EP2472215B1 - Method and device for the neutralisation of a target - Google Patents

Method and device for the neutralisation of a target Download PDF

Info

Publication number
EP2472215B1
EP2472215B1 EP11306780.5A EP11306780A EP2472215B1 EP 2472215 B1 EP2472215 B1 EP 2472215B1 EP 11306780 A EP11306780 A EP 11306780A EP 2472215 B1 EP2472215 B1 EP 2472215B1
Authority
EP
European Patent Office
Prior art keywords
target
antenna
array
frequency
radiofrequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11306780.5A
Other languages
German (de)
French (fr)
Other versions
EP2472215A1 (en
Inventor
Jean-Pierre Brasile
Dominique Fasse
Patrick Sirot
Dominique Jousse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2472215A1 publication Critical patent/EP2472215A1/en
Application granted granted Critical
Publication of EP2472215B1 publication Critical patent/EP2472215B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0075Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a radiofrequency beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/45Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/62Jamming involving special techniques by exposing communication, processing or storing systems to electromagnetic wave radiation, e.g. causing disturbance, disruption or damage of electronic circuits, or causing external injection of faults in the information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/65Jamming involving special techniques using deceptive jamming or spoofing, e.g. transmission of false signals for premature triggering of RCIED, for forced connection or disconnection to/from a network or for generation of dummy target signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/24Jamming or countermeasure used for a particular application for communication related to weapons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/32Jamming or countermeasure characterized by the infrastructure components including a particular configuration of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/34Jamming or countermeasure characterized by the infrastructure components involving multiple cooperating jammers

Definitions

  • the invention relates to the field of microwave weapons and jammers applied to the disruption or destruction of remote electronic equipment, particularly weapons systems or explosive devices.
  • a method for neutralizing a target comprising a step of transmitting a broadband signal on the target by an emitter and a step of receiving the signals re-emitted by the target by several receivers.
  • the received signals are then inverted temporally and returned by several high power transmitters towards the target.
  • This method makes it possible to emit a wave whose waveform obtained by time reversal is optimized for a given position of the target.
  • time reversal methods are complex and require significant calculation means.
  • the object of the invention is to provide a method for neutralizing a remote target that is both efficient and without complex signal processing that is expensive in terms of calculation time.
  • the neutralization device has the following characteristic: the antenna array comprises the probe antenna, the probe antenna being adapted to receive a radiofrequency wave broadcast by the target.
  • the invention relates to a method of neutralizing a remote target and its associated device. Such a method is intended to neutralize systems comprising electronic components.
  • an electromagnetic wave sent to the target generates a particular coupling with the target, because of the configuration of the latter and in particular the presence of electric cables, the arrangement of openings conducive to the propagation of certain wavelengths, the nature of the materials and components integrated into the target.
  • the optimal coupling frequency is that for which the wave penetrates best into the target, that which allows a strong coupling with cables and / or with sensitive electronic components.
  • the method according to the invention aims to identify the most efficient frequencies (resonance, harmonic detection) and emit them in phase coherence.
  • the figure 1 illustrates an embodiment according to the invention of a device 10 for neutralizing a target 12 comprising at least one active electronic component 13 and an opening 14.
  • the device 10 comprises several antennas designated by the general reference E i , with i an integer between 1 and N.
  • This plurality of antennas forms a lacunary network of antennas, also called gap antenna.
  • One of the antennas is particularly suitable for transmitting towards the target a radio frequency test signal having a frequency spectrum comprising at least two distinct frequencies and comprising at least one radiofrequency wave.
  • this antenna is called probe antenna 16.
  • the probe antenna transmits a test signal comprising a single radiofrequency wave having a spectrum comprising at least two distinct frequencies.
  • the probe antenna emits a test signal comprising a plurality of successive radiofrequency waves, each of these radiofrequency waves being either mono-frequency or having a spectrum comprising at least two distinct frequencies.
  • the antennas E.sub.i of the lacunary network each comprise a receiver R.sub.i capable of receiving a radiofrequency wave diffused by the target and a transmitter P.sub.I capable of transmitting a radiofrequency wave towards the target.
  • each antenna E i of the lacunary network comprises processing means T i radiofrequency waves broadcast by the target, connected to the transmitter P i and the receiver R i of the antenna.
  • These processing means T i comprise means for measuring the amplitude of the waves diffused by the target as a function of the emission frequencies of the wave radio frequency transmitted by the probe antenna 16, or any other value representative of the amplitude such as instantaneous power or intensity.
  • the processing means T i comprise means for measuring the travel time t i radiofrequency waves diffused between the target and the antenna E i of the network as a function of the radiofrequency wave emission frequencies, or any other representative value of the travel time t i such as the phase of the radiofrequency waves broadcast by the target and received by each antenna E i of the network.
  • the device 10 comprises a unit 50 for selecting at least one preferred transmission frequency as a function of the amplitude and the travel time t i of the scattered waves received by each of the antennas E i .
  • This unit 50 comprises means for assigning to each transmitter P i of each antenna E i a set of preferred transmission frequencies possibly specific to each antenna E i .
  • the unit 50 is also able to provide the probe antenna 16 with a set of test frequencies suitable for being implemented in a radio frequency test signal initially sent to the target 12.
  • the probe antenna is independent of the gap network.
  • the device 10 is adapted to implement the neutralization method 100 according to the invention which will now be described with regard to the figure 2 .
  • the probe antenna 16 transmits a radio frequency test signal towards the target.
  • This radiofrequency signal has a frequency spectrum comprising at least two different frequencies in order to reach an optimal coupling with the target whose effective cross section varies greatly with the frequency.
  • this signal is a signal having a broadband frequency spectrum of a width of at least 100 MHz.
  • this signal is a radio frequency wave train, each wave having a narrow frequency spectrum, of the order of 10 to 100 kHz.
  • the frequency spectrum of the transmitted signal is in the range of 1 to 5 GHz.
  • the radio frequency test signal sent on the target 12 generates a particular coupling with the target, because of the configuration of the latter, for example the arrangement of openings 14 conducive to the propagation of certain wavelengths, thus improving the penetration of the signal into the target.
  • Radiofrequency waves are then broadcast by the target 12 in several directions. For example, they are directly reflected on the target or after penetration through the openings 14 of the target. These openings, when excited by a wave at the resonant frequency of the target, behave as antennas radiating a radiofrequency signal amplified by the resonance in all directions, in particular towards the inside of the target and towards the antennas E i of the network.
  • the amplitude of the radiofrequency waves scattered is a function of the radiofrequency signal received by the target and resonances thereof, that is to say the privileged frequencies generating optimal coupling.
  • the processing means T i analyze the frequency spectrum of the signals received and identify the frequencies having the largest amplitude corresponding to the frequencies for which a particular coupling has taken place between the target and the radiofrequency wave received by the target.
  • Each receiver R i receives a signal broadcast by the target having a frequency spectrum comprising the frequencies of the radio frequency test wave and, where appropriate their higher order harmonics, that is to say the multiples of these frequencies.
  • the test radiofrequency wave is detected by a non-linear element of the target, in particular by the electronic component 13.
  • the radiofrequency wave emitted towards the target has a frequency spectrum comprising four frequencies f 1 , f 2 , f 3 and f 4 of the same intensity or amplitude.
  • the signal received at the frequency f 3 has a greater amplitude compared to the signals received at the frequencies f 2 or f 4 on the receivers R 2 and R 4 , while on the receiver R 3 , the signal received at the frequencies f 2 and f 4 have the largest amplitudes.
  • a step 114 at least one preferred transmission frequency is chosen for each antenna E i as a function of the amplitude of the scattered waves received by each antenna E i . This step is implemented by the selection unit 50.
  • a radiofrequency wave is then emitted by each antenna E i from the network to the target at at least one frequency chosen from the previously preferred transmission frequencies during a step 116 so as to achieve a coherent addition to the target of the radio frequency waves. transmitted by the antennas E i of the network.
  • the preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for all the antennas E i of the network.
  • the or each frequency selected for the transmission of a radiofrequency wave by the antennas E i of the network are common for all the antennas E i of the antenna array.
  • a single frequency is selected for transmitting a radiofrequency wave for each transmitter P i of an antenna E i of the gap network.
  • all the antennas E i of the network then emit in phase coherence a signal at the selected frequency towards the target.
  • the frequency f 3 has the greatest amplitude for a majority of the antennas E i of the gap network.
  • each emitter P i of the antennas E i of the network emits in phase coherence a wave at the selected frequency f 3 .
  • the frequency f 3 has a small amplitude for the antenna E 3 , it is preferable to favor the emission for this antenna E 3 of a wave at the frequency f 4 which has a greater amplitude.
  • a large amplitude of a frequency in the frequency spectra of the signals received by the entire gap network is characteristic of a resonance of the target while a low level on one of the receivers R i of the antennas E i of the network is characteristic of an unfavorable diffusion direction.
  • This unfavorable direction of diffusion is then also unfavorable in the event of transmission at this frequency for the antenna E i in the orientation of the target in question. Therefore, it is therefore unwise to transmit a wave at this frequency for the antenna considered.
  • this antenna E i emits a wave at a frequency which has a greater amplitude for this antenna E i .
  • the preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for each antenna of the network.
  • each transmitter of the antenna array transmits a radiofrequency wave towards the target at the frequency having the greatest amplitude in the frequency spectrum of the radiofrequency signal re-broadcast by the target and received by the receiver R i of the antenna.
  • antenna E i of the network antenna E i of the network.
  • the frequency f 3 has the greatest amplitude for the antennas of the network E 2 and E N.
  • the antennas of the network E 3 and E i are respectively the frequencies f 4 and f 2 .
  • the transmitters of the antennas network E 2 , E 3 , E i and E N respectively emit a wave at the selected frequency f 3 , f 4 , f 2 , f 3 .
  • a set of frequencies is chosen by the selection unit 50 and the signal emitted by each transmitter P i of the lacunar network has a frequency spectrum comprising the frequencies of the set chosen.
  • the signal comprises several mono-frequency waves, each being transmitted at a frequency of the selected frequency set.
  • Each emitter P i of the antennas E i of the network transmits, in phase coherence, successively mono-frequency waves.
  • each transmitter P i of the antennas E i of the network transmits, in phase coherence, a mono-frequency wave successively to the two selected frequencies f 2 and f 3 .
  • the signal comprises an emitted wave which is then the sum of several mono-frequency waves, each having a frequency among the chosen frequency set.
  • the amplitude of the single-frequency waves in the radiofrequency wave transmitted is weighted according to the amplitude of their frequency in the frequency spectrum of the radio frequency signals received by all the antennas E i of the network.
  • the preferred transmission frequency or frequencies chosen are those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations.
  • the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 .
  • Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave.
  • the values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 .
  • the preferred transmission frequency chosen for all the antennas E i of the network is the frequency for which the function G is maximum. In particular, this function favors the frequencies allowing the detection of harmonics, which even at very low levels, correspond to frequencies having an effect on the electronics integrated in the target.
  • waves are emitted successively in the direction of the target at frequencies chosen according to all or part of the possible variants.
  • a measurement step 118 is implemented for each antenna E i of the network receiving a radiofrequency broadcast wave of travel time t i of the radiofrequency wave diffused between the target and the antenna E i of the network.
  • each antenna E i of the network emits a signal comprising at least one wave.
  • the frequency spectrum of this signal comprises at least one selected preferred transmission frequency.
  • the transit times t i ( ⁇ ) of the signal for each selected preferred transmission frequency ⁇ are measured by the processing means T i for example, by measuring the phase of the waves diffused by the target as a function of the frequencies of emission of the radiofrequency wave emitted by the antenna E i .
  • the antennas of the network transmit a signal comprising at least one radiofrequency wave towards the target at a time preceding the arrival time of the or each wave, each having a chosen preferred transmission frequency, on the expected target. of a duration equal to t i ( ⁇ ) / c where c is the celerity of the wave.
  • This step 118 is performed after step 114 of choosing at least one preferred frequency.
  • the antennas E i of the network are synchronized together.
  • the probe antenna transmits a synchronization signal at a reference instant T 0 .
  • This signal has a frequency spectrum comprising at least the test frequencies. Subsequently, the operation will be detailed only for a test frequency ⁇ to facilitate understanding.
  • This signal is received by each receiver of the antennas E i at time T 0 + t s ( ⁇ ) + t i ( ⁇ ), that is to say after a duration t s ( ⁇ ) of propagation of the signal of synchronization for a frequency ⁇ between the probe and the target and a duration t i ( ⁇ ) of propagation of the synchronization signal for a frequency ⁇ between the target and the receiver of the antenna E i .
  • Each antenna of the lacunary network then emits a wave at a time T 0 + t s ( ⁇ ) + t i ( ⁇ ) + T ( ⁇ ) - 2 t i ( ⁇ ) + kT ⁇ with k an integer.
  • T ( ⁇ ) is a predefined duration known as the increase time in order to be sure that all the receivers have received the synchronization wave at frequency ⁇ .
  • T is defined such that T ( ⁇ ) - 2 t i ( ⁇ )> 0 for all the antennas E i of the network.
  • the duration T is unique for all the test frequencies.
  • T f is the period corresponding to the emission frequency f .
  • t i can not be measured with sufficient accuracy, in this case the phase difference at the frequency ⁇ between the signal emitted by the antenna E i and the wave backscattered by the target is measured. and received by the antenna E i , which is equal to the travel time t i modulo the period T f .
  • Each radiofrequency wave transmitted at a preferred transmission frequency chosen ⁇ by an antenna E i of the lacunary network arrives on the target after a time t i , depending on the frequency ⁇ , that is to say at a given moment T 0 + t s ( ⁇ ) + T ( ⁇ ) + kT f .
  • all the waves arrive at the same time on the target so as to obtain a coherent addition of the signals on the target for each chosen preferred transmission frequency.
  • step 118 is carried out in parallel with or before step 114 of choosing at least one preferred frequency.
  • the chosen preferred transmission frequency or frequencies are, for example, those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations. as well as times t i .
  • the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 .
  • Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave.
  • the values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 .
  • the weighting coefficient h i depends on the travel time t i of the radiofrequency wave diffused between the target 12 and the antenna E i of the network.
  • the preferred transmission frequency chosen for the antennas E i of the network is the frequency for which the function G is maximum.
  • the link budget that is to say the quality of the the link is then more favorable for the antenna E 1 than for the antenna E 2 at the frequency ⁇ .
  • the amplitude of the signal received at the frequency ⁇ will be preponderant for the antenna E 1 . Therefore, the H function will be weighted to account for it.
  • the device and the method according to the invention make it possible to identify the most efficient frequencies (resonance, harmonic detection, orientation of the favorable target) and to transmit in phase coherence.
  • the choice of the optimal frequency is realized by the analysis of the level of the power received by the various antennas of the lacunary network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

La présente invention concerne un procédé de neutralisation d'une cible à distance et son dispositif associé. Le procédé de neutralisation d'une cible est du type comportant les étapes suivantes :

  • émission par une antenne sonde vers la cible d'un signal de test comportant au moins une onde radiofréquence de test et ayant un spectre fréquentiel comportant au moins deux fréquences de test distinctes ; et
  • réception par un réseau d'au moins deux antennes d'une pluralité d'ondes diffusées par la cible en réponse au signal de test, chaque antenne du réseau recevant au moins une onde diffusée par la cible.
The present invention relates to a method of neutralizing a remote target and its associated device. The method of neutralizing a target is of the type comprising the following steps:
  • transmitting by a probe antenna to the target a test signal comprising at least one test radio frequency wave and having a frequency spectrum comprising at least two distinct test frequencies; and
  • receiving by a network of at least two antennas a plurality of waves scattered by the target in response to the test signal, each antenna of the network receiving at least one wave broadcast by the target.

Plus particulièrement, l'invention concerne le domaine des armes hyperfréquences et des brouilleurs appliqués à la perturbation ou à la destruction d'équipements électroniques à distance, en particulier de systèmes d'arme ou d'engins explosifs.More particularly, the invention relates to the field of microwave weapons and jammers applied to the disruption or destruction of remote electronic equipment, particularly weapons systems or explosive devices.

Pour cela, il est primordial de bien choisir les fréquences des ondes émises en direction de la cible afin qu'elle capte le maximum d'énergie des ondes qu'elle reçoit pour la perturber. A moins de mettre en oeuvre des moyens très lourds dans le but d'émettre des puissances très élevées sur une large bande de fréquence, les émissions «en aveugle» ne permettent généralement pas de perturber notablement le fonctionnement d'une cible. Une solution est d'émettre des ondes à au moins une fréquence de résonance de la cible. Or l'excitation des fréquences de résonance de la cible dépend de nombreux paramètres tels que l'orientation relative entre la cible et l'émetteur des ondes radiofréquences émises.For that, it is essential to choose the frequencies of the waves emitted towards the target so that it captures the maximum energy of the waves it receives to disturb it. Unless very heavy means are used in order to emit very high powers over a wide frequency band, "blind" transmissions generally do not allow any significant disturbance of the operation of a target. One solution is to emit waves at at least one resonance frequency of the target. However, the excitation of the resonant frequencies of the target depends on many parameters such as the relative orientation between the target and the emitter of the radiofrequency waves emitted.

On connaît, notamment du document WO 2007/59508 , un procédé de neutralisation d'une cible, comportant une étape d'émission d'un signal large bande sur la cible par un émetteur et une étape de réception des signaux réémis par la cible par plusieurs récepteurs. Les signaux reçus sont ensuite inversés temporellement et renvoyés par plusieurs émetteurs à forte puissance en direction de la cible. Ce procédé permet d'émettre une onde dont la forme d'onde obtenue par retournement temporel est optimisée pour une position donnée de la cible.We know, particularly from the document WO 2007/59508 , a method for neutralizing a target, comprising a step of transmitting a broadband signal on the target by an emitter and a step of receiving the signals re-emitted by the target by several receivers. The received signals are then inverted temporally and returned by several high power transmitters towards the target. This method makes it possible to emit a wave whose waveform obtained by time reversal is optimized for a given position of the target.

Néanmoins, les méthodes de retournement temporel sont complexes et nécessitent des moyens de calcul importants.Nevertheless, time reversal methods are complex and require significant calculation means.

Le but de l'invention est de fournir un procédé de neutralisation d'une cible à distance à la fois efficace et dépourvu de traitements de signaux complexes et coûteux en temps de calcul.The object of the invention is to provide a method for neutralizing a remote target that is both efficient and without complex signal processing that is expensive in terms of calculation time.

A cet effet, l'invention a pour objet un procédé de neutralisation d'une cible du type précité, caractérisé en ce qu'il comprend au moins les étapes suivantes :

  • mesure d'une valeur représentative de l'amplitude des ondes diffusées par la cible en fonction des fréquences de test d'émission de l'onde radiofréquence ;
  • choix, pour chaque antenne du réseau, d'au moins une fréquence d'émission privilégiée en fonction de la valeur représentative de l'amplitude des ondes diffusées ; et
  • émission, par chaque antenne du réseau, d'au moins une onde radiofréquence vers la cible à au moins une fréquence privilégiée choisie précédemment pour cette antenne avec une phase assurant l'addition cohérente sur la cible des ondes radiofréquence émises par les antennes du réseau.
For this purpose, the subject of the invention is a method for neutralizing a target of the aforementioned type, characterized in that it comprises at least the following steps:
  • measuring a value representative of the amplitude of the waves diffused by the target as a function of the emission test frequencies of the radiofrequency wave;
  • selecting, for each antenna of the network, at least one preferred transmission frequency as a function of the value representative of the amplitude of the scattered waves; and
  • transmission, by each antenna of the network, of at least one radiofrequency wave towards the target at at least one privileged frequency previously chosen for this antenna with a phase ensuring the coherent addition on the target of radiofrequency waves emitted by the antennas of the network.

Suivant des modes particuliers de réalisation, le procédé de neutralisation d'une cible comporte l'une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :

  • une étape de mesure pour chaque antenne du réseau recevant une onde radiofréquence diffusée, du temps de parcours de l'onde radiofréquence diffusée entre la cible et l'antenne du réseau ;
  • chaque antenne du réseau est synchronisée avec l'antenne sonde et en ce qu'elle émet, vers la cible, l'onde radiofréquence à un instant défini en fonction du temps de parcours mesuré de l'onde radiofréquence diffusée entre la cible et l'antenne du réseau ;
  • une étape d'émission par l'antenne sonde d'un signal de synchronisation et une étape de réception de ce signal de synchronisation par chaque antenne du réseau qui se synchronise sur ce signal de synchronisation ;
  • la ou les fréquences d'émission privilégiées choisies sont celles dont la valeur représentative de l'amplitude est la plus élevée parmi les ondes radiofréquences diffusées reçues par l'ensemble des antennes du réseau et en ce que la ou chaque fréquence sélectionnée pour l'émission d'une onde radiofréquence par les antennes du réseau sont communes à toutes les antennes du réseau ;
  • la ou les fréquences d'émission privilégiées choisies pour l'antenne sont celles dont la valeur représentative de l'amplitude est la plus élevée parmi les ondes radiofréquences diffusées pour chaque antenne du réseau ;
  • la ou les fréquences d'émission privilégiées choisies sont celles qui satisfont l'atteinte du maximum d'une fonction prédéterminée dépendant des valeurs représentatives de l'amplitude des ondes diffusées par la cible pour plusieurs combinaisons de fréquences ; et
  • la fonction prédéterminée dépend du temps de parcours de l'onde radiofréquence diffusée entre la cible et l'antenne du réseau.
According to particular embodiments, the method of neutralizing a target comprises one or more of the following characteristics, taken alone or in combination:
  • a measurement step for each antenna of the network receiving a radiofrequency broadcast wave, the travel time of the radiofrequency wave broadcast between the target and the antenna of the network;
  • each antenna of the network is synchronized with the probe antenna and in that it transmits, towards the target, the radiofrequency wave at a defined instant as a function of the measured travel time of the radiofrequency wave diffused between the target and the network antenna;
  • a step of transmission by the probe antenna of a synchronization signal and a step of receiving this synchronization signal by each antenna of the network that synchronizes with this synchronization signal;
  • the preferred transmission frequency or frequencies chosen are those whose value representative of the amplitude is the highest among the broadcast radio waves received by all the antennas of the network and in that the or each frequency selected for transmission a radiofrequency wave by the antennas of the network are common to all the antennas of the network;
  • the preferred transmission frequency or frequencies chosen for the antenna are those whose value representative of the amplitude is the highest among the radiofrequency waves broadcast for each antenna of the network;
  • the preferred transmission frequency or frequencies chosen are those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target for several frequency combinations; and
  • the predetermined function depends on the travel time of the radiofrequency wave broadcast between the target and the antenna of the network.

L'invention a également pour objet un dispositif de neutralisation d'une cible du type comportant :

  • une antenne sonde, adaptée pour émettre vers la cible un signal de test comportant au moins une onde radiofréquence de test et ayant un spectre fréquentiel comportant au moins deux fréquences de test distinctes,
  • un réseau d'au moins deux antennes, chacune adaptée pour recevoir au moins une onde radiofréquence diffusée par la cible en réponse au signal de test et pour émettre vers la cible au moins une onde radiofréquence,
le dispositif étant caractérisé en ce que :
  • chaque antenne du réseau comprend des moyens de mesure d'une valeur représentative de l'amplitude des ondes diffusées par la cible en fonction des fréquences de test d'émission de l'onde radiofréquence ;
  • le dispositif comporte une unité de sélection d'au moins une fréquence d'émission privilégiée, pour chaque antenne du réseau, en fonction de la valeur représentative de l'amplitude des ondes diffusées ;
  • chaque antenne du réseau est propre à émettre une onde radiofréquence vers la cible à au moins une fréquence privilégiée choisie précédemment pour cette antenne avec une phase assurant l'addition cohérente sur la cible des ondes radiofréquence émises par les antennes du réseau ; et
en ce que le dispositif est adapté à mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes.The invention also relates to a device for neutralizing a target of the type comprising:
  • a probe antenna adapted to transmit to the target a test signal comprising at least one test radio frequency wave and having a frequency spectrum comprising at least two distinct test frequencies,
  • a network of at least two antennas, each adapted to receive at least one radiofrequency wave broadcast by the target in response to the test signal and to transmit at least one radiofrequency wave to the target,
the device being characterized in that:
  • each antenna of the network comprises means for measuring a value representative of the amplitude of the waves diffused by the target as a function of the emission test frequencies of the radiofrequency wave;
  • the device comprises a selection unit of at least one preferred transmission frequency, for each antenna of the network, as a function of the value representative of the amplitude of the scattered waves;
  • each antenna of the network is capable of transmitting a radiofrequency wave towards the target at at least one privileged frequency previously chosen for this antenna with a phase ensuring the coherent addition on the target of the radiofrequency waves emitted by the antennas of the network; and
in that the device is adapted to implement the method according to any one of the preceding claims.

Suivant un mode particulier de réalisation, le dispositif de neutralisation comporte la caractéristique suivante : le réseau d'antennes comporte l'antenne sonde, l'antenne sonde étant adaptée pour recevoir une onde radiofréquence diffusée par la cible.According to a particular embodiment, the neutralization device has the following characteristic: the antenna array comprises the probe antenna, the probe antenna being adapted to receive a radiofrequency wave broadcast by the target.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins, sur lesquels :

  • la figure 1 est un schéma synoptique illustrant un mode de réalisation d'un dispositif de neutralisation d'une cible selon l'invention, et
  • la figure 2 est un schéma bloc illustrant le procédé de neutralisation mis en oeuvre par le dispositif de la figure 1.
The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the drawings, in which:
  • the figure 1 is a block diagram illustrating an embodiment of a target neutralization device according to the invention, and
  • the figure 2 is a block diagram illustrating the method of neutralization implemented by the device of the figure 1 .

L'invention concerne un procédé de neutralisation d'une cible à distance et son dispositif associé. Un tel procédé a pour but de neutraliser des systèmes comprenant des composants électroniques.The invention relates to a method of neutralizing a remote target and its associated device. Such a method is intended to neutralize systems comprising electronic components.

En effet, il est connu que des composants électroniques soumis à de fortes émissions électromagnétiques peuvent être perturbés dans leur fonctionnement. En particulier, pour une fréquence donnée, une onde électromagnétique envoyée sur la cible engendre un couplage particulier avec la cible, du fait de la configuration de cette dernière et notamment de la présence de câbles électriques, de l'agencement d'ouvertures propices à la propagation de certaines longueurs d'ondes, de la nature des matériaux et composants intégrés dans la cible. La fréquence optimale de couplage est celle pour laquelle l'onde pénètre le mieux dans la cible, celle qui permet un couplage important avec des câbles et/ou avec des composants électroniques sensibles.Indeed, it is known that electronic components subjected to high electromagnetic emissions can be disturbed in their operation. In particular, for a given frequency, an electromagnetic wave sent to the target generates a particular coupling with the target, because of the configuration of the latter and in particular the presence of electric cables, the arrangement of openings conducive to the propagation of certain wavelengths, the nature of the materials and components integrated into the target. The optimal coupling frequency is that for which the wave penetrates best into the target, that which allows a strong coupling with cables and / or with sensitive electronic components.

Pour cela, le procédé selon l'invention a pour but d'identifier les fréquences les plus efficaces (résonance, détection d'harmoniques) et de les émettre en cohérence de phase.For this, the method according to the invention aims to identify the most efficient frequencies (resonance, harmonic detection) and emit them in phase coherence.

La figure 1 illustre un mode de réalisation selon l'invention d'un dispositif 10 de neutralisation d'une cible 12 comprenant au moins un composant électronique actif 13 et une ouverture 14.The figure 1 illustrates an embodiment according to the invention of a device 10 for neutralizing a target 12 comprising at least one active electronic component 13 and an opening 14.

Le dispositif 10 comporte plusieurs d'antennes désignées par la référence générale Ei, avec i un nombre entier compris entre 1 et N. Cette pluralité d'antennes forme un réseau lacunaire d'antennes, également appelé antenne lacunaire.The device 10 comprises several antennas designated by the general reference E i , with i an integer between 1 and N. This plurality of antennas forms a lacunary network of antennas, also called gap antenna.

Une des antennes est particulièrement adaptée pour émettre en direction de la cible un signal radiofréquence de test ayant un spectre fréquentiel comportant au moins deux fréquences distinctes et comportant au moins une onde radiofréquence. Dans la suite, cette antenne est appelée antenne sonde 16.One of the antennas is particularly suitable for transmitting towards the target a radio frequency test signal having a frequency spectrum comprising at least two distinct frequencies and comprising at least one radiofrequency wave. In the following, this antenna is called probe antenna 16.

Par exemple, l'antenne sonde émet un signal de test comportant une seule onde radiofréquence ayant un spectre comportant au moins deux fréquences distinctes.For example, the probe antenna transmits a test signal comprising a single radiofrequency wave having a spectrum comprising at least two distinct frequencies.

Dans un autre exemple, l'antenne sonde émet un signal de test comportant plusieurs ondes radiofréquence successives, chacune de ces ondes radiofréquence étant soit mono-fréquentielle soit ayant un spectre comportant au moins deux fréquences distinctes.In another example, the probe antenna emits a test signal comprising a plurality of successive radiofrequency waves, each of these radiofrequency waves being either mono-frequency or having a spectrum comprising at least two distinct frequencies.

Les antennes Ei du réseau lacunaire comportent chacune un récepteur Ri propre à recevoir une onde radiofréquence diffusée par la cible et un émetteur Pi propre à émettre vers la cible une onde radiofréquence.The antennas E.sub.i of the lacunary network each comprise a receiver R.sub.i capable of receiving a radiofrequency wave diffused by the target and a transmitter P.sub.I capable of transmitting a radiofrequency wave towards the target.

En outre, chaque antenne Ei du réseau lacunaire comporte des moyens de traitement Ti des ondes radiofréquences diffusées par la cible, connectés à l'émetteur Pi et au récepteur Ri de l'antenne.In addition, each antenna E i of the lacunary network comprises processing means T i radiofrequency waves broadcast by the target, connected to the transmitter P i and the receiver R i of the antenna.

Ces moyens de traitement Ti comprennent des moyens de mesure de l'amplitude des ondes diffusées par la cible en fonction des fréquences d'émission de l'onde radiofréquence émise par l'antenne sonde 16, ou de tout autre valeur représentative de l'amplitude telle que la puissance instantanée ou l'intensité.These processing means T i comprise means for measuring the amplitude of the waves diffused by the target as a function of the emission frequencies of the wave radio frequency transmitted by the probe antenna 16, or any other value representative of the amplitude such as instantaneous power or intensity.

En outre, les moyens de traitement Ti comportent des moyens de mesure du temps de parcours ti des ondes radiofréquence diffusées entre la cible et l'antenne Ei du réseau en fonction des fréquences d'émission de l'onde radiofréquence, ou de tout autre valeur représentative du temps de parcours ti telle que la phase des ondes radiofréquence diffusées par la cible et reçues par chaque antenne Ei du réseau.Moreover, the processing means T i comprise means for measuring the travel time t i radiofrequency waves diffused between the target and the antenna E i of the network as a function of the radiofrequency wave emission frequencies, or any other representative value of the travel time t i such as the phase of the radiofrequency waves broadcast by the target and received by each antenna E i of the network.

Enfin, le dispositif 10 comporte une unité 50 de sélection d'au moins une fréquence d'émission privilégiée en fonction de l'amplitude et du temps de parcours ti des ondes diffusées reçues par chacune des antennes Ei. Cette unité 50 comporte des moyens d'attribution à chaque émetteur Pi de chaque antenne Ei, d'un ensemble de fréquences d'émission privilégiées éventuellement propre à chaque antenne Ei.Finally, the device 10 comprises a unit 50 for selecting at least one preferred transmission frequency as a function of the amplitude and the travel time t i of the scattered waves received by each of the antennas E i . This unit 50 comprises means for assigning to each transmitter P i of each antenna E i a set of preferred transmission frequencies possibly specific to each antenna E i .

L'unité 50 est propre également à fournir à l'antenne sonde 16 un ensemble de fréquences de test propres à être mise en oeuvre dans un signal radiofréquence de test adressé initialement sur la cible 12.The unit 50 is also able to provide the probe antenna 16 with a set of test frequencies suitable for being implemented in a radio frequency test signal initially sent to the target 12.

Selon une variante, l'antenne sonde est indépendante du réseau lacunaire.According to one variant, the probe antenna is independent of the gap network.

Le dispositif 10 est adapté pour mettre en oeuvre le procédé de neutralisation 100 selon l'invention qui va maintenant être décrit en regard de la figure 2.The device 10 is adapted to implement the neutralization method 100 according to the invention which will now be described with regard to the figure 2 .

Au cours d'une étape 110, l'antenne sonde 16 émet un signal radiofréquence de test en direction de la cible. Ce signal radiofréquence a un spectre fréquentiel comportant au moins deux fréquences différentes afin d'accéder à un couplage optimal avec la cible dont la section efficace varie fortement avec la fréquence.During a step 110, the probe antenna 16 transmits a radio frequency test signal towards the target. This radiofrequency signal has a frequency spectrum comprising at least two different frequencies in order to reach an optimal coupling with the target whose effective cross section varies greatly with the frequency.

Par exemple, ce signal est un signal ayant un spectre fréquentiel large bande, d'une largeur d'au moins 100 MHz.For example, this signal is a signal having a broadband frequency spectrum of a width of at least 100 MHz.

Selon un autre exemple, ce signal est un train d'ondes radiofréquences, chaque onde ayant un spectre fréquentiel étroit, de l'ordre de 10 à 100 kHz.In another example, this signal is a radio frequency wave train, each wave having a narrow frequency spectrum, of the order of 10 to 100 kHz.

De préférence, le spectre fréquentiel du signal émis se situe dans la gamme de 1 à 5 GHz.Preferably, the frequency spectrum of the transmitted signal is in the range of 1 to 5 GHz.

Ensuite, pour un certain nombre de fréquences dites privilégiées, le signal radiofréquence de test envoyé sur la cible 12 engendre un couplage particulier avec la cible, du fait de la configuration de cette dernière, par exemple l'agencement d'ouvertures 14 propices à la propagation de certaines longueurs d'ondes, améliorant ainsi la pénétration du signal dans la cible.Then, for a certain number of so-called preferred frequencies, the radio frequency test signal sent on the target 12 generates a particular coupling with the target, because of the configuration of the latter, for example the arrangement of openings 14 conducive to the propagation of certain wavelengths, thus improving the penetration of the signal into the target.

Des ondes radiofréquences sont alors diffusées par la cible 12 dans plusieurs directions. Par exemple, elles sont directement réfléchies sur la cible ou bien après la pénétration par les ouvertures 14 de la cible. Ces ouvertures, lorsqu'elles sont excitées par une onde à la fréquence de résonance de la cible, se comportent comme des antennes rayonnant un signal radiofréquence amplifié par la résonance dans toutes les directions, en particulier vers l'intérieur de la cible et en direction des antennes Ei du réseau.Radiofrequency waves are then broadcast by the target 12 in several directions. For example, they are directly reflected on the target or after penetration through the openings 14 of the target. These openings, when excited by a wave at the resonant frequency of the target, behave as antennas radiating a radiofrequency signal amplified by the resonance in all directions, in particular towards the inside of the target and towards the antennas E i of the network.

L'amplitude des ondes radiofréquences diffusées sont fonction du signal radiofréquence reçu par la cible et des résonances de celle-ci, c'est-à-dire des fréquences privilégiées engendrant un couplage optimal.The amplitude of the radiofrequency waves scattered is a function of the radiofrequency signal received by the target and resonances thereof, that is to say the privileged frequencies generating optimal coupling.

Elles sont reçues par les récepteurs Ri d'au moins deux antennes du réseau lacunaire au cours d'une étape 112. Les moyens de traitement Ti des signaux diffusés par la cible et reçus par les récepteurs Ri analysent ces signaux afin de détecter les fréquences de résonance de la cible, c'est-à-dire les fréquences privilégiées.They are received by the receivers R i of at least two antennas of the gap network during a step 112. The processing means T i signals broadcast by the target and received by the receivers R i analyze these signals to detect the resonance frequencies of the target, that is to say the preferred frequencies.

Pour cela, les moyens de traitement Ti analysent le spectre fréquentiel des signaux reçus et identifient les fréquences ayant la plus grande amplitude correspondant aux fréquences pour lesquelles un couplage particulier a eu lieu entre la cible et l'onde radiofréquence reçue par la cible.For this, the processing means T i analyze the frequency spectrum of the signals received and identify the frequencies having the largest amplitude corresponding to the frequencies for which a particular coupling has taken place between the target and the radiofrequency wave received by the target.

Chaque récepteur Ri reçoit un signal diffusé par la cible ayant un spectre fréquentiel comportant les fréquences de l'onde radiofréquence de test et, le cas échéant de leurs harmoniques d'ordre supérieur, c'est-à-dire les multiples de ces fréquences lorsque l'onde radiofréquence de test est détectée par un élément non linéaire de la cible, en particulier par le composant électronique 13.Each receiver R i receives a signal broadcast by the target having a frequency spectrum comprising the frequencies of the radio frequency test wave and, where appropriate their higher order harmonics, that is to say the multiples of these frequencies. when the test radiofrequency wave is detected by a non-linear element of the target, in particular by the electronic component 13.

Un exemple de spectre fréquentiel de signaux reçus par les récepteurs sont illustrés sur la figure 1. Dans cet exemple, l'onde radiofréquence émise en direction de la cible a un spectre fréquentiel comportant quatre fréquences f1, f2, f3 et f4 de même intensité ou amplitude.An example of a frequency spectrum of signals received by the receivers is illustrated on the figure 1 . In this example, the radiofrequency wave emitted towards the target has a frequency spectrum comprising four frequencies f 1 , f 2 , f 3 and f 4 of the same intensity or amplitude.

Par exemple, le signal reçu à la fréquence f3 a une plus grande amplitude par rapport aux signaux reçus aux fréquences f2 ou f4 sur les récepteurs R2 et R4, tandis que sur le récepteur R3, le signal reçu aux fréquences f2 et f4 ont les amplitudes les plus grandes.For example, the signal received at the frequency f 3 has a greater amplitude compared to the signals received at the frequencies f 2 or f 4 on the receivers R 2 and R 4 , while on the receiver R 3 , the signal received at the frequencies f 2 and f 4 have the largest amplitudes.

Au cours d'une étape 114, au moins une fréquence d'émission privilégiée est choisie pour chaque antenne Ei en fonction de l'amplitude des ondes diffusées reçues par chaque antenne Ei. Cette étape est mise en oeuvre par l'unité 50 de sélection.During a step 114, at least one preferred transmission frequency is chosen for each antenna E i as a function of the amplitude of the scattered waves received by each antenna E i . This step is implemented by the selection unit 50.

Une onde radiofréquence est alors émise par chaque antenne Ei du réseau vers la cible à au moins une fréquence choisie parmi les fréquences d'émission privilégiées précédemment au cours d'une étape 116 de sorte à réaliser une addition cohérente sur la cible des ondes radiofréquence émises par les antennes Ei du réseau.A radiofrequency wave is then emitted by each antenna E i from the network to the target at at least one frequency chosen from the previously preferred transmission frequencies during a step 116 so as to achieve a coherent addition to the target of the radio frequency waves. transmitted by the antennas E i of the network.

La ou les fréquences d'émission privilégiées choisies sont celles auxquelles correspond l'amplitude la plus élevée des ondes radiofréquences diffusées pour l'ensemble des antennes Ei du réseau. Dans ce cas, la ou chaque fréquence sélectionnée pour l'émission d'une onde radiofréquence par les antennes Ei du réseau sont communes pour toutes les antennes Ei du réseau d'antennes.The preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for all the antennas E i of the network. In this case, the or each frequency selected for the transmission of a radiofrequency wave by the antennas E i of the network are common for all the antennas E i of the antenna array.

Par exemple, une seule fréquence est sélectionnée pour l'émission d'une onde radiofréquence pour chaque émetteur Pi d'une antenne Ei du réseau lacunaire. Dans ce cas, l'ensemble des antennes Ei du réseau émettent alors en cohérence de phase un signal à la fréquence sélectionnée en direction de la cible.For example, a single frequency is selected for transmitting a radiofrequency wave for each transmitter P i of an antenna E i of the gap network. In this case, all the antennas E i of the network then emit in phase coherence a signal at the selected frequency towards the target.

Pour l'exemple de spectres fréquentiels des ondes radiofréquence reçues par les antennes Ei du réseau illustré sur la figure 1, la fréquence f3 a l'amplitude la plus grande pour une majorité des antennes Ei du réseau lacunaire. Dans ce cas, chaque émetteur Pi des antennes Ei du réseau émet en cohérence de phase une onde à la fréquence sélectionnée f3. Néanmoins, la fréquence f3 ayant une amplitude faible pour l'antenne E3, il est préférable de privilégier l'émission pour cette antenne E3 d'une onde à la fréquence f4 qui a une amplitude plus grande.For the example of frequency spectra of the radiofrequency waves received by the antennas E i of the network illustrated on FIG. figure 1 the frequency f 3 has the greatest amplitude for a majority of the antennas E i of the gap network. In this case, each emitter P i of the antennas E i of the network emits in phase coherence a wave at the selected frequency f 3 . Nevertheless, since the frequency f 3 has a small amplitude for the antenna E 3 , it is preferable to favor the emission for this antenna E 3 of a wave at the frequency f 4 which has a greater amplitude.

Une forte amplitude d'une fréquence dans les spectres fréquentiels des signaux reçus par l'ensemble du réseau lacunaire est caractéristique d'une résonance de la cible tandis qu'un faible niveau sur l'un des récepteurs Ri des antennes Ei du réseau est caractéristique d'une direction de diffusion défavorable. Cette direction de diffusion défavorable est alors également défavorable en cas d'émission à cette fréquence pour l'antenne Ei dans l'orientation de la cible considérée. Par conséquent, il est donc peu judicieux d'émettre une onde à cette fréquence pour l'antenne considérée. Dans ce cas, cette antenne Ei émet une onde à une fréquence qui a une amplitude plus grande pour cette antenne Ei.A large amplitude of a frequency in the frequency spectra of the signals received by the entire gap network is characteristic of a resonance of the target while a low level on one of the receivers R i of the antennas E i of the network is characteristic of an unfavorable diffusion direction. This unfavorable direction of diffusion is then also unfavorable in the event of transmission at this frequency for the antenna E i in the orientation of the target in question. Therefore, it is therefore unwise to transmit a wave at this frequency for the antenna considered. In this case, this antenna E i emits a wave at a frequency which has a greater amplitude for this antenna E i .

Selon une première variante, la ou les fréquences d'émission privilégiées choisies sont celles auxquelles correspond l'amplitude la plus élevée des ondes radiofréquences diffusées pour chaque antenne du réseau.According to a first variant, the preferred transmission frequency or frequencies chosen are those corresponding to the highest amplitude of the radiofrequency waves broadcast for each antenna of the network.

Dans ce cas, chaque émetteur du réseau d'antenne émet une onde radiofréquence en direction de la cible à la fréquence ayant la plus grande amplitude dans le spectre fréquentiel du signal radiofréquence réémis par diffusion par la cible et reçu par le récepteur Ri de l'antenne Ei du réseau.In this case, each transmitter of the antenna array transmits a radiofrequency wave towards the target at the frequency having the greatest amplitude in the frequency spectrum of the radiofrequency signal re-broadcast by the target and received by the receiver R i of the antenna. antenna E i of the network.

Pour l'exemple illustré sur la figure 1, la fréquence f3 a l'amplitude la plus grande pour les antennes du réseau E2 et EN. Pour les antennes du réseau E3 et Ei, il s'agit respectivement des fréquences f4 et f2. Dans ce cas, les émetteurs des antennes du réseau E2, E3, Ei et EN émettent respectivement une onde à la fréquence sélectionnée f3, f4, f2, f3.For the example shown on the figure 1 , the frequency f 3 has the greatest amplitude for the antennas of the network E 2 and E N. For the antennas of the network E 3 and E i , they are respectively the frequencies f 4 and f 2 . In this case, the transmitters of the antennas network E 2 , E 3 , E i and E N respectively emit a wave at the selected frequency f 3 , f 4 , f 2 , f 3 .

Selon une troisième variante, un jeu de fréquences est choisi par l'unité 50 de sélection et le signal émis par chaque émetteur Pi du réseau lacunaire a un spectre fréquentiel comportant les fréquences du jeu choisi.According to a third variant, a set of frequencies is chosen by the selection unit 50 and the signal emitted by each transmitter P i of the lacunar network has a frequency spectrum comprising the frequencies of the set chosen.

Par exemple, le signal comporte plusieurs ondes mono-fréquentielles, chacune étant émise à une fréquence du jeu de fréquences choisi. Chaque émetteur Pi des antennes Ei du réseau émet, en cohérence de phase, successivement les ondes mono-fréquentielles.For example, the signal comprises several mono-frequency waves, each being transmitted at a frequency of the selected frequency set. Each emitter P i of the antennas E i of the network transmits, in phase coherence, successively mono-frequency waves.

Dans le cas des spectres fréquentiels des ondes radiofréquence reçues par les antennes Ei du réseau illustré sur la figure 1, les fréquences f2 et f3 ont les amplitudes les plus grandes en moyenne pour l'ensemble des antennes Ei du réseau lacunaire. Dans ce cas, chaque émetteur Pi des antennes Ei du réseau émet, en cohérence de phase, une onde mono-fréquentielle successivement aux deux fréquences choisies f2 et f3.In the case of the frequency spectra of the radiofrequency waves received by the antennas E i of the network illustrated on FIG. figure 1 the frequencies f 2 and f 3 have the largest amplitudes on average for all the antennas E i of the gap network. In this case, each transmitter P i of the antennas E i of the network transmits, in phase coherence, a mono-frequency wave successively to the two selected frequencies f 2 and f 3 .

Selon un autre exemple, le signal comporte une onde émise qui est alors la somme de plusieurs ondes mono-fréquentielles, chacune ayant une fréquence parmi le jeu de fréquence choisi. L'amplitude des ondes mono-fréquentielles dans l'onde radiofréquence émise est pondérée en fonction de l'amplitude de leur fréquence dans le spectre fréquentiel des signaux radiofréquences reçus par sur l'ensemble des antennes Ei du réseau.According to another example, the signal comprises an emitted wave which is then the sum of several mono-frequency waves, each having a frequency among the chosen frequency set. The amplitude of the single-frequency waves in the radiofrequency wave transmitted is weighted according to the amplitude of their frequency in the frequency spectrum of the radio frequency signals received by all the antennas E i of the network.

Selon une quatrième variante, la ou les fréquences d'émission privilégiées choisies sont celles qui satisfont l'atteinte du maximum d'une fonction prédéterminée dépendant des valeurs représentatives de l'amplitude des ondes diffusées par la cible 12 pour plusieurs combinaisons de fréquences.According to a fourth variant, the preferred transmission frequency or frequencies chosen are those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations.

Par exemple, l'onde radiofréquence de test a un spectre fréquentiel comportant deux fréquences f1 et f2. Chaque récepteur Ri reçoit une des ondes radiofréquences diffusée par la cible en réponse à l'onde radiofréquence de test. Les valeurs représentatives de l'amplitude de ces ondes diffusées sur chaque récepteur Ri sont notées Ui1 et Ui2 pour les fréquences f1 et f2. L'unité de sélection 50 calcule pour chaque fréquence f1 et f2 une fonction prédéterminée G f i = i g i × U ij

Figure imgb0001
gi est un coefficient de pondération prédéterminé de la fréquence fi. La fréquence d'émission privilégiée choisie pour l'ensemble des antennes Ei du réseau est la fréquence pour laquelle la fonction G est maximale. En particulier, cette fonction privilégie les fréquences permettant la détection d'harmoniques, qui même à des niveaux très faibles, correspondent à des fréquences ayant eu un effet sur l'électronique intégrée dans la cible.For example, the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 . Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave. The values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 . The selection unit 50 calculates for each frequency f 1 and f 2 a predetermined function BOY WUT f i = Σ i boy Wut i × U ij
Figure imgb0001
where g i is a predetermined weighting coefficient of the frequency f i . The preferred transmission frequency chosen for all the antennas E i of the network is the frequency for which the function G is maximum. In particular, this function favors the frequencies allowing the detection of harmonics, which even at very low levels, correspond to frequencies having an effect on the electronics integrated in the target.

Les diverses variantes possibles ne sont pas exclusives les unes des autres. De façon avantageuse, des ondes sont émises successivement en direction de la cible à des fréquences choisies selon tout ou partie des variantes envisageables.The various possible variants are not exclusive of each other. Advantageously, waves are emitted successively in the direction of the target at frequencies chosen according to all or part of the possible variants.

Afin de réaliser l'addition cohérente sur la cible des ondes radiofréquence émises par les antennes du réseau, une étape de mesure 118 est mise en oeuvre pour chaque antenne Ei du réseau recevant une onde radiofréquence diffusée du temps de parcours ti de l'onde radiofréquence diffusée entre la cible et l'antenne Ei du réseau.In order to achieve the coherent addition on the target of the radiofrequency waves emitted by the antennas of the network, a measurement step 118 is implemented for each antenna E i of the network receiving a radiofrequency broadcast wave of travel time t i of the radiofrequency wave diffused between the target and the antenna E i of the network.

Pour cela, chaque antenne Ei du réseau émet un signal comportant au moins une onde. Le spectre fréquentiel de ce signal comporte au moins une fréquence d'émission privilégiée choisie. Ensuite, les temps de parcours ti(ƒ) du signal pour chaque fréquence ƒ d'émission privilégiée choisie sont mesurés par les moyens de traitement Ti par exemple, en mesurant la phase des ondes diffusées par la cible en fonction des fréquences d'émission de l'onde radiofréquence émise par l'antenne Ei.For this, each antenna E i of the network emits a signal comprising at least one wave. The frequency spectrum of this signal comprises at least one selected preferred transmission frequency. Then, the transit times t i ( ƒ ) of the signal for each selected preferred transmission frequency ƒ are measured by the processing means T i for example, by measuring the phase of the waves diffused by the target as a function of the frequencies of emission of the radiofrequency wave emitted by the antenna E i .

Enfin, les antennes du réseau émettent un signal comportant au moins une onde radiofréquence en direction de la cible à un instant devançant l'instant d'arrivée de la ou chaque onde, ayant chacune une fréquence d'émission privilégiée choisie, sur la cible escomptée d'une durée égale à ti(ƒ)/c ou c est la célérité de l'onde.Finally, the antennas of the network transmit a signal comprising at least one radiofrequency wave towards the target at a time preceding the arrival time of the or each wave, each having a chosen preferred transmission frequency, on the expected target. of a duration equal to t i ( ƒ ) / c where c is the celerity of the wave.

Cette étape 118 est réalisée postérieurement à l'étape 114 de choix d'au moins une fréquence privilégiée.This step 118 is performed after step 114 of choosing at least one preferred frequency.

En outre, les antennes Ei du réseau sont synchronisées ensemble. Pour cela, l'antenne sonde émet un signal de synchronisation à un instant de référence T0. Ce signal a un spectre fréquentiel comportant au moins les fréquences de test. Par la suite, le fonctionnement ne sera détaillé que pour une fréquence de test ƒ afin d'en faciliter la compréhension. Ce signal est reçu par chaque récepteur des antennes Ei à l'instant T 0 + ts (ƒ) + ti (ƒ), c'est-à-dire après une durée ts (ƒ) de propagation du signal de synchronisation pour une fréquence ƒ entre la sonde et la cible et une durée ti (ƒ) de propagation du signal de synchronisation pour une fréquence ƒ entre la cible et le récepteur de l'antenne Ei.In addition, the antennas E i of the network are synchronized together. For this purpose, the probe antenna transmits a synchronization signal at a reference instant T 0 . This signal has a frequency spectrum comprising at least the test frequencies. Subsequently, the operation will be detailed only for a test frequency ƒ to facilitate understanding. This signal is received by each receiver of the antennas E i at time T 0 + t s ( ƒ ) + t i ( ƒ ), that is to say after a duration t s ( ƒ ) of propagation of the signal of synchronization for a frequency ƒ between the probe and the target and a duration t i ( ƒ ) of propagation of the synchronization signal for a frequency ƒ between the target and the receiver of the antenna E i .

Chaque antenne du réseau lacunaire émet alors une onde à un instant T 0 + ts (ƒ) + ti (ƒ) + T(ƒ) - 2ti (ƒ) + k.Tƒ avec k un nombre entier.Each antenna of the lacunary network then emits a wave at a time T 0 + t s ( ƒ ) + t i ( ƒ ) + T ( ƒ ) - 2 t i ( ƒ ) + kT ƒ with k an integer.

T(ƒ) est une durée prédéfinie dite durée de majoration afin d'être sûr que tous les récepteurs ont reçu l'onde de synchronisation à la fréquence ƒ. T est définie de telle sorte que T(ƒ) - 2ti (ƒ) > 0 pour toutes les antennes Ei du réseau. Selon une variante, la durée T est unique pour toutes les fréquences de test. T ( ƒ ) is a predefined duration known as the increase time in order to be sure that all the receivers have received the synchronization wave at frequency ƒ . T is defined such that T ( ƒ ) - 2 t i ( ƒ )> 0 for all the antennas E i of the network. According to one variant, the duration T is unique for all the test frequencies.

Tf est la période correspondant à la fréquence f d'émission. Par exemple, ti est mesuré avec une précision suffisante, dans ce cas k=0. Selon un autre exemple, ti ne peut pas être mesuré avec une précision suffisante, dans ce cas, on mesure l'écart de phase à la fréquence ƒ entre le signal émis par l'antenne Ei et l'onde rétrodiffusée par la cible et reçue par l'antenne Ei, qui est égal au temps de parcours ti modulo la période Tf . T f is the period corresponding to the emission frequency f . For example, t i is measured with sufficient accuracy, in this case k = 0. According to another example, t i can not be measured with sufficient accuracy, in this case the phase difference at the frequency ƒ between the signal emitted by the antenna E i and the wave backscattered by the target is measured. and received by the antenna E i , which is equal to the travel time t i modulo the period T f .

Chaque onde radiofréquence émise à une fréquence d'émission privilégiée choisie ƒ par une antenne Ei du réseau lacunaire arrive sur la cible au bout d'un temps ti, dépendant de la fréquence ƒ, c'est-à-dire à un instant T 0 + ts (ƒ) + T(ƒ) + k.Tf . Ainsi, toutes les ondes arrivent en même temps sur la cible de sorte à obtenir une addition cohérente des signaux sur la cible pour chaque fréquence d'émission privilégiée choisie.Each radiofrequency wave transmitted at a preferred transmission frequency chosen ƒ by an antenna E i of the lacunary network arrives on the target after a time t i , depending on the frequency ƒ , that is to say at a given moment T 0 + t s ( ƒ ) + T ( ƒ ) + kT f . Thus, all the waves arrive at the same time on the target so as to obtain a coherent addition of the signals on the target for each chosen preferred transmission frequency.

Selon un autre mode de réalisation du procédé, l'étape 118 est réalisée parallèlement ou avant l'étape 114 de choix d'au moins une fréquence privilégiée.According to another embodiment of the method, step 118 is carried out in parallel with or before step 114 of choosing at least one preferred frequency.

Dans ce cas, la ou les fréquences d'émission privilégiées choisies sont par exemple, celles qui satisfont l'atteinte du maximum d'une fonction prédéterminée dépendant des valeurs représentatives de l'amplitude des ondes diffusées par la cible 12 pour plusieurs combinaisons de fréquences ainsi que des temps ti.In this case, the chosen preferred transmission frequency or frequencies are, for example, those which satisfy the achievement of the maximum of a predetermined function depending on the values representative of the amplitude of the waves diffused by the target 12 for several frequency combinations. as well as times t i .

Par exemple, l'onde radiofréquence de test a un spectre fréquentiel comportant deux fréquences f1 et f2. Chaque récepteur Ri reçoit une des ondes radiofréquences diffusée par la cible en réponse à l'onde radiofréquence de test. Les valeurs représentatives de l'amplitude de ces ondes diffusées sur chaque récepteur Ri sont notées Ui1 et Ui2 pour les fréquences f1 et f2. L'unité de sélection 50 calcule pour chaque fréquence f1 et f2 une fonction prédéterminée H f i = i h i × U ij

Figure imgb0002
hi est un coefficient de pondération prédéterminé de la fréquence fi. Le coefficient de pondération hi dépend du temps de parcours ti de l'onde radiofréquence diffusée entre la cible 12 et l'antenne Ei du réseau. La fréquence d'émission privilégiée choisie pour les antennes Ei du réseau est la fréquence pour laquelle la fonction G est maximale.For example, the test radio frequency wave has a frequency spectrum having two frequencies f 1 and f 2 . Each receiver R i receives one of the radiofrequency waves broadcast by the target in response to the radio frequency test wave. The values representative of the amplitude of these waves diffused on each receiver R i are denoted U i1 and U i2 for the frequencies f 1 and f 2 . The selection unit 50 calculates for each frequency f 1 and f 2 a predetermined function H f i = Σ i h i × U ij
Figure imgb0002
where h i is a predetermined weighting coefficient of the frequency f i . The weighting coefficient h i depends on the travel time t i of the radiofrequency wave diffused between the target 12 and the antenna E i of the network. The preferred transmission frequency chosen for the antennas E i of the network is the frequency for which the function G is maximum.

Par exemple, si le temps de parcours à la fréquence ƒ est plus faible pour le récepteur Ri qui est donc plus proche que le récepteur R2 de la cible 12, le bilan de liaison, c'est-à-dire la qualité de la liaison, est alors plus favorable pour l'antenne E1 que pour l'antenne E2 à la fréquence ƒ. Ainsi, l'amplitude du signal reçu à la fréquence ƒ sera prépondérante pour l'antenne E1. Par conséquent, la fonction H sera pondérée pour en tenir compte.For example, if the travel time at the frequency ƒ is lower for the receiver R i which is therefore closer than the receiver R 2 of the target 12, the link budget, that is to say the quality of the the link is then more favorable for the antenna E 1 than for the antenna E 2 at the frequency ƒ . Thus, the amplitude of the signal received at the frequency ƒ will be preponderant for the antenna E 1 . Therefore, the H function will be weighted to account for it.

Le dispositif et le procédé selon l'invention permettent d'identifier les fréquences les plus efficaces (résonance, détection d'harmoniques, orientation de la cible favorable) et d'émettre en cohérence de phase. Le choix de la fréquence optimale est réalisé par l'analyse du niveau de la puissance reçue par les diverses antennes du réseau lacunaire.The device and the method according to the invention make it possible to identify the most efficient frequencies (resonance, harmonic detection, orientation of the favorable target) and to transmit in phase coherence. The choice of the optimal frequency is realized by the analysis of the level of the power received by the various antennas of the lacunary network.

En outre, ils permettent d'utiliser les antennes du réseau lacunaire disponibles sans préjuger de leur position par rapport à la cible.In addition, they make it possible to use the antennas of the lacunary network available without prejudging their position relative to the target.

Claims (10)

  1. A method for neutralizing (100) a target (12), comprising the following steps:
    - the transmission (110) by a probe antenna (16) toward the target (12) of a test signal comprising at least one test radiofrequency wave and having a frequency spectrum comprising at least two distinct test frequencies;
    - reception by an array of at least two antennas (Ei) of a plurality of waves scattered by the target in response to the test signal, each antenna of the array receiving at least one wave scattered by the target (12);
    said method being characterized in that it comprises at least the following steps:
    - measuring a representative value of the amplitude of the waves scattered by the target (12) as a function of the transmission test frequencies of the radiofrequency waves;
    - choosing (114), for each antenna (Ei) of the array, at least one favored transmission frequency as a function of the representative value of the amplitude of the scattered waves; and
    - transmitting, by each antenna (Ei) of the array, at least one radiofrequency wave toward the target (12) at a minimum of one favored frequency chosen beforehand for that antenna with a phase ensuring the coherent addition on the target of the radiofrequency waves transmitted by the antennas of the array.
  2. The neutralization method according to claim 1, characterized in that it comprises a measuring step for each antenna (Ei) of the array receiving a scattered radiofrequency wave, to measure the travel time (ti) of the scattered radiofrequency wave between the target (12) and the antenna (Ei) of the array.
  3. The neutralization method according to claim 2, characterized in that each antenna (Ei) of the array is synchronized with the probe antenna (16) and in that it transmits, toward the target (12), the radiofrequency wave at a defined moment as a function of the measured travel time of the scattered radiofrequency wave between the target (12) and the antenna (Ei) of the array.
  4. The neutralization method according to claim 3, characterized in that it comprises a step for transmission by the probe antenna (16) of a synchronization signal and a step for reception of that synchronization signal by each antenna (Ei) of the array, which synchronizes itself on said synchronization signal.
  5. The neutralization method according to any one of claims 1 to 4, characterized in that the selected favored transmission frequency or frequencies are those whereof the representative value of the amplitude is the highest among the scattered radiofrequency waves received by all of the antennas (Ei) in the array and in that the or each selected frequency for the transmission of a radiofrequency wave by the antennas of the array are shared by all of the antennas (Ei) of the array.
  6. The neutralization method according to any one of claims 1 to 4, characterized in that the selected favored transmission frequency or frequencies for the antenna (Ei) are those whereof the value representative of the amplitude is highest among the scattered radiofrequency waves for each antenna of the array.
  7. The neutralization method according to any one of claims 1 to 4, characterized in that the selected favored transmission frequency or frequencies are those that meet the expectation of the maximum of a predetermined function depending on the values representative of the amplitude of the waves scattered by the target (12) for several frequency combinations.
  8. The neutralization method according to claim 7 when it depends on claim 2, characterized in that the predetermined function depends on the travel time (ti) of the scattered radiofrequency wave between the target (12) and the antenna (Ei) of the array.
  9. A device (10) for neutralizing a target (12) comprising:
    - a probe antenna (16), adapted to transmit, toward the target (12), a test signal comprising at least one test radiofrequency wave and having a frequency spectrum comprising at least two distinct test frequencies,
    - an array of at least two antennas (Ei), each adapted to receive at least one radiofrequency wave scattered by the target (12) in response to the test signal and to transmit at least one radiofrequency wave toward the target,
    the device being characterized in that:
    - each antenna (Ei) of the array comprises means (Ti) for measuring the value representative of the amplitude of the waves scattered by the target (12) as a function of the transmission test frequencies of the radiofrequency wave;
    - the device comprises a unit (50) for selecting at least one favored transmission frequency, for each antenna (Ei) of the array, as a function of the value representative of the amplitude of the scattered waves;
    - each antenna (Ei) of the array is capable of transmitting a radiofrequency wave toward the target (12) at a minimum of one favored frequency chosen beforehand for that antenna with a phase ensuring the coherent addition on the target (12) of the radiofrequency waves transmitted by the antennas of the array; and
    in that the device is adapted to implement the method according to claim 1.
  10. The neutralization device according to claim 9, characterized in that the antenna (Ei) array comprises the probe antenna (16), the probe antenna (16) being adapted to receive a radiofrequency wave scattered by the target (12).
EP11306780.5A 2010-12-29 2011-12-27 Method and device for the neutralisation of a target Active EP2472215B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1005160A FR2970072B1 (en) 2010-12-29 2010-12-29 METHOD AND DEVICE FOR NEUTRALIZING A TARGET

Publications (2)

Publication Number Publication Date
EP2472215A1 EP2472215A1 (en) 2012-07-04
EP2472215B1 true EP2472215B1 (en) 2013-08-28

Family

ID=45443000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306780.5A Active EP2472215B1 (en) 2010-12-29 2011-12-27 Method and device for the neutralisation of a target

Country Status (3)

Country Link
US (1) US20120212363A1 (en)
EP (1) EP2472215B1 (en)
FR (1) FR2970072B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103778B4 (en) * 2014-03-19 2023-04-20 Rheinmetall Waffe Munition Gmbh Procedure in which an object is warded off and/or disturbed
DE102014014117A1 (en) * 2014-09-24 2016-03-24 Diehl Bgt Defence Gmbh & Co. Kg A defense device for controlling an unmanned aerial vehicle, a protective device for controlling an unmanned aerial vehicle, and a method for operating a protective device
RU2594306C1 (en) * 2015-03-03 2016-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method of protecting objects from fire systems
DE102016009408B4 (en) 2016-08-04 2020-06-18 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Electromagnetic mobile active system
LT6913B (en) * 2020-07-03 2022-05-25 Vilniaus Universitetas Method for remote disturbance of electronic equipment
CN112769410A (en) * 2020-12-25 2021-05-07 西安讯飞超脑信息科技有限公司 Filter construction method, audio processing method, electronic equipment and storage device
US11946726B2 (en) 2022-07-26 2024-04-02 General Atomics Synchronization of high power radiofrequency sources

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191343A (en) * 1992-02-10 1993-03-02 United Technologies Corporation Radar target signature detector
FR2718228B1 (en) * 1994-03-31 1997-09-26 Excem Electromagnetic method and device for air defense by generation of a resonant aggression.
US6163259A (en) * 1999-06-04 2000-12-19 Research Electronics International Pulse transmitting non-linear junction detector
GB0103429D0 (en) * 2001-02-13 2001-03-28 Audiotel Internat Ltd Non-linear junction detector
US7515094B2 (en) * 2004-10-18 2009-04-07 Nokomis, Inc. Advanced electromagnetic location of electronic equipment
US7142147B2 (en) * 2004-11-22 2006-11-28 The Boeing Company Method and apparatus for detecting, locating, and identifying microwave transmitters and receivers at distant locations
WO2007059508A1 (en) * 2005-11-15 2007-05-24 University Of Florida Research Foundation, Inc. Time reversal antenna network based directed energy systems
US7629918B2 (en) * 2005-12-15 2009-12-08 Raytheon Company Multifunctional radio frequency directed energy system
US7512511B1 (en) * 2006-03-30 2009-03-31 The Boeing Company Improvised explosive device countermeasures
DE102006038627A1 (en) * 2006-08-17 2008-02-21 Rheinmetall Waffe Munition Gmbh Device and method for detecting non-linear electronic components or circuits, in particular a detonator or the like
DE102006038626A1 (en) * 2006-08-17 2008-02-28 Rheinmetall Waffe Munition Gmbh Method for permanent disruption / destruction of electronics, in particular a detonator or the like
US8184036B2 (en) * 2007-05-11 2012-05-22 Sky Industries Inc. Method and device for estimation of the transmission characteristics of a radio frequency system
US8299924B2 (en) * 2007-06-06 2012-10-30 The Boeing Company Method and apparatus for locating objects using radio frequency identification
IL184672A (en) * 2007-07-17 2012-10-31 Eran Ben-Shmuel Apparatus and method for concentrating electromagnetic energy on a remotely-located object
US20100295717A1 (en) * 2008-01-29 2010-11-25 Rourk Christopher J Weapon detection and elimination system
US7773025B2 (en) * 2008-01-30 2010-08-10 The Boeing Company Remote circuit interaction
WO2009145904A1 (en) * 2008-05-29 2009-12-03 Raytheon Company Target tracking system and method with jitter reduction suitable for directed energy systems
US8035550B2 (en) * 2008-07-03 2011-10-11 The Boeing Company Unbalanced non-linear radar
IL196102A (en) * 2008-12-22 2016-09-29 Rafael Advanced Defense Systems Ltd Laser beam unification
US8054213B2 (en) * 2009-10-13 2011-11-08 The Boeing Company Multiple beam directed energy system
US8537050B2 (en) * 2009-10-23 2013-09-17 Nokomis, Inc. Identification and analysis of source emissions through harmonic phase comparison

Also Published As

Publication number Publication date
EP2472215A1 (en) 2012-07-04
FR2970072B1 (en) 2013-02-08
FR2970072A1 (en) 2012-07-06
US20120212363A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
EP2472215B1 (en) Method and device for the neutralisation of a target
EP3411728B1 (en) Method for jamming synthetic aperture radars and associated device
US7777672B2 (en) Radar system and method
US7777671B2 (en) Radar system and method
EP2831615B1 (en) Device for active and passive electromagnetic detection with a low likelihood of interception
EP2217944B1 (en) Device for detecting objects, particularly dangerous objects
EP3234638B1 (en) Method for determining parameters of a compression filter and associated multichannel radar
EP3803452B1 (en) Method for determining a characteristic of a receiver in a medium and system implementing this method
Ghasempour et al. LeakyTrack: Non-coherent single-antenna nodal and environmental mobility tracking with a leaky-wave antenna
FR2907249A1 (en) DEVICE AND METHOD FOR DETECTING THE PRESENCE OF AN OBJECT
FR2741451A1 (en) MULTI-TARGET TELEMETRIC SYSTEM
EP2737337B1 (en) Device for clutter-resistant target detection
EP3040727A1 (en) Method for measuring and locating the passive intermodulation of a device being tested
EP3654059B1 (en) Method for creating at least one virtual reception channel through the use of a radar antenna and radar system
FR3094797A1 (en) METHOD AND DEVICE FOR RADAR TRANSMISSION RECEPTION BY DYNAMIC CHANGE OF POLARIZATION, ESPECIALLY FOR THE IMPLEMENTATION OF INTERLACED RADAR MODES
EP3726243B1 (en) Method for scrambling of the electronic signature transmitted by a radar, and transmitting/receiving device suitable for implementing same
EP3211452A1 (en) Device for detecting objects carried by an individual
US10514443B2 (en) Method for evaluating radar radiation, and radar apparatus
EP1818684B1 (en) Hyperfrequency detection method and detector using said method
FR2931948A1 (en) Transmission and reception active antenna's near-field figure-of-merit determining device for airborne nose-section radar of aircraft, has surface with interconnection of positioning points of probe at distances about few wavelength
EP2729832A1 (en) Device for detecting at least one object buried in a pile and method implemented in such a device.
EP3077853A1 (en) System and method for measuring the width of a fault on a site to be monitored
WO2011076670A1 (en) System and method for forming a wave beam from antennas movable relative to each other
FR2892831A1 (en) Frequency modulated continuous wave radar system for detecting intrusion of e.g. vehicle, has microprocessor calculating equivalent radar cross-section map from difference of two stored maps to determine distance and size of object
EP3377914A2 (en) Method for locating a beacon by angles of arrival

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 629594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011002850

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 629594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131230

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131129

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011002850

Country of ref document: DE

BERE Be: lapsed

Owner name: THALES

Effective date: 20131231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011002850

Country of ref document: DE

Effective date: 20140530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171211

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191227

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 13

Ref country code: DE

Payment date: 20231208

Year of fee payment: 13