EP2786004B1 - Method and apparatus for the continous estimation of air-fuel ratio in an engine's cylinder - Google Patents

Method and apparatus for the continous estimation of air-fuel ratio in an engine's cylinder Download PDF

Info

Publication number
EP2786004B1
EP2786004B1 EP12794388.4A EP12794388A EP2786004B1 EP 2786004 B1 EP2786004 B1 EP 2786004B1 EP 12794388 A EP12794388 A EP 12794388A EP 2786004 B1 EP2786004 B1 EP 2786004B1
Authority
EP
European Patent Office
Prior art keywords
richness
sensor
signal
model
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12794388.4A
Other languages
German (de)
French (fr)
Other versions
EP2786004A1 (en
Inventor
Annabelle Cornette
Olivier Hayat
Alexandre MAZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP2786004A1 publication Critical patent/EP2786004A1/en
Application granted granted Critical
Publication of EP2786004B1 publication Critical patent/EP2786004B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1417Kalman filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine

Definitions

  • the present invention relates to a method and a device for continuously estimating the cylinder richness of an engine. It concerns in particular, but not exclusively, a method and a device for continuously estimating the cylinder richness of a diesel engine, by means of a measurement of richness achieved by a sensor such as a probe.
  • the information relating to the richness of an engine can also be estimated by performing a calculation using the parameters of the admission air flow rate (measured or estimated) and the injected fuel flow rate (estimated).
  • the result obtained has the advantage of having been calculated taking into account the dynamics associated with said parameters, as well as the slowness of establishing the air loop relative to that of the fuel circuit.
  • the estimation of the richness of an engine can also be achieved by mapping this estimate according to parameters characterizing the operating point which can be typically the speed and torque.
  • This device makes it possible to estimate the cylinder-by-cylinder richness, by detecting in the exhaust puffs the relative impact of the different combustions on the overall wealth, the measurement of which is carried out by means of a probe disposed at the level of the exhaust manifold. .
  • the estimation of the richness per cylinder is weighted by previously identified coefficients in a table.
  • the present invention therefore more particularly aims to solve these problems by proposing a method for continuously estimating the cylinder richness of an engine, with great accuracy and good dynamics, the implementation of the method can be carried out advantageously on the basis of stabilized operating points but also in transient.
  • the invention relates to a method for continuously estimating the cylinder richness of an internal combustion engine according to claim 1.
  • the device according to the invention makes it possible to carry out a continuous estimation of the cylinder richness of an engine by using a calculated model of richness, and by recalibrating the result of this calculation with respect to the dispersions and possible drifts in order to obtain a continuous correction of the calculated value of wealth.
  • the combined use of these two drift identifiers makes it possible to take into account, without any limit, the nonuniformity of the wealth drift over the entire motor field, as well as its engine motor dispersion.
  • the invention also relates to a device for continuously estimating the cylinder richness of an internal combustion engine, characterized in that it comprises a drift identifier and a Kalman filter shaped to implement the one or more processes according to the invention.
  • the figure 1 is a schematic representation of the main elements used in the implementation of an alternative embodiment of the method according to the invention, with a highlighting of the relations existing between them.
  • the figure 2 is a schematic representation, in the form of curves, of the various richness and wealth drift signals produced during the implementation of the method according to the invention.
  • the simple model of wealth ⁇ _Calc is calculated by a calculator 1 by means of the fuel charge to inject qlnj in a cylinder and the measurement of the air intake rate Qair in the same cylinder.
  • the fuel quantity to be injected qlnj is equivalent to the estimated value of the injected fuel flow, the air intake flow rate Qair being modeled or measured using a flowmeter.
  • the constitutive signal of the wealth model corresponds to the quotient of the injected fuel flow qlnj (or fuel_injected) on the intake air flow Qair or (Qair_cylindre), multiplied by the stoichiometric ratio y.
  • the signal thus obtained has the particularity of being at the right dynamic, but potentially derived.
  • a measured signal of richness is defined.
  • This signal makes it possible to produce in transitory information on the wealth that is delayed and attenuated; on the other hand, in stabilized, the information carried by the signal is considered to be precise.
  • the richness probe 2 may be of the NOx type but it may also, for example, be of the lambda type.
  • the constitutive signal of the richness model and the measured signal of richness are carried as input of a drift identifier 3 which identifies and quantifies the possible dispersions and drifts of wealth on stabilized operating points.
  • the drift identifier 3 thus allows the realization of a possible learning drift resulting in the establishment of a mapping of these wealth drifts in the engine field.
  • the drift identifier 3 recalculates the calculated model of richness with respect to any dispersions and drifts using the measured signal of richness which has the advantage of being precise in stabilized regimes.
  • the value of the calculated richness carried by the signal constituting the wealth model is corrected continuously by said drift learning carried out by the drift identifier 3, these drifts being preferentially recorded in a map and then read without discontinuity with interpolation.
  • the value of richness obtained at the output of the drift identifier 3 may be only incompletely recalibrated due to example of incomplete learning, or approximations inherent to the storage method.
  • the correction of the calculated wealth ⁇ _Calc can be advantageously completed in order to refine the final value of said richness of the cylinder, by means in particular of a Kalman filter 4 which makes it possible to obtain a complementary dynamic identification of the wealth drift.
  • Each of these signals is given relative confidence by introducing process noises w and measurement v.
  • the Kalman filter therefore creates a signal 'filtered computed wealth' O 2 f or O 2 ff (and delayed, but upstream of the state equation). This creates the 'a priori' state vector of the Kalman structure (see the equation of the state vector below).
  • the second step of processing the Kalman filter which is performed a posteriori, consists in comparing this virtual signal with the signal actually picked up and analyzed by the wealth probe 2. The difference between these two signals defines the instantaneous wealth drift ⁇ O 2 .
  • the behavior (generally characterized by the delay and attenuation) of the probe 2 can not be perfectly known. he It is therefore necessary to limit the trust in this drift identification so as not to make it too random in the event of errors (even transient).
  • this state vector could be achieved by using a model of probe behavior with greater variability, or by not showing the said model, the latter being then defined upstream.
  • the Kalman gain resulting from these calibration compromises is unique and pre-calculated, for the sake of simplicity of implementation.
  • the Kalman gain can be mapped by distinct zones of the motor field.
  • stabilized point drift learning makes it possible to accelerate the work of the Kalman filter, to make it more robust, and even to ensure that the result provided is accurate.
  • the combination of the Kalman filter and the stabilized learning technique ensures a high degree of adaptability. Indeed, the wealth drift, which depends first and foremost on component drifts such as the flowmeter and the injectors, is not expected to be uniform in the engine field, but variable from one point to another in transient.
  • a Kalman filter alone which by definition takes a significant amount of time to integrate a drift and converge there, would see its dynamic of identification and delivery. up to date conflict with the dynamics of the operating point and its associated wealth drift. The filter would thus keep - at least partially - a specific drift to the previous point whereas this one would already have radically changed on the following point. Failing to immediately integrate the new drift, that retained and applied would possibly be shifted, and could even distort the correction to aggravate the estimate rather than improve it.
  • the stabilized learning is freed from the model of behavior of the probe 2, insofar as it no longer intervenes on a stationary point (the two input signals being constant, there is no longer any attenuation and the cylinder-probe delay is inconsistent).
  • a mapping of the wealth drift can thus be established (based for example on the torque-regime points), the latter obviously being dependent on the stabilized points actually encountered on the road.
  • the skilled person is then able to pre-position the wealth drift of the current point, and to limit the remaining work of the Kalman filter, while minimizing the possible impact of drift history preservation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

La présente invention a pour objet un procédé et un dispositif permettant d'estimer en continu la richesse cylindre d'un moteur. Elle concerne notamment, mais non exclusivement, un procédé et un dispositif permettant d'estimer en continu la richesse cylindre d'un moteur diesel, au moyen d'une mesure de richesse réalisée par un capteur tel qu'une sonde.The present invention relates to a method and a device for continuously estimating the cylinder richness of an engine. It concerns in particular, but not exclusively, a method and a device for continuously estimating the cylinder richness of a diesel engine, by means of a measurement of richness achieved by a sensor such as a probe.

On sait que les valeurs relatives à la richesse d'un moteur peuvent être mesurées au moyen d'une sonde, telle qu'une sonde lambda ou NOx, qui permet d'obtenir des valeurs précises en régimes stabilisés.It is known that the values relating to the richness of an engine can be measured by means of a probe, such as a lambda or NOx probe, which makes it possible to obtain precise values in stabilized speeds.

Il s'avère néanmoins que la distance d'implémentation de la sonde par rapport au cylindre, les éléments de la ligne d'échappement disposés en amont de la sonde, ou les principes de fonctionnement de la sonde entraînent un retard et un filtrage de cette mesure qui sont susceptibles de varier selon les points de fonctionnement stabilisés. Il en résulte que les valeurs relatives à la richesse ainsi mesurées ne sont pas parfaitement représentatives de la richesse réelle propre à un cylindre lors d'un fonctionnement dynamique.Nevertheless, it turns out that the implementation distance of the probe relative to the cylinder, the elements of the exhaust line arranged upstream of the probe, or the operating principles of the probe cause a delay and a filtering of this probe. which may vary depending on the stabilized operating points. As a result, the values relating to the richness thus measured are not perfectly representative of the real wealth specific to a cylinder during dynamic operation.

On sait également que les informations relatives à la richesse d'un moteur peuvent également être estimées en procédant à un calcul utilisant les paramètres du débit d'air à l'admission (mesuré ou estimé) et le débit de carburant injecté (estimé). Le résultat obtenu présente l'avantage d'avoir été calculé en tenant compte des dynamiques associées auxdits paramètres, ainsi que de la lenteur d'établissement de la boucle d'air par rapport à celle du circuit de carburant.It is also known that the information relating to the richness of an engine can also be estimated by performing a calculation using the parameters of the admission air flow rate (measured or estimated) and the injected fuel flow rate (estimated). The result obtained has the advantage of having been calculated taking into account the dynamics associated with said parameters, as well as the slowness of establishing the air loop relative to that of the fuel circuit.

Toutefois, la détermination de la richesse d'un moteur en procédant de cette façon ne permet pas de s'affranchir des dispersions et dérives des composants du moteur, tels que les injecteurs, la pompe à carburant, le débitmètre mesurant l'air admis. On obtient ainsi un signal dynamique mais potentiellement dérivé.However, the determination of the wealth of an engine by proceeding in this way does not dispense with dispersions and drift of engine components, such as injectors, the fuel pump, the flow meter measuring the intake air. A dynamic but potentially derivative signal is thus obtained.

L'estimation de la richesse d'un moteur peut également être réalisée en procédant à une cartographie de cette estimation en fonction de paramètres caractérisant le point de fonctionnement pouvant être typiquement le régime et le couple.The estimation of the richness of an engine can also be achieved by mapping this estimate according to parameters characterizing the operating point which can be typically the speed and torque.

Cependant, une richesse moteur ainsi cartographiée ne présente ni la bonne dynamique représentative de la richesse réelle du cylindre (en raison notamment d'une prise en compte trop faible de la lenteur d'établissement de la boucle d'air par rapport à celle du circuit de carburant), ni suffisamment de robustesse vis-à-vis des dispersions engendrées par les composants moteur.However, a wealth engine thus mapped presents neither the good dynamic representative of the real wealth of the cylinder (due in particular to a too low consideration of the slow establishment of the air loop compared to that of the circuit of fuel), nor sufficiently robust with respect to the dispersions generated by the engine components.

On connait le document FR2834314 décrivant un procédé de permettant d'estimer la richesse d'un cylindre d'un moteur à combustion interne utilisant un filtre de Kalman. On connaît également le brevet EP 0 643 211 qui a pour objet un dispositif permettant d'estimer le rapport air/combustible d'un mélange fourni à un moteur à combustion interne, au moyen d'une sonde pouvant être de type 02. La mise en oeuvre de cette invention se traduit par la modélisation du comportement de la sonde et l'utilisation d'un filtre de Kalman.We know the document FR2834314 describing a method for estimating the richness of a cylinder of an internal combustion engine using a Kalman filter. The patent is also known EP 0 643 211 which relates to a device for estimating the air / fuel ratio of a mixture supplied to an internal combustion engine, by means of a probe which may be of type 02. The implementation of this invention results in the modeling of the behavior of the probe and the use of a Kalman filter.

Ce dispositif permet d'estimer la richesse cylindre par cylindre, en détectant dans les bouffées d'échappement l'impact relatif des différentes combustions sur la richesse globale dont la mesure est effectuée au moyen d'une sonde disposée au niveau du collecteur d'échappement. L'estimation de la richesse cylindre par cylindre est pondérée par des coefficients préalablement identifiés dans une table.This device makes it possible to estimate the cylinder-by-cylinder richness, by detecting in the exhaust puffs the relative impact of the different combustions on the overall wealth, the measurement of which is carried out by means of a probe disposed at the level of the exhaust manifold. . The estimation of the richness per cylinder is weighted by previously identified coefficients in a table.

Il s'avère cependant que ce dispositif présente les inconvénients suivants :

  • sa mise en oeuvre s'effectue uniquement sur des points de fonctionnement stabilisés ; elle ne peut s'effectuer en transitoire ;
  • il ne permet pas de recaler la richesse globale en fonction des dispersions et dérives éventuelles ;
  • le modèle de sonde utilisé ne fonctionne que sur un point de fonctionnement stabilisé et n'est pas adaptable d'un moteur à un autre en raison des dispersions ;
  • l'utilisation des sondes NOx positionnées très en aval dans une ligne d'échappement et ayant un signal de richesse plus filtré que celui d'une sonde 02 placée plus en amont ne semble pas adaptée en cas d'utilisation de ce dispositif ; en effet, les pics de richesse occasionnés par les bouffées d'échappement et les consignes de « wobbling » ne sont pas visualisables avec ce type de sonde.
However, it turns out that this device has the following drawbacks:
  • it is implemented only on stabilized operating points; it can not be transient;
  • it does not make it possible to recalibrate the global richness according to possible dispersions and drifts;
  • the probe model used only operates on a stabilized operating point and is not adaptable from one motor to another due to dispersions;
  • the use of NOx probes positioned very downstream in an exhaust line and having a more filtered richness signal than that of a probe 02 placed further upstream does not seem suitable when using this device; Indeed, the peaks of wealth caused by the exhaust puffs and the instructions of "wobbling" are not visualizable with this type of probe.

On connaît enfin la demande de brevet WO 07 041 092 qui divulgue un système et un procédé permettant de commander un moteur diesel au moyen notamment de capteurs conformés de manière à détecter au moins un composant spécifique des gaz d'échappement, ainsi que la demande de brevet EP 1 413 728 qui a pour objet une unité de commande et un procédé de commande d'une sonde NOx placée dans la conduite des gaz d'échappement d'un moteur à combustion interne.Finally, we know the patent application WO 07 041 092 which discloses a system and a method for controlling a diesel engine by means in particular of sensors shaped to detect at least one specific component of the exhaust gas, as well as the patent application EP 1 413 728 which relates to a control unit and a control method of a NOx probe placed in the exhaust gas duct of an internal combustion engine.

Toutefois, les dispositifs objet de ces demandes de brevet ne permettent pas de s'affranchir des sondes de type 02, et de permettre à la fois une estimation de la richesse cylindre d'un moteur sur points stabilisés et éventuellement en transitoire.However, the devices that are the subject of these patent applications do not make it possible to dispense with probes of type 02, and to allow both an estimation of the cylinder richness of an engine on stabilized and possibly transient points.

La présente invention a donc plus particulièrement pour objectif de résoudre ces problèmes en proposant un procédé permettant d'estimer en continu la richesse cylindre d'un moteur, avec une grande précision et une bonne dynamique, la mise en oeuvre du procédé pouvant s'effectuer avantageusement sur la base de points de fonctionnement stabilisés mais également en transitoire.The present invention therefore more particularly aims to solve these problems by proposing a method for continuously estimating the cylinder richness of an engine, with great accuracy and good dynamics, the implementation of the method can be carried out advantageously on the basis of stabilized operating points but also in transient.

A cette effet, l'invention a pour objet un procédé permettant d'estimer en continu la richesse cylindre d'un moteur à combustion interne conforme à la revendication 1.To this end, the invention relates to a method for continuously estimating the cylinder richness of an internal combustion engine according to claim 1.

De cette façon et de manière avantageuse, le dispositif selon l'invention permet de procéder à une estimation en continu de la richesse cylindre d'un moteur en utilisant un modèle calculé de richesse, et en recalant le résultat de ce calcul par rapport aux dispersions et dérives éventuelles afin d'obtenir une correction en continu de la valeur de richesse calculée.In this way and advantageously, the device according to the invention makes it possible to carry out a continuous estimation of the cylinder richness of an engine by using a calculated model of richness, and by recalibrating the result of this calculation with respect to the dispersions and possible drifts in order to obtain a continuous correction of the calculated value of wealth.

De cette façon, la correction de la richesse calculée Φ_Calc peut être avantageusement complétée afin d'affiner la valeur finale de la richesse du cylindre.In this way, the correction of the calculated wealth Φ_Calc can be advantageously completed in order to refine the final value of the richness of the cylinder.

De manière avantageuse, l'utilisation combinée de ces deux identificateurs de dérive permet de prendre en compte, sans aucune limite, la non uniformité de la dérive de richesse sur l'ensemble du champ moteur, ainsi que sa dispersion moteur à moteur.Advantageously, the combined use of these two drift identifiers makes it possible to take into account, without any limit, the nonuniformity of the wealth drift over the entire motor field, as well as its engine motor dispersion.

L'invention a également pour objet un dispositif permettant d'estimer en continu la richesse cylindre d'un moteur à combustion interne, caractérisé en ce qu'il comprend un identificateur de dérive et un filtre de Kalman conformés pour mettre en oeuvre le ou les procédés selon l'invention.The invention also relates to a device for continuously estimating the cylinder richness of an internal combustion engine, characterized in that it comprises a drift identifier and a Kalman filter shaped to implement the one or more processes according to the invention.

Un mode d'exécution de l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :One embodiment of the invention will be described below, by way of non-limiting example, with reference to the accompanying drawings in which:

La figure 1 est une représentation schématique des éléments principaux utilisés lors de la mise en oeuvre d'une variante d'exécution du procédé selon l'invention, avec une mise en évidence des relations existant entre eux.The figure 1 is a schematic representation of the main elements used in the implementation of an alternative embodiment of the method according to the invention, with a highlighting of the relations existing between them.

La figure 2 est une représentation schématique, sous forme de courbes, des différents signaux de richesse et de dérive de richesse produits lors de la mise en oeuvre du procédé selon l'invention.The figure 2 is a schematic representation, in the form of curves, of the various richness and wealth drift signals produced during the implementation of the method according to the invention.

Dans cet exemple, tel que cela est représenté sur la figure 1, le modèle simple de richesse Φ_Calc est calculé par un calculateur 1 au moyen de la consigne de carburant à injecter qlnj dans un cylindre et de la mesure du débit d'air admis Qair dans ce même cylindre.In this example, as shown on the figure 1 , the simple model of wealth Φ_Calc is calculated by a calculator 1 by means of the fuel charge to inject qlnj in a cylinder and the measurement of the air intake rate Qair in the same cylinder.

La consigne de carburant à injecter qlnj équivaut à la valeur estimée du débit de carburant injecté, le débit d'air admis Qair étant modélisé ou mesuré à l'aide d'un débitmètre.The fuel quantity to be injected qlnj is equivalent to the estimated value of the injected fuel flow, the air intake flow rate Qair being modeled or measured using a flowmeter.

Le signal constitutif du modèle de richesse correspond au quotient du débit de carburant injecté qlnj (ou Qcarburant_injecté) sur le débit d'air admis Qair ou (Qair_cylindre), multiplié par le rapport stoechiométrique y. Le signal ainsi obtenu présente la particularité d'être à la bonne dynamique, mais potentiellement dérivé. Φ cylindre_estimée = γ Q carburant_injecté Q air_cylindre

Figure imgb0001
The constitutive signal of the wealth model corresponds to the quotient of the injected fuel flow qlnj (or fuel_injected) on the intake air flow Qair or (Qair_cylindre), multiplied by the stoichiometric ratio y. The signal thus obtained has the particularity of being at the right dynamic, but potentially derived. Φ cylindre_estimée = γ Q carburant_injecté Q air_cylindre
Figure imgb0001

Avantageusement, le signal constitutif du modèle de richesse permet :

  • de prendre en compte de manière satisfaisante les dynamiques associées aux deux grandeurs qlnj et Qair ; et
  • d'obtenir une représentation correcte du phénomène constitué par la lenteur d'établissement de la boucle d'air par rapport à celle du circuit de carburant.
Advantageously, the constitutive signal of the wealth model allows:
  • to take into account satisfactorily the dynamics associated with the two quantities qlnj and Qair; and
  • to obtain a correct representation of the phenomenon constituted by the slowness of establishment of the air loop with respect to that of the fuel circuit.

Par ailleurs, à l'aide d'une sonde de richesse 2 pouvant être de type NOx placé en aval dans la ligne d'échappement, préférentiellement en aval du catalyseur SCR (« Selective Catalytic Reduction »), un signal mesuré de richesse est défini. Ce signal permet de produire en transitoire une information sur la richesse qui est retardée et atténuée ; par contre, en stabilisé, l'information portée par le signal est considérée comme étant précise.Moreover, using a richness probe 2 which may be of the NOx type placed downstream in the exhaust line, preferably downstream of the catalyst SCR (Selective Catalytic Reduction), a measured signal of richness is defined. . This signal makes it possible to produce in transitory information on the wealth that is delayed and attenuated; on the other hand, in stabilized, the information carried by the signal is considered to be precise.

La sonde de richesse 2 peut être de type NOx mais elle peut aussi, par exemple, être du type lambda.The richness probe 2 may be of the NOx type but it may also, for example, be of the lambda type.

Le signal constitutif du modèle de richesse et le signal mesuré de richesse sont portés en entrée d'un identificateur de dérive 3 qui identifie et quantifie les dispersions et dérives de richesse éventuelles sur des points de fonctionnement stabilisés.The constitutive signal of the richness model and the measured signal of richness are carried as input of a drift identifier 3 which identifies and quantifies the possible dispersions and drifts of wealth on stabilized operating points.

L'identificateur de dérive 3 permet ainsi la réalisation d'un apprentissage des dérives éventuelles se traduisant par l'établissement d'une cartographie de ces dérives de richesse dans le champ moteur.The drift identifier 3 thus allows the realization of a possible learning drift resulting in the establishment of a mapping of these wealth drifts in the engine field.

De cette façon, l'identificateur de dérive 3 procède à un recalage du modèle calculé de richesse par rapport aux éventuelles dispersions et dérives à l'aide du signal mesuré de richesse qui présente l'avantage d'être précis en régimes stabilisés.In this way, the drift identifier 3 recalculates the calculated model of richness with respect to any dispersions and drifts using the measured signal of richness which has the advantage of being precise in stabilized regimes.

Plus précisément, la valeur de la richesse calculée portée par le signal constitutif du modèle de richesse est corrigée en continu grâce audit apprentissage des dérives effectué par l'identificateur de dérive 3, ces dérives étant préférentiellement enregistrées dans une cartographie et lues ensuite sans discontinuité avec interpolation.More precisely, the value of the calculated richness carried by the signal constituting the wealth model is corrected continuously by said drift learning carried out by the drift identifier 3, these drifts being preferentially recorded in a map and then read without discontinuity with interpolation.

Toutefois, la valeur de richesse obtenue en sortie de l'identificateur de dérive 3 peut n'être recalée que de manière incomplète en raison par exemple d'un apprentissage incomplet, ou d'approximations inhérentes à la méthode de stockage.However, the value of richness obtained at the output of the drift identifier 3 may be only incompletely recalibrated due to example of incomplete learning, or approximations inherent to the storage method.

De manière avantageuse, afin de résoudre ce problème, la correction de la richesse calculée Φ_Calc peut être avantageusement complétée afin d'affiner la valeur finale de ladite richesse du cylindre, au moyen notamment d'un filtre de Kalman 4 qui permet d'obtenir une identification dynamique complémentaire de la dérive de richesse.Advantageously, in order to solve this problem, the correction of the calculated wealth Φ_Calc can be advantageously completed in order to refine the final value of said richness of the cylinder, by means in particular of a Kalman filter 4 which makes it possible to obtain a complementary dynamic identification of the wealth drift.

L'équation générale du filtre de Kalman se présente de la manière suivante, les équations à considérer sont plus particulièrement l'équation (1) du tableau « Mise à jour Temps » et l'équation (2) du tableau « Mise à jour Mesure ».

Figure imgb0002
avec

  • k : l'estimation a priori du vecteur d'état à l'instant k ;
  • k : l'estimation a posteriori du vecteur d'état à l'instant k ;
  • u k-1 : le vecteur de variables déterministes ; en l'espèce, il s'agit de la richesse calculée dans la chambre de combustion.
The general equation of the Kalman filter is as follows, the equations to be considered are more particularly the equation (1) of the table «Update Time» and the equation (2) of the table «Update Measure ".
Figure imgb0002
with
  • x k : the prior estimate of the state vector at time k;
  • x k : the posterior estimation of the state vector at time k;
  • u k- 1 : the vector of deterministic variables; in this case, it is the calculated wealth in the combustion chamber.

Deux signaux sont appliqués à l'entrée du filtre de Kalman :

  • le signal de richesse modèle 02 de la sonde ; et
  • le signal mesuré de richesse 02, sensor par la sonde 2.
Two signals are applied to the input of the Kalman filter:
  • the model 02 richness signal of the probe; and
  • the measured signal of richness 02, sensor by the probe 2.

Chacun de ces signaux se voit attribuer une confiance relative en introduisant des bruits de processus w et de mesure v.Each of these signals is given relative confidence by introducing process noises w and measurement v.

La première étape de traitement du filtre consiste à appliquer au signal de richesse modèle 02 l'altération qu'il subirait dans l'hypothèse où il serait capté par la sonde 2 du type NOx.The first filter processing step consists in applying to the model richness signal 02 the alteration that it would undergo in the event that it would be picked up by the probe 2 of the NOx type.

Cette altération consiste en :

  • un retard pur dû au transport des gaz d'échappement du cylindre vers la sonde 2, auquel s'ajoute le retard pur de la sonde 2 elle-même ; et
  • un filtre (du 1er ou 2eme ordre par exemple).
This alteration consists of:
  • a pure delay due to the transport of the cylinder exhaust gases to the probe 2, to which is added the pure delay of the probe 2 itself; and
  • a filter (1st or 2nd order, for example).

Cette altération n'est que virtuelle car la sonde 2 analyse non pas ce signal modèle 02, mais le signal réel de richesse qui se différencie du précédent par la dérive de richesse θ O 2 à identifier.This alteration is only virtual because the probe 2 analyzes not this model signal 02, but the real signal of richness which differs from the previous one by the drift of wealth θ O 2 to identify.

Le filtre de Kalman crée donc un signal 'richesse calculée filtrée' O 2 f

Figure imgb0003
ou O 2 ff
Figure imgb0004
(et retardée, mais en amont de l'équation d'état). On crée ainsi le vecteur d'état 'a priori' de la structure du Kalman (se reporter à l'équation du vecteur d'état ci-dessous).The Kalman filter therefore creates a signal 'filtered computed wealth' O 2 f
Figure imgb0003
or O 2 ff
Figure imgb0004
(and delayed, but upstream of the state equation). This creates the 'a priori' state vector of the Kalman structure (see the equation of the state vector below).

La seconde étape de traitement du filtre de Kalman, qui est réalisée a posteriori, consiste à comparer ce signal virtuel avec le signal réellement capté et analysé par la sonde de richesse 2. L'écart entre ces deux signaux définit la dérive de richesse instantanée θ O 2 .The second step of processing the Kalman filter, which is performed a posteriori, consists in comparing this virtual signal with the signal actually picked up and analyzed by the wealth probe 2. The difference between these two signals defines the instantaneous wealth drift θ O 2 .

Cependant, le comportement (caractérisé généralement par le retard et l'atténuation) de la sonde 2 ne peut pas être parfaitement connu. Il convient donc de limiter la confiance en cette identification de dérive pour ne pas la rendre trop aléatoire en cas d'erreurs (même passagères).However, the behavior (generally characterized by the delay and attenuation) of the probe 2 can not be perfectly known. he It is therefore necessary to limit the trust in this drift identification so as not to make it too random in the event of errors (even transient).

Cette limitation de confiance est obtenue au moyen du gain de Kalman, qui force un temps de convergence avant de considérer la dérive pleinement identifiée. Le signal de richesse finalement estimé est donc le signal modèle 02 recalé par la mesure de la sonde 2 moyennant un temps d'intégration, lié à la confiance forcément limitée dans le modèle du comportement de la sonde de richesse 2.This limitation of confidence is obtained by means of the Kalman gain, which forces a convergence time before considering the fully identified drift. The finally estimated wealth signal is thus the model signal 02 recalibrated by the measurement of the probe 2 with a time of integration, linked to the necessarily limited confidence in the model of the behavior of the wealth probe 2.

L'équation d'état, qui présente en l'espèce quatre dimensions (en prenant pour hypothèse que le modèle de comportement utilisé était en 2ème ordre), se présente comme suit : θ O 2 O 2 O 2 f O 2 ff k = 1 + a a 0 0 1 0 0 0 0 b 1 b 0 0 0 c 1 c × θ O 2 O 2 O 2 f O 2 ff k 1 + a 1 0 0 O 2 , model k 1 + w k 1 O 2 , sensor k = 0 0 0 1 θ O 2 O 2 O 2 f O 2 ff k + v k

Figure imgb0005
avec :

  • θ O 2 : la dérive identifiée, soit l'écart entre la richesse mesurée et le signal de richesse calculée passée par le modèle de comportement de la sonde ;
  • O 2 : la richesse calculée (modèle) ;
  • O 2 f
    Figure imgb0006
    : la richesse calculée filtrée (ordre 1) afin de tenir compte du comportement de la sonde ;
  • O 2 ff
    Figure imgb0007
    : la richesse calculée filtrée (ordre 2) pour tenir compte du comportement de la sonde ;
The equation of state, which presents in this case four dimensions (assuming that the model of behavior used was in 2nd order), is as follows: θ O 2 O 2 O 2 f O 2 ff k = 1 + at - at 0 0 1 0 0 0 0 b 1 - b 0 0 0 vs 1 - vs × θ O 2 O 2 O 2 f O 2 ff k - 1 + at 1 0 0 O 2 , model k - 1 + w k - 1 O 2 , sensor k = 0 0 0 1 θ O 2 O 2 O 2 f O 2 ff k + v k
Figure imgb0005
with:
  • θ O 2 : the drift identified, ie the difference between the measured richness and the calculated richness signal passed by the model of behavior of the probe;
  • O 2 : calculated wealth (model);
  • O 2 f
    Figure imgb0006
    : calculated computed wealth (order 1) to take into account the behavior of the probe;
  • O 2 ff
    Figure imgb0007
    : calculated computed wealth (order 2) to take into account the behavior of the probe;

Le vecteur composé de ces quatre variables constitue le vecteur d'état.

  • O 2,mod el k-1 : la richesse calculée (modèle) à l'instant k-1 ;
  • O 2 ,sensork , : la richesse mesurée par la sonde à l'instant k ;
  • W k-1 : le bruit du signal modèle 'richesse calculée' ;
  • vk : le bruit du signal mesuré de richesse par la sonde.
The vector composed of these four variables constitutes the state vector.
  • O 2, mod el k -1 : calculated wealth (model) at time k-1;
  • O 2 , sensor k , : the richness measured by the probe at time k;
  • W k -1 : the signal noise model 'calculated wealth';
  • v k : the noise of the measured signal of richness by the probe.

Selon une variante d'exécution de l'invention, l'établissement de ce vecteur d'état pourrait être réalisé en utilisant un modèle de comportement de sonde présentant une plus grande variabilité, ou encore en ne faisant pas apparaître ce dit modèle, ce dernier étant alors défini en amont.According to an alternative embodiment of the invention, the establishment of this state vector could be achieved by using a model of probe behavior with greater variability, or by not showing the said model, the latter being then defined upstream.

Dans cet exemple d'implémentation proposée, le gain de Kalman résultant de ces compromis de calibration est unique et pré-calculé, par un souci de simplicité d'implémentation.In this example of proposed implementation, the Kalman gain resulting from these calibration compromises is unique and pre-calculated, for the sake of simplicity of implementation.

Toutefois, selon une variante d'exécution de l'invention, à chaque pas de calcul, les bruits de mesure et de processus, ainsi que le gain de Kalman optimal résultant (gain infini Kinf) peuvent être remis à jour.However, according to an alternative embodiment of the invention, at each computation step, measurement noise and process noise, as well as the resulting optimal Kalman gain (infinite gain Kinf) can be updated.

Selon une autre variante d'exécution de l'invention, le gain de Kalman peut être cartographié par zones distinctes du champ moteur.According to another variant embodiment of the invention, the Kalman gain can be mapped by distinct zones of the motor field.

De manière avantageuse, l'apprentissage de dérive sur points stabilisés permet d'accélérer le travail du filtre de Kalman, de le rendre plus robuste, voire de s'assurer que le résultat fourni est juste.Advantageously, stabilized point drift learning makes it possible to accelerate the work of the Kalman filter, to make it more robust, and even to ensure that the result provided is accurate.

L'association du filtre de Kalman et de la technique d'apprentissage stabilisé permet d'assurer à l'ensemble une grande adaptabilité. En effet, la dérive de richesse, qui dépend en premier lieu des dérives des composants tels que le débitmètre et les injecteurs, n'est pas attendue uniforme dans le champ moteur, mais variable d'un point à l'autre en transitoire. Un filtre de Kalman seul, qui par définition met un temps non négligeable pour intégrer une dérive et y converger, verrait sa dynamique d'identification et de remise à jour entrer en conflit avec la dynamique du point de fonctionnement et de sa dérive de richesse associée. Le filtre garderait ainsi - au moins partiellement - une dérive propre au point précédent alors que celle-ci aurait déjà radicalement changé sur le point suivant. A défaut d'intégrer immédiatement la nouvelle dérive, celle conservée et appliquée serait éventuellement décalée, et pourrait même fausser la correction jusqu'à aggraver l'estimation plutôt que de l'améliorer.The combination of the Kalman filter and the stabilized learning technique ensures a high degree of adaptability. Indeed, the wealth drift, which depends first and foremost on component drifts such as the flowmeter and the injectors, is not expected to be uniform in the engine field, but variable from one point to another in transient. A Kalman filter alone, which by definition takes a significant amount of time to integrate a drift and converge there, would see its dynamic of identification and delivery. up to date conflict with the dynamics of the operating point and its associated wealth drift. The filter would thus keep - at least partially - a specific drift to the previous point whereas this one would already have radically changed on the following point. Failing to immediately integrate the new drift, that retained and applied would possibly be shifted, and could even distort the correction to aggravate the estimate rather than improve it.

L'apprentissage stabilisé s'affranchit du modèle de comportement de la sonde 2, dans la mesure où celui-ci n'intervient plus sur point stationnaire (les deux signaux d'entrée étant constants, il n'existe plus d'atténuation et le retard cylindre-sonde est inconséquent). Une cartographie de la dérive de richesse peut ainsi être établie (en s'appuyant par exemple sur les points régime-couple), cette dernière étant évidemment dépendante des points stabilisés effectivement rencontrés sur le roulage. En procédant à une lecture avec interpolation dans cette cartographie, l'homme du métier est alors capable de pré-positionner la dérive de richesse du point courant, et de limiter le travail restant du filtre de Kalman, tout en minimisant l'impact éventuel de la conservation d'historique de dérive.The stabilized learning is freed from the model of behavior of the probe 2, insofar as it no longer intervenes on a stationary point (the two input signals being constant, there is no longer any attenuation and the cylinder-probe delay is inconsistent). A mapping of the wealth drift can thus be established (based for example on the torque-regime points), the latter obviously being dependent on the stabilized points actually encountered on the road. By carrying out an interpolated reading in this mapping, the skilled person is then able to pre-position the wealth drift of the current point, and to limit the remaining work of the Kalman filter, while minimizing the possible impact of drift history preservation.

Il existe plus façons de combiner cette cartographie et le filtre de Kalman, celles-ci consistent à :

  • ▪utiliser la dérive lue dans la cartographie évolutive pour corriger directement le signal d'entrée de richesse modèle O2 du filtre de Kalman 4 ;
  • ▪ utiliser la dérive lue pour l'état 'a priori' du filtre de Kalman 4, permettant un pré-positionnement permanent plus ou moins abouti (selon le niveau de remplissage de la cartographie), qui est alors corrigé 'a posteriori' via le signal mesuré de richesse O2, sensor par la sonde 2 et le gain de Kalman.
There are more ways to combine this mapping and the Kalman filter, these consist of:
  • ▪use the drift read in the evolutionary cartography to directly correct the model O 2 richness input signal of the Kalman 4 filter;
  • ▪ use the drift read for the 'a priori' state of the Kalman 4 filter, allowing a permanent pre-positioning more or less successful (depending on the filling level of the map), which is then corrected 'a posteriori' via the measured signal of richness O 2, sensor by probe 2 and Kalman gain.

Tel que cela est représenté sur la figure 3, l'identification résultante de la dérive de richesse s'effectue en procédant ainsi :

  • le signal de richesse finale estimée (pointillés gras) est calé sur la dynamique du modèle de richesse modélisée (trait continu fin), mais recalé vis-à-vis de sa dérive au moins partiellement, sur des points transitoires comme sur des points stabilisés (dérive observée par le Kalman (flèches verticales), entre le signal sonde (mesure de richesse, trait continu en gras) et le signal virtuel en noir pointillé fin).
As shown in FIG. 3, the resulting identification of the wealth drift is carried out as follows:
  • the estimated final richness signal (bold dots) is calibrated on the dynamics of the model of wealth modeled (fine continuous line), but recaled with respect to its drift at least partially, on transient points as on stabilized points ( drift observed by the Kalman (vertical arrows), between the probe signal (measurement of richness, continuous line in bold) and the virtual signal in fine dotted black).

Avantageusement, la combinaison de l'utilisation de l'identificateur de dérive 3 et du filtre de Kalman 4 permet notamment :

  • de procéder à une identification adaptative des dérives, et non d'une calibration fixe réalisée sur table valable uniquement sur un point de fonctionnement et/ou un seul moteur ;
  • de procéder à une estimation de la richesse cylindre en bénéficiant à la fois des avantages d'une mesure obtenue au moyen d'une sonde, constitués par l'affranchissement des dérives et dispersions, mais également des avantages procurés par la simplicité du calcul à effectuer qui permettent un recalage dynamique de la richesse ;
  • de lier le modèle d'émissions de particules au signal final obtenu, en s'assurant d'une grande robustesse en transitoire comme en stabilisé ; cela permet donc d'améliorer la performance et la robustesse de l'estimation des émissions de particules et celle du chargement associé du filtre à particules ;
  • de pouvoir adapter la stratégie de recalage dynamique de la richesse à toutes sortes de ligne d'échappement ;
  • de se dispenser en fonctionnement Diesel, de l'utilisation d'une sonde Lambda spécifique ; la sonde NOx dont la présence est règlementairement nécessaire en aval de la ligne d'échappement permet d'obtenir l'information richesse désirée, ce qui permet d'effectuer des économies.
Advantageously, the combination of the use of the drift identifier 3 and the Kalman filter 4 makes it possible in particular:
  • to carry out an adaptive identification of the drifts, and not a fixed table calibration valid only on an operating point and / or a single engine;
  • to make an estimation of the richness cylinder benefiting from the advantages of a measurement obtained by means of a probe, constituted by the franking of the drifts and dispersions, but also the advantages provided by the simplicity of the computation to carry out which allow a dynamic registration of wealth;
  • to link the model of emissions of particles to the final signal obtained, making sure of a great robustness in transient as in stabilized; this therefore makes it possible to improve the performance and the robustness of the estimation of the emissions of particles and that of the associated loading of the particulate filter;
  • to be able to adapt the strategy of dynamic registration of wealth to all sorts of escape routes;
  • to dispense with diesel operation, the use of a specific Lambda probe; NOx probe whose presence is required by regulation downstream of the exhaust line provides the desired wealth information, which allows for savings.

Claims (7)

  1. A method enabling continuous estimation of air-fuel ratio in an internal combustion engine's cylinder, said engine comprising a plurality of cylinders, at least one richness measurement sensor (2), a plurality of injectors connected to the cylinders, a flow meter, said method including the steps consisting of:
    • measuring a richness signal by means of the richness sensor (2).
    • calculating a simple richness model (Φ_Calc) corresponding to the quotient of the flow of injected fuel (qlnj) on the flow of intake air (Qair), multiplied by the stoichiometric ratio (γ),
    characterized in that said method further includes the steps consisting of:
    • identifying and quantifying the possible dispersions and deviations of richness on stabilised points of operation by means of at least one deviation identifier (3) from the signal constituting the richness model (Φ_Calc) and from the measured richness signal carried at the input of this deviation identifier (3), a mapping of the richness deviations in the engine field being realized by the deviation identifier (3), by teach-in of these possible deviations;
    • identifying and quantifying the possible transient dispersions and richness deviations by means of at least one supplementary deviation identifier consisting of a Kalman filter (4) from the measured richness signal and from the model richness signal of the sensor,
    • correcting continuously the calculated richness (Φ_Calc) by using the deviation read in the mapping for directly correcting the model richness input signal of the Kalman filter (4) or by using the deviation read in the mapping for the a priori status of the Kalman filter (4).
  2. The method according to Claim 1,
    characterized in that the richness sensor (2) is of the NOx type.
  3. The method according to Claim 1 or Claim 2,
    characterized in that the first processing step of the Kalman filter (4) consists in applying to the first model richness input signal (O2 ) the virtual alteration which it would undergo if it were picked up by the sensor (2), this alteration consisting in:
    • a dead time due to the transport of the exhaust gases of the cylinder towards the sensor (2), to which is added the dead time of the sensor (2) itself;
    and
    • a filter;
    a "filtered calculated richness" signal (O2 f or O2 ff ) and a vector of "a priori" status are created according to the following equations, assuming that the model of behaviour used is of the 2nd order: θ O 2 O 2 O 2 f O 2 ff k = 1 + a a 0 0 1 0 0 0 0 b 1 b 0 0 0 c 1 c × θ O 2 O 2 O 2 f O 2 ff k 1 + a 1 0 0 O 2 , model k 1 + w k 1 O 2 , sensor k = 0 0 0 1 θ O 2 O 2 O 2 f O 2 ff k + v k
    Figure imgb0018
    with:
    θo2 : the identified deviation, namely the gap between the measured richness and the calculated richness signal passed by the behaviour model of the sensor;
    O2 : the calculated richness (model);
    O2 f : the filtered calculated richness (order 1) so as to take into account the behaviour of the sensor;
    O2 ff : the filtered calculated richness (order 2) so as to take into account the behaviour of the sensor;
    the vector composed of these four variables constitutes the status vector.
    O2,model k-1 : the calculated richness (model) at the moment k-1;
    O2,sensor k : the richness measured by the sensor at the moment k;
    wk-1 : the noise of the "calculated richness" model signal;
    vk : the noise of the signal measured for richness by the sensor;
    each of the input signals (O2) and signal measured for richness (O 2,sensor) by the sensor (2) comes to assign a relative trust by introducing process noises (w) and measurement noises (v).
  4. The method according to Claim 3,
    characterized in that the second processing step of the Kalman filter (4), which is realized a posteriori, consists in comparing the virtual signal with the signal actually picked up and analysed by the richness sensor (2); the gap between these two signals defines the actual richness deviation (θo2 ).
  5. The method according to one of Claims 3 and 4,
    characterized in that a limitation of the trust in the identification of the deviation is carried out by means of the Kalman gain (4), which forces a convergence time before considering the fully identified deviation; the finally estimated richness signal is therefore the model signal (O2 ) reset by the measurement of the sensor (2) averaging an integration time, linked to the necessarily limited trust in the behaviour model of the richness sensor (2).
  6. The method according to one of Claims 3 to 5,
    characterized in that the combination of the mapping obtained and of the Kalman filter (4) is carried out by:
    • using the deviation read in the evolving mapping to correct directly the model richness input signal (O2) of the Kalman filter (4);
    • using the deviation read for the "a priori" status of the Kalman filter (4), permitting a permanent pre-positioning more or less accomplished, according to the filling level of the mapping, which is then corrected "a posteriori" via the measured richness signal (O2, sensor ) by the sensor (2) and the Kalman gain.
  7. An apparatus enabling continuous estimation of air-fuel ratio in an internal combustion engine's cylinder, said engine comprising a plurality of cylinders, at least one richness measurement sensor, a plurality of injectors connected to the cylinders, a flow meter,
    characterized in that it includes a deviation identifier (3) and a Kalman filter (4) adapted to implement the method or methods according to any one of the preceding claims.
EP12794388.4A 2011-11-28 2012-10-26 Method and apparatus for the continous estimation of air-fuel ratio in an engine's cylinder Active EP2786004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160865A FR2983244B1 (en) 2011-11-28 2011-11-28 METHOD AND APPARATUS FOR CONTINUOUS ESTIMATING OF THE CYLINDER WEIGHT OF AN ENGINE
PCT/FR2012/052475 WO2013079839A1 (en) 2011-11-28 2012-10-26 Method and device enabling the continuous estimation of the cylinder compression ratio of an engine

Publications (2)

Publication Number Publication Date
EP2786004A1 EP2786004A1 (en) 2014-10-08
EP2786004B1 true EP2786004B1 (en) 2017-09-20

Family

ID=47263424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12794388.4A Active EP2786004B1 (en) 2011-11-28 2012-10-26 Method and apparatus for the continous estimation of air-fuel ratio in an engine's cylinder

Country Status (3)

Country Link
EP (1) EP2786004B1 (en)
FR (1) FR2983244B1 (en)
WO (1) WO2013079839A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989428B1 (en) * 2012-04-11 2015-10-02 Peugeot Citroen Automobiles Sa METHOD OF ESTIMATING WEALTH IN A MOTOR VEHICLE COMBUSTION ENGINE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834314A1 (en) * 2001-12-31 2003-07-04 Peugeot Citroen Automobiles Sa Procedure for estimating fuel richness of mixture burned in i.c. engine with fuel injection uses Kalman estimator and set equations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783097A (en) 1993-09-13 1995-03-28 Honda Motor Co Ltd Air-fuel ratio detection method of internal combustion engine
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
FR2773847B1 (en) * 1998-01-19 2000-03-24 Sagem INJECTION SYSTEM RICHNESS ESTIMATING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2002318604A (en) * 2001-04-20 2002-10-31 Unisia Jecs Corp Controller
DE10250219A1 (en) 2002-10-23 2004-05-06 Volkswagen Ag Regulator and method for regulating a NOx sensor arranged in an exhaust gas duct of an internal combustion engine
JP4184058B2 (en) * 2002-12-05 2008-11-19 本田技研工業株式会社 Control device
US7167791B2 (en) * 2004-09-27 2007-01-23 Ford Global Technologies, Llc Oxygen depletion sensing for a remote starting vehicle
US7155334B1 (en) 2005-09-29 2006-12-26 Honeywell International Inc. Use of sensors in a state observer for a diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834314A1 (en) * 2001-12-31 2003-07-04 Peugeot Citroen Automobiles Sa Procedure for estimating fuel richness of mixture burned in i.c. engine with fuel injection uses Kalman estimator and set equations

Also Published As

Publication number Publication date
FR2983244B1 (en) 2013-12-20
FR2983244A1 (en) 2013-05-31
EP2786004A1 (en) 2014-10-08
WO2013079839A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
EP3619412B1 (en) Method for filtering an air-fuel ratio signal produced by an engine exhaust sensor
EP1729001B1 (en) Estimation method using a non-linear adaptive filter of air-fuel mixture richness in a cylinder of a combustion engine
FR2929650A1 (en) METHOD AND DEVICE FOR ADAPTING A DYNAMIC MODEL OF AN EXHAUST GAS PROBE.
EP1729000B1 (en) Method for estimating the air/fuel ratio in a cylinder of an internal combustion engine using an extended Kalman filter
WO2018202977A2 (en) Method for updating a dynamic for adjusting a richness value to a set value in an engine
EP2748451B1 (en) Method and system for controlling the operation of a vehicle engine
EP2619426B1 (en) Procedure for adaptively estimating the current soot loading of a particulate filter
EP2786004B1 (en) Method and apparatus for the continous estimation of air-fuel ratio in an engine's cylinder
FR3022606A1 (en) METHOD FOR DETERMINING THE POINT OF OPENING A VALVE
FR3012526A1 (en) SYSTEM AND METHOD FOR ESTIMATING THE FLOW OF NITROGEN OXIDES IN EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE FOR A MOTOR VEHICLE.
EP2650516B1 (en) Method for estimating the fuel-to-air ratio in an internal combustion engine of a motor vehicle
FR2939475A1 (en) Method for anti-pollution treatment of exhaust gas from drive train of motor vehicle, involves deducing correction of aeraulic curve of exhaust gas recirculation valve based on difference between measured and estimated operating quantities
EP1691062B1 (en) Method for controlling an internal combustion engine with reduction of exhaust emissions
WO2011067518A1 (en) System and method for estimating the mass of particles stored in a particle filter of a motor vehicle
EP3006716B1 (en) Method for controlling an internal combustion engine provided with a gas-treatment device
EP3008315B1 (en) Method for diagnosing the operating condition of fuel injectors in an internal combustion engine, internal combustion engine and motor vehicle using such a method
FR2973442A1 (en) METHOD FOR ADAPTING A FUEL-AIR MIXTURE SUPPLYING AN INTERNAL COMBUSTION ENGINE
WO2008043952A2 (en) System for determining the mass flow rate of nitrogen oxides emitted in the exhaust gases of an internal combustion engine
FR3022001A1 (en) METHOD AND DEVICE FOR DETECTING AN AIR FAULT AND A FUEL FAULT IN THE PREPARATION OF THE MIXTURE SUPPLYING A HEAT ENGINE
WO2013139526A1 (en) Process for determining the amount of ammonia stored in a catalyst, and corresponding system
FR3006375A1 (en) SYSTEM AND METHOD FOR DETERMINING THE MASS FRACTION OF FRESH GASES IN THE INTAKE MANIFOLD OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE.
WO2020065147A1 (en) Combustion engine control depending on an estimate of the exhaust gas temperature
EP0636778A1 (en) Method and apparatus for correcting the injection time as a function of the purge flow of a canister purge system in a fuel injected engine
FR3090036A1 (en) METHOD FOR CORRECTING AN ESTIMATE OF NITROGEN OXIDES IN AN EXHAUST LINE
FR2923536A3 (en) Physical operating quantity e.g. air rate, estimating method for internal combustion engine of motor vehicle, involves weighting and/or adjusting calculation models to calculate final estimation of quantity from estimations of models

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150925

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PSA AUTOMOBILES SA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602012037620

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 930343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20171006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012037620

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 930343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012037620

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

26N No opposition filed

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012037620

Country of ref document: DE

Owner name: STELLANTIS AUTO SAS, FR

Free format text: FORMER OWNER: PSA AUTOMOBILES SA, POISSY, FR