EP2469061A2 - Method and control equipment for determining a carbon black loading of a particulate filter - Google Patents

Method and control equipment for determining a carbon black loading of a particulate filter Download PDF

Info

Publication number
EP2469061A2
EP2469061A2 EP11008841A EP11008841A EP2469061A2 EP 2469061 A2 EP2469061 A2 EP 2469061A2 EP 11008841 A EP11008841 A EP 11008841A EP 11008841 A EP11008841 A EP 11008841A EP 2469061 A2 EP2469061 A2 EP 2469061A2
Authority
EP
European Patent Office
Prior art keywords
soot
lambda
value
determined
setpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11008841A
Other languages
German (de)
French (fr)
Other versions
EP2469061B1 (en
EP2469061A3 (en
Inventor
Andreas Dr. Ruhnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2469061A2 publication Critical patent/EP2469061A2/en
Publication of EP2469061A3 publication Critical patent/EP2469061A3/en
Application granted granted Critical
Publication of EP2469061B1 publication Critical patent/EP2469061B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to a method for determining a soot load of a particulate filter, which is arranged in an exhaust path of an internal combustion engine, which is operated with a predetermined fuel mass setpoint and with an air mass corresponding to a predetermined boost pressure setpoint.
  • the invention further relates to a control device configured for carrying out the method.
  • particulate filters are used in exhaust systems of internal combustion engines, in particular diesel engines, in order to filter out soot and other particulate exhaust components from the exhaust gas.
  • the particulate filters In order to maintain their filter capacity, the particulate filters must be cleaned of soot from time to time (approximately every 500 to 1500 km). To do this, the engine is switched from the normal mode to the particulate filter regeneration mode where exhaust gas temperatures of 550 to 650 ° C are generated at which the stored soot mass on the filter is consumed by consuming atmospheric oxygen. To determine the need for regeneration, the determination of the exact load of the particulate filter is of great importance.
  • the soot mass actually stored in the particulate filter is greater than that determined, unacceptably high temperatures can occur during regeneration as a result of the soot overburden, which can lead to impairment of the filter.
  • the determined load is considered to be too high in the opposite case, the permissible loading capacity of the filter is not fully utilized, resulting in increased fuel consumption due to unnecessarily frequent particle filter regeneration.
  • increased engine oil degradation can lead to increased engine wear due to increased engine oil dilution.
  • a known approach to determining a particulate filter loading exploits the fact that with increasing load the exhaust backpressure in front of the filter increases. Specifically, the exhaust gas backpressure or the pressure difference upstream and downstream of the filter is measured by means of pressure sensors and compared with an operating point-dependent threshold, the exceeding of which leads to the triggering of the filter regeneration.
  • DE 101 40 048 B4 describes a method for determining a particle load of a diesel particulate filter, which is connected downstream of a charged by means of an exhaust gas turbocharger diesel engine.
  • a boost pressure sensor by means of a boost pressure sensor, a current boost pressure in the intake manifold is measured and compared with an operating point-dependent reference boost pressure.
  • the reference boost pressure corresponds to a boost pressure to be expected at the present operating point in the case of a regenerated, ie particle-free particulate filter. If the difference between the reference boost pressure and the measured boost pressure exceeds a threshold value, this is regarded as an indication of a critical fill level of the diesel particulate filter and the filter is regenerated.
  • a fundamentally different approach to pressure or differential pressure measurement provide model-based methods that model the soot loading by the soot mass flow of the exhaust gas and thus the Rußeintrag is estimated in the filter.
  • operating point-dependent maps are used which indicate the soot content of the exhaust gas as a function of the operating point, usually in the form of engine speed and engine load (which flows according to target torque or fuel mass).
  • the filter loading is determined by integration.
  • soot entry as a function of the engine operating point is determined according to the map, this corresponds to the nominal state for a system in the stationary steady state, in which the Häregelnden operating parameters, such as supplied air and fuel mass, EGR rate, etc. and thus the air-fuel ratio lambda to coincide with the actual present.
  • the Häregelnden operating parameters such as supplied air and fuel mass, EGR rate, etc. and thus the air-fuel ratio lambda to coincide with the actual present.
  • inertia-related control deviations lead to emissions which differ greatly from stationary soot emissions, and which are difficult to detect. This is due to the fact that, especially in highly dynamic driving cycles, the majority of the soot emissions are a consequence of unsteady and therefore difficult to detect engine operating states is.
  • a model-based method for determining the particulate filter loading is known, which derives the soot content of the exhaust gas from maps that use the measured or estimated lambda actual value and the current exhaust gas recirculation rate (EGR rate) as state variables for the operating point.
  • EGR rate can be determined, for example, as a function of the quotient of the gas pressure in the intake manifold and the exhaust gas pressure upstream of the turbine of the turbocharger.
  • the invention is based on the object of providing a method for determining the loading of a particulate filter which has increased accuracy and is valid for different engine operating modes and is therefore easy to implement.
  • the determination of the load should be able to be performed in real time, for example, in the electronic engine control unit and require the least possible calibration effort.
  • a control unit suitable for carrying out the method is to be provided.
  • the inventive method accordingly relates to the determination of a soot loading of a particulate filter, which is arranged in an exhaust path of an internal combustion engine, which is operated with a predetermined fuel mass setpoint and with an air mass corresponding to a predetermined boost pressure setpoint.
  • a soot entry into the particulate filter is determined by determining the soot entry for a corresponding stationary operating point and correcting it so that a deviation of the soot entry due to the transient operating situation is taken into account.
  • the deviation of the soot entry due to the transient operating situation at least as a function of the predetermined boost pressure setpoint and a measured boost pressure actual value is determined, wherein in a preferred embodiment additionally a measured lambda actual value flows into the determination.
  • the advantage of this procedure is that the method works exclusively with (in principle exact) measured and calculated values and is able to take into account the influence of a lambda deviation ( ⁇ ) of a stationary lambda (lambda reference value) on the soot emission of the engine without the lambda reference value having to be derived from operating point dependent maps to be determined empirically. Rather, the lambda deviation mainly responsible for the transient deviation of the soot emission is determined exclusively mathematically and only from the lambda deviation a soot emission value is determined, for which a simple, empirically determined characteristic curve is sufficient. As a result, the method is characterized by a very high accuracy. In addition, the thus derived influence of the lambda deviation on the soot emission is valid for each operating mode of the internal combustion engine.
  • charge pressure is understood in a broad sense and includes a pressure of the internal combustion engine supplied and present in front of the intake valve combustion air regardless of the Luftzuersart. In particular, it comprises the charge pressure generated by a charge air charger, for example an exhaust gas turbocharger, with which the internal combustion engine is operated. However, the term also includes - in the case of uncharged engines - the intake pressure. The term “charge pressure” is thus to be understood as “charge or intake pressure”.
  • a lambda reference value is determined as a function of the predetermined boost pressure setpoint value, the measured boost pressure actual value and the measured lambda actual value, and a soot emission reference value or a value correlating therewith as a function of the lambda Reference value is determined and this value is included in the correction.
  • this lambda reference value requires no derivation via empirically determined operating point-dependent maps and is valid for each engine operating mode.
  • soot emission actual value or a value correlating therewith to be dependent on the measured lambda actual value is determined and this value is included in the correction.
  • soot emission reference value and the actual value of the soot emissions can be read from an empirically determined characteristic curve as a function of the lambda reference value or lambda actual value.
  • a (first) correction factor is determined from the ratio of the soot emission actual value and the soot emission reference value or from the corresponding correlating values, which is included in the correction, in particular by multiplication with the stationary soot mass flow.
  • the subject matter of the present invention is furthermore a control device for determining a soot charge of a particle filter, which is set up to carry out the method according to the invention.
  • the control device can be implemented in particular in an electronic engine control unit. To carry out the method, it may contain a corresponding algorithm in stored and computer readable form and a stored lambda-dependent characteristic curve which maps a soot emission value or a correlating value, in particular a dimensionless soot emission characteristic, as a function of lambda.
  • FIG. 1 shows a total of 10 designated internal combustion engine, which is in particular a diesel engine.
  • the internal combustion engine 10 comprises a plurality of cylinders 12 to which fuel is supplied via a fuel injection system 14 by means of a premixing, but usually directly.
  • the cylinders 12 are connected to an intake manifold 16, for example, via an intake manifold, not shown, via which an air supply into the combustion chambers of the cylinder 12 takes place to represent therein an ignitable air-fuel mixture corresponding to a desired LambdaSollwert.
  • the intake pipe 16 may optionally contain a controllable adjusting element 18, for example a throttle valve.
  • the exhaust passage 20 includes a particulate filter 22, in particular a diesel particulate filter DPF.
  • a particulate filter 22 upstream catalyst 24 is shown:
  • the upstream catalyst 24 or other catalysts may include, for example, an oxidation catalyst, a NO x storage catalyst or a CRT catalyst.
  • Exhaust gas recirculation systems divert a partial flow of exhaust gas from the exhaust duct 20 in a known manner and lead it back to the combustion process of the engine 10 by being introduced approximately into the intake manifold 16 or into the exhaust manifold. In this way, combustion temperatures can be lowered and thus reduce the formation of nitrogen oxides.
  • Exhaust gas turbochargers comprise a turbine arranged in the exhaust duct 20, which - driven by the kinetic energy of the exhaust gas - drives a compressor arranged in the intake pipe via a shaft in order to thus compress the charge air of the internal combustion engine 10 and thereby achieve higher outputs.
  • the internal combustion engine 10 and its components also have a control and regulating system whose central element is an engine control unit 26, on the one hand via Signal lines (in FIG. 1 shown with dashed arrows) receives signals from various sensors 28, 30 and on the other hand via control lines (solid arrows) various actuators 14, 18 controls.
  • the control unit 26 receives a signal from a lambda probe 28 arranged in the exhaust duct 20, which correlates with an oxygen content of the exhaust gas and thus with the lambda actual value ⁇ actual .
  • the lambda probe should preferably be designed as a broadband probe and is preferably installed at a position close to the engine upstream of the first catalytic converter 24.
  • a pressure sensor 30 in the intake pipe 16 or the intake manifold is arranged, which detects a boost pressure actual value p_L i s t and transmitted to the engine control unit 26.
  • the pressure sensor 30 is preferably arranged downstream of the compressor, in particular downstream of an air charging radiator.
  • Other sensors typically include a speed sensor that measures engine speed n and a sensor (eg, a pedal encoder) that provides a signal corresponding to engine load L to engine control unit 26.
  • temperature sensors for detecting the engine and / or coolant temperature, pressure sensors for detecting the ambient pressure, gas sensors for detecting exhaust gas components such as NO x and the like may be provided.
  • control unit 26 determines, using stored characteristic maps 32, operating parameters of the internal combustion engine 10 and corresponding control signals for the actuators in order to represent desired setpoint values.
  • control unit 36 determines a current operating point of the internal combustion engine 10, in particular in the form of the speed n and the engine load L, and determined from a stored map depending on the operating point a fuel mass setpoint m_K Sol / and controls the fuel injection system 14, for example with a corresponding opening time signal to supply the engine 10, the desired fuel mass.
  • control unit 26 determines from a further stored map as a function of the operating point (n, L) a boost pressure setpoint p_L S o // and controls the throttle valve 18 and / or the compressor of the turbocharger with a corresponding position signal to the desired boost pressure to represent in the intake manifold.
  • the boost pressure p_L and the fuel mass m_K are controlled in the closed loop by the measured actual value p_L lst so that control deviations are minimized.
  • the particle filter 22 collects the soot contained in the exhaust gas and possibly other particulate constituents and must be regenerated upon reaching a critical load value, to restore its original loading capacity and thus its filter function.
  • approaches are known in the art which continuously determine and integrate soot input and soot discharge into and out of the DPF 22 by soot mass simulation models, thus resulting in a cumulative load that can be compared to the load threshold ,
  • FIG. 2 Such a known in the art model is in the block diagram of FIG. 2 shown schematically. This model takes into account four influences that either increase the load or reduce the load.
  • the soot mass flow from the engine emission flows into the model during stationary operation to increase the load (branch a in FIG. 2 ).
  • the current soot emission of the engine determined assuming a steady state.
  • soot mass flow from the engine emission which also increases the load, is taken into account in unsteady, ie dynamic operation (branch b in FIG. 2 ).
  • This is mainly caused by the transient deviations of the current lambda value ⁇ lst from the stationary lambda value ⁇ REF at the current operating point.
  • input variables are, in addition to the rotational speed and the torque, the measured lambda actual value. Details for determining the transient soot mass flow according to this prior art will be described below in connection with FIG. 3 explained.
  • a NO x regeneration is taken into account in order to reduce the load, with the assumption of sufficient exhaust gas temperatures that the soot in the particulate filter burns off due to the nitrogen oxides such as NO 2 present in the exhaust gas (branch c in FIG. 2 ).
  • the NO x regeneration usually occurs spontaneously and is triggered by high exhaust gas temperatures and not initiated arbitrarily.
  • the input quantity is the exhaust gas temperature.
  • thermal soot regeneration which is usually initiated arbitrarily when a loading threshold value is reached, is taken into account by initiating measures to increase the exhaust gas and / or filter temperature (branch d in FIG. 2 ). Since the thermal regeneration with consumption of oxygen of the exhaust gas as the oxidant takes place, as input variables for determining the Rußaustragsrate next to the speed, the torque and the exhaust gas temperature and the lambda value.
  • Corresponding maps are used for all components a) to d), which indicate the soot entry into the DPF or the soot discharge from the DPF, for example in the form of soot mass flows with the unit mg / m 3 or mg / h, depending on the input variables mentioned depict.
  • the four individual values a) to d) are continuously calculated by addition or subtraction and integrated (accumulated) over the operating time, so that the result of the determination is an absolute soot mass or a correlated therewith size, which are compared with a predetermined critical loading threshold can.
  • the lambda actual value is detected by measurement in the exhaust gas flow. Furthermore, from the current operating point, which is read in the form of the current rotational speed and the current torque, a stationary lambda reference value is determined, which is taken from an empirically determined characteristic map (lambda reference characteristic map) as a function of the rotational speed and the torque. By subtraction formation, the lambda deviation ⁇ is calculated, which together with the measured lambda actual value enter into a soot mass flow characteristic map in order to take from it the transient soot mass flow which is added to the stationary soot mass flow.
  • the basic defect of this known procedure is that the lambda reference map is only valid for a single operating mode of the internal combustion engine.
  • Diesel engines of the most modern type which have an exhaust aftertreatment system for nitrogen oxides, such as a NO x storage catalytic converter, but are driven with at least six and sometimes more different modes, including for example normal operation, Oxidation Catalyst Heating Operation, DPF Preheating, DPF Regeneration, NO x Storage Catalyst Regeneration, NO x Storage Catalyst Desulfurization, and possibly others.
  • the transient deviation of the soot entry is determined at least as a function of the predetermined boost pressure setpoint and a measured, actual instantaneous boost pressure actual value, preferably also as a function of the measured, actual instantaneous lambda actual value.
  • the current operating point in particular in the form of the current engine speed and the current engine torque, incorporated into the model.
  • a lambda reference value ⁇ REF in response to the predetermined charge pressure setpoint p_l setpoint, the measured charging pressure actual value p_ L / st and the measured actual lambda value ⁇ / st determined and a Rußemissions reference value or a hereby correlated value depending the lambda reference value ⁇ REF determined.
  • the lambda reference value ⁇ REF corresponds to the lambda value which would occur if the control variable of the boost pressure p_L were regulated to its desired value, ie if steady-state conditions existed.
  • ⁇ REF is determined as a function of the operating point (rotational speed, torque) from empirically determined lambda reference characteristic curves
  • ⁇ REF exclusively measured values (actual lambda value and boost pressure actual value) flow into the lambda reference value ⁇ REF used according to the invention
  • Calculated value of the boost pressure setpoint since these measured and calculated values, including all influences on the boost pressure set value (such as changing ambient pressure etc.) represent the current operating situation of the engine, the method according to the invention ⁇ REF regardless of individual operating modes, but generally valid for all operating modes of the engine.
  • the measured and calculated variables are available anyway in every step of the electronic engine control unit. Also, the method requires no complex calibration, but results solely by the inventive calculation approach.
  • FIG. 4 An overview of the principle of the inventive method is in FIG. 4 shown, wherein the branches a), c) and d) basically according to conventional methods, as already associated with FIG. 2 could be determined.
  • Significant difference to known methods is here so the procedure for taking into account the transient influences on the soot emission of the engine in branch b), depending on the boost pressure feedback and the boost pressure setpoint and optionally also the lambda feedback, the current speed and the current torque is determined. From these quantities, a correction factor is finally formed which, by multiplication with the stationary soot emission from branch a), leads to a soot mass flow (or soot entry) which maps the actual unsteady soot mass flow with very good accuracy.
  • the air-fuel ratio lambda ⁇ is defined by the relationship of equation (1), where m_L is the air mass, m_K is the fuel mass and r is the stoichiometric ratio for complete conversion of the oxygen content.
  • m _ L r ⁇ m_ K With r ⁇ 14.7
  • the lambda control deviation ⁇ depends exclusively on the lambda actual value ⁇ , p _ L s and p oll from the charging pressure actual value _ L is the boost pressure setpoint value.
  • the lambda actual value ⁇ can be measured in a known manner by means of a lambda probe in the exhaust gas.
  • the actual value Labe réelle p _ L can by means of a pressure sensor in the intake tract can be detected, for example, in or in front of an intake manifold. After all, it is the labed pressure setpoint
  • p_L should be able to be predetermined in a known manner by a calculated value, which may be dependent on the operating point, for example as a function of the current engine speed and the current engine torque, for example from empirically determined and stored in the engine control maps. Since in diesel engines, the boost pressure is usually the control variable for the control of the air mass supplied to the engine, its setpoint and its actual value are always determined anyway and are therefore always present in the engine control unit.
  • the stationary soot emission can - as usual in the art - with the input variables speed, torque and optional ambient pressure from stored emission maps, which have been determined empirically under stationary conditions for the individual operating points represented (branch a).
  • the lambda actual value ⁇ ist in the exhaust gas with the lambda probe 28 (p. FIG. 1 ) detected in the exhaust gas.
  • the lambda actual value ⁇ actual is the input value of a characteristic curve_1 , which maps the soot emission or a value correlated therewith as a function of lambda.
  • a characteristic curve_1 maps the soot emission or a value correlated therewith as a function of lambda.
  • FIG. 6 shown here, wherein according to a preferred embodiment, the soot emission in the form of a dimensionless normalized Ruße.missionskennwerts is shown.
  • Output variable of this process step is thus a Rußemissionskennwert (soot emission actual value) for the actually measured lambda value ⁇ lst .
  • the pressure sensor 30 in the intake system measured charge pressure actual value p_L lst and in particular the characteristic map as a function of speed and torque determined boost pressure setpoint p_L Soll read and calculated by dividing the ratio of the two. This ratio is then multiplied by the lambda actual value ⁇ lst to obtain the lambda reference value ⁇ REF according to equation (3).
  • the lambda reference value ⁇ REF is the input quantity of the characteristic curve_1 according to FIG FIG. 6 from which a soot emission characteristic value (soot emission reference value) for the lambda reference value ⁇ REF is determined.
  • a correction factor 1 is obtained, which mathematically takes into account the lambda deviations ⁇ in transient operating situations.
  • the correction factor_1 can be applied in a simple embodiment of the invention without further modification by multiplication on the stationary soot emission from branch a) and thus lead to a corrected, unsteady soot mass flow (not shown).
  • the accuracy of the method can be further improved by an empirically determined characteristic map (Kennfeld_2 in FIG. 5 ) introducing an operating point dependent sensitivity (gain).
  • a second correction factor (correction factor_2) is determined from the map_2, which takes into account the operating point of the internal combustion engine.
  • the correction factor is identical 1 irrespective of how large the operating point-dependent correction factor_2 is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The method involves determining a soot entry of a particulate filter (22) to determine soot loading in the filter during transient operating phase. The soot entry is corrected in stationary operating phase such that deviation of soot entry in transient operating phase is considered. The deviation of soot entry is determined as a function of preset boost pressure setting point and actual value of charging pressure. An independent claim is included for control unit for determining soot loading of particulate filter in internal combustion engine.

Description

Die Erfindung betrifft ein Verfahren zur Ermittlung einer Rußbeladung eines Partikelfilters, welcher in einem Abgasweg einer Verbrennungskraftmaschine angeordnet ist, die mit einem vorbestimmten Kraftstoffmassen-Sollwert und mit einer Luftmasse entsprechend einem vorbestimmten Ladedruck-Sollwert betrieben wird. Die Erfindung betrifft ferner eine zur Ausführung des Verfahrens eingerichtete Steuereinrichtung.The invention relates to a method for determining a soot load of a particulate filter, which is arranged in an exhaust path of an internal combustion engine, which is operated with a predetermined fuel mass setpoint and with an air mass corresponding to a predetermined boost pressure setpoint. The invention further relates to a control device configured for carrying out the method.

Bekannterweise werden Partikelfilter in Abgasanlagen von Verbrennungskraftmaschinen, insbesondere Dieselmotoren, eingesetzt, um Ruß und andere partikulären Abgasbestandteile aus dem Abgas herauszufiltern. Um ihre Filterkapazität zu erhalten, müssen von Zeit zu Zeit (etwa nach jeweils 500 bis 1500 km) die Partikelfilter vom Ruß befreit werden. Dazu wird der Motor von der Normalbetriebsart in die Partikelfilterregenerationsbetriebsart umgeschaltet, bei der Abgastemperaturen von 550 bis 650 °C erzeugt werden, bei denen die gespeicherte Rußmasse auf dem Filter unter Verbrauch von Luftsauerstoff abgebrannt wird. Zur Feststellung der Regenerationsnotwendigkeit ist die Ermittlung der genauen Beladung des Partikelfilters von großer Bedeutung. Ist nämlich die tatsächlich in dem Partikelfilter gespeicherte Rußmasse größer als die ermittelte, können bei der Regeneration unzulässig hohe Temperaturen infolge der Rußüberbeladung auftreten, die zur Beeinträchtigung des Filters führen können. Wird die ermittelte Beladung im umgekehrten Fall hingegen als zu hoch eingeschätzt, wird die zulässige Beladungskapazität des Filters nicht vollständig genutzt mit der Folge eines erhöhten Kraftstoffverbrauchs aufgrund der unnötig häufigen Partikelfilterregenerationen. Darüber hinaus kann es infolge verstärkter Motorölverdünnung zu erhöhtem Triebwerkverschleiß kommen.As is known, particulate filters are used in exhaust systems of internal combustion engines, in particular diesel engines, in order to filter out soot and other particulate exhaust components from the exhaust gas. In order to maintain their filter capacity, the particulate filters must be cleaned of soot from time to time (approximately every 500 to 1500 km). To do this, the engine is switched from the normal mode to the particulate filter regeneration mode where exhaust gas temperatures of 550 to 650 ° C are generated at which the stored soot mass on the filter is consumed by consuming atmospheric oxygen. To determine the need for regeneration, the determination of the exact load of the particulate filter is of great importance. If, in fact, the soot mass actually stored in the particulate filter is greater than that determined, unacceptably high temperatures can occur during regeneration as a result of the soot overburden, which can lead to impairment of the filter. On the other hand, if the determined load is considered to be too high in the opposite case, the permissible loading capacity of the filter is not fully utilized, resulting in increased fuel consumption due to unnecessarily frequent particle filter regeneration. In addition, increased engine oil degradation can lead to increased engine wear due to increased engine oil dilution.

Ein bekannter Ansatz zur Ermittlung einer Partikelfilterbeladung macht sich den Umstand zunutze, dass mit zunehmender Beladung der Abgasgegendruck vor dem Filter ansteigt. Konkret wird der Abgasgegendruck oder die Druckdifferenz vor und hinter dem Filter mittels Drucksensoren gemessen und mit einem betriebspunktabhängigen Schwellenwert verglichen, dessen Überschreitung zur Auslösung der Filterregeneration führt.A known approach to determining a particulate filter loading exploits the fact that with increasing load the exhaust backpressure in front of the filter increases. Specifically, the exhaust gas backpressure or the pressure difference upstream and downstream of the filter is measured by means of pressure sensors and compared with an operating point-dependent threshold, the exceeding of which leads to the triggering of the filter regeneration.

DE 101 40 048 B4 beschreibt ein Verfahren zur Ermittlung einer Partikelbeladung eines Dieselpartikelfilters, der einem mittels eines Abgasturboladers aufgeladenen Dieselmotor nachgeschaltet ist. Dabei wird mittels eines Ladedrucksensors ein aktueller Ladedruck im Ansaugkrümmer gemessen und mit einem betriebspunktabhängigen Referenz-Ladedruck verglichen. Der Referenz-Ladedruck entspricht einem, bei dem vorliegenden Betriebspunkt zu erwartenden Ladedruck bei einem regenerierten, d.h. partikelfreien Partikelfilter. Überschreitet die Differenz aus dem Referenz-Ladedruck und dem gemessenen Ladedruck einen Schwellenwert, so wird dies als Indiz für einen kritischen Füllstand des Dieselpartikelfilters angesehen und der Filter regeneriert. In einer alternativen, aber grundsätzlich analogen Vorgehensweise geht DE 101 40 048 B4 von einem Abgasturbolader aus, dessen Turbinenschaufeln mit einer geregelten Verstellung ausgestattet sind. In einem geschlossenen Regelkreis wird die Schaufelstellung auf einen vorbestimmten Soll-Ladedruck geregelt. In diesem Ansatz wird die Ist-Stellung der Turbinenschaufeln gemessen und mit einer betriebspunktabhängigen Referenz-Schaufelstellung verglichen. Überschreitet die Differenz aus beiden einen vorbestimmten Schwellenwert, wird eine Filterregeneration ausgelöst. Beide Ansätze lösen grundsätzlich nicht das Problem, in dynamischen Betriebssituationen eine gute Genauigkeit der Bestimmung der Filterbeladung zu gewährleisten. DE 101 40 048 B4 describes a method for determining a particle load of a diesel particulate filter, which is connected downstream of a charged by means of an exhaust gas turbocharger diesel engine. In this case, by means of a boost pressure sensor, a current boost pressure in the intake manifold is measured and compared with an operating point-dependent reference boost pressure. The reference boost pressure corresponds to a boost pressure to be expected at the present operating point in the case of a regenerated, ie particle-free particulate filter. If the difference between the reference boost pressure and the measured boost pressure exceeds a threshold value, this is regarded as an indication of a critical fill level of the diesel particulate filter and the filter is regenerated. In an alternative, but basically analogous approach is DE 101 40 048 B4 from an exhaust gas turbocharger whose turbine blades are equipped with a regulated adjustment. In a closed loop, the vane position is regulated to a predetermined desired boost pressure. In this approach, the actual position of the turbine blades is measured and compared with an operating point-dependent reference blade position. If the difference between both exceeds a predetermined threshold value, a filter regeneration is triggered. Both approaches basically do not solve the problem of ensuring a good accuracy of the determination of the filter load in dynamic operating situations.

Einen grundsätzlich zur Druck- bzw. Differenzdruckmessung unterschiedlichen Ansatz liefern modellbasierte Verfahren, welche die Rußbeladung modellieren, indem der Rußmassenstrom des Abgases und damit der Rußeintrag in den Filter abgeschätzt wird. Hierfür werden betriebspunktabhängige Kennfelder genutzt, welche den Rußgehalt des Abgases in Abhängigkeit von dem Betriebspunkt, in der Regel in Form von Motordrehzahl und Motorlast (welche gemäß Solldrehmoment oder Kraftstoffmasse einfließt), angeben. Unter Berücksichtigung des Rußaustrages infolge passiver und aktiver Filterregenerationen erfolgt die Ermittlung der Filterbeladung durch Integration.A fundamentally different approach to pressure or differential pressure measurement provide model-based methods that model the soot loading by the soot mass flow of the exhaust gas and thus the Rußeintrag is estimated in the filter. For this purpose, operating point-dependent maps are used which indicate the soot content of the exhaust gas as a function of the operating point, usually in the form of engine speed and engine load (which flows according to target torque or fuel mass). Taking into account the soot emissions as a result of passive and active filter regeneration, the filter loading is determined by integration.

Sofern der Rußeintrag in Abhängigkeit vom Motorbetriebspunkt kennfeldmäßig ermittelt wird, entspricht dies dem nominellen Zustand für ein System im stationären Gleichgewichtszustand, bei dem die einzuregelnden Betriebsparameter, wie zugeführte Luft- und Kraftstoffmasse, EGR-Rate etc. und damit das Luft-Kraftstoff-Verhältnis Lambda, mit den tatsächlich vorliegenden übereinstimmen. Dies ist jedoch unter dynamischen Bedingungen mitnichten der Fall. Insbesondere führen trägheitsbedingte Regelabweichungen zu gegenüber den stationären Rußemissionen stark abweichenden Emissionen, die nur schwer erfassbar sind. Dies liegt darin begründet, dass insbesondere in hochdynamischen Fahrzyklen der überwiegende Teile der Rußemissionen eine Folge instationärer und damit schwer erfassbarer Motorbetriebszustände ist. Unter diesen Bedingungen werden in dem jeweiligen momentanen Arbeitspunkt des Motors (auch Betriebspunkt genannt) die Sollwertvorgaben der Luft- und Kraftstoffzumessung infolge von Trägheiten der Regelstrecken und Stellglieder infolge hoher Fahrdynamik nicht erreicht. Dies trifft in besonderem Maße auf die Ladeluftdruckregelung zu, da diese mit Abstand die größte Trägheit aufweist.If the soot entry as a function of the engine operating point is determined according to the map, this corresponds to the nominal state for a system in the stationary steady state, in which the einzuregelnden operating parameters, such as supplied air and fuel mass, EGR rate, etc. and thus the air-fuel ratio lambda to coincide with the actual present. However, this is by no means the case under dynamic conditions. In particular, inertia-related control deviations lead to emissions which differ greatly from stationary soot emissions, and which are difficult to detect. This is due to the fact that, especially in highly dynamic driving cycles, the majority of the soot emissions are a consequence of unsteady and therefore difficult to detect engine operating states is. Under these conditions, the setpoint specifications of the air and fuel metering due to inertia of the controlled systems and actuators due to high driving dynamics are not reached in the respective current operating point of the engine (also called operating point). This is particularly true for the charge air pressure control, since this has the greatest inertia by far.

Aus DE 10 2006 055 562 B4 ist ein modellbasiertes Verfahren zur Ermittlung der Partikelfilterbeladung bekannt, welches den Rußgehalt des Abgases aus Kennfeldern ableitet, die als Zustandsgrößen für den Betriebspunkt den gemessenen oder abgeschätzten Lambda-Istwert sowie die aktuelle Abgasrückführrate (EGR-Rate) heranziehen. Optional können weitere Zustandsgrößen, insbesondere der Rail-Druck, Berücksichtigung finden. Die EGR-Rate kann beispielsweise in Abhängigkeit von dem Quotienten aus dem Gasdruck im Ansaugkrümmer und dem Abgasdruck stromauf der Turbine des Turboladers ermittelt werden.Out DE 10 2006 055 562 B4 a model-based method for determining the particulate filter loading is known, which derives the soot content of the exhaust gas from maps that use the measured or estimated lambda actual value and the current exhaust gas recirculation rate (EGR rate) as state variables for the operating point. Optionally, further state variables, in particular the rail pressure, can be taken into account. The EGR rate can be determined, for example, as a function of the quotient of the gas pressure in the intake manifold and the exhaust gas pressure upstream of the turbine of the turbocharger.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zur Ermittlung der Beladung eines Partikelfilters zur Verfügung zu stellen, das eine erhöhte Genauigkeit aufweist und für verschiedene Motorbetriebsarten gültig ist und somit einfach zu implementieren ist. Die Ermittlung der Beladung sollte dabei in Echtzeit beispielsweise im elektronischen Motorsteuergerät ausgeführt werden können und einen möglichst geringen Kalibrierungsaufwand erfordern. Ferner soll eine zur Ausführung des Verfahrens geeignete Steuereinheit bereitgestellt werden.The invention is based on the object of providing a method for determining the loading of a particulate filter which has increased accuracy and is valid for different engine operating modes and is therefore easy to implement. The determination of the load should be able to be performed in real time, for example, in the electronic engine control unit and require the least possible calibration effort. Furthermore, a control unit suitable for carrying out the method is to be provided.

Diese Aufgaben werden mit einem Verfahren sowie einer Steuereinrichtung mit den Merkmalen der unabhängigen Ansprüche gelöst.These objects are achieved by a method and a control device having the features of the independent claims.

Das erfindungsgemäße Verfahren betrifft demnach die Ermittlung einer Rußbeladung eines Partikelfilters, welcher in einem Abgasweg einer Verbrennungskraftmaschine angeordnet ist, die mit einem vorbestimmten Kraftstoffmassen-Sollwert und mit einer Luftmasse entsprechend einem vorbestimmten Ladedruck-Sollwert betrieben wird. Dabei wird zur Ermittlung der Rußbeladung zumindest in einer instationären Betriebssituation ein Rußeintrag in den Partikelfilter ermittelt, indem der Rußeintrag für einen entsprechenden stationären Betriebspunkt bestimmt und dieser so korrigiert wird, dass eine Abweichung des Rußeintrags infolge der instationären Betriebssituation berücksichtigt wird. Erfindungsgemäß ist nun vorgesehen, dass die Abweichung des Rußeintrags infolge der instationären Betriebssituation wenigstens in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert und einem gemessenen Ladedruck-Istwert bestimmt wird, wobei in bevorzugter Ausführung zusätzlich ein gemessener Lambda-Istwert in die Ermittlung einfließt.The inventive method accordingly relates to the determination of a soot loading of a particulate filter, which is arranged in an exhaust path of an internal combustion engine, which is operated with a predetermined fuel mass setpoint and with an air mass corresponding to a predetermined boost pressure setpoint. In this case, to determine the soot loading, at least in a transient operating situation, a soot entry into the particulate filter is determined by determining the soot entry for a corresponding stationary operating point and correcting it so that a deviation of the soot entry due to the transient operating situation is taken into account. According to the invention, it is now provided that the deviation of the soot entry due to the transient operating situation at least as a function of the predetermined boost pressure setpoint and a measured boost pressure actual value is determined, wherein in a preferred embodiment additionally a measured lambda actual value flows into the determination.

Vorteil dieser Vorgehensweise ist, dass das Verfahren ausschließlich mit (grundsätzlich exakten) Mess- und Rechenwerten auskommt und in der Lage ist, den Einfluss einer Lambda-Abweichung (Δλ) von einem stationären Lambda (Lambda-Referenzwert) auf die Rußemission des Motors zu berücksichtigen, ohne dass der Lambda-Referenzwert aus empirisch zu ermittelnden, betriebspunktabhängigen Kennfeldern abgeleitet werden muss. Vielmehr wird die für die instationäre Abweichung der Rußemission hauptsächlich verantwortliche Lambda-Abweichung ausschließlich rechnerisch bestimmt und erst aus der Lambda-Abweichung ein Rußemissionswert bestimmt, wofür eine einfache, empirisch ermittelte Kennlinie ausreicht. Im Ergebnis zeichnet sich das Verfahren durch eine sehr hohe Genauigkeit aus. Darüber hinaus ist der so hergeleitete Einfluss der Lambda-Abweichung auf die Rußemission für jede Betriebsart der Verbrennungskraftmaschine gültig.The advantage of this procedure is that the method works exclusively with (in principle exact) measured and calculated values and is able to take into account the influence of a lambda deviation (Δλ) of a stationary lambda (lambda reference value) on the soot emission of the engine without the lambda reference value having to be derived from operating point dependent maps to be determined empirically. Rather, the lambda deviation mainly responsible for the transient deviation of the soot emission is determined exclusively mathematically and only from the lambda deviation a soot emission value is determined, for which a simple, empirically determined characteristic curve is sufficient. As a result, the method is characterized by a very high accuracy. In addition, the thus derived influence of the lambda deviation on the soot emission is valid for each operating mode of the internal combustion engine.

Dabei wird im Rahmen der vorliegenden Erfindung der Begriff "Ladedruck" in einem weiten Sinn verstanden und umfasst einen Druck der der Verbrennungskraftmaschine zugeführten und vor dem Einlassventil vorliegenden Verbrennungsluft unabhängig von der Luftzuführungsart. Insbesondere umfasst er den durch einen Ladeluftlader, beispielsweise einem Abgasturbolader, erzeugten Ladedruck, mit dem die Verbrennungskraftmaschine betrieben wird. Ebenso umfasst der Begriff jedoch auch - im Falle nicht aufgeladener Motoren ― den Ansaugdruck. Der Begriff "Ladedruck" ist somit als "Lade- oder Ansaugdruck" zu verstehen.In the context of the present invention, the term "charge pressure" is understood in a broad sense and includes a pressure of the internal combustion engine supplied and present in front of the intake valve combustion air regardless of the Luftzuführungsart. In particular, it comprises the charge pressure generated by a charge air charger, for example an exhaust gas turbocharger, with which the internal combustion engine is operated. However, the term also includes - in the case of uncharged engines - the intake pressure. The term "charge pressure" is thus to be understood as "charge or intake pressure".

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass ein Lambda-Referenzwert in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert, dem gemessenen Ladedruck-Istwert und dem gemessenen Lambda-Istwert bestimmt wird und ein Rußemissions-Referenzwert oder ein hiermit korrelierender Wert in Abhängigkeit des Lambda-Referenzwerts bestimmt wird und dieser Wert in die Korrektur einfließt. Dabei kann der Lambda-Referenzwert gemäß folgender Gleichung bestimmt werden: λ REF = λ Ist p _ L Soll p _ L Ist .

Figure imgb0001
In a preferred embodiment of the invention, it is provided that a lambda reference value is determined as a function of the predetermined boost pressure setpoint value, the measured boost pressure actual value and the measured lambda actual value, and a soot emission reference value or a value correlating therewith as a function of the lambda Reference value is determined and this value is included in the correction. In this case, the lambda reference value can be determined according to the following equation: λ REF = λ is p _ L Should p _ L is ,
Figure imgb0001

Wie vorstehend bereits ausgeführt, bedarf dieser Lambda-Referenzwert keine Herleitung über empirisch ermittelte betriebspunktabhängige Kennfelder und ist für jede Motorbetriebsart gültig.As already stated above, this lambda reference value requires no derivation via empirically determined operating point-dependent maps and is valid for each engine operating mode.

In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass ein Rußemissions-Istwert oder ein hiermit korrelierender Wert in Abhängigkeit des gemessenen Lambda-Istwerts bestimmt wird und dieser Wert in die Korrektur einfließt. Dabei können Rußemissions-Referenzwert sowie Rußemissions-Istwert in Abhängigkeit von dem Lambda-Referenzwert bzw. Lambda-Istwert aus einer empirisch ermittelten Kennlinie ausgelesen werden.In a further preferred embodiment of the invention, provision is made for a soot emission actual value or a value correlating therewith to be dependent on the measured lambda actual value is determined and this value is included in the correction. In this case, the soot emission reference value and the actual value of the soot emissions can be read from an empirically determined characteristic curve as a function of the lambda reference value or lambda actual value.

Aus dem Verhältnis des Rußemissions-Istwerts und des Rußemissions-Referenzwerts oder aus den entsprechenden korrelierenden Werten wird in bevorzugter Ausführung ein (erster) Korrekturfaktor bestimmt, der in die Korrektur insbesondere durch Multiplikation mit dem stationären Rußmassenstrom einfließt. Bereits mit diesem sehr einfachen Modell wird eine gegenüber dem Stand der Technik verbesserte Genauigkeit erreicht.In a preferred embodiment, a (first) correction factor is determined from the ratio of the soot emission actual value and the soot emission reference value or from the corresponding correlating values, which is included in the correction, in particular by multiplication with the stationary soot mass flow. Even with this very simple model, an improved accuracy over the prior art is achieved.

Gegenstand der vorliegenden Erfindung ist ferner eine Steuereinrichtung zur Ermittlung einer Rußbeladung eines Partikelfilters, die zur Ausführung des erfindungsgemäßen Verfahrens eingerichtet ist. Die Steuereinrichtung kann insbesondere in ein elektronisches Motorsteuergerät implementiert sein. Zur Ausführung des Verfahrens kann sie einen entsprechenden Algorithmus in gespeicherter und computer-lesbarer Form enthalten sowie eine gespeicherte lambdaabhängige Kennlinie, welche einen Rußemissionswert oder einen korrelierenden Wert, insbesondere einen dimensionslosen Rußemissionskennwert, in Abhängigkeit von Lambda abbildet.The subject matter of the present invention is furthermore a control device for determining a soot charge of a particle filter, which is set up to carry out the method according to the invention. The control device can be implemented in particular in an electronic engine control unit. To carry out the method, it may contain a corresponding algorithm in stored and computer readable form and a stored lambda-dependent characteristic curve which maps a soot emission value or a correlating value, in particular a dimensionless soot emission characteristic, as a function of lambda.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:

Figur 1
schematisch eine Verbrennungskraftmaschine mit zugeordneten Abgastrakt;
Figur 2
logisches Blockschaltbild eines Verfahrens gemäß Stand der Technik zur Ermittlung einer Beladung eines Partikelfilters;
Figur 3
einen detaillierten Ausschnitt des Blockschaltbildes nach Figur 2;
Figur 4
logisches Blockschaltbild eines Verfahrens zur Ermittlung einer Beladung eines Partikelfilters gemäß einer bevorzugten Ausführung der vorliegenden Erfindung;
Figur 5
einen detaillierten Ausschnitt des Blockschaltbildes nach Figur 4 und
Figur 6
schematisch Lambda-Rußemissions-Kennlinie.
The invention will be explained below in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
schematically an internal combustion engine with associated exhaust tract;
FIG. 2
Logical block diagram of a method according to the prior art for determining a load of a particulate filter;
FIG. 3
a detailed section of the block diagram after FIG. 2 ;
FIG. 4
1 is a logical block diagram of a method for determining a charge of a particulate filter according to a preferred embodiment of the present invention;
FIG. 5
a detailed section of the block diagram after FIG. 4 and
FIG. 6
schematically lambda soot emission characteristic.

Figur 1 zeigt eine insgesamt mit 10 bezeichnete Verbrennungskraftmaschine, bei der es sich insbesondere um einen Dieselmotor handelt. Die Verbrennungskraftmaschine 10 umfasst eine Mehrzahl von Zylindern 12, denen über ein Kraftstoffeinspritzsystem 14 Kraftstoff im Wege einer Vorgemischbildung, üblicherweise jedoch direkt zugeführt wird. Ferner sind die Zylinder 12 mit einem Ansaugrohr 16, beispielsweise über einen nicht dargestellten Ansaugkrümmer, verbunden, über welches eine Luftzufuhr in die Verbrennungsräume der Zylinder 12 erfolgt, um darin ein zündfähiges Luft-Kraftstoff-Gemisch entsprechend einem gewünschten LambdaSollwert darzustellen. Zu diesem Zweck kann das Ansaugrohr 16 optional ein steuerbares Stellelement 18, beispielsweise eine Drosselklappe enthalten. FIG. 1 shows a total of 10 designated internal combustion engine, which is in particular a diesel engine. The internal combustion engine 10 comprises a plurality of cylinders 12 to which fuel is supplied via a fuel injection system 14 by means of a premixing, but usually directly. Further, the cylinders 12 are connected to an intake manifold 16, for example, via an intake manifold, not shown, via which an air supply into the combustion chambers of the cylinder 12 takes place to represent therein an ignitable air-fuel mixture corresponding to a desired LambdaSollwert. For this purpose, the intake pipe 16 may optionally contain a controllable adjusting element 18, for example a throttle valve.

Auf der anderen Seite sind (nicht dargestellte) Auslassöffnungen der Zylinder 12, üblicherweise über einen ebenfalls nicht dargestellten Abgaskrümmer, mit einem Abgaskanal 20 verbunden, in welches das Abgas der Verbrennungskraftmaschine 10 einströmt. Der Abgaskanal 20 enthält einen Partikelfilter 22, insbesondere einen Dieselpartikelfilter DPF. Darüber hinaus können weitere Abgasreinigungskomponenten in dem Abgaskanal 20 angeordnet sein, wobei in Figur 1 exemplarisch ein, dem DPF 22 vorgeschalteter Katalysator 24 dargestellt ist: Der vorgeschaltete Katalysator 24 oder auch weitere Katalysatoren können beispielsweise einen Oxidationskatalysator, einen NOx-Speicherkatalysator oder einen CRT-Katalysator umfassen.On the other side (not shown) outlet openings of the cylinder 12, usually via an exhaust manifold, also not shown, connected to an exhaust passage 20, in which the exhaust gas of the internal combustion engine 10 flows. The exhaust passage 20 includes a particulate filter 22, in particular a diesel particulate filter DPF. In addition, further exhaust gas purifying components may be disposed in the exhaust passage 20, wherein FIG. 1 an example, the DPF 22 upstream catalyst 24 is shown: The upstream catalyst 24 or other catalysts may include, for example, an oxidation catalyst, a NO x storage catalyst or a CRT catalyst.

Das in Figur 1 dargestellte System kann darüber hinaus selbstverständlich weitere bekannte Komponenten, wie ein externeres Abgasrückführungssystem oder einen Abgasturbolader, aufweisen. Abgasrückführungssysteme leiten in bekannter Weise einen Abgasteilstrom aus dem Abgaskanal 20 ab und führen diesen wieder dem Verbrennungsprozess des Motors 10 zu, indem er etwa in das Ansaugrohr 16 oder in den Abgaskrümmer eingeleitet wird. Auf diese Weise lassen sich Verbrennungstemperaturen absenken und somit die Bildung von Stickoxiden reduzieren. Abgasturbolader umfassen eine im Abgaskanal 20 angeordnete Turbine, die ― angetrieben durch die kinetische Energie des Abgases ― über eine Welle einen im Ansaugrohr angeordneten Verdichter antreibt, um somit die Ladeluft der Verbrennungskraftmaschine 10 zu komprimieren und auf diese Weise höhere Leistungen zu bewirken.This in FIG. 1 shown system may, of course, further known components, such as an external exhaust gas recirculation system or an exhaust gas turbocharger have. Exhaust gas recirculation systems divert a partial flow of exhaust gas from the exhaust duct 20 in a known manner and lead it back to the combustion process of the engine 10 by being introduced approximately into the intake manifold 16 or into the exhaust manifold. In this way, combustion temperatures can be lowered and thus reduce the formation of nitrogen oxides. Exhaust gas turbochargers comprise a turbine arranged in the exhaust duct 20, which - driven by the kinetic energy of the exhaust gas - drives a compressor arranged in the intake pipe via a shaft in order to thus compress the charge air of the internal combustion engine 10 and thereby achieve higher outputs.

Die Verbrennungskraftmaschine 10 und deren Komponenten verfügen ferner über ein Steuer-und Regelsystem, dessen zentrales Element ein Motorsteuergerät 26 ist, das einerseits über Signalleitungen (in Figur 1 mit gestrichelten Pfeilen dargestellt) Signale verschiedener Sensoren 28, 30 empfängt und andererseits über Steuerleitungen (durchgezogene Pfeile) verschiedene Stellglieder 14, 18 ansteuert. Im Einzelnen empfängt das Steuergerät 26 ein Signal einer im Abgaskanal 20 angeordneten Lambdasonde 28, das mit einem Sauerstoffgehalt des Abgases und somit dem Lambda-Istwert λlst korreliert. Die Lambdasonde sollte vorzugsweise als Breitbandsonde ausgestaltet sein und ist vorzugsweise an einer motornahen Position stromauf des ersten Katalysators 24 installiert. Ferner ist ein Drucksensor 30 im Ansaugrohr 16 oder dem Ansaugkrümmer angeordnet, der einen Ladedruck-Istwert p_L ist erfasst und an das Motorsteuergerät 26 übermittelt. Bei Vorhandensein eines Turboladers, der die Verbrennungskraftmaschine 10 mit komprimierter Luft versorgt, ist der Drucksensor 30 vorzugsweise stromab des Verdichters, insbesondere stromab eines Luftladekühlers angeordnet. Weitere (nicht dargestellte) Sensoren umfassen üblicherweise einen Drehzahlsensor, der die Motordrehzahl n misst sowie einen Sensor (z.B. einen Pedalwertgeber), der ein der Motorlast L entsprechendes Signal an das Motorsteuergerät 26 bereitstellt. Darüber hinaus können Temperatursensoren zur Erfassung der Motor- und/oder Kühlmitteltemperatur, Drucksensoren zur Erfassung des Umgebungsdrucks, Gassensoren zur Erfassung von Abgaskomponenten wie NOx und dergleichen vorgesehen sein.The internal combustion engine 10 and its components also have a control and regulating system whose central element is an engine control unit 26, on the one hand via Signal lines (in FIG. 1 shown with dashed arrows) receives signals from various sensors 28, 30 and on the other hand via control lines (solid arrows) various actuators 14, 18 controls. In detail, the control unit 26 receives a signal from a lambda probe 28 arranged in the exhaust duct 20, which correlates with an oxygen content of the exhaust gas and thus with the lambda actual value λ actual . The lambda probe should preferably be designed as a broadband probe and is preferably installed at a position close to the engine upstream of the first catalytic converter 24. Further, a pressure sensor 30 in the intake pipe 16 or the intake manifold is arranged, which detects a boost pressure actual value p_L i s t and transmitted to the engine control unit 26. In the presence of a turbocharger, which supplies the internal combustion engine 10 with compressed air, the pressure sensor 30 is preferably arranged downstream of the compressor, in particular downstream of an air charging radiator. Other sensors (not shown) typically include a speed sensor that measures engine speed n and a sensor (eg, a pedal encoder) that provides a signal corresponding to engine load L to engine control unit 26. In addition, temperature sensors for detecting the engine and / or coolant temperature, pressure sensors for detecting the ambient pressure, gas sensors for detecting exhaust gas components such as NO x and the like may be provided.

In Abhängigkeit der eingelesenen Signale ermittelt das Steuergerät 26 unter Verwendung abgespeicherter Kennfelder 32 Betriebsparameter der Verbrennungskraftmaschine 10 und korrespondierende Steuersignale für die Stellglieder, um gewünschte Sollwerte darzustellen. In diesem Zusammenhang ermittelt das Steuergerät 36 einen aktuellen Betriebspunkt der Verbrennungskraftmaschine 10, insbesondere in Form der Drehzahl n und der Motorlast L, und ermittelt aus einem abgespeicherten Kennfeld in Abhängigkeit des Betriebspunkts einen Kraftstoffmassen-Sollwert m_K Sol/ und steuert das Kraftstoffeinspritzsystem 14 beispielsweise mit einem entsprechenden Öffnungszeitensignal an, um dem Motor 10 die gewünschte Kraftstoffmasse zuzuführen. Ferner ermittelt das Steuergerät 26 aus einem weiteren abgespeicherten Kennfeld in Abhängigkeit des Betriebspunkts (n, L) einen Ladedruck-Sollwert p_L So// und steuert die Drosselklappe 18 und/oder den Verdichter des Turboladers mit einem entsprechenden Stellungssignal an, um den gewünschten Ladedruck im Ansaugkrümmer darzustellen. Der Ladedruck p_L und die Kraftstoffmasse m_K werden im Wege geschlossener Regelkreise durch den gemessenen Istwert p_Llst so geregelt, dass Regelabweichungen minimiert werden.In dependence on the read-in signals, the control unit 26 determines, using stored characteristic maps 32, operating parameters of the internal combustion engine 10 and corresponding control signals for the actuators in order to represent desired setpoint values. In this context, the control unit 36 determines a current operating point of the internal combustion engine 10, in particular in the form of the speed n and the engine load L, and determined from a stored map depending on the operating point a fuel mass setpoint m_K Sol / and controls the fuel injection system 14, for example with a corresponding opening time signal to supply the engine 10, the desired fuel mass. Further, the control unit 26 determines from a further stored map as a function of the operating point (n, L) a boost pressure setpoint p_L S o // and controls the throttle valve 18 and / or the compressor of the turbocharger with a corresponding position signal to the desired boost pressure to represent in the intake manifold. The boost pressure p_L and the fuel mass m_K are controlled in the closed loop by the measured actual value p_L lst so that control deviations are minimized.

Der Partikelfilter 22 sammelt den im Abgas enthaltene Ruß und eventuell andere partikuläre Bestandteile an und muss bei Erreichen eines kritischen Beladungswertes regeneriert werden, um seine ursprüngliche Beladungskapazität und damit seine Filterfunktion wieder herzustellen. Um die Filterbeladung zu ermitteln, sind im Stand der Technik Ansätze bekannt, die den Rußeintrag und den Rußaustrag in den bzw. aus den DPF 22 kontinuierlich durch Rußmassensimulationsmodelle ermitteln und aufintegrieren, so dass eine kumulierte Beladung, die mit dem Beladungsschwellenwert verglichen werden kann, resultiert.The particle filter 22 collects the soot contained in the exhaust gas and possibly other particulate constituents and must be regenerated upon reaching a critical load value, to restore its original loading capacity and thus its filter function. In order to determine the filter loading, approaches are known in the art which continuously determine and integrate soot input and soot discharge into and out of the DPF 22 by soot mass simulation models, thus resulting in a cumulative load that can be compared to the load threshold ,

Ein solches im Stand der Technik bekanntes Modell ist im Blockschaltbild der Figur 2 schematisch dargestellt. Dieses Modell berücksichtigt vier Einflüsse, die sich entweder beladungserhöhend oder beladungsreduzierend auswirken.Such a known in the art model is in the block diagram of FIG. 2 shown schematically. This model takes into account four influences that either increase the load or reduce the load.

Zunächst einmal fließt in das Modell der Rußmassenstrom aus der Motoremission bei stationärem Betrieb beladungserhöhend ein (Zweig a in Figur 2). Dabei wird in Abhängigkeit der Eingangsgrößen Drehzahl, Drehmoment und eventuell des Umgebungsdrucks unter Verwendung von Emissionskennfeldern, die für den jeweiligen Betriebspunkt unter stationären, d.h. konstanten Bedingungen empirisch ermittelt wurden, die aktuelle Rußemission des Motors unter Annahme eines stationären Zustandes ermittelt.First of all, the soot mass flow from the engine emission flows into the model during stationary operation to increase the load (branch a in FIG. 2 ). In this case, depending on the input variables speed, torque and possibly the ambient pressure using emission maps, which were determined empirically for the respective operating point under steady state, ie constant conditions, the current soot emission of the engine determined assuming a steady state.

Weiterhin wird der ebenfalls beladungserhöhende Rußmassenstrom aus der Motoremission bei instationärem, also dynamischem Betrieb berücksichtigt (Zweig b in Figur 2). Dieser wird hauptsächlich durch die instationären Abweichungen des aktuellen Lambdawertes λlst vom stationären Lambdawert λREF im aktuellen Arbeitspunkt verursacht. Eingangsgrößen sind hier daher neben der Drehzahl und dem Drehmoment der gemessene Lambda-Istwert. Einzelheiten zur Ermittlung des instationären Rußmassenstroms gemäß diesem Stand der Technik werden unten im Zusammenhang mit Figur 3 erläutert.Furthermore, the soot mass flow from the engine emission, which also increases the load, is taken into account in unsteady, ie dynamic operation (branch b in FIG FIG. 2 ). This is mainly caused by the transient deviations of the current lambda value λ lst from the stationary lambda value λ REF at the current operating point. In this case, input variables are, in addition to the rotational speed and the torque, the measured lambda actual value. Details for determining the transient soot mass flow according to this prior art will be described below in connection with FIG. 3 explained.

Als weiterer Einfluss auf die Rußbeladung des DPF 22 wird eine NOx-Regeneration beladungsreduzierend berücksichtigt, bei der unter der Voraussetzung ausreichender Abgastemperaturen ein Abbrand des Rußes im Partikelfilter durch die im Abgas enthaltenden Stickoxide wie NO2 erfolgt (Zweig c in Figur 2). Die NOx-Regeneration erfolgt in der Regel spontan und wird durch hohe Abgastemperaturen ausgelöst und nicht willkürlich eingeleitet. Eingangsgröße ist neben der Drehzahl und dem Drehmoment die Abgastemperatur.As a further influence on the soot loading of the DPF 22, a NO x regeneration is taken into account in order to reduce the load, with the assumption of sufficient exhaust gas temperatures that the soot in the particulate filter burns off due to the nitrogen oxides such as NO 2 present in the exhaust gas (branch c in FIG FIG. 2 ). The NO x regeneration usually occurs spontaneously and is triggered by high exhaust gas temperatures and not initiated arbitrarily. In addition to the speed and the torque, the input quantity is the exhaust gas temperature.

Schließlich findet die thermische Rußregeneration Berücksichtigung, die in der Regel willkürlich bei Erreichen eines Beladungsschwellenwertes eingeleitet wird, indem Maßnahmen zur Anhebung der Abgas- und/oder Filtertemperatur eingeleitet werden (Zweig d in Figur 2). Da die thermische Regeneration unter Verbrauch von Sauerstoff des Abgases als Oxidationsmittel stattfindet, gehen als Eingangsgrößen der Ermittlung der Rußaustragsrate neben der Drehzahl, dem Drehmoment und der Abgastemperatur auch der Lambdawert ein.Finally, thermal soot regeneration, which is usually initiated arbitrarily when a loading threshold value is reached, is taken into account by initiating measures to increase the exhaust gas and / or filter temperature (branch d in FIG FIG. 2 ). Since the thermal regeneration with consumption of oxygen of the exhaust gas as the oxidant takes place, as input variables for determining the Rußaustragsrate next to the speed, the torque and the exhaust gas temperature and the lambda value.

Für alle Komponenten a) bis d) werden entsprechende Kennfelder verwendet, welche den Rußeintrag in den DPF bzw. den Rußaustrag aus dem DPF, beispielsweise in Form von Rußmassenströmen mit der Einheit mg/m3 oder mg/h, in Abhängigkeit von den genannten Eingangsgrößen abbilden. Die vier Einzelwerte a) bis d) werden laufend durch Addition bzw. Subtraktion miteinander verrechnet und über die Betriebszeit integriert (kumuliert), so dass das Resultat der Ermittlung eine absolute Rußmasse oder eine hiermit korrelierende Größe ist, die mit einem vorbestimmten kritischen Beladungsschwellenwert verglichen werden kann.Corresponding maps are used for all components a) to d), which indicate the soot entry into the DPF or the soot discharge from the DPF, for example in the form of soot mass flows with the unit mg / m 3 or mg / h, depending on the input variables mentioned depict. The four individual values a) to d) are continuously calculated by addition or subtraction and integrated (accumulated) over the operating time, so that the result of the determination is an absolute soot mass or a correlated therewith size, which are compared with a predetermined critical loading threshold can.

Die größte Schwierigkeit in dem Bestreben, die Beladung des DPF mit hoher Genauigkeit zu ermitteln, stellt die Erfassung der Rußmassenströme in instationären, also dynamischen Betriebssituationen für alle Fahrzyklen dar. Es ist bekannt, dass die Rußemissionen beim Dieselmotor stark vom Luft-Kraftstoff-Verhältnis (Lambda) abhängen. Insbesondere sind diese in der Nähe des stöchiometrischen Luft-Kraftstoff-Verhältnisses (Lambda = 1) besonders hoch. In dem bekannten Verfahren wird daher eine instationäre Lambda-Regelabweichung (Δλ) durch Vergleich des gemessenen momentanen Lambdawertes (Lambda-Istwert) mit einem stationären Lambda-Referenzwert berücksichtigt. Zur Veranschaulichung dieser Vorgehensweise zur Ermittlung des instationären Rußeintrags ist in Figur 3 ein detaillierter Ausschnitt aus dem Verfahren aus Figur 2 dargestellt.The greatest difficulty in the effort to determine the loading of the DPF with high accuracy, the detection of soot mass flows in transient, ie dynamic operating situations for all driving cycles. It is known that the soot emissions in diesel engine greatly from the air-fuel ratio ( Lambda) depend. In particular, these are particularly high in the vicinity of the stoichiometric air-fuel ratio (lambda = 1). In the known method, therefore, a transient lambda control deviation (Δλ) is taken into account by comparing the measured instantaneous lambda value (lambda actual value) with a stationary lambda reference value. To illustrate this procedure for determining the transient Rußottrags is in FIG. 3 a detailed excerpt from the procedure FIG. 2 shown.

Gemäß Figur 3 wird der Lambda-Istwert durch Messung im Abgasstrom erfasst. Ferner wird aus dem aktuellen Betriebspunkt, der in Form der aktuellen Drehzahl und des aktuellen Drehmoments eingelesen wird, ein stationärer Lambda-Referenzwert ermittelt, der einem empirisch ermittelten Kennfeld (Lambda-Referenzkennfeld) als Funktion der Drehzahl und des Drehmoments entnommen wird. Durch Subtraktionsbildung wird die Lambda-Abweichung Δλ berechnet, welche zusammen mit dem gemessenen Lambda-Istwert in ein Rußmassenstromkennfeld eingehen, um diesem den instationären Rußmassenstrom zu entnehmen, der zu dem stationären Rußmassenstrom addiert wird.According to FIG. 3 the lambda actual value is detected by measurement in the exhaust gas flow. Furthermore, from the current operating point, which is read in the form of the current rotational speed and the current torque, a stationary lambda reference value is determined, which is taken from an empirically determined characteristic map (lambda reference characteristic map) as a function of the rotational speed and the torque. By subtraction formation, the lambda deviation Δλ is calculated, which together with the measured lambda actual value enter into a soot mass flow characteristic map in order to take from it the transient soot mass flow which is added to the stationary soot mass flow.

Prinzipieller Mangel dieser bekannten Vorgehensweise ist, dass das Lambda-Referenzkennfeld jeweils nur für eine einzige Betriebsart der Verbrennungskraftmaschine gültig ist. Dieselmotoren modernster Bauart, die über ein Abgasnachbehandlungssystem für Stickoxide verfügen, etwa über einen NOx-Speicherkatalysator, werden jedoch mit mindestens sechs und teilweise mehr verschiedenen Betriebsarten gefahren, umfassend beispielsweise Normalbetrieb, Oxidationskatalysator-Heizbetrieb, DPF-Vorwärmen, DPF-Regeneration, NOx-Speicherkatalysator-Regeneration, NOx-Speicherkatalysator-Entschwefelung und gegebenenfalls noch weitere. Dies bedeutet, dass für jede einzelne dieser Betriebsarten jeweils ein Lambda-Referenzkennfeld zur Ermittlung des Lambda-Referenzwerts für alle Betriebspunkte empirisch ermittelt werden muss. Der Applikations- und Bedatungsaufwand ist somit sehr hoch. Darüber hinaus können Korrekturen im Brennverfahren, die aus wechselnden Umgebungsbedingungen, wie Luftdruck, Lufttemperatur, Kühlwassertemperatur etc., resultieren und Einfluss auf das stationäre Luft-Kraftstoff-Verhältnis haben, in einem Lambda-Referenzkennfeld nicht abgebildet werden. Das hat zur Folge, dass die bekannte Methode zur Berücksichtigung von instationären Lambda-Abweichungen bei der DPF-Beladungsberechnung in vielen Betriebsituationen des Motors ungenau ist und den oben genannten Anforderungen von Dieselmotoren modernster Bauart nicht mehr gerecht wird.The basic defect of this known procedure is that the lambda reference map is only valid for a single operating mode of the internal combustion engine. Diesel engines of the most modern type, which have an exhaust aftertreatment system for nitrogen oxides, such as a NO x storage catalytic converter, but are driven with at least six and sometimes more different modes, including for example normal operation, Oxidation Catalyst Heating Operation, DPF Preheating, DPF Regeneration, NO x Storage Catalyst Regeneration, NO x Storage Catalyst Desulfurization, and possibly others. This means that a lambda reference characteristic field for determining the lambda reference value for all operating points must be determined empirically for each of these operating modes. The application and administration effort is thus very high. In addition, corrections in the combustion process resulting from changing environmental conditions such as air pressure, air temperature, cooling water temperature, etc., and having an influence on the steady-state air-fuel ratio can not be mapped in a lambda reference map. This has the consequence that the known method for taking into account transient lambda deviations in the DPF loading calculation in many operating situations of the engine is inaccurate and no longer meets the above requirements of diesel engines of the latest design.

Um diese Probleme zu überwinden, wird erfindungsgemäß ein anderer Ansatz gewählt, indem nämlich Abweichungen des Rußeintrags infolge der instationären Betriebssituation durch Berücksichtigung der Ladedruck-Regelabweichung ausgewertet werden und in die Modellierung der Rußmassenemissionen der Verbrennungskraftmaschine zur Ermittlung der DPF-Beladung einfließen. Insbesondere wird die instationäre Abweichung des Rußeintrags wenigstens in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert und einem gemessenen, tatsächlichen momentanen Ladedruck-Istwert bestimmt, vorzugsweise ferner im Abhängigkeit des gemessenen, tatsächlichen momentanen Lambda-Istwerts. Daneben kann der aktuelle Betriebspunkt, insbesondere in Form der aktuellen Motordrehzahl und des aktuellen Motordrehmoments, in das Modell einfließen. Vorzugsweise wird eine Lambda-Referenzwert λREF in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert p_LSoll, dem gemessenen Ladedruck-Istwert p_L /st und dem gemessenen Lambda-Istwert λ /st bestimmt und ein Rußemissions-Referenzwert oder ein hiermit korrelierender Wert in Abhängigkeit des Lambda-Referenzwerts λREF ermittelt. Der Lambda-Referenzwerts λREF entspricht demjenigen Lambdawert, der sich einstellen würde, wenn die Regelgröße des Ladedrucks p_L auf ihren Sollwert ausgeregelt wäre, wenn also stationäre Bedingungen vorlägen. Im Unterschied zu dem anhand der Figuren 2 und 3 dargestellten Stand der Technik, bei dem λREF in Abhängigkeit des Betriebspunkts (Drehzahl, Drehmoment) aus empirisch bestimmten Lambda-Referenzkennfeldern ermittelt wird, fließen in den erfindungsgemäß angesetzten Lambda-Referenzwert λREF ausschließlich Messwerte (Lambda-Istwert sowie Ladedruck-Istwert) und der Rechenwert des Ladedruck-Sollwerts ein. Da diese Mess- und Rechenwerte inklusive aller Einflüsse auf den Ladedruck-Sollwert (wie wechselnder Umgebungsdruck etc.) die aktuelle Betriebssituation des Motors repräsentieren, ist die erfindungsgemäße Methode λREF unabhängig von einzelnen Betriebsarten, vielmehr allgemeingültig für sämtliche Betriebsarten des Motors. Zudem stehen die Mess- und Rechengrößen in jedem Rechenschritt des elektronischen Motorsteuergeräts ohnehin zur Verfügung. Auch erfordert die Methode keine aufwändige Kalibrierung, sondern ergibt sich allein durch den erfindungsgemäßen Berechnungsansatz.In order to overcome these problems, another approach is chosen according to the invention, namely by evaluating deviations of the soot entry due to the transient operating situation by taking into account the boost pressure control deviation and incorporated into the modeling of soot mass emissions of the internal combustion engine to determine the DPF loading. In particular, the transient deviation of the soot entry is determined at least as a function of the predetermined boost pressure setpoint and a measured, actual instantaneous boost pressure actual value, preferably also as a function of the measured, actual instantaneous lambda actual value. In addition, the current operating point, in particular in the form of the current engine speed and the current engine torque, incorporated into the model. Preferably, a lambda reference value λ REF in response to the predetermined charge pressure setpoint p_l setpoint, the measured charging pressure actual value p_ L / st and the measured actual lambda value λ / st determined and a Rußemissions reference value or a hereby correlated value depending the lambda reference value λ REF determined. The lambda reference value λ REF corresponds to the lambda value which would occur if the control variable of the boost pressure p_L were regulated to its desired value, ie if steady-state conditions existed. In contrast to that on the basis of Figures 2 and 3 In the state of the art in which λ REF is determined as a function of the operating point (rotational speed, torque) from empirically determined lambda reference characteristic curves, exclusively measured values (actual lambda value and boost pressure actual value) flow into the lambda reference value λ REF used according to the invention Calculated value of the boost pressure setpoint. Since these measured and calculated values, including all influences on the boost pressure set value (such as changing ambient pressure etc.) represent the current operating situation of the engine, the method according to the invention λ REF regardless of individual operating modes, but generally valid for all operating modes of the engine. In addition, the measured and calculated variables are available anyway in every step of the electronic engine control unit. Also, the method requires no complex calibration, but results solely by the inventive calculation approach.

Ein Überblick des Prinzips des erfindungsgemäßen Verfahrens ist in Figur 4 dargestellt, wobei die Zweige a), c) und d) grundsätzlich nach herkömmlichen Methoden, wie sie bereits im Zusammenhang mit Figur 2 diskutiert wurden, bestimmt werden können. Wesentlicher Unterschied zu bekannten Methoden ist hier also die Vorgehensweise zur Berücksichtigung der instationären Einflüsse auf die Rußemission des Motors in Zweig b), die in Abhängigkeit des Ladedruck-Istwerts und des Ladedruck-Sollwerts und ferner optional des Lambda-Istwerts, der aktuellen Drehzahl und des aktuellen Drehmoments bestimmt wird. Aus diesen Größen wird letztendlich ein Korrekturfaktor gebildet, der durch Multiplikation mit der stationären Rußemission aus Zweig a) zu einen Rußmassenstrom (oder Rußeintrag) führt, welcher den tatsächlichen instationären Rußmassenstrom mit sehr guter Genauigkeit abbildet.An overview of the principle of the inventive method is in FIG. 4 shown, wherein the branches a), c) and d) basically according to conventional methods, as already associated with FIG. 2 could be determined. Significant difference to known methods is here so the procedure for taking into account the transient influences on the soot emission of the engine in branch b), depending on the boost pressure feedback and the boost pressure setpoint and optionally also the lambda feedback, the current speed and the current torque is determined. From these quantities, a correction factor is finally formed which, by multiplication with the stationary soot emission from branch a), leads to a soot mass flow (or soot entry) which maps the actual unsteady soot mass flow with very good accuracy.

Für die Umsetzung der erfindungsgemäßen Ermittlung der Rußbeladung des Partikelfilters sind grundsätzlich unterschiedliche mathematische Berechnungsmethoden einsetzbar. Besonders bevorzugt ist jedoch ein nachfolgend dargestellter, vereinfachter Ansatz, der Vorteile angesichts Beschränkungen der Rechenleistung und des verfügbaren Speicherplatzes im Motorsteuergerät 26 aufweist und somit die Beladungsermittlung in Echtzeit erlaubt. Der Ansatz zeichnet sich darüber hinaus durch einen minimalen Aufwand für die Kalibrierung aus. Der vereinfachte Ansatz lässt sich wie folgt ableiten.In principle, different mathematical calculation methods can be used to implement the determination according to the invention of the soot loading of the particulate filter. However, particularly preferred is a simplified approach shown below, which has advantages in view of limitations of the computing power and the available space in the engine control unit 26 and thus allows the load determination in real time. The approach is also characterized by a minimum effort for the calibration. The simplified approach can be derived as follows.

In dem Ansatz wird vereinfachend davon ausgegangen, dass die instationären Abweichungen im Luft-Kraftstoff-Verhältnis (Lambda) im Wesentlichen auf Regelabweichungen des Ladedrucks zurückzuführen sind, d.h. auf eine Differenz des tatsächlich aktuell vorliegenden Ladedrucks (dem Ladedruck-Istwert) von dem Ladedruck-Sollwert (der Regelgröße). Dieser Ansatz ist dadurch gerechtfertigt, dass die Ladedruckregelung besonders große Trägheiten aufweist, wodurch bei einer dynamischen Lastpunktänderung des Fahrzeugs der tatsächlich dargestellte Ladedruck systematisch hinter dem Sollwert "hinterherhinkt". Aus diesem Grund trägt die Regelabweichung des Ladedrucks mit Abstand am stärksten zu Lambdaabweichungen und damit zu Differenzen der instationären und stationären Rußemissionen bei. Der hier favorisierte Ansatz lässt dementsprechend Regelabweichungen der Kraftstoffzufuhr, die wesentlich geringere Trägheiten aufweist, außer Acht.In the approach simplifying it is assumed that the transient deviations in the air-fuel ratio (lambda) are essentially due to control deviations of the boost pressure, ie a difference between the actual currently existing boost pressure (the boost pressure actual value) from the boost pressure target value (the controlled variable). This approach is justified by the fact that the boost pressure control has particularly large inertia, whereby at a dynamic load point change of the vehicle, the actual boost pressure systematically "lags behind" the setpoint. For this reason, the control deviation of the boost pressure contributes by far the most to lambda deviations and thus to differences in transient and stationary soot emissions. The approach favored here accordingly ignores system deviations of the fuel supply, which has significantly lower inertias.

Das Luft-Kraftstoff-Verhältnis Lambda λ ist über den Zusammenhang nach Gleichung (1) definiert, worin m_L die Luftmasse, m_K die Kraftstoffmasse und r das stöchiometrische Verhältnis für eine vollständige Umsetzung des Sauerstoffanteils bedeuten. λ = m _ L r m_ K mit r 14.7

Figure imgb0002
The air-fuel ratio lambda λ is defined by the relationship of equation (1), where m_L is the air mass, m_K is the fuel mass and r is the stoichiometric ratio for complete conversion of the oxygen content. λ = m _ L r m_ K With r 14.7
Figure imgb0002

Die tatsächliche Luftmasse in einem Zylinder der Verbrennungskraftmaschine ist in einem Arbeitspunkt des Motors proportional zum Ladedruck-Istwert. Das gleiche gilt für die entsprechenden Sollwerte. Es lässt sich somit der Zusammenhang nach Gleichung (2) herstellen, worin m_L lst der Luftmassen-Istwert (Messwert), m_LSoll der Luftmassen-Sollwert (Regelgröße), p_Llst der Ladedruck-Istwert (Messgröße) und p_L Soll der Ladedruck-Sollwert (Regelgröße) bedeuten. m _ L Ist m _ L Soll = p _ L Ist p _ L Soll

Figure imgb0003
The actual air mass in a cylinder of the internal combustion engine is proportional to the boost pressure actual value at an operating point of the engine. The same applies to the corresponding setpoints. It is therefore possible, the relationship of equation (2) can be prepared, wherein M_L l s t of air mass actual value (measured value), M_L If the air mass setpoint value (controlled variable), p_l lst the charging pressure actual value (measured variable) and p_l S o ll mean the boost pressure setpoint (controlled variable). m _ L is m _ L Should = p _ L is p _ L Should
Figure imgb0003

Der Lambda-Referenzwert λREF , der sich bei ausgeregeltem Ladedruck (d.h. p_L Ist = p_LSoll) in einem Arbeitspunkt des Motors stationär einstellen würde, lässt sich in Abhängigkeit des aktuellen, instationären Lambda-Istwertes λ lst (für p_Llst ≠ p_LSoll) mit Gleichung (3) unter der Vereinfachung m_Kls = m_KSoll beschreiben. λ REF = m _ L Soll r m _ K Soll = m _ L Ist p _ L Soll p _ L Ist r m _ K Ist = λ Ist p _ L Soll p _ L Ist

Figure imgb0004
The lambda reference value λ REF , which would be set stationary at an adjusted boost pressure (ie p_L I s t = p_L setpoint ) at an operating point of the engine, can be determined as a function of the current transient lambda actual value λ l s t (for p_L lst ≠ p_L setpoint ) with equation (3) under the simplification m_K ls = m_K setpoint . λ REF = m _ L Should r m _ K Should = m _ L is p _ L Should p _ L is r m _ K is = λ is p _ L Should p _ L is
Figure imgb0004

Für die gesuchte Lambda-Regelabweichung Δλ des Lambda-Istwertes λlst vom stationären Lambda-Referenzwert λREF kann somit der Zusammenhang nach Gleichung (4) formuliert werden. Δ λ = λ REF - λ Ist = λ Ist p _ L Soll p _ L Ist - 1

Figure imgb0005
Thus, for the desired lambda deviation of the lambda actual value Δλ λ lst from the stationary lambda reference value REF λ, the relationship can be formulated according to equation (4). Δ λ = λ REF - λ is = λ is p _ L Should p _ L is - 1
Figure imgb0005

Somit hängt die Lambda-Regelabweichung Δλ ausschließlich vom Lambda-Istwert λist , vom Ladedruck-Sollwert p_Lsoll und vom Ladedruck-Istwert p_L ist ab. Der Lambda-Istwert λist kann in bekannter Weise mithilfe einer Lambdasonde im Abgas gemessen werden. Ebenso kann der Labedruck-Istwert p_L ist mittels eines Drucksensors im Ansaugtrakt, beispielsweise in oder vor einem Ansaugkrümmer erfasst werden. Schließlich handelt es sich bei dem Labedruck-SollwertThus, the lambda control deviation Δλ depends exclusively on the lambda actual value λ, p _ L s and p oll from the charging pressure actual value _ L is the boost pressure setpoint value. The lambda actual value λ can be measured in a known manner by means of a lambda probe in the exhaust gas. Similarly, the actual value Labedruck p _ L can by means of a pressure sensor in the intake tract can be detected, for example, in or in front of an intake manifold. After all, it is the labed pressure setpoint

p_Lsoll um einen Rechenwert, der vorzugsweise betriebspunktabhängig, beispielsweise in Abhängigkeit von der aktuellen Motordrehzahl und dem aktuellen Motordrehmoment, in bekannter Weise vorbestimmt werden kann, etwa aus empirisch ermittelten und in der Motorsteuerung hinterlegten Kennfeldern. Da bei Dieselmotoren der Ladedruck in der Regel die Regelgröße für die Regelung der dem Motor zugeführten Luftmasse darstellt, werden sein Sollwert sowie sein Istwert ohnehin ständig ermittelt und liegen somit stets im Motorsteuergerät vor. p_L should be able to be predetermined in a known manner by a calculated value, which may be dependent on the operating point, for example as a function of the current engine speed and the current engine torque, for example from empirically determined and stored in the engine control maps. Since in diesel engines, the boost pressure is usually the control variable for the control of the air mass supplied to the engine, its setpoint and its actual value are always determined anyway and are therefore always present in the engine control unit.

Einzelheiten zu dem bevorzugten erfindungsgemäßen Ansatz zur Ermittlung der instationären Rußemission gemäß bevorzugter Ausführung sind in Figur 5 dargestellt.Details of the preferred approach according to the invention for determining the transient soot emission are disclosed in US Pat FIG. 5 shown.

Die stationäre Rußemission kann - wie im Stand der Technik üblich - mit den Eingangsgrößen Drehzahl, Drehmoment und optional Umgebungsdruck aus gespeicherten Emissionskennfeldern, die unter stationären Bedingungen für die einzelnen Betriebspunkte empirisch ermittelt wurden, dargestellt werden (Zweig a).The stationary soot emission can - as usual in the art - with the input variables speed, torque and optional ambient pressure from stored emission maps, which have been determined empirically under stationary conditions for the individual operating points represented (branch a).

Zur Ermittlung eines Korrekturfaktors für den instationären Einfluss wird der Lambda-Istwert λlst im Abgas mit der Lambdasonde 28 (S. Figur 1) im Abgas erfasst. Der Lambda-Istwert λlst ist Eingangswert einer Kennlinie_1, welche die Rußemission oder einen hiermit korrelierenden Wert in Abhängigkeit von Lambda abbildet. Zur Veranschaulichung des prinzipiellen Zusammenhangs ist ein Beispiel einer solchen Kennlinie schematisch in Figur 6 gezeigt, wobei hier gemäß einer bevorzugten Ausführung die Rußemission in Form eines dimensionslosen normierten Ruße.missionskennwerts dargestellt ist. Ausgangsgröße dieses Verfahrensschritts ist somit ein Rußemissionskennwert (Rußemissions-Istwert) für den tatsächlich gemessenen Lambdawert λlst .In order to determine a correction factor for the transient influence, the lambda actual value λ ist in the exhaust gas with the lambda probe 28 (p. FIG. 1 ) detected in the exhaust gas. The lambda actual value λ actual is the input value of a characteristic curve_1 , which maps the soot emission or a value correlated therewith as a function of lambda. To illustrate the basic relationship, an example of such a characteristic is shown schematically in FIG FIG. 6 shown here, wherein according to a preferred embodiment, the soot emission in the form of a dimensionless normalized Ruße.missionskennwerts is shown. Output variable of this process step is thus a Rußemissionskennwert (soot emission actual value) for the actually measured lambda value λ lst .

In einem weiteren oder parallelen Verfahrensschritt werden der mit dem Drucksensor 30 (Figur 1) im Ansaugtrakt gemessene Ladedruck-Istwert p_Llst und der insbesondere kennfeldmäßig in Abhängigkeit von Drehzahl und Drehmoment ermittelte Ladedruck-Sollwert p_LSoll eingelesen und durch Division das Verhältnis aus beiden berechnet. Dieses Verhältnis wird anschließend mit dem Lambda-Istwert λlst multipliziert, um den Lambda-Referenzwert λREF gemäß Gleichung (3) zu erhalten. Der Lambda-Referenzwert λREF ist Eingangsgröße der Kennlinie_1 gemäß Figur 6, aus der ein Rußemissionskennwert (Rußemissions-Referenzwert) für den Lambda-Referenzwert λREF ermittelt wird.In a further or parallel process step, the pressure sensor 30 (FIG. FIG. 1 ) in the intake system measured charge pressure actual value p_L lst and in particular the characteristic map as a function of speed and torque determined boost pressure setpoint p_L Soll read and calculated by dividing the ratio of the two. This ratio is then multiplied by the lambda actual value λ lst to obtain the lambda reference value λ REF according to equation (3). The lambda reference value λ REF is the input quantity of the characteristic curve_1 according to FIG FIG. 6 from which a soot emission characteristic value (soot emission reference value) for the lambda reference value λ REF is determined.

Durch Division von Rußemissions-Istwert und Rußemissions-Referenzwert wird ein Korrekturfaktor_1 erhalten, der den Lambda-Abweichungen Δλ in transienten Betriebssituationen mathematisch Rechnung trägt. Der Korrekturfaktor_1 kann in einfacher Ausgestaltung der Erfindung ohne weitere Modifizierung durch Multiplikation auf die stationäre Rußemission aus Zweig a) angewendet werden und so zu einem korrigierten, instationären Rußmassenstrom führen (nicht dargestellt).By dividing the actual value of the soot emission and the reference value of the soot emission, a correction factor 1 is obtained, which mathematically takes into account the lambda deviations Δλ in transient operating situations. The correction factor_1 can be applied in a simple embodiment of the invention without further modification by multiplication on the stationary soot emission from branch a) and thus lead to a corrected, unsteady soot mass flow (not shown).

Die Genauigkeit des Verfahrens kann noch weiter verbessert werden, indem ein empirisch ermitteltes Kennfeld (Kennfeld_2 in Figur 5) eingeführt wird, das eine arbeitspunktabhängige Empfindlichkeit (Verstärkung) abbildet. In dieser Ausführung wird in Abhängigkeit des aktuellen Betriebspunktes, insbesondere in Abhängigkeit von der Drehzahl und dem Drehmoment, ein zweiter Korrekturfaktor (Korrekturfaktor_2) aus dem Kennfeld_2 ermittelt, welcher dem Arbeitspunkt der Verbrennungskraftmaschine Rechnung trägt. Durch Multiplikation des Korrekturfaktors_1 und des Korrekturfaktors_2 wird gemäß Figur 5 der Korrekturfaktor erhalten, mit dem die berechnete stationäre Rußemission multipliziert wird. Genau genommen wird nach Figur 5 die Abweichung des Korrekturfaktors_1 von 1 verstärkt gemäß: Korrekturfaktor = Korrekturfaktor_ 1 - 1 * Korrekturfaktor_ 2 + 1

Figure imgb0006
The accuracy of the method can be further improved by an empirically determined characteristic map (Kennfeld_2 in FIG. 5 ) introducing an operating point dependent sensitivity (gain). In this embodiment, depending on the current operating point, in particular as a function of the rotational speed and the torque, a second correction factor (correction factor_2) is determined from the map_2, which takes into account the operating point of the internal combustion engine. By multiplication of the correction factor_1 and the correction factor_2 according to FIG. 5 the correction factor is obtained, with which the calculated stationary soot emission is multiplied. Strictly speaking, it is after FIG. 5 the deviation of the correction factor_1 of 1 amplifies according to: correction factor = Korrekturfaktor_ 1 - 1 * Korrekturfaktor_ 2 + 1
Figure imgb0006

Somit ist in quasi-stationären Betriebszuständen des Motors, in denen der Ladedruck-Sollwert ausgeregelt ist (p_Llst = p_LSoll ), der Korrekturfaktor identisch 1 unabhängig davon, wie groß der betriebspunktabhängige Korrekturfaktor_2 ist.Thus, in quasi-stationary operating conditions of the engine, in which the boost pressure setpoint is compensated ( p_L lst = p_L setpoint ) , the correction factor is identical 1 irrespective of how large the operating point-dependent correction factor_2 is.

Anwendungsexperimente in der Praxis haben gezeigt, dass die oben beschriebene erfindungsgemäße Methode zur Ermittlung der Rußemission eines Motors bzw. einer Beladung eines DPF in Fahrzyklen mit hoher Fahrdynamik eine hohe Genauigkeit liefert, die mit den bekannten Modellfunktionen bislang nicht erreicht werden konnte.Practical application experiments have shown that the method according to the invention described above for determining the soot emission of a motor or a loading of a DPF in driving cycles with high driving dynamics provides a high level of accuracy which could not previously be achieved with the known model functions.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
VerbrennungskraftmaschineInternal combustion engine
1212
Zylindercylinder
1414
KraftstoffeinspritzsystemFuel injection system
1616
Luftansaugrohrair intake pipe
1818
Stellelement/DrosselklappeActuator / throttle
2020
Abgaskanalexhaust duct
2222
Partikelfilter (DPF)Particulate filter (DPF)
2424
Katalysatorcatalyst
2626
MotorsteuergerätEngine control unit
2828
Lambdasondelambda probe
3030
Drucksensorpressure sensor
3232
Kennfelder/KennlinienMaps / characteristic curves
nn
MotordrehzahlEngine speed
LL
Motorlastengine load
λλ
Luft-Kraftstoff-Verhältnis LambdaAir-fuel ratio lambda
λlst λ lst
Lambda-IstwertLambda actual value
λREF λ REF
Lambda-ReferenzwertLambda reference value
m_LM_L
Luftmasseair mass
m_Llst m_L lst
Luftmassen-IstwertAir mass actual value
m_LSoll m_L target
Luftmassen-SollwertAir mass setpoint
m_Km_K
KraftstoffmasseFuel mass
m_Klst m_K lst
Kraftstoffmassen-IstwertFuel mass value
m_KSoll m_K Soll
Kraftstoffmassen-SollwertFuel mass setpoint
p_Lp_l
Ladedruckboost pressure
p_Llst p_L lst
Ladedruck-IstwertCharging pressure actual value
p_LSoll p_L setpoint
Ladedruck-SollwertBoost pressure setpoint

Claims (10)

Verfahren zur Ermittlung einer Rußbeladung eines Partikelfilters (22), welcher in einem Abgasweg einer Verbrennungskraftmaschine (10) angeordnet ist, die mit einem vorbestimmten Kraftstoffmassen-Sollwert (m_KSoll ) und mit einer Luftmasse entsprechend einem vorbestimmten Ladedruck-Sollwert (p_LSoll ) betrieben wird, wobei zur Ermittlung der Rußbeladung in einer instationären Betriebssituation ein Rußeintrag in den Partikelfilter (22) ermittelt wird, indem der Rußeintrag für einen entsprechenden stationären Betriebspunkt bestimmt und dieser so korrigiert wird, dass eine Abweichung des Rußeintrags infolge der instationären Betriebssituation berücksichtigt wird, dadurch gekennzeichnet, dass die Abweichung des Rußeintrags infolge der instationären Betriebssituation wenigstens in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert (p_LSoll ) und einem gemessenen Ladedruck-Istwert (p-Llst ) bestimmt wird.Method for determining a soot load of a particulate filter (22), which is arranged in an exhaust path of an internal combustion engine (10), which is operated with a predetermined fuel mass setpoint ( m_K setpoint ) and with an air mass corresponding to a predetermined boost pressure setpoint ( p_L setpoint ) wherein a soot ingress is detected in the particulate filter (22) for determining the soot charge in a transient operation situation by the soot ingress for a corresponding steady-state operating point is determined and this is corrected so that a deviation of the Rußeintrags is taken into account as a result of transient operating situation, characterized in that in that the deviation of the soot entry due to the transient operating situation is determined at least as a function of the predetermined boost pressure setpoint ( p_L setpoint ) and a measured boost pressure actual value ( pL actual ). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die instationäre Abweichung des Rußeintrags in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert (p_LSoll ), dem gemessenen Ladedruck-Istwert (p_LIst ) und einem gemessenen Lambda-Istwert (λlst ) bestimmt wird.A method according to claim 1, characterized in that the transient deviation of the Rußeintrags depending on the predetermined boost pressure setpoint ( p_L setpoint ) , the measured boost pressure actual value ( p_L actual ) and a measured lambda actual value ( λ lst ) is determined. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein Lambda-Referenzwert (λREF ) in Abhängigkeit von dem vorbestimmten Ladedruck-Sollwert (p_LSoll ), dem gemessenen Ladedruck-Istwert (p_Llst ) und dem gemessenen Lambda-Istwert (λlst ) bestimmt und ein Rußemissions-Referenzwert oder ein hiermit korrelierender Wert in Abhängigkeit des Lambda-Referenzwerts (λREF ) bestimmt wird und dieser Wert in die Korrektur einfließt.A method according to claim 2, characterized in that a lambda reference value ( λ REF ) in dependence on the predetermined boost pressure setpoint ( p _L setpoint ) , the measured boost pressure actual value ( p_L lst ) and the measured lambda actual value ( λ lst ) determined and a Rußemissions reference value or a value correlated therewith in accordance with the lambda reference value ( λ REF ) is determined and this value is included in the correction. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Lambda-Referenzwert (λREF ) gemäß folgender Gleichung bestimmt wird: λ REF = λ Ist p _ L Soll p _ L Ist .
Figure imgb0007
A method according to claim 3, characterized in that the lambda reference value ( λ REF ) is determined according to the following equation: λ REF = λ is p _ L Should p _ L is ,
Figure imgb0007
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Rußemissions-Istwert oder ein hiermit korrelierender Wert in Abhängigkeit des gemessenen Lambda-Istwerts (λlst ) bestimmt wird und dieser Wert in die Korrektur einfließt.Method according to one of the preceding claims, characterized in that a soot emission actual value or a value correlated therewith is determined as a function of the measured lambda actual value ( λ actual ) and this value is included in the correction. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass ein erster Korrekturfaktor aus dem Verhältnis des Rußemissions-Istwerts und des Rußemissions-Referenzwerts oder aus den entsprechenden korrelierenden Werten bestimmt wird und der erste Korrekturfaktor in die Korrektur einfließt.Method according to one of Claims 3 to 5, characterized in that a first correction factor is determined from the ratio of the carbon black emission actual value and the carbon black emission reference value or from the corresponding correlating values and the first correction factor is included in the correction. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass für die Ermittlung des Rußemissions-Referenzwerts und des Rußemissions-Istwerts beziehungsweise der entsprechenden korrelierenden Werte eine gespeicherte lambdaabhängige Kennlinie verwendet wird.Method according to one of Claims 3 to 6, characterized in that a stored lambda-dependent characteristic curve is used for determining the soot emission reference value and the soot emission actual value or the corresponding correlating values. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter Korrekturfaktor in Abhängigkeit von einem aktuellen Betriebspunkt der Verbrennungskraftmaschine (10) aus einem Kennfeld ermittelt wird und der zweite Korrekturfaktor in die Korrektur einfließt.Method according to one of the preceding claims, characterized in that a second correction factor in dependence on a current operating point of the internal combustion engine (10) is determined from a map and the second correction factor is included in the correction. Steuereinrichtung (26) zur Ermittlung einer Rußbeladung eines Partikelfilters (22), die zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 8 eingerichtet ist.Control device (26) for determining a soot load of a particulate filter (22), which is adapted to carry out a method according to one of claims 1 to 8. Steuereinrichtung (26) nach Anspruch 9, umfassend eine gespeicherte lambdaabhängige Kennlinie, welche einen Rußemissionswert oder einen korrelierenden Wert, insbesondere einen dimensionslosen Rußemissionskennwert in Abhängigkeit von Lambda, abbildet.Control device (26) according to claim 9, comprising a stored lambda-dependent characteristic curve, which maps a soot emission value or a correlating value, in particular a dimensionless soot emission characteristic as a function of lambda.
EP11008841.6A 2010-12-22 2011-11-07 Method and control equipment for determining a carbon black loading of a particulate filter Active EP2469061B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010055640A DE102010055640A1 (en) 2010-12-22 2010-12-22 Method and control device for determining a soot load of a particulate filter

Publications (3)

Publication Number Publication Date
EP2469061A2 true EP2469061A2 (en) 2012-06-27
EP2469061A3 EP2469061A3 (en) 2017-08-23
EP2469061B1 EP2469061B1 (en) 2020-06-17

Family

ID=45350579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008841.6A Active EP2469061B1 (en) 2010-12-22 2011-11-07 Method and control equipment for determining a carbon black loading of a particulate filter

Country Status (2)

Country Link
EP (1) EP2469061B1 (en)
DE (1) DE102010055640A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906134B2 (en) * 2012-11-08 2014-12-09 GM Global Technology Operations LLC Engine-out soot flow rate prediction
DE102015211151B4 (en) * 2015-06-17 2021-08-12 Vitesco Technologies GmbH Method and device for determining the loading state of an exhaust gas particle filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140048B4 (en) 2000-08-25 2005-08-11 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Method and device for determining the load of a diesel particulate filter
DE102006055562B4 (en) 2006-11-24 2009-10-15 Ford Global Technologies, LLC, Dearborn Method and device for estimating the soot emissions of an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304815B1 (en) * 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
DE10233945B4 (en) * 2002-07-25 2005-09-22 Siemens Ag Process for cleaning a particulate filter
DE10321192A1 (en) * 2003-05-12 2004-12-02 Volkswagen Ag Controlling internal combustion engine, especially a diesel, involves assessing dynamic operating condition of engine and adjusting fuel supply or injection starting point depending on working point
DE10329328B4 (en) * 2003-06-30 2005-10-13 Siemens Ag Method for controlling an internal combustion engine
DE102006062515A1 (en) * 2006-12-29 2008-07-03 Volkswagen Ag Particle filter function monitoring method for exhaust gas system of internal combustion engine i.e. diesel engine, involves measuring concentration of one of nitric oxide and nitrogen dioxide, in exhaust gas mass flow, using sensor
DE102007057039A1 (en) * 2007-11-27 2009-05-28 Robert Bosch Gmbh Method for detecting the loading of a particulate filter
DE102009021387A1 (en) * 2009-03-09 2010-09-16 Volkswagen Ag Controller monitoring method for internal combustion engine of motor vehicle, involves controlling controller of engine by transient control parameter in transient operating mode and by control parameter in stationary operating mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140048B4 (en) 2000-08-25 2005-08-11 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Method and device for determining the load of a diesel particulate filter
DE102006055562B4 (en) 2006-11-24 2009-10-15 Ford Global Technologies, LLC, Dearborn Method and device for estimating the soot emissions of an internal combustion engine

Also Published As

Publication number Publication date
EP2469061B1 (en) 2020-06-17
EP2469061A3 (en) 2017-08-23
DE102010055640A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
DE102011003095A1 (en) Method for determining the oxygen concentration O 2 in a gas flow and oxygen sensor for carrying out the method
EP3121408B1 (en) Control of a combustion engine in transient operation
EP1623103B1 (en) Method for monitoring the speed of a bi-turbocharger
DE102007012604A1 (en) A method of controlling an injection of a direct injection internal combustion engine injector and a direct injection internal combustion engine
DE112007000409B4 (en) Method for controlling turbine outlet temperatures in a diesel engine
DE102016218818B4 (en) Secondary air-dependent lambda control
WO2015185471A1 (en) Determining the pump capacity of a pump of a secondary air system of an internal combustion engine
DE102004033412A1 (en) Method for operating a particulate filter arranged in an exhaust area of an internal combustion engine and device for carrying out the method
DE102015205194A1 (en) Regulating / control device
DE102011089847B4 (en) Engine control device
EP3594480B1 (en) Method for controlling a charging system
EP1076166B1 (en) Method and apparatus for the determination of the intake air in an internal combustion engine
DE10256241A1 (en) Method and device for controlling an internal combustion engine having exhaust gas recirculation
DE102010055641B4 (en) Method and control device for determining a soot load on a particle filter
EP2469061B1 (en) Method and control equipment for determining a carbon black loading of a particulate filter
DE102018131500A1 (en) Method for operating a motor vehicle
DE102016203333B4 (en) EMISSION ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE
DE102009054817A1 (en) Method for on-board error diagnosis in operation of internal combustion engine of motor vehicle, involves determining actual emission value in actual operating condition, and generating error signal based on index value
WO2006108580A1 (en) Method for adjusting an exhaust gas turbocharger
WO2016202481A1 (en) Method and device for determining the load condition of an exhaust gas particulate filter
DE10160469A1 (en) Limiting combustion engine exhaust gas turbocharger revolution rate involves estimating actual charger revolution rate, comparing with threshold, limiting/reduce rate if threshold exceeded
EP3290681B1 (en) Method for operating an exhaust gas recycle system
EP3656994A1 (en) Method for controlling a charging system
EP3181875B1 (en) Reference based intake pipe temperature model
DE102009027137A1 (en) Method for regulating flow rate of exhaust gas recirculation in diesel engine, involves regulating updated exhaust gas recirculation flow rate using estimated value, and determining estimated value based on measurement of turbocharger speed

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/02 20060101AFI20170720BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016737

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016737

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 13

Ref country code: DE

Payment date: 20231130

Year of fee payment: 13