-26 2015-10-08 シチズンホールディングス株式会社 Manufacturing method of balance spring
CH709516A2 (en) 2014-03-31 2015-10-15 Breitling Montres Sa Manufacturing method and adjustment method of a spiral spring by means of a laser.
CH709628A2 (en) 2015-08-27 2015-10-30 Suisse Electronique Microtech thermocompensated spiral spring for a timepiece movement.
EP3056948A1 (en) 2015-02-17 2016-08-17 Master Dynamic Limited Silicon hairspring
EP3106929A1 (en) 2015-06-16 2016-12-21 Nivarox-FAR S.A. Part with improved welding surface

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1502464A (en) 1966-09-15 1967-11-18 Straumann Inst Ag Device for electrically measuring the moment of force of sprung hairsprings and the moment of inertia of balances
US3782169A (en) 1969-07-11 1974-01-01 Fab D Assortiments Reunies Regulating the frequency of an oscillatory system including a balance and a coiled spring
EP1213628A1 (en) 2000-12-07 2002-06-12 Eta SA Fabriques d'Ebauches Method for adjusting the oscillation frequence of a sprung balance for a mechanical timepiece
DE10127733A1 (en) 2001-06-07 2003-02-06 Silicium Energiesysteme E K Dr Spring elements in form of screw or spiral springs used in semiconductor technology in production of weighing systems, pressure switches or sensors are made from mono-crystalline silicon
EP1422436A1 (en) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
EP1655642A2 (en) 2003-02-06 2006-05-10 ETA SA Manufacture Horlogère Suisse Balance-spring resonator spiral and its method of fabrication
WO2005109639A2 (en) 2004-04-28 2005-11-17 Robert Bosch Gmbh Method for adjusting the frequency of a mems resonator
WO2007000271A1 (en) 2005-06-28 2007-01-04 Eta Sa Manufacture Horlogere Suisse Reinforced micromechanical part
EP1791039A1 (en) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Hairspring made from athermic glass for a timepiece movement and its method of manufacture
CH702708B1 (en) 2007-04-27 2011-08-31 Sigatec S A Balance-hairspring oscillator assembly for mechanical watch, has balance or hairspring comprising detachable element realized during fabrication of balance or hairspring, where hairspring comprises collet connected to detachable element
WO2009068091A1 (en) 2007-11-28 2009-06-04 Manufacture Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S.A. Mechanical oscillator having an optimized thermoelastic coefficient
EP2154583A1 (en) 2008-07-29 2010-02-17 Rolex Sa Hairspring for sprung balance
CH699780A2 (en) 2008-10-22 2010-04-30 Richemont Int Sa Self-compensating balance spring for mechanical spiral balance-wheel oscillator of e.g. timepiece, has silicon bar with exterior surface, and material in form of cover, where cover partially covers exterior surface
WO2011072960A1 (en) 2009-12-15 2011-06-23 The Swatch Group Research And Development Ltd Resonator thermally compensated for at least the first and second orders
CH703051A2 (en) 2010-04-21 2011-10-31 Team Smartfish Gmbh Coil spring for a movement and method of manufacture.
WO2012007460A1 (en) 2010-07-16 2012-01-19 Eta Sa Manufacture Horlogère Suisse Method for adjusting the oscillation frequency, the inertia or the balance of a mobile component in a movement or in a balance and spring assembly of a timepiece
EP2423764A1 (en) 2010-08-31 2012-02-29 Rolex S.A. Device for measuring the torque of a hairspring
EP2455825A1 (en) 2010-11-18 2012-05-23 Nivarox-FAR S.A. Method for matching and adjusting a timepiece subassembly
WO2013034597A1 (en) 2011-09-05 2013-03-14 Nivarox-Far S.A. Method for adjusting the oscillation frequency of a balance-spring assembly
EP2590325A1 (en) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator
WO2013064351A1 (en) 2011-11-04 2013-05-10 The Swatch Group Research And Development Ltd Ceramic thermally-compensated resonator
EP2597536A1 (en) 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring
EP2607974A1 (en) 2011-12-22 2013-06-26 The Swatch Group Research and Development Ltd. Method for manufacturing a resonator
CH705945A2 (en) 2011-12-22 2013-06-28 Swatch Group Res & Dev Ltd Method for manufacturing resonator e.g. hairspring resonator, for watch, involves modifying structure of zone of substrate to make zone more selective, and engraving zone to selectively manufacture resonator whose arm is formed with recess
EP2613206A1 (en) 2012-01-05 2013-07-10 Montres Breguet SA Hairspring with two spiral springs with improved isochronism
JP2013197856A (en) 2012-03-19 2013-09-30 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and wave clock
WO2014053336A1 (en) 2012-10-04 2014-04-10 The Swatch Group Research And Development Ltd Illuminated hairspring
DE102013104248B3 (en) 2013-04-26 2014-03-27 Damasko Gmbh Method for manufacturing spiral spring for mechanical clock movements of mechanical clock, involves providing spiral spring with spring axis, where spiral spring has average height in direction parallel to its spring axis
WO2014203086A1 (en) 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Oscillating system for mechanical clockwork mechanisms, spiral spring and method for production thereof
WO2015113973A1 (en) 2014-01-29 2015-08-06 Cartier Création Studio Sa Thermally compensated hairspring made from ceramic comprising silicon in the composition of same and method for adjusting same
JP2015179067A (en) 2014-02-26 2015-10-08 シチズンホールディングス株式会社 Manufacturing method of balance spring
WO2015132259A2 (en) 2014-03-03 2015-09-11 Richemont International Sa Method for pairing a balance wheel and a hairspring in a regulating member
CH709516A2 (en) 2014-03-31 2015-10-15 Breitling Montres Sa Manufacturing method and adjustment method of a spiral spring by means of a laser.
EP3056948A1 (en) 2015-02-17 2016-08-17 Master Dynamic Limited Silicon hairspring
EP3106929A1 (en) 2015-06-16 2016-12-21 Nivarox-FAR S.A. Part with improved welding surface
CH709628A2 (en) 2015-08-27 2015-10-30 Suisse Electronique Microtech thermocompensated spiral spring for a timepiece movement.

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ABDELMONEUM M A ET AL: "Location-Dependent Frequency Tuning of Vibrating Micromechanical Resonators Via Laser Trimming", FREQUENCY CONTROL SYMPOSIUM AND EXPOSITION, 2004. PROCEEDINGS OF THE 2004 IEEE, 23 August 2004 (2004-08-23), pages 272 - 279, XP010784624
ANTHONY G. RANDALL: "Spiraux de verre", HORLOGERIE ANCIENNE, 26 October 2011 (2011-10-26), pages 35 - 48, XP055654262
COURCIMAULT C G ET AL: "High-Q mechanical tuning of MEMS resonators using a metal deposition - annealing technique", TRANSDUCERS '05 : THE 13TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS, vol. 1, 5 June 2005 (2005-06-05), pages 875 - 878, XP010828057
FAN Z. ET AL: "An evolutionary approach for robust layout synthesis of MEMS", PROCEEDINGS, 2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, August 2005 (2005-08-01), pages 1186 - 1191, XP010837921
GAGNEBIN M. P-L: "Procédé de réglage de montres au point d'attache par sélection des balanciers et spiraux", BULLETIN ANNUEL DE LA SSC & LSRH. SOCIÉTÉ SUISSE DE CHRONOMÉTRIE, no. 41, 14 May 1966 (1966-05-14) - 15 May 1966 (1966-05-15), pages 321 - 323, XP055648555
GAVIN HO KAR-FAI: "DESIGN AND CHARACTERIZATION OF SILICON MICROMECHANICAL RESONATORS", DOCTORAL DISSERTATION, August 2008 (2008-08-01), Georgia Tech, XP055654518, Retrieved from the Internet <URL:https://smartech.gatech.edu/bitstream/handle/1853/29634/ho_gavin_k_200808_phd.pdf>
GREINER G.: "Le Spiromatic : appareil a compter les spiraux de balanciers", BULLETIN ANNUAL DE LA SSC & LSRH, no. 23, 29 May 1948 (1948-05-29) - 30 May 1948 (1948-05-30), pages 494 - 495, XP055654276
GROUPE DES FABRICANTS SUISSES DE SPIRAUX: "Le Spiral. Ses proprietes, ses qualites, sa manipulation", CLASSEUR TECHNIQUE A L'USAGE DU PRATICIEN, 1969, XP055654217
LÉOPOLD DEFOSSEZ: "THÉORIE GÉNÉRALE DE L'HORLOGERIE", 1950, article "Détermination du moment élastique C du spiral", pages: 32 - 40, XP055654282
M. A. JAQUEROD: "Un verre à coefficient thermoélastique nul", LABORATOIRE SUISSE DE RECHERCHES HORLOGÉRES, pages 246 - 248
MARTI F.: "Procédés modernes d'étalonnage des spiraux de montres {Comptage des spiraux)", BULLETIN ANNUEL DE LA SSC & LSRH, no. 22, 31 May 1947 (1947-05-31), pages 363 - 368, XP055654274
MICHEL VERMOT ET AL.: "TRAITÉ DE CONSTRUCTION HORLOGÈRE", 2011, ISBN: 978-2-88074-883-8, article "Presses polytechniques et universitaires romandes", pages: 178 - 179, XP055654205
OLIVIER MARESCHAL: "Étude d’un résonateur piézoélectrique à ondes acoustiques de volume en technologie film mince", THÈSE DOCTORAT, 22 March 2011 (2011-03-22), Paris Est, École doctorale MSTIC, XP055654294
REYMONDIN C-A ET AL: "THÉORIE D'HORLOGERIE", 1998, FET, article "L'appairage du balancier et du spiral", pages: 145 - 146, XP055654290
REYMONDIN C-A ET AL: "Théorie d'Horlogerie", 1998, FET, article "Le Spiral", XP055654565
RONG LIU ET AL: "MEMS Resonators That Are Robust to Process-Induced Feature Width Variations", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 11, no. 5, October 2002 (2002-10-01), pages 505 - 511, XP055654309
S. V. TARASOV: "TECHNOLOGY OF WATCH PRODUCTION", 1964, OLDBOURNE PRESS, article "Assembly of the Balance and Hairspring", pages: 396 - 397, XP055654280
YOAN CIVET: "Compensation de la fréquence des résonateurs MEMS pour des applications de référence temps", THÉSE DOCTORAT, 7 August 2006 (2006-08-07), Université de Grenoble, XP055654305, Retrieved from the Internet <URL:https://tel.archives-ouvertes.fr/tel-00838019v2/document>

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543795A1 (en) 2018-03-20 2019-09-25 Patek Philippe SA Genève Method for manufacturing silicon clock components

Also Published As

Publication number Publication date
JP2017111131A (en) 2017-06-22
JP6343651B2 (en) 2018-06-13
CN110376871A (en) 2019-10-25
US20170176940A1 (en) 2017-06-22
CN106896708B (en) 2019-10-15
CN106896708A (en) 2017-06-27
EP3181938A1 (en) 2017-06-21
US10324417B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
EP3181938B1 (en) Method for manufacturing a hairspring with a predetermined stiffness by removing material
EP3181939B1 (en) Method for manufacturing a hairspring with predetermined stiffness by adding material
EP3181940B1 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP2104006B1 (en) Single-body double spiral and method for manufacturing same
EP2154583B1 (en) Hairspring for sprung balance
EP1519250B1 (en) Thermally compensated balance-hairspring resonator
WO2015113973A1 (en) Thermally compensated hairspring made from ceramic comprising silicon in the composition of same and method for adjusting same
EP2337221A1 (en) Resonator thermocompensated at least to the first and second orders
EP3769160A1 (en) Method for manufacturing a silicon hairspring
EP3769161B1 (en) Method for manufacturing thermocompensated hairsprings with precise stiffness
EP3159746B1 (en) Heavily doped silicon hairspring for timepiece
CN111801627B (en) Method for manufacturing silicon-based clock spring
CH711960B1 (en) A method of manufacturing a hairspring of predetermined stiffness with removal of material
EP3285124B1 (en) Mechanical resonator for timepiece and method for manufacturing such a resonator
CH711961A2 (en) A method of manufacturing a hairspring of a predetermined stiffness by adding material.
EP3982205A1 (en) Method for manufacturing a timepiece spring with precise stiffness
CH716696A2 (en) Manufacturing process for watch balance springs.
EP3865954A1 (en) Method for manufacturing a device with flexible single-piece silicon sheets, for timepieces
CH717124A2 (en) A method of manufacturing a device with one-piece flexible silicon blades, in particular for watchmaking.
CH718081A2 (en) ELASTIC ELEMENT FOR A MICROMECHANICAL SYSTEM.
CH718082A2 (en) Method of manufacturing an elastic element for a micromechanical system.
EP4111264A1 (en) Silicon timepiece component for a timepiece
EP4030242A1 (en) Method for manufacturing timepiece hairsprings
CH705725A2 (en) Thermo-compensated ceramic resonator i.e. microelectromechanical system resonator, for use in timepiece, has body whose portion comprises electrically-conductive coatings, which change in Young&#39;s modulus as function of temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F16F 1/10 20060101AFI20180823BHEP

Ipc: G04B 17/06 20060101ALI20180823BHEP

Ipc: G04D 7/08 20060101ALI20180823BHEP

Ipc: G04D 7/10 20060101ALI20180823BHEP

INTG Intention to grant announced

Effective date: 20180917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015024806

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1098591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1098591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602015024806

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

26 Opposition filed

Opponent name: SIGATEC SA

Effective date: 20191120

Opponent name: RICHEMONT INTERNATIONAL SA

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APAY Date of receipt of notice of appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 9