EP2900539B1 - Circuit arrangement for revealing light signal errors - Google Patents

Circuit arrangement for revealing light signal errors Download PDF

Info

Publication number
EP2900539B1
EP2900539B1 EP13792893.3A EP13792893A EP2900539B1 EP 2900539 B1 EP2900539 B1 EP 2900539B1 EP 13792893 A EP13792893 A EP 13792893A EP 2900539 B1 EP2900539 B1 EP 2900539B1
Authority
EP
European Patent Office
Prior art keywords
voltage
signal generator
error
signal
signal transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13792893.3A
Other languages
German (de)
French (fr)
Other versions
EP2900539A2 (en
Inventor
Kay Köster
Rolf Eckl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2900539A2 publication Critical patent/EP2900539A2/en
Application granted granted Critical
Publication of EP2900539B1 publication Critical patent/EP2900539B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L29/00Safety means for rail/road crossing traffic
    • B61L29/24Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning
    • B61L29/243Transmission mechanism or acoustical signals for gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/20Safety arrangements for preventing or indicating malfunction of the device, e.g. by leakage current, by lightning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes [LEDs]

Definitions

  • the invention relates to a circuit arrangement for error disclosure in a light signal, in particular for railway safety systems, with an eventual error reversible shutdown electronic signal transmitter and designed for incandescent control unit for driving and monitoring the signal generator, the error disclosure includes a fault differentiation between line-induced interference voltage and error of the signal generator ,
  • the lines are dimensioned in such a way that when the signal leads are influenced, the influencing current flows through the incandescent lamp and this influencing current does not cause the incandescent lamp to light up.
  • Actuators designed for incandescent light signals typically evaluate a signal current to detect a fault or the proper functioning of the light signal.
  • This start sequence is also given in the case of a low-impedance fault in the signal generator. Due to the impedance of the signal line, the signal voltage breaks down when the electronics are switched on. In this case, a very high current flows, which is rated for the control part not as an error, but as a valid signal stream. The electronics, however, can not measure the current due to the low voltage and, where appropriate, starts a new start attempt.
  • the document EP 2 131 628 A2 shows a circuit arrangement according to the preamble of claim 1.
  • the invention is accordingly based on the object, the reliability of error differentiation between line-related To increase the influencing voltage and the low-impedance fault of the signal transmitter. In particular, independence from capacitive energy buffers is desirable.
  • the object is achieved in that the signal generator is connected to a resistor arrangement such that at high-impedance signal generator, the signal generator voltage is greater than the influencing voltage.
  • the resistor arrangement consists of consumers, which lower the influencing voltage.
  • the voltage breaks down immediately after starting on the signal generator.
  • the signal generator is thus high impedance.
  • the voltage rises again, wherein the signal generator voltage of the high-impedance signal generator is greater than the influencing voltage by the resistor arrangement.
  • the influencing voltage is measured after high-ohm switching, while the signal generator voltage is measured when the signal transmitter is defective.
  • the starting currents do not have to be evaluated and the capacitors required for this purpose as an energy source do not have to be dimensioned exactly and frequently checked. Only the dimensioning of the resistor arrangement must be determined in such a way that the signal generator only becomes so high-impedance that the influencing voltage remains smaller than the voltage at the signal generator.
  • the threshold for detecting the signal generator voltage is not reached, so that no new start attempt takes place and no error message occurs.
  • a voltage threshold is applied, when exceeded an error of the signal generator and when it falls below an influence exists.
  • the voltage threshold is positioned approximately midway between the signal generator voltage and the bias voltage to achieve the most reliable error assignment possible.
  • the resistor assembly is designed to be switched off, said shutdown is carried out according to claim 4 in particular in case of error disclosure.
  • the correct error transmission to the actuator is thereby independent of any repercussions of the resistor assembly and is carried out as in the known error disclosure described above by the high impedance switching of the signal generator and thus the reduction of the signal current.
  • FIG. 1 illustrates the connection of a signal generator 1 via a signal line 2, which is connected via a switch S1 to one of a, usually far from the signal transmitter 1 remote control part, which has a voltage source 3, with a signal voltage U1.
  • U2 is the signal generator voltage
  • U3 is a line-induced influencing voltage.
  • the signal generator 1, the signal generator voltage U2 and the impedance Z3 are assigned.
  • the signal voltage U1 is switched by the control unit via S1 and the signal line 2 with the impedance Z1 to the signal generator 1.
  • the influencing voltage U3 is permanently applied to the signal generator 1 via Z2.
  • a correspondingly simplified circuit diagram shows FIG. 2 ,
  • U2 of the signal generator voltage is much larger than U2 of the influencing voltage.
  • the signal generator 1 is connected to a resistor arrangement which reduces the influencing voltage.
  • FIGS. 4 to 6 each show 33 successively measured current / voltage value pairs. Current and voltage are not normalized.
  • the measured value 637 in the three diagrams indicates a voltage threshold value 4 for distinguishing the influencing voltage from the signal generator voltage in the high-impedance state of the signal transmitter.
  • the signal generator 1 operates error-free with low voltage, so that via the signal generator 1 in stable continuous operation, a voltage drop is present, which results from Z1 and Z3. Since the signal generator 1 is not high-impedance, there is a higher voltage drop across Z1 than in the high-resistance state of Z3. For this reason, the measured voltage is smaller than the threshold value 4. The distinction between the signal generator voltage and the influencing voltage only occurs with a high-impedance signal generator.
  • FIG. 5 shows a typical measurement history at low impedance error Z3.1 of the signal generator 1 and switched signal voltage U1. It can be seen that the voltage of the value pairs 1, 7, 8, 13, 14, 19 and 20 is very low, whereas the current is very high. The high current values in connection with the high voltage values of the value pairs 6, 12 and 18 exceed the threshold value 4, since the signal generator 1 at this value pairs 6, 12 and 18 has switched to the high-impedance state. Due to the high-impedance state in the aforementioned value pairs 6, 12 and 18 and the exceeding of the threshold value 4, the signal generator 1 is restarted. After multiple "false starts" in the value pairs 1, 7 and 19, the signal generator 1 switches at the value pairs greater than 22 high impedance, thus reporting its error to the control section. The signal generator voltage is greater than the threshold value 4.
  • FIG. 6 shows the switch-on behavior with influencing voltage (U3). If influenced, the signal generator 1 starts first and then switches to the high-impedance state. From the fifth value pair the signal generator 1 is high-impedance and the voltage remains below the threshold value 4, whereby the influencing voltage is detected. The switch S1 from the control is open in this state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Safety Devices In Control Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Fehleroffenbarung bei einem Lichtsignal, insbesondere für Eisenbahnsicherungsanlagen, mit einem im Fehlerfall sich reversibel abschaltenden elektronischen Signalgeber und einem für Glühlampen konzipierten Stellteil zur Ansteuerung und Überwachung des Signalgebers, wobei die Fehleroffenbarung eine Fehlerdifferenzierung zwischen leitungsbedingter Beeinflussungsspannung und Fehler des Signalgebers umfasst.The invention relates to a circuit arrangement for error disclosure in a light signal, in particular for railway safety systems, with an eventual error reversible shutdown electronic signal transmitter and designed for incandescent control unit for driving and monitoring the signal generator, the error disclosure includes a fault differentiation between line-induced interference voltage and error of the signal generator ,

Die nachfolgende Beschreibung bezieht sich im Wesentlichen auf Lichtsignale für Eisenbahnsicherungsanlagen, ohne dass die Erfindung auf diese Anwendung beschränkt ist. Vielmehr ist eine Anwendung beispielsweise auch bei anderen Verkehrssystemen oder im industriellen Bereich denkbar.The following description refers essentially to light signals for railway safety systems, without the invention being restricted to this application. Rather, an application is conceivable, for example, in other traffic systems or in the industrial sector.

Bei Glühlampen-Lichtsignalen werden die Leitungen derart dimensioniert, dass bei einer Beeinflussung der Signaladern der Beeinflussungsstrom durch die Glühlampe fließt und dieser Beeinflussungsstrom nicht zum Aufleuchten der Glühlampe führt. Stellteile, die für Glühlampen-Lichtsignale konzipiert sind, werten üblicherweise einen Signalstrom aus, um einen Fehler oder die ordnungsgemäße Funktion des Lichtsignals festzustellen.In the case of incandescent light signals, the lines are dimensioned in such a way that when the signal leads are influenced, the influencing current flows through the incandescent lamp and this influencing current does not cause the incandescent lamp to light up. Actuators designed for incandescent light signals typically evaluate a signal current to detect a fault or the proper functioning of the light signal.

Wenn Glühlampen-Signalgeber durch elektronische Signalgeber, beispielsweise für LED-Lichtquellen, ersetzt werden, führt der Beeinflussungsstrom dazu, dass die Elektronik arbeitet, aber wegen der geringen Energie der Beeinflussung ein Starten des Signalgebers nicht möglich ist. Die Signalspannung sinkt beim Startversuch und der sich reversibel abschaltende Signalgeber beginnt den nächsten Startversuch.When incandescent signalers are replaced by electronic signal transmitters, for example for LED light sources, the influencing current causes the electronics to operate, but due to the low energy level of the influence it is not possible to start the signal generator. The signal voltage drops during the start attempt and the reversible switch off signal generator starts the next attempt to start.

Dieser Startablauf ist auch bei einem niederohmigen Fehler im Signalgeber gegeben. Durch die Impedanz der Signalleitung bricht die Signalspannung beim Zuschalten der Elektronik zusammen. Dabei fließt ein sehr hoher Strom, der für das Stellteil nicht als Fehler, sondern als gültiger Signalstrom bewertet wird. Die Elektronik hingegen kann den Strom aufgrund der geringen Spannung nicht messen und beginnt gegebenenfalls einen neuen Startversuch.This start sequence is also given in the case of a low-impedance fault in the signal generator. Due to the impedance of the signal line, the signal voltage breaks down when the electronics are switched on. In this case, a very high current flows, which is rated for the control part not as an error, but as a valid signal stream. The electronics, however, can not measure the current due to the low voltage and, where appropriate, starts a new start attempt.

Durch das gleiche Startverhalten bei fehlerfreiem Signalgeber mit Beeinflussung und Signalgeber mit niederohmigem Fehler kann die Fehlerursache nicht erkannt werden. Folglich muss dafür gesorgt werden, dass der elektronische Signalgeber zwischen Signalgeberspannung und Beeinflussungsspannung unterscheiden kann, um nicht nur das Vorliegen eines Fehlers, sondern auch die Fehlerursache zu offenbaren.Due to the same starting behavior with error-free signal transmitter with influence and signal generator with low-impedance error, the cause of the error can not be detected. Consequently, it must be ensured that the electronic signal transmitter can distinguish between signal generator voltage and influencing voltage in order to reveal not only the presence of an error but also the cause of the error.

Bisher wurde dieses Problem dadurch gelöst, dass bei einem zu hohen Stromfluss das Stellteil und bei einem nur gering erhöhten Stromfluss der Signalgeber den Fehler erkennt und an das Stellteil übermittelt. Diese Fehleroffenbarung ist jedoch bei höheren Impedanzen der Signalleitung nicht immer sichergestellt, da eine Lücke zwischen der Stromflusserkennung durch das Stellteil und der Stromflusserkennung durch den Signalgeber besteht. Diese Lücke der Stromflusserkennung wird dadurch geschlossen, dass der Signalgeber den Strom sofort nach dem Start auswertet, das heißt bevor die Signalspannung zusammenbricht. Dazu sind signalgeberinterne Kondensatoren erforderlich, die von dem Stellteil aufgeladen werden und den Signalgeber ausreichend lange mit Strom versorgen. Nach dem Start der Elektronik des Signalgebers mit niederohmigem Fehler können somit hohe Ströme gemessen und zur Fehlererkennung genutzt werden. Voraussetzung ist, dass die Kondensatoren genügend lange ihre Energie speichern können. Die Funktion der Kondensatoren wird jedoch üblicherweise nicht getestet.So far, this problem has been solved in that at an excessively high current flow, the control element and at only a slightly increased current flow of the signal generator detects the error and transmitted to the control section. However, this error disclosure is not always ensured at higher impedances of the signal line, since there is a gap between the current flow detection by the control part and the current flow detection by the signal generator. This gap in the current flow detection is closed by the fact that the signal generator evaluates the current immediately after the start, that is, before the signal voltage collapses. For this purpose, signal generator-internal capacitors are required, which are charged by the control unit and provide the signal generator for a sufficient amount of power. After the start of the electronics of the signal transmitter with low-impedance error, high currents can thus be measured and used for error detection. The prerequisite is that the capacitors can store their energy for a sufficiently long time. However, the function of the capacitors is usually not tested.

Das Dokument EP 2 131 628 A2 zeigt eine Schaltungsanordnung nach dem Oberbegriff des Anspruchs 1.The document EP 2 131 628 A2 shows a circuit arrangement according to the preamble of claim 1.

Der Erfindung liegt demgemäß die Aufgabe zugrunde, die Zuverlässigkeit der Fehlerdifferenzierung zwischen leitungsbedingter Beeinflussungsspannung und niederohmigem Fehler des Signalgebers zu erhöhen. Dabei ist insbesondere Unabhängigkeit von kapazitiven Energiezwischenspeichern anzustreben.The invention is accordingly based on the object, the reliability of error differentiation between line-related To increase the influencing voltage and the low-impedance fault of the signal transmitter. In particular, independence from capacitive energy buffers is desirable.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Signalgeber mit einer Widerstandsanordnung derart beschaltet ist, dass bei hochohmigem Signalgeber die Signalgeberspannung größer ist als die Beeinflussungsspannung. Durch die Widerstandsanordnung werden die Signalgeberspannung und die Beeinflussungsspannung quasi auseinandergezogen und dadurch voneinander unterscheidbar. Die Widerstandsanordnung besteht aus Verbrauchern, welche die Beeinflussungsspannung absenken. Im Fehlerfall bricht die Spannung nach dem Start am Signalgeber sofort zusammen. Der Signalgeber wird somit hochohmig. Danach steigt die Spannung wieder an, wobei durch die Widerstandsanordnung die Signalgeberspannung des hochohmigen Signalgebers größer ist als die Beeinflussungsspannung. Bei fehlerfreiem Signalgeber und Beeinflussungsspannung wird nach dem Hochohmigschalten die Beeinflussungsspannung gemessen, während bei defektem Signalgeber die Signalgeberspannung gemessen wird.According to the invention the object is achieved in that the signal generator is connected to a resistor arrangement such that at high-impedance signal generator, the signal generator voltage is greater than the influencing voltage. As a result of the resistor arrangement, the signal generator voltage and the influencing voltage are virtually pulled apart and thus distinguishable from one another. The resistor arrangement consists of consumers, which lower the influencing voltage. In the event of a fault, the voltage breaks down immediately after starting on the signal generator. The signal generator is thus high impedance. Thereafter, the voltage rises again, wherein the signal generator voltage of the high-impedance signal generator is greater than the influencing voltage by the resistor arrangement. With fault-free signal transmitter and influencing voltage, the influencing voltage is measured after high-ohm switching, while the signal generator voltage is measured when the signal transmitter is defective.

Vorteilhaft ist vor allem, dass die Startströme nicht ausgewertet werden müssen und die dazu als Energiequelle erforderlichen Kondensatoren nicht genau dimensioniert und häufig überprüft werden müssen. Lediglich die Dimensionierung der Widerstandsanordnung muss derart festgelegt werden, dass der Signalgeber nur so hochohmig wird, dass die Beeinflussungsspannung kleiner als die Spannung am Signalgeber bleibt.It is advantageous, above all, that the starting currents do not have to be evaluated and the capacitors required for this purpose as an energy source do not have to be dimensioned exactly and frequently checked. Only the dimensioning of the resistor arrangement must be determined in such a way that the signal generator only becomes so high-impedance that the influencing voltage remains smaller than the voltage at the signal generator.

Bei erkannter Signalgeberspannung und mehrmaligen fehlgeschlagenen Startversuchen erfolgt eine Fehlermeldung an das Stellteil durch das Hochohmigschalten des Signalgebers, welches aufgrund des zu geringen Signalstromes auf einen Signalgeberfehler, das heißt auf einen Fehler der Baugruppe oder eine defekte hochohmige Klemmstelle im Signalkabelbereich, schließt.When detected signal generator voltage and repeated failed attempts to start an error message to the control part by the high impedance switching of the signal generator, which due to the low signal current to a signal generator error, ie a fault of the module or a defective high-impedance terminal point in the signal cable area closes.

Bei Beeinflussungsspannung wird die Schwelle zum Erkennen der Signalgeberspannung nicht erreicht, so dass kein neuer Startversuch stattfindet und auch keine Fehlermeldung erfolgt.At influencing voltage, the threshold for detecting the signal generator voltage is not reached, so that no new start attempt takes place and no error message occurs.

Gemäß Anspruch 2 ist vorgesehen, dass zur Fehlerdifferenzierung zwischen der Signalgeberspannung und der Beeinflussungsspannung ein Spannungs-Schwellwert gelegt wird, bei dessen Überschreitung ein Fehler des Signalgebers und bei dessen Unterschreitung eine Beeinflussung vorliegt. Vorzugsweise wird der Spannungs-Schwellwert ungefähr in der Mitte zwischen der Signalgeberspannung und der Beeinflussungsspannung positioniert, um eine möglichst sichere Fehlerzuordnung zu erreichen.According to claim 2, it is provided that the error differentiation between the signal generator voltage and the influencing voltage, a voltage threshold is applied, when exceeded an error of the signal generator and when it falls below an influence exists. Preferably, the voltage threshold is positioned approximately midway between the signal generator voltage and the bias voltage to achieve the most reliable error assignment possible.

Bei einer vorteilhaften Weiterbildung gemäß Anspruch 3 ist die Widerstandsanordnung abschaltbar ausgebildet, wobei diese Abschaltung gemäß Anspruch 4 insbesondere bei Fehleroffenbarung erfolgt. Die korrekte Fehlerübertragung an das Stellteil wird dadurch von eventuellen Rückwirkungen der Widerstandsanordnung unabhängig und erfolgt wie bei der oben beschriebenen bekannten Fehleroffenbarung durch das Hochohmigschalten des Signalgebers und damit der Absenkung des Signalstromes.In an advantageous embodiment according to claim 3, the resistor assembly is designed to be switched off, said shutdown is carried out according to claim 4 in particular in case of error disclosure. The correct error transmission to the actuator is thereby independent of any repercussions of the resistor assembly and is carried out as in the known error disclosure described above by the high impedance switching of the signal generator and thus the reduction of the signal current.

Die Erfindung wird nachfolgend anhand figürlicher Darstellungen näher erläutert. Es zeigen:

Figur 1
das Grundprinzip einer Signalanschaltung,
Figur 2
eine vereinfachte Darstellung des Grundprinzips gemäß Figur 1,
Figur 3
eine Signalanschaltung mit fehlerhaftem Signalgeber in der Darstellungsweise gemäß Figur 2,
Figur 4
ein Diagramm bezüglich des Einschaltverhaltens eines fehlerfreien Signalgebers,
Figur 5
ein Diagramm des Einschaltverhaltens mit fehlerhaftem Signalgeber und
Figur 6
ein Diagramm des Einschaltverhaltens bei Beeinflussung.
The invention will be explained in more detail with reference to figurative representations. Show it:
FIG. 1
the basic principle of a signal connection,
FIG. 2
a simplified representation of the basic principle according to FIG. 1 .
FIG. 3
a signal connection with faulty signal generator in the representation according to FIG. 2 .
FIG. 4
a diagram relating to the turn-on behavior of a fault-free signal generator,
FIG. 5
a diagram of the switch-on with faulty signal generator and
FIG. 6
a diagram of the switch-on behavior under influence.

Figur 1 veranschaulicht die Anschaltung eines Signalgebers 1 über eine Signalleitung 2, die über einen Schalter S1 mit einer von einem, üblicherweise weit vom Signalgeber 1 entfernten Stellteil, welches eine Spannungsquelle 3 aufweist, mit einer Signalspannung U1 verbunden wird. Dabei sind U2 die Signalgeberspannung und U3 eine leitungsbedingte Beeinflussungsspannung. Dem Signalgeber 1 sind die Signalgeberspannung U2 und die Impedanz Z3 zugeordnet. Die Signalspannung U1 wird vom Stellteil über S1 und der Signalleitung 2 mit der Impedanz Z1 an den Signalgeber 1 geschaltet. Die Beeinflussungsspannung U3 liegt über Z2 dauerhaft am Signalgeber 1 an. FIG. 1 illustrates the connection of a signal generator 1 via a signal line 2, which is connected via a switch S1 to one of a, usually far from the signal transmitter 1 remote control part, which has a voltage source 3, with a signal voltage U1. In this case, U2 is the signal generator voltage and U3 is a line-induced influencing voltage. The signal generator 1, the signal generator voltage U2 and the impedance Z3 are assigned. The signal voltage U1 is switched by the control unit via S1 and the signal line 2 with the impedance Z1 to the signal generator 1. The influencing voltage U3 is permanently applied to the signal generator 1 via Z2.

Eine entsprechend vereinfachte Schaltungsdarstellung zeigt Figur 2. Die Impedanz Z1 der Signalspannung U1 ist viel kleiner als die Impedanz Z2 der Beeinflussungsspannung U3. Damit ist U 2 = U 1 Z 3 Z 1 + Z 3

Figure imgb0001
für die Signalgeberspannung und U 2 = U 3 Z 3 Z 2 + Z 3
Figure imgb0002
für die Beeinflussungsspannung.A correspondingly simplified circuit diagram shows FIG. 2 , The impedance Z1 of the signal voltage U1 is much smaller than the impedance Z2 of the influencing voltage U3. This is U 2 = U 1 Z 3 Z 1 + Z 3
Figure imgb0001
for the signal generator voltage and U 2 = U 3 Z 3 Z 2 + Z 3
Figure imgb0002
for the influencing voltage.

U2 der Signalgeberspannung ist viel größer als U2 der Beeinflussungsspannung.U2 of the signal generator voltage is much larger than U2 of the influencing voltage.

In Figur 3 ist zusätzlich ein Signalgeberfehler als Z3.1 dargestellt. Durch diese Zusatzimpedanz Z3.1 des Signalgebers 1 fällt U2 der Signalgeberspannung auf den Wert von U2 der Beeinflussungsspannung. Damit ist U 2 = U 1 Z 3 + Z 3.1 Z 1 + Z 3 + Z 3.1 U 3 Z 3 Z 2 + Z 3

Figure imgb0003
In FIG. 3 In addition, a signal generator error is displayed as Z3.1. As a result of this additional impedance Z3.1 of the signal generator 1, U2 of the signal generator voltage drops to the value of U2 of the influencing voltage. This is U 2 = U 1 Z 3 + Z 3.1 Z 1 + Z 3 + Z 3.1 U 3 Z 3 Z 2 + Z 3
Figure imgb0003

Folglich kann bei Messung der Spannung U2 über den nicht hochohmig geschalteten Signalgeber 1 nicht zwischen Beeinflussungsspannung und Signalgeberspannung unterschieden werden.Consequently, when measuring the voltage U2, it is not possible to distinguish between the influencing voltage and the signal generator voltage via the signal transmitter 1, which is not connected in a high-impedance manner.

Um Unterscheidbarkeit herzustellen, ist der Signalgeber 1 erfindungsgemäß mit einer Widerstandsanordnung beschaltet, die die Beeinflussungsspannung verringert.In order to produce distinctness, the signal generator 1 according to the invention is connected to a resistor arrangement which reduces the influencing voltage.

Die Diagramme der Figuren 4 bis 6 zeigen jeweils 33 nacheinander gemessene Strom/Spannung-Wertepaare. Strom und Spannung sind nicht normiert. Der Messwert 637 in den drei Diagrammen kennzeichnet einen Spannungsschwellwert 4 zur Unterscheidung zwischen Beeinflussungsspannung und Signalgeberspannung im hochohmigen Zustand des Signalgebers.The diagrams of FIGS. 4 to 6 each show 33 successively measured current / voltage value pairs. Current and voltage are not normalized. The measured value 637 in the three diagrams indicates a voltage threshold value 4 for distinguishing the influencing voltage from the signal generator voltage in the high-impedance state of the signal transmitter.

In Figur 4 arbeitet der Signalgeber 1 fehlerfrei mit geringer Spannung, so dass über den Signalgeber 1 im stabilen Dauerbetrieb ein Spannungsabfall vorhanden ist, welcher sich durch Z1 und Z3 ergibt. Da der Signalgeber 1 nicht hochohmig ist, ist ein höherer Spannungsabfall über Z1 als im hochohmigen Zustand von Z3 vorhanden. Aus diesem Grund ist die gemessene Spannung kleiner als der Schwellwert 4. Die Unterscheidung zwischen Signalgeberspannung und Beeinflussungsspannung erfolgt nur bei hochohmigem Signalgeber.In FIG. 4 the signal generator 1 operates error-free with low voltage, so that via the signal generator 1 in stable continuous operation, a voltage drop is present, which results from Z1 and Z3. Since the signal generator 1 is not high-impedance, there is a higher voltage drop across Z1 than in the high-resistance state of Z3. For this reason, the measured voltage is smaller than the threshold value 4. The distinction between the signal generator voltage and the influencing voltage only occurs with a high-impedance signal generator.

In den Figuren 5 und 6 sind verschiedene Fehlerzustände dargestellt, wobei die Strom/Spannung-Wertepaare mit Spannungswert 0 eine zusammengebrochene Signalgeberspannung anzeigen, so dass auch die Stromwerte dieser Wertepaare ungültig sind.In the FIGS. 5 and 6 different error states are shown, wherein the current / voltage value pairs with voltage value 0 indicate a collapsed signal generator voltage, so that the current values of these value pairs are invalid.

Figur 5 zeigt einen typischen Messwertverlauf bei niederohmigem Fehler Z3.1 des Signalgebers 1 und zugeschalteter Signalspannung U1. Es ist ersichtlich, dass die Spannung der Wertepaare 1, 7, 8, 13, 14, 19 und 20 sehr gering ist, wohingegen der Strom sehr hoch ist. Die hohen Stromwerte im Zusammenhang mit den hohen Spannungswerten der Wertepaare 6, 12 und 18 übersteigen den Schwellwert 4, da sich der Signalgeber 1 bei diesen Wertepaaren 6, 12 und 18 in den hochohmigen Zustand geschaltet hat. Durch den hochohmigen Zustand bei den genannten Wertepaaren 6, 12 und 18 und der Überschreitung des Schwellwertes 4 wird der Signalgeber 1 neu gestartet. Nach mehrmaligen "Fehlstarts" bei den Wertepaaren 1, 7 und 19 schaltet sich der Signalgeber 1 bei den Wertepaaren größer 22 hochohmig und meldet so seinen Fehler an das Stellteil. Dabei ist die Signalgeberspannung größer als der Schwellwert 4. FIG. 5 shows a typical measurement history at low impedance error Z3.1 of the signal generator 1 and switched signal voltage U1. It can be seen that the voltage of the value pairs 1, 7, 8, 13, 14, 19 and 20 is very low, whereas the current is very high. The high current values in connection with the high voltage values of the value pairs 6, 12 and 18 exceed the threshold value 4, since the signal generator 1 at this value pairs 6, 12 and 18 has switched to the high-impedance state. Due to the high-impedance state in the aforementioned value pairs 6, 12 and 18 and the exceeding of the threshold value 4, the signal generator 1 is restarted. After multiple "false starts" in the value pairs 1, 7 and 19, the signal generator 1 switches at the value pairs greater than 22 high impedance, thus reporting its error to the control section. The signal generator voltage is greater than the threshold value 4.

Figur 6 zeigt das Einschaltverhalten bei Beeinflussungsspannung (U3). Bei Beeinflussung startet der Signalgeber 1 zunächst und schaltet dann in den hochohmigen Zustand. Ab dem fünften Wertepaar ist der Signalgeber 1 hochohmig und die Spannung bleibt unterhalb des Schwellwertes 4, wodurch die Beeinflussungsspannung erkannt wird. Der Schalter S1 vom Stellteil ist in diesem Zustand geöffnet. FIG. 6 shows the switch-on behavior with influencing voltage (U3). If influenced, the signal generator 1 starts first and then switches to the high-impedance state. From the fifth value pair the signal generator 1 is high-impedance and the voltage remains below the threshold value 4, whereby the influencing voltage is detected. The switch S1 from the control is open in this state.

Schließt der Schalter S1 vom Stellteil, so überschreitet die Spannung den Schwellwert 4 und der Signalgeber 1 startet wie in Figur 4.If the switch S1 closes from the control, the voltage exceeds the threshold 4 and the signal generator 1 starts as in FIG. 4 ,

Claims (4)

  1. Circuit arrangement for revealing errors in the case of a light signal, particularly for railway safety installations, having an electronic signal transmitter (1), which disconnects itself reversibly in the event of an error, and an actuating part, designed for incandescent lamps, for actuating and monitoring the signal transmitter (1), wherein the revelation of errors comprises error differentiation between line-conditioned influencing voltage and errors in the signal transmitter (1),
    characterized in that
    the signal transmitter (1) has a connected resistor arrangement such that a high-impedance signal transmitter (1) prompts the signal transmitter voltage to be higher than the influencing voltage.
  2. Circuit arrangement according to Claim 1,
    characterized in that
    a voltage threshold value (4) is provided for error differentiation between the signal transmitter voltage and the influencing voltage, with a rise above said voltage threshold value involving the presence of an error in the signal transmitter (1) and a drop below said voltage threshold value involving the presence of an influencing voltage.
  3. Circuit arrangement according to either of the preceding claims,
    characterized in that
    the resistor arrangement is in disconnectable form.
  4. Circuit arrangement according to Claim 3,
    characterized in that
    disconnection of the resistor arrangement is effected when errors are revealed.
EP13792893.3A 2012-11-30 2013-11-14 Circuit arrangement for revealing light signal errors Active EP2900539B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012221972.2A DE102012221972A1 (en) 2012-11-30 2012-11-30 Circuit arrangement for error disclosure in a light signal
PCT/EP2013/073792 WO2014082860A2 (en) 2012-11-30 2013-11-14 Circuit arrangement for revealing light signal errors

Publications (2)

Publication Number Publication Date
EP2900539A2 EP2900539A2 (en) 2015-08-05
EP2900539B1 true EP2900539B1 (en) 2016-08-24

Family

ID=49622808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13792893.3A Active EP2900539B1 (en) 2012-11-30 2013-11-14 Circuit arrangement for revealing light signal errors

Country Status (8)

Country Link
US (1) US9656681B2 (en)
EP (1) EP2900539B1 (en)
CN (1) CN104781130B (en)
AU (1) AU2013351412B2 (en)
DE (1) DE102012221972A1 (en)
ES (1) ES2604823T3 (en)
PL (1) PL2900539T3 (en)
WO (1) WO2014082860A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221972A1 (en) * 2012-11-30 2014-06-18 Siemens Aktiengesellschaft Circuit arrangement for error disclosure in a light signal

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU779141A1 (en) * 1978-07-19 1980-11-15 Ленинградский Ордена Ленина Институт Инженеров Железнодорожного Транспорта Им. Академика В.Н.Образцова System of monitoring the state of electric central signalling and interlocking track devices
DD270044A1 (en) * 1988-03-14 1989-07-19 Werk Signal Sicherungstech Veb CIRCUIT FOR THE MONITORING OF ELECTRICAL CONSUMERS
DE10221573B4 (en) 2002-05-08 2004-03-18 Siemens Ag Circuit arrangement for operating a light sign
SE0401128D0 (en) * 2004-04-29 2004-04-29 Subsee Ab Measuring instrument
DE102008027632A1 (en) 2008-06-05 2009-12-17 Siemens Aktiengesellschaft signaler
US20100258682A1 (en) * 2009-04-14 2010-10-14 Jeffrey Michael Fries System and method for interfacing wayside signal device with vehicle control system
US8515697B2 (en) * 2010-05-06 2013-08-20 Ansaldo Sts Usa, Inc. Apparatus and method for vital signal state detection in overlay rail signal monitoring
DE102010026012A1 (en) * 2010-06-29 2011-12-29 Siemens Aktiengesellschaft LED light signal
DE102010036514A1 (en) * 2010-07-20 2012-01-26 Sma Solar Technology Ag Device and method for monitoring a photovoltaic system
EP2463174B1 (en) * 2010-12-09 2013-10-30 Siemens Schweiz AG Method and device for replacing a bulb of a light signal
US8581499B2 (en) * 2011-05-16 2013-11-12 General Electric Company Method and system for determining signal state
US8668170B2 (en) * 2011-06-27 2014-03-11 Thales Canada Inc. Railway signaling system with redundant controllers
DE102011080040A1 (en) * 2011-07-28 2013-01-31 Siemens Aktiengesellschaft signaler
DE102012221972A1 (en) * 2012-11-30 2014-06-18 Siemens Aktiengesellschaft Circuit arrangement for error disclosure in a light signal

Also Published As

Publication number Publication date
EP2900539A2 (en) 2015-08-05
US9656681B2 (en) 2017-05-23
PL2900539T3 (en) 2017-02-28
AU2013351412A1 (en) 2015-05-14
CN104781130B (en) 2017-03-08
WO2014082860A2 (en) 2014-06-05
AU2013351412B2 (en) 2018-06-14
US20150298713A1 (en) 2015-10-22
DE102012221972A1 (en) 2014-06-18
WO2014082860A3 (en) 2015-04-16
CN104781130A (en) 2015-07-15
ES2604823T3 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
EP3469620B1 (en) Current distributor and protection system for a vehicle
EP2181029B1 (en) Monitoring apparatus for monitoring a connection of a connection component
EP2357484B1 (en) Method for diagnosing an electrical connection and output assembly
WO2014057017A1 (en) Line network, in particular an on-board dc electrical system for a motor vehicle, and method for monitoring a line network for the occurrence of an arc
EP2277154B1 (en) Monitoring device for functionally monitoring a reporting system reporting system and method for monitoring
EP2272146B1 (en) Protection device
DE10347979A1 (en) Diagnosable switch arrangement has potential divider and state of switch arrangement can be determined by measuring voltage between potential divider node and earth potential of potential divider
EP2434358B1 (en) System and method for operating a redundant system
EP2900539B1 (en) Circuit arrangement for revealing light signal errors
EP3745596B1 (en) Digital input switching for receiving digital input signals of at least one signal provider
EP1594021B1 (en) Circuit device and method for testing relay switching contacts of a digital output circuit
DE2936761A1 (en) CONTROL SYSTEM FOR MONITORING ROTOR BLADES UNDER GAS PRESSURE
EP2169645B1 (en) Test of reporting lines on a danger reporting assembly
EP2127992B1 (en) Circuit for monitoring the end position switches of a four wire three phase drive for points
EP1197936B2 (en) Alarm system
EP2511719A1 (en) Method for determining a malfunction of a potentiometer
EP1538453A1 (en) Apparatus and method for fault diagnosis on digital outputs of a control element
WO2000038395A1 (en) Method for detecting errors occurring in at least one electric unit, especially a switching oriented unit
DE102021111734A1 (en) Diagnosable circuit arrangement and method for diagnosing a circuit arrangement
DE2456073C3 (en) Protection arrangement for three-phase current transmission systems
EP0125404B1 (en) Circuit for monitoring a fault of a load which is switched by a controlled switch
DE19632590C1 (en) Current loop sensor device e.g. for entrance security pressure-mat
DE10244534B4 (en) Circuit arrangement and method for detecting error situations in coupled systems
DE102022213021B3 (en) Monitoring a switchgear
EP0503122B1 (en) Arrangement for commuting primary leads during faults

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150428

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013004228

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0005180000

Ipc: B61L0029240000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 5/18 20060101ALI20160211BHEP

Ipc: B61L 29/24 20060101AFI20160211BHEP

Ipc: B61L 1/20 20060101ALI20160211BHEP

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20160315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 822756

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004228

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2604823

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004228

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170526

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004228

Country of ref document: DE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190207 AND 20190213

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 822756

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS MOBILITY GMBH, DE

Effective date: 20190506

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: SIEMENS MOBILITY GMBH, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS MOBILITY GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20190829

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SIEMENS MOBILITY GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200224

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS MOBILITY GMBH

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201202

Year of fee payment: 8

Ref country code: NO

Payment date: 20201105

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20201106

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211103

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20211118

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201115

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 11

Ref country code: CH

Payment date: 20240207

Year of fee payment: 11