EP2468080B1 - Microwave device for accelerating electrons - Google Patents

Microwave device for accelerating electrons Download PDF

Info

Publication number
EP2468080B1
EP2468080B1 EP10745594.1A EP10745594A EP2468080B1 EP 2468080 B1 EP2468080 B1 EP 2468080B1 EP 10745594 A EP10745594 A EP 10745594A EP 2468080 B1 EP2468080 B1 EP 2468080B1
Authority
EP
European Patent Office
Prior art keywords
hyperfrequency
frequency
output
energy
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10745594.1A
Other languages
German (de)
French (fr)
Other versions
EP2468080A1 (en
Inventor
Serge Sierra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to PL10745594T priority Critical patent/PL2468080T3/en
Publication of EP2468080A1 publication Critical patent/EP2468080A1/en
Application granted granted Critical
Publication of EP2468080B1 publication Critical patent/EP2468080B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators

Definitions

  • the present invention relates to an electron radio frequency accelerator for a container inspection device.
  • Container inspection systems such as those transported by truck or by ship use a source of high-energy photon radiation.
  • the figure 1 shows a perspective view of an exemplary embodiment of a state-of-the-art container inspection device 10 towed by a tractor 12.
  • the inspection device of the figure 1 essentially comprises an electron radio frequency accelerator 20 striking a target 22 which in turn provides a high energy photon radiation 26 vertically scanning one side of the container 10.
  • the accelerator is excited by a microwave source 28 at a frequency f0.
  • a detector 30 placed on the other side of the container provides an image of a vertical slice of the contents of the container.
  • the displacement of the container 10 by the tractor 12 in a direction 32 makes it possible to obtain a complete image of the contents over the entire length of the container.
  • the container towed by the truck and the detector can also move in relative movement of one relative to the other.
  • Other systems include two perpendicular irradiation sources in the same inspection plane and two associated detectors for providing a (pseudo) three dimensional image of the contents of the container.
  • the radiofrequency accelerator is a linear accelerator or LINAC, for LINear ACcelerator in English, the trajectory of the electrons is always rectilinear, the electric field of acceleration of the electrons is of high frequency.
  • the high frequency sources used are almost always klystrons or magnetrons.
  • the electrons are accelerated in the LINAC by successive high frequency pulses suitably synchronized.
  • the beam passing through a series of cavities where there is an alternating electric field will be able to reach an energy of a few MeV
  • the current systems of container inspection can be done in the form of a sequence of energy pulses, either photon irradiations with constant energies, or irradiations with energy changes by "packets". that is, energy changes over long periods of time with respect to an energy pulse.
  • the energy changes on the state-of-the-art linear accelerators are based either on intersection phase shifts or on mechanical shunts to short-circuit the accelerating cavities at the end of the section.
  • the beam load control English beam loading
  • RF radio frequency power
  • the Figures 2a and 2b represent the energy of the electrons according to two state-of-the-art pulse-accelerating techniques using a radio frequency accelerator of frequency f0.
  • the figure 2a shows the energy of the electrons as a sequence of pulses of width L and constant energy E from one pulse to another for a certain time.
  • the figure 2b shows the energy of the electrons in the form of successive packets P1, P2 of pulses to even drop L.
  • the energy of the pulses of each packet is the same silk E1 for the pulses of the packet P1 and E2 for the pulses of the packet P2.
  • the energy of the photos radiated by the target is directly related to the energy of the electrons, expressed in MeV, at the output of the radiofrequency device of accelerations impacting said target.
  • the document US 2002/0122531 discloses a linear particle accelerator operable in a plurality of distinct resonance modes for delivering two distinct energy levels.
  • This latency time Tr is due, in the state-of-the-art switching LINACS, to the mechanical switching time of the shunts to short-circuit certain elements of one of the LINAC cavities in order to vary the electric field in the cavities.
  • the lag time Tr is due to the time required for the phase change in the output section by motors controlled by an energy change device.
  • the document US4,006,422 describes an electron accelerator that circulates electrons in one direction and then in the opposite direction in the accelerator.
  • the energy level at the output 40 of the electron accelerator is modified either by the displacement of the reflector 39 relative to the structure 30 or by the modification of the magnetic field in said reflector.
  • the invention provides an electron-accelerating hyperfrequency device according to claim 1.
  • the radiofrequency generator comprises a klystron operating as a microwave amplifier and a local oscillator OL, the microwave input of the klystron being driven by a microwave output of the local oscillator comprising the frequency control input of the Ufr excitation microwave signal, the power output of the klystron being applied to the microwave signal input of excitation of the microwave structure.
  • the electron gun comprises a control grid of the electron beam current.
  • the central unit UC comprises a control output supplying the gate of the gun with a voltage Uc for controlling the current of the electron beam
  • the radio frequency generator comprises a control input of the level of the microwave excitation signal Urf controlled by the central unit UC.
  • the excitation signal Urf is applied to the third cavity of the series of n cavities C1, C2, ... Ci, .. Cx, ... Cn coupled, the first cavity of the suite being the one the closest to the electron gun.
  • the CPU is configured to provide a duration L of a pulse Iy of between 3 and 4 microseconds.
  • the invention is applicable to a container inspection device comprising a hyperfrequency electron accelerating device according to the invention.
  • the invention also relates to a method for implementing an electron-accelerating hyperfrequency device according to claim 11.
  • the electron gun having a control grid of the electron beam current
  • the method further comprises controlling the current of the electron beam to control the electrons output of the microwave structure.
  • the original solution proposed by the invention makes it possible to obtain variations of the output energy of the linear accelerator in much greater proportions than those obtained by the electron acceleration devices of the state of the invention. art.
  • This proposed solution consists of varying the actual working RF frequency of the accelerator possibly combined with the other energy control parameters such as the level of the beam current and the RF power in the LINAC.
  • the variation of energy by variation of the frequency of the RF signal injected into the LINAC is taken into account as soon as the accelerating section is designed to allow its optimization.
  • the RF input must be asymmetrical on the section of the cavities on the side of the barrel.
  • the effect is accentuated, thus by varying the frequency with respect to the central frequency f0, a wide range of energies can be obtained (typically a factor of 8 is obtained on certain medical accelerators)
  • this system is associated with an electron gun whose emission can be modified from impulse to impulse, then the possibility of variation of energy and of dose (or of the contrary of maintaining it) is obtained for each energy pulse.
  • the figure 3a represents an exemplary embodiment of a radiofrequency electron acceleration device according to the invention.
  • the device of the figure 3a essentially comprises an electron gun 50 having a cathode 52 supplying an electron beam 54 in a klystron-type vacuum hyper-frequency structure 60, forming a linear electron radio frequency accelerator (accelerating section) along a longitudinal axis ZZ '.
  • the microwave structure 60 of longitudinal shape along the axis ZZ ', has two ends 62, 64 opposite and between its two ends a sequence of n cavities C1, C2, .. Ci, ... Cx, ... Cn, aligned along the longitudinal axis ZZ 'forming a LINAC, x being the rank of the cavity in the sequence of n cavities.
  • a cavity Cx of the sequence is coupled to the previous Cx-1 and the following Cx + 1.
  • the cavities have a resonance frequency f0.
  • One of the ends 62 of the microwave structure comprises, on the side of a first cavity C1 of the series of n cavities, an input 66 of the electron beam 54 emitted by the electron gun 50.
  • the other end 64 on the side of a last cavity Cn of said sequence, comprises an output 68 of accelerated beam electrons.
  • the accelerated electrons at the output of the LINAC are intended to strike a target 70 providing high energy photons 72 for the irradiation of the container to be inspected.
  • the microwave structure 60 comprises an excitation radio frequency input 74, at one of the cavities Ci of the sequence of the n cavities, close to the input 66 of the electron beam.
  • the input cavity Ci is thus a cavity of the first third of the sequence of n cavities of the side of the electron gun.
  • the electron beam 54 is focused on the axis ZZ 'of the microwave structure by a permanent magnet device or solenoids, not shown in the figure, surrounding said structure.
  • the electron beam 54 can also be self-focused by the RF itself.
  • the acceleration device comprises a microwave klystron KLY 80 operating as a microwave amplifier driven by an RF input 81 by the RF output of a local oscillator OL 82 of central frequency f0 being frequency-controlled Fv around this central frequency f0 .
  • the local oscillator OL has a frequency control input 78 for varying its central frequency f0.
  • the klystron 80 provides, at an RF output, according to a main characteristic of the invention, a microwave excitation signal Urf of the input cavity Ci close to the input 66 of the electron beam at the excitation frequency Fv.
  • the energy of the electrons at the output of the microwave structure can be changed over a wide range of energies by the frequency variation Fv at the output of the RF generator 76.
  • the figure 3b shows a graph showing the variation of the electron acceleration field along the microwave structure of the acceleration device of the figure 3a .
  • the graph of the figure 3b comprises, on the ordinate, the value of the envelope of the acceleration field and, on the abscissa, the position P considered along the microwave structure 60 of the electron accelerator. This position P is indicated by the position of the cavity in the microwave structure varying from the first cavity C1 to the last cavity Cn.
  • the graph of the figure 3b shows three curves corresponding to the variations of the acceleration field E along the microwave structure for the central frequency f0 and for two deviations around the central frequency f0 at the output of the klystron 80 driving the input cavity Ci.
  • the acceleration field is maximum near the input 66 of the microwave structure
  • the electron accelerator device makes it possible to obtain a dynamic (E1 to E3) of energy variations at the output of the microwave structure, by the variation of the central frequency f0, of the order typically of 3 to 25MeV for a frequency variation of the order of Mhz
  • the hyperfrequency electron acceleration device further comprises a central unit UC 90 configured to control the energy variation of the electrons at the output of the microwave structure.
  • the figure 4 represented the energy of the electrons at the output of the microwave device of the figure 3 .
  • the energy of the electrons at the output of the microwave structure 60 is in the form of a pulse sequence 11, 12, I3, ... Iy ... of respective energy E1, E2, E3 , ... Ey .
  • the frequency of the radio frequency generator is controlled by the central unit UC to change the frequency Fv in synchronism with the said pulses 11, 12, I3, ... Iy ... of energy.
  • the accelerated electrons of the beam strike the target 70 with a variable pulse energy as a function of the frequency Fv of the microwave signal applied by the klystron to the structure.
  • the target in turn irradiates photons 72 of energy depending on the energy of the incident electrons.
  • the figure 4 shows the energy E1, E2, E3, ... Ey ... electrons impacting the target 70 for each respective pulse 11, 12, I3, ... Iy ... energy output of the microwave structure in function of time t.
  • the energy of the electrons E1, E2, E3,.................Avem Can be controlled to a desired value for each of the successive pulses 11, 12, I3,... By a change in the frequency Fv of the local oscillator at each pulse.
  • the frequency of the local oscillator OL 82 is controlled by the central unit UC to change the frequency Fv in synchronism with said energy pulses, a frequency Fvy of the local oscillator and thus of the microwave excitation signal provided by the klystron producing an energy Ey of the respective pulse Iy at the output of the hyperfrequency acceleration structure.
  • the central unit UC comprises a control output 92 supplying a control signal Cf of frequency Fv to the frequency control input 78 of the local oscillator OL 82.
  • Two consecutive energy pulses Iy, I (y + 1) are separated by a time period Tn at zero energy obtained, either by interrupting actions of the beam current or by interrupting the RF excitation of the beam.
  • klystron KLY be by both actions.
  • the interruption of the RF excitation is controlled by the central unit UC.
  • the central unit UC it comprises a control output 94 driving an input 96 of the local oscillator LO to interrupt the klystron drive RF level and consequently the level of the microwave excitation signal Urf
  • the hyperfrequency acceleration structure comprises 40 to 50 cavities (n between 40 and 50) operating at a central frequency of 3GHz.
  • the duration L of a pulse is of the order of 3 to 4 microseconds.
  • the excitation of the LINAC is performed by the third cavity C3.
  • the figure 5 shows the frequency variation range Fv of the excitation signal of the device of the figure 3 around the central frequency f0 between a maximum frequency Fvmax and a minimum frequency Fvmin.
  • the radio frequency generator 76 may be a frequency-controlled magnetron by the central unit UC.
  • the electron acceleration device makes it possible to change the energy of the electrons, and therefore the energy radiated by the target, from one pulse to the next with a very greater speed than the devices. mechanical switching state of the art, so no latency Tr.
  • the electron gun comprises a grid 100 for controlling the current of the electron beam.
  • the central unit UC comprises a control output 110 supplying the gate 100 with a control voltage Uc of said beam current.
  • the control of the beam current makes it possible to adapt, by the control of the electrons sent on the target 70 at the output of the microwave structure, the radiation dose (expressed in Joules / kg) of photons emitted by said target and this whatever the energy level of the electrons striking the target.
  • Controlling the beam current makes it possible, for example, to maintain a constant radiation dose regardless of the energy level of the electrons during the pulses.
  • the device is not limited to the industrial application of container inspection, it can also be used in the medical field and in particular in radiotherapy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Description

L'invention concerne un accélérateur radiofréquences d'électrons pour dispositif d'inspection de conteneur.The present invention relates to an electron radio frequency accelerator for a container inspection device.

Les systèmes d'inspection de conteneurs tels que ceux transportés par camion, ou par bateau utilisent une source de rayonnement de photons de haute énergie.Container inspection systems such as those transported by truck or by ship use a source of high-energy photon radiation.

La figure 1 montre une vue en perspective d'un exemple de réalisation d'un dispositif d'inspection de conteneur 10, de l'état de l'art, remorqué par un tracteur 12.The figure 1 shows a perspective view of an exemplary embodiment of a state-of-the-art container inspection device 10 towed by a tractor 12.

Le dispositif d'inspection de la figure 1 comporte essentiellement, un accélérateur radiofréquences d'électrons 20 percutant une cible 22 qui fournit à son tour un rayonnement de photons 26 à haute énergie balayant verticalement un côté du conteneur 10. L'accélérateur est excité par une source hyperfréquence 28 à une fréquence f0.The inspection device of the figure 1 essentially comprises an electron radio frequency accelerator 20 striking a target 22 which in turn provides a high energy photon radiation 26 vertically scanning one side of the container 10. The accelerator is excited by a microwave source 28 at a frequency f0.

Un détecteur 30 placé de l'autre côté du conteneur fourni une image d'une tranche verticale du contenu du conteneur. Le déplacement du conteneur 10 par le tracteur 12 dans un sens 32 permet d'obtenir une image complète du contenu sur toute la longueur du conteneur. Le conteneur tracté par le camion et le détecteur peuvent aussi se déplacer dans mouvement relatif de l'un par rapport à l'autre.A detector 30 placed on the other side of the container provides an image of a vertical slice of the contents of the container. The displacement of the container 10 by the tractor 12 in a direction 32 makes it possible to obtain a complete image of the contents over the entire length of the container. The container towed by the truck and the detector can also move in relative movement of one relative to the other.

D'autres systèmes comportent deux sources d'irradiation perpendiculaires dans un même plan d'inspection et deux détecteurs associés pour fournir une image en (pseudo) trois dimensions du contenu du conteneur.Other systems include two perpendicular irradiation sources in the same inspection plane and two associated detectors for providing a (pseudo) three dimensional image of the contents of the container.

Dans ce type de système d'inspection de conteneur, l'accélérateur radiofréquences est un accélérateur linéaire ou LINAC, pour LINear ACcelerator en langue anglaise, la trajectoire des électrons est toujours rectiligne, le champ électrique d'accélération des électrons est de haute fréquence.In this type of container inspection system, the radiofrequency accelerator is a linear accelerator or LINAC, for LINear ACcelerator in English, the trajectory of the electrons is always rectilinear, the electric field of acceleration of the electrons is of high frequency.

Les sources haute fréquence utilisées sont presque toujours des klystrons ou des magnétrons. Les électrons sont accélérés dans le LINAC par impulsions à haute fréquence successives convenablement synchronisées. Le faisceau en passant dans une suite de cavités où règne un champ électrique alternatif va pouvoir atteindre une énergie de quelques MeVThe high frequency sources used are almost always klystrons or magnetrons. The electrons are accelerated in the LINAC by successive high frequency pulses suitably synchronized. The beam passing through a series of cavities where there is an alternating electric field will be able to reach an energy of a few MeV

Les systèmes actuels d'inspection de conteneurs permettent de faire sous la forme d'une suite d'impulsions d'énergie, soit des irradiations de photons à énergies constante, soit des irradiations avec changements d'énergie par « paquets » c'est-à-dire des changements d'énergie sur des durées longues par rapport à une impulsion d'énergie.The current systems of container inspection can be done in the form of a sequence of energy pulses, either photon irradiations with constant energies, or irradiations with energy changes by "packets". that is, energy changes over long periods of time with respect to an energy pulse.

Les changements d'énergie sur les accélérateurs linéaires de l'état de l'art sont basés soit sur des déphasages intersection, soit sur des shunts mécaniques permettant de court-circuiter les cavités accélératrices en fin de section. Pour une plage modérée de variation d'énergie, la contrôle du courant de faisceau (beam loading en langue anglaise) ou une réduction de puissance radiofréquences (RF) modérée permettent de changer l'énergie des électrons en sortie du LINAC mais dans une plage restreinte, typiquement un facteur deux entre l'énergie minimum et l'énergie maximum.The energy changes on the state-of-the-art linear accelerators are based either on intersection phase shifts or on mechanical shunts to short-circuit the accelerating cavities at the end of the section. For a moderate range of energy variation, the beam load control (English beam loading) or a moderate radio frequency power (RF) reduction can change the electron energy at the output of the LINAC but in a restricted range typically a factor of two between the minimum energy and the maximum energy.

Les figures 2a et 2b représentent l'énergie des électrons selon deux techniques d'accélération par impulsions de l'état de l'art utilisant un accélérateur radiofréquences de fréquence f0.The Figures 2a and 2b represent the energy of the electrons according to two state-of-the-art pulse-accelerating techniques using a radio frequency accelerator of frequency f0.

La figure 2a montre l'énergie des électrons sous forme d'une suite d'impulsions de largeur L et d'énergie E constante d'une impulsion à l'autre pendant un certain temps.The figure 2a shows the energy of the electrons as a sequence of pulses of width L and constant energy E from one pulse to another for a certain time.

La figure 2b montre l'énergie des électrons sous forme de paquets successifs P1, P2 d'impulsions de même larguer L. L'énergie des impulsions de chaque paquet est la même soie E1 pour les impulsions du paquet P1 et E2 pour les impulsions du paquet P2.The figure 2b shows the energy of the electrons in the form of successive packets P1, P2 of pulses to even drop L. The energy of the pulses of each packet is the same silk E1 for the pulses of the packet P1 and E2 for the pulses of the packet P2.

De façon connue, l'énergie des photos rayonnée par la cible, exprimée en MV, est directement liée à l'énergie des électrons, exprimée en MeV, en sortie du dispositif radiofréquences d'accélérations impactant ladite cible.In known manner, the energy of the photos radiated by the target, expressed in MV, is directly related to the energy of the electrons, expressed in MeV, at the output of the radiofrequency device of accelerations impacting said target.

Le document US 2002/0122531 décrit un accélérateur de particule linéaire pouvant fonctionner selon plusieurs modes de résonnance distincts permettant de délivrer deux niveaux d'énergie distincts.The document US 2002/0122531 discloses a linear particle accelerator operable in a plurality of distinct resonance modes for delivering two distinct energy levels.

Dans le système de l'état de l'art un certain temps Tr de latence est nécessaire pour passer des impulsions d'énergie E1 aux impulsions d'énergie E2 ce qui représente un inconvénient pour le dispositif d'inspection. Ce temps latence Tr est dû, dans les LINACS à commutation de l'état de l'art, au temps de commutation mécanique des shunts pour court-circuiter certains élément d'une des cavité du LINAC afin de faire varier le champs électrique dans les cavités.In the state-of-the-art system a certain latency time Tr is required to pass energy pulses E1 to the energy pulses E2, which represents a disadvantage for the inspection device. This latency time Tr is due, in the state-of-the-art switching LINACS, to the mechanical switching time of the shunts to short-circuit certain elements of one of the LINAC cavities in order to vary the electric field in the cavities.

Dans les LINACS à deux sections en cascade de l'état de l'art le temps de latence Tr est dû au temps nécessaire au changement de phase dans la section de sortie par des moteurs commandés par un dispositif de changement d'énergie.In the cascaded two-section LINACS of the state of the art, the lag time Tr is due to the time required for the phase change in the output section by motors controlled by an energy change device.

Par ailleurs, le document US4,006,422 décrit un accélérateur d'électrons faisant circuler les électrons dans un sens puis dans le sens opposé dans l'accélérateur. Le niveau d'énergie en sortie 40 de l'accélérateur d'électrons est modifié soit par le déplacement du réflecteur 39 par rapport à la structure 30 soit par la modification du champ magnétique dans ledit réflecteur.In addition, the document US4,006,422 describes an electron accelerator that circulates electrons in one direction and then in the opposite direction in the accelerator. The energy level at the output 40 of the electron accelerator is modified either by the displacement of the reflector 39 relative to the structure 30 or by the modification of the magnetic field in said reflector.

Dans les systèmes actuels d'inspections de conteneurs, on cherche à obtenir une plage de variation de l'énergie rayonnée de plus en plus importante afin d'augmenter la précision de l'identification du contenu d'un conteneur.In current container inspection systems, it is sought to obtain a range of variation of the radiated energy of increasing importance to increase the accuracy of the identification of the contents of a container.

La demande actuelle conduit à s'orienter vers des systèmes d'inspection permettant de faire des irradiations où l'énergie est changée d'une impulsion à l'autre.Current demand is leading to inspection systems for irradiation where energy is changed from one impulse to another.

Pour obtenir une plus grande précision d'identification du contenu d'un conteneur dans les systèmes d'inspection de conteneurs, l'invention propose un dispositif hyperfréquences d'accélération d'électrons selon la revendication 1.To achieve greater accuracy in identifying the contents of a container in container inspection systems, the invention provides an electron-accelerating hyperfrequency device according to claim 1.

Avantageusement le générateur radiofréquences comporte un klystron fonctionnant en amplificateur hyperfréquences et un oscillateur local OL, l'entrée hyperfréquences du klystron étant attaquée par une sortie hyperfréquences de l'oscillateur local comportant l'entrée de contrôle en fréquence du signal hyperfréquences d'excitation Ufr, la sortie de puissance du klystron étant appliqué à l'entrée de signal hyperfréquences d'excitation de la structure hyperfréquences.Advantageously, the radiofrequency generator comprises a klystron operating as a microwave amplifier and a local oscillator OL, the microwave input of the klystron being driven by a microwave output of the local oscillator comprising the frequency control input of the Ufr excitation microwave signal, the power output of the klystron being applied to the microwave signal input of excitation of the microwave structure.

Dans une réalisation, le canon à électrons comporte une grille de contrôle du courant du faisceau d'électrons.In one embodiment, the electron gun comprises a control grid of the electron beam current.

Dans une autre réalisation, l'unité centrale UC comporte une sortie de contrôle fournissant à la grille du canon une tension Uc de contrôle du courant du faisceau d'électronsIn another embodiment, the central unit UC comprises a control output supplying the gate of the gun with a voltage Uc for controlling the current of the electron beam

Dans une autre réalisation, le générateur radiofréquences comporte une entrée de contrôle du niveau du signal hyperfréquences d'excitation Urf piloté par l'unité centrale UC.In another embodiment, the radio frequency generator comprises a control input of the level of the microwave excitation signal Urf controlled by the central unit UC.

Dans une autre réalisation, le signal d'excitation Urf est appliqué à la troisième cavité de la suite des n cavités C1, C2,...Ci,.. Cx,...Cn couplées, la première cavité de la suite étant celle la plus proche du canon à électrons.In another embodiment, the excitation signal Urf is applied to the third cavity of the series of n cavities C1, C2, ... Ci, .. Cx, ... Cn coupled, the first cavity of the suite being the one the closest to the electron gun.

Dans une autre réalisation, la structure hyperfréquence d'accélération d'électrons comporte 40 à 50 cavités, soit n compris entre 40 et 50, fonctionnant à une fréquence centrale de 3GHz, la variation de la fréquence centrale f0 du générateur radiofréquences attaquant la structure hyperfréquences étant de l'ordre de 1 MHz, la fréquence Fv variant entre Fv = fo + ou -500KHz, pour obtenir les variations maximales de l'énergie E1, E2, E3,....Ey,... des respectives impulsions 11, 12, I3,....Iy.. comprises entre 3 et 25 MeV.In another embodiment, the hyperfrequency electron acceleration structure comprises 40 to 50 cavities, ie n between 40 and 50, operating at a central frequency of 3GHz, the variation of the central frequency f 0 of the radio frequency generator attacking the microwave structure being of the order of 1 MHz, the frequency Fv varying between Fv = fo + or -500KHz, to obtain the maximum variations of the energy E1, E2, E3, .... Ey, ... of the respective pulses 11 , 12, I3, .... Iy .. between 3 and 25 MeV.

Dans une autre réalisation, l'unité centrale est configurée pour fournir une durée L d'une impulsion Iy comprise entre 3 et 4 microsecondes.In another embodiment, the CPU is configured to provide a duration L of a pulse Iy of between 3 and 4 microseconds.

L'invention est applicable à un dispositif d'inspection de conteneur comportant un dispositif hyperfréquences d'accélération d'électrons selon l'invention.The invention is applicable to a container inspection device comprising a hyperfrequency electron accelerating device according to the invention.

L'invention concerne aussi un procédé pour la mise en oeuvre d'un dispositif hyperfréquences d'accélération d'électrons selon la revendication 11.The invention also relates to a method for implementing an electron-accelerating hyperfrequency device according to claim 11.

Dans une réalisation, le canon à électrons comportant une grille de contrôle du courant du faisceau d'électrons, le procédé consiste en plus à contrôler le courant du faisceau d'électrons pour contrôler les électrons en sortie de la structure hyperfréquences.In one embodiment, the electron gun having a control grid of the electron beam current, the method further comprises controlling the current of the electron beam to control the electrons output of the microwave structure.

La solution originale proposée par l'invention permet d'obtenir des variations de l'énergie en sortie de l'accélérateur linéaire dans des proportions bien plus importante que celles obtenues par les dispositifs d'accélération d'électrons de l'état de l'art. Cette solution proposée consiste à faire varier la fréquence RF de travail réelle de l'accélérateur alliée éventuellement aux autres paramètres de contrôle de l'énergie tels que le niveau du courant de faisceau et la puissance RF dans le LINAC.The original solution proposed by the invention makes it possible to obtain variations of the output energy of the linear accelerator in much greater proportions than those obtained by the electron acceleration devices of the state of the invention. art. This proposed solution consists of varying the actual working RF frequency of the accelerator possibly combined with the other energy control parameters such as the level of the beam current and the RF power in the LINAC.

La variation d'énergie par variation de la fréquence du signal RF injecté dans le LINAC est prise en compte dès la conception de la section accélératrice afin de permettre son optimisation.The variation of energy by variation of the frequency of the RF signal injected into the LINAC is taken into account as soon as the accelerating section is designed to allow its optimization.

Pour cela l'entrée RF doit être dissymétrique sur la section des cavités du coté du canon. En onde stationnaire, l'effet est accentué, ainsi en variant la fréquence par rapport à la fréquence centrale f0, une large gamme d'énergies peut être obtenue (typiquement un facteur de 8 est obtenu sur certains accélérateurs médicaux)For this the RF input must be asymmetrical on the section of the cavities on the side of the barrel. In stationary wave, the effect is accentuated, thus by varying the frequency with respect to the central frequency f0, a wide range of energies can be obtained (typically a factor of 8 is obtained on certain medical accelerators)

Par conséquent en alliant ce principe de variation de fréquence de l'accélérateur à une source RF permettant un changement de fréquence d'impulsion à impulsion (typiquement un klystron sur lequel la fréquence de travail est changée par le moyen de son pilote RF) il est possible d'obtenir un entrelacement de modes en énergie couvrant une vaste gamme d'énergies.Therefore by combining this principle of frequency variation of the accelerator with an RF source allowing a pulse-to-pulse frequency change (typically a klystron on which the working frequency is changed by means of its RF driver) it is possible to interleave modes in energy covering a wide range of energies.

De plus si ce système est associé à un canon à électron dont l'émission peut être modifiée d'impulsion à impulsion on obtient alors la possibilité de variation d'énergie et de dose (ou au contraire de maintien de celle-ci) pour chaque impulsion d'énergie.In addition, if this system is associated with an electron gun whose emission can be modified from impulse to impulse, then the possibility of variation of energy and of dose (or of the contrary of maintaining it) is obtained for each energy pulse.

L'invention sera mieux comprise à l'aide d'un exemple de réalisation d'un dispositif hyperfréquences d'accélération selon l'invention, en référence aux dessins indexés dans lesquels :

  • la figure 1, déjà décrite, montre une vue en perspective d'un exemple de réalisation d'un dispositif d'inspection de conteneur, de l'état de l'art ;
  • les figures 2a et 2b, déjà décrites, représentent l'énergie irradiée selon deux techniques d'irradiation par impulsions de l'état de l'art ;
  • la figure 3a représente un exemple de réalisation d'un dispositif d'accélération d'électrons radiofréquences selon l'invention ;
  • la figure 3b montre un graphique représentant la variation du champ d'accélération des électrons le long de la structure hyperfréquences du dispositif d'accélération de la figure 3a ;
  • la figure 4 représenté l'énergie des électrons en sortie du dispositif hyperfréquences de la figure 3 et ;
  • la figure 5 montre la plage de variation de fréquence Fv du signal d'excitation du dispositif de la figure 3a.
The invention will be better understood with the aid of an exemplary embodiment of an accelerating microwave device according to the invention, with reference to the indexed drawings in which:
  • the figure 1 , already described, shows a perspective view of an exemplary embodiment of a container inspection device, of the state of the art;
  • the Figures 2a and 2b , already described, represent the energy irradiated according to two pulse irradiation techniques of the state of the art;
  • the figure 3a represents an exemplary embodiment of a radiofrequency electron acceleration device according to the invention;
  • the figure 3b shows a graph showing the variation of the electron acceleration field along the microwave structure of the acceleration device of the figure 3a ;
  • the figure 4 represented the energy of the electrons at the output of the microwave device of the figure 3 and;
  • the figure 5 shows the frequency variation range Fv of the excitation signal of the device of the figure 3a .

La figure 3a représente un exemple de réalisation d'un dispositif d'accélération d'électrons radiofréquences selon l'invention.The figure 3a represents an exemplary embodiment of a radiofrequency electron acceleration device according to the invention.

Le dispositif de la figure 3a comporte essentiellement un canon à électrons 50 ayant une cathode 52 fournissant un faisceau d'électrons 54 dans une structure hyperfréquence 60 sous vide, de type klystron, formant un accélérateur radiofréquences linéaire d'électrons (section accélératrice), selon un axe longitudinal ZZ'.The device of the figure 3a essentially comprises an electron gun 50 having a cathode 52 supplying an electron beam 54 in a klystron-type vacuum hyper-frequency structure 60, forming a linear electron radio frequency accelerator (accelerating section) along a longitudinal axis ZZ '.

La structure hyperfréquences 60, de forme longitudinale selon l'axe ZZ', comporte deux extrémités 62, 64 opposées et entre ses deux extrémités une suite de n cavités C1, C2,..Ci,...Cx,...Cn, alignées le long de l'axe longitudinal ZZ' formant un LINAC, x étant le rang de la cavité dans la suite des n cavités. Une cavité Cx de la suite est couplée à la précédente Cx-1 et à la suivante Cx+1. Les cavités présentent une fréquence de résonance f0.The microwave structure 60, of longitudinal shape along the axis ZZ ', has two ends 62, 64 opposite and between its two ends a sequence of n cavities C1, C2, .. Ci, ... Cx, ... Cn, aligned along the longitudinal axis ZZ 'forming a LINAC, x being the rank of the cavity in the sequence of n cavities. A cavity Cx of the sequence is coupled to the previous Cx-1 and the following Cx + 1. The cavities have a resonance frequency f0.

Une des extrémités 62 de la structure hyperfréquences comporte, du côté d'une première cavité C1 de la suite de n cavités, une entrée 66 du faisceau d'électrons 54 émis par le canon à électrons 50. L'autre extrémité 64, du côté d'une dernière cavité Cn de ladite suite, comporte une sortie 68 d'électrons du faisceau accélérés.One of the ends 62 of the microwave structure comprises, on the side of a first cavity C1 of the series of n cavities, an input 66 of the electron beam 54 emitted by the electron gun 50. The other end 64, on the side of a last cavity Cn of said sequence, comprises an output 68 of accelerated beam electrons.

Les électrons accélérés en sortie du LINAC sont destines à percuter une cible 70 fournissant des photons 72 à haute énergie pour l'irradiation du conteneur à inspecter.The accelerated electrons at the output of the LINAC are intended to strike a target 70 providing high energy photons 72 for the irradiation of the container to be inspected.

La structure hyperfréquences 60 comporte une entrée radiofréquences 74 d'excitation, au niveau d'une des cavités Ci de la suite des n cavités, proche de l'entrée 66 du faisceau d'électrons.The microwave structure 60 comprises an excitation radio frequency input 74, at one of the cavities Ci of the sequence of the n cavities, close to the input 66 of the electron beam.

La cavité proche de l'extrémité 62 de la structure hyperfréquences du côté du canon à électrons par laquelle est appliqué un signal d'excitation radiofréquences est une cavité d'entrée Ci choisie entre la première cavité C1, soit x=1, et une cavité Ci d'ordre x=n/3. La cavité d'entrée Ci est donc une cavité du premier tiers de la suite des n cavités du côte du canon à électrons.The cavity near the end 62 of the microwave structure on the side of the electron gun by which a radiofrequency excitation signal is applied is an input cavity Ci chosen between the first cavity C1, ie x = 1, and a cavity Ci of order x = n / 3. The input cavity Ci is thus a cavity of the first third of the sequence of n cavities of the side of the electron gun.

Par exemple, l'entrée radiofréquences 74 d'excitation peut être réalisée par la troisième cavité C3 (x=3) dans une structure comportant 40 à 50 cavités.For example, the excitation RF input 74 can be made by the third cavity C3 (x = 3) in a structure having 40 to 50 cavities.

De façon connue le faisceau d'électrons 54 est focalisé sur l'axe ZZ' de la structure hyperfréquences par un dispositif d'aimants permanents ou de solénoïdes, non représentés sur la figure, entourant ladite structure. Le faisceau d'électrons 54 peut être aussi autofocalisé par la RF elle même.In known manner the electron beam 54 is focused on the axis ZZ 'of the microwave structure by a permanent magnet device or solenoids, not shown in the figure, surrounding said structure. The electron beam 54 can also be self-focused by the RF itself.

Dans cet exemple de réalisation de la figure 3a, le dispositif d'accélération comporte un klystron hyperfréquences KLY 80 fonctionnant en amplificateur hyperfréquences attaqué par une entrée RF 81 par la sortie RF d'un oscillateur local OL 82 de fréquence centrale f0 pouvant être commandé en fréquence Fv au tour de cette fréquence centrale f0. A cet effet, l'oscillateur local OL comporte une entrée 78 de contrôle en fréquence pour faire varier sa fréquence centrale f0.In this embodiment of the figure 3a , the acceleration device comprises a microwave klystron KLY 80 operating as a microwave amplifier driven by an RF input 81 by the RF output of a local oscillator OL 82 of central frequency f0 being frequency-controlled Fv around this central frequency f0 . For this purpose, the local oscillator OL has a frequency control input 78 for varying its central frequency f0.

Le klystron 80 fournit, à une sortie RF, selon une principale caractéristique de l'invention, un signal hyperfréquence d'excitation Urf de la cavité d'entrée Ci proche de l'entrée 66 du faisceau d'électrons à la fréquence d'excitation Fv.The klystron 80 provides, at an RF output, according to a main characteristic of the invention, a microwave excitation signal Urf of the input cavity Ci close to the input 66 of the electron beam at the excitation frequency Fv.

L'énergie des électrons en sortie de la structure hyperfréquence peut être changée dans une grande plage d'énergies par la variation de fréquence Fv en sortie du générateur RF 76.The energy of the electrons at the output of the microwave structure can be changed over a wide range of energies by the frequency variation Fv at the output of the RF generator 76.

La figure 3b montre un graphique représentant la variation du champ d'accélération des électrons le long de la structure hyperfréquences du dispositif d'accélération de la figure 3a.The figure 3b shows a graph showing the variation of the electron acceleration field along the microwave structure of the acceleration device of the figure 3a .

Le graphique de la figure 3b comporte, en ordonnées la valeur de l'enveloppe du champ d'accélération et, en abscisses, la position P considérée le long de la structure hyperfréquences 60 de l'accélérateur d'électrons. Cette position P est repérée par la position de la cavité dans la structure hyperfréquences variant de la première cavité C1 à la dernière cavité Cn.The graph of the figure 3b comprises, on the ordinate, the value of the envelope of the acceleration field and, on the abscissa, the position P considered along the microwave structure 60 of the electron accelerator. This position P is indicated by the position of the cavity in the microwave structure varying from the first cavity C1 to the last cavity Cn.

Le graphique de la figure 3b montre trois courbes correspondant aux variations du champ d'accélération E le long de la structure hyperfréquences pour la fréquence centrale f0 et pour deux écarts autour de la fréquence centrale f0 en sortie du klystron 80 attaquant la cavité d'entrée Ci.The graph of the figure 3b shows three curves corresponding to the variations of the acceleration field E along the microwave structure for the central frequency f0 and for two deviations around the central frequency f0 at the output of the klystron 80 driving the input cavity Ci.

Le champ d'accélération est maximum à proximité de l'entrée 66 de la structure hyperfréquencesThe acceleration field is maximum near the input 66 of the microwave structure

Pour une fréquence en sortie du klystron 80 égale à la fréquence centrale f0, l'enveloppe du champ en fonction de la position P est sensiblement constante le long de la structure hyperfréquences. L'énergie des électrons en sortie 68 de la structure est donc maximale (E1)For a frequency at the output of the klystron 80 equal to the center frequency f0, the envelope of the field as a function of the position P is substantially constant along the microwave structure. The energy of the electrons at the output 68 of the structure is therefore maximal (E1)

Pour une fréquence du klystron s'écartant d'une première valeur Δf1 de la fréquence centrale f0, soit Fv1 = f0+ Δf1, l'enveloppe du champ en fonction de la position P diminue, l'énergie des électrons en sortie 68 de la structure hyperfréquence est alors E2 inférieure à E1,For a klystron frequency deviating from a first value Δf1 of the central frequency f0, Fv1 = f0 + Δf1, the envelope of the field as a function of the position P decreases, the energy of the electrons at the output 68 of the structure hyperfrequency is then E2 lower than E1,

Pour une fréquence du klystron s'écartant d'une deuxième valeur Δf2 plus grande que Δf1 de la fréquence centrale f0, soit Fv2 = f0+ Δf2, l'enveloppe du champ en fonction de la position P diminue plus rapidement que dans le cas précédent, l'énergie des électrons en sortie de la structure est alors E3 inférieure à E2For a frequency of the klystron deviating from a second value Δf2 greater than Δf1 of the central frequency f0, ie Fv2 = f0 + Δf2, the envelope of the field as a function of the position P decreases more rapidly than in the previous case, the energy of the electrons at the output of the structure is then E3 less than E2

Le dispositif d'accélérations d'électrons selon l'invention permet d'obtenir une dynamique (E1 à E3) de variations d'énergie en sortie de la structure hyperfréquences, par la variation de la fréquence centrale f0, de l'ordre typiquement de 3 à 25MeV pour une variation de fréquence de l'ordre du MhzThe electron accelerator device according to the invention makes it possible to obtain a dynamic (E1 to E3) of energy variations at the output of the microwave structure, by the variation of the central frequency f0, of the order typically of 3 to 25MeV for a frequency variation of the order of Mhz

Le dispositif hyperfréquences d'accélération d'électrons comporte, en outre, une unité centrale UC 90 configurée pour commander la variation d'énergie des électrons en sortie de la structure hyperfréquences.The hyperfrequency electron acceleration device further comprises a central unit UC 90 configured to control the energy variation of the electrons at the output of the microwave structure.

La figure 4 représenté l'énergie des électrons en sortie du dispositif hyperfréquences de la figure 3.The figure 4 represented the energy of the electrons at the output of the microwave device of the figure 3 .

Dans cet exemple de réalisation, l'énergie des électrons en sortie de la structure hyperfréquences 60 est sous forme d'une suite d'impulsion 11, 12, I3,...Iy... d'énergie respective E1, E2, E3,...Ey.. A cet effet, la fréquence du générateur radiofréquences est contrôlée par l'unité centrale UC pour changer la fréquence Fv en synchronisme avec les dites impulsions 11, 12, I3,...Iy...d'énergie.In this embodiment, the energy of the electrons at the output of the microwave structure 60 is in the form of a pulse sequence 11, 12, I3, ... Iy ... of respective energy E1, E2, E3 , ... Ey .. For this purpose, the frequency of the radio frequency generator is controlled by the central unit UC to change the frequency Fv in synchronism with the said pulses 11, 12, I3, ... Iy ... of energy.

Les électrons accélérés du faisceau, en sortie 68 de la structure hyperfréquences percutent la cible 70 avec une énergie impulsionnelle variable en fonction de la fréquence Fv du signal hyperfréquence applique par le klystron à la structure. La cible irradie à son tour des photons 72 d'énergie fonction de l'énergie des électrons incidents.The accelerated electrons of the beam, at the output 68 of the microwave structure, strike the target 70 with a variable pulse energy as a function of the frequency Fv of the microwave signal applied by the klystron to the structure. The target in turn irradiates photons 72 of energy depending on the energy of the incident electrons.

La figure 4 montre l'énergie E1, E2, E3,...Ey... des électrons impactant la cible 70 pour chaque impulsion respective 11, 12, I3,...Iy...d'énergie en sortie de la structure hyperfréquences en fonction du temps t.The figure 4 shows the energy E1, E2, E3, ... Ey ... electrons impacting the target 70 for each respective pulse 11, 12, I3, ... Iy ... energy output of the microwave structure in function of time t.

L'énergie des électrons E1, E2, E3,...Ey... peut être commandée à une valeur souhaitée pour chacune des impulsions successives 11, 12, I3,...Iy.. par un changement de la fréquence Fv de l'oscillateur local à chaque impulsion.The energy of the electrons E1, E2, E3,................................. Can be controlled to a desired value for each of the successive pulses 11, 12, I3,... By a change in the frequency Fv of the local oscillator at each pulse.

La fréquence de l'oscillateur local OL 82 est commandée par l'unité centrale UC pour changer la fréquence Fv en synchronisme avec les dites impulsions d'énergie, une fréquence Fvy de l'oscillateur local et donc du signal hyperfréquences d'excitation fournit par le klystron produisant une énergie Ey de l'impulsion Iy respective en sortie de la structure hyperfréquences d'accélération. A cet effet, l'unité centrale UC comporte une sortie de contrôle 92 fournissant un signal de contrôle Cf de fréquence Fv à l'entrée de contrôle 78 en fréquence de l'oscillateur local OL 82The frequency of the local oscillator OL 82 is controlled by the central unit UC to change the frequency Fv in synchronism with said energy pulses, a frequency Fvy of the local oscillator and thus of the microwave excitation signal provided by the klystron producing an energy Ey of the respective pulse Iy at the output of the hyperfrequency acceleration structure. For this purpose, the central unit UC comprises a control output 92 supplying a control signal Cf of frequency Fv to the frequency control input 78 of the local oscillator OL 82.

Deux impulsions d'énergie consécutives Iy, I(y+1) sont séparées par une période de temps Tn à énergie nulle obtenue, soit par des actions d'interruption du courant de faisceau, soit par l'interruption de l'excitation RF du klystron KLY soit par les deux actions.Two consecutive energy pulses Iy, I (y + 1) are separated by a time period Tn at zero energy obtained, either by interrupting actions of the beam current or by interrupting the RF excitation of the beam. klystron KLY be by both actions.

L'interruption de l'excitation RF est commandée par l'unité centrale UC. A cet effet, l'unité centrale UC elle comporte une sortie de commande 94 attaquant une entrée 96 de l'oscillateur local LO pour interrompre le niveau RF d'attaque du klystron et par conséquent le niveau du signal hyperfréquences d'excitation UrfThe interruption of the RF excitation is controlled by the central unit UC. For this purpose, the central unit UC it comprises a control output 94 driving an input 96 of the local oscillator LO to interrupt the klystron drive RF level and consequently the level of the microwave excitation signal Urf

Dans un exemple de réalisation du dispositif d'accélération selon l'invention, la structure hyperfréquence d'accélération comporte 40 à 50 cavités (n compris entre 40 et 50) fonctionnant à une fréquence centrale de 3GHz. La variation de la fréquence centrale f0 du générateur radiofréquences attaquant la structure hyperfréquences (LINAC) est de l'ordre de 1MHz, soit Fv = f0 + ou -500KHz, pour obtenir les variations maximales de l'énergie des impulsions et pouvant être comprises entre 3 et 25 MeV.In an exemplary embodiment of the acceleration device according to the invention, the hyperfrequency acceleration structure comprises 40 to 50 cavities (n between 40 and 50) operating at a central frequency of 3GHz. The variation of the central frequency f 0 of the radio frequency generator attacking the microwave structure (LINAC) is of the order of 1MHz, Fv = f0 + or -500KHz, to obtain the maximum variations of the energy of the pulses and which can be between 3 and 25 MeV.

La durée L d'une impulsion est de l'ordre de 3 à 4 microsecondes.The duration L of a pulse is of the order of 3 to 4 microseconds.

L'excitation du LINAC est effectuée par la troisième cavité C3.The excitation of the LINAC is performed by the third cavity C3.

La figure 5 montre la plage de variation de fréquence Fv du signal d'excitation du dispositif de la figure 3 autour de la fréquence centrale f0 entre une fréquence maximum Fvmax et une fréquence minimum Fvmin.The figure 5 shows the frequency variation range Fv of the excitation signal of the device of the figure 3 around the central frequency f0 between a maximum frequency Fvmax and a minimum frequency Fvmin.

Dans d'autres réalisations, le générateur radiofréquences 76 peut être un magnétron contrôlé en fréquences par l'unité centrale UC.In other embodiments, the radio frequency generator 76 may be a frequency-controlled magnetron by the central unit UC.

Le dispositif d'accélération d'électrons selon l'invention permet de changer l'énergie des électrons, et donc l'énergie irradiée par la cible, d'une impulsion à la suivante avec une très grande rapidité bien plus importante que celle des dispositifs à commutation mécanique de l'état de l'art, donc sans temps de latence Tr.The electron acceleration device according to the invention makes it possible to change the energy of the electrons, and therefore the energy radiated by the target, from one pulse to the next with a very greater speed than the devices. mechanical switching state of the art, so no latency Tr.

Dans une variante de réalisation du dispositif selon l'invention, le canon à électrons comporte une grille 100 de contrôle du courant du faisceau d'électrons. L'unité centrale UC comporte une sortie de contrôle 110 fournissant à la grille 100 une tension de contrôle Uc dudit courant de faisceau.In an alternative embodiment of the device according to the invention, the electron gun comprises a grid 100 for controlling the current of the electron beam. The central unit UC comprises a control output 110 supplying the gate 100 with a control voltage Uc of said beam current.

Le contrôle du courant de faisceau permet d'adapter, par le contrôle des électrons envoyés sur la cible 70 en sortie de la structure hyperfréquences, la dose de radiation (exprimée en Joules/ kilogramme) de photons émis par ladite cible et ceci quelque soit le niveau d'énergie des électrons frappant la cible.The control of the beam current makes it possible to adapt, by the control of the electrons sent on the target 70 at the output of the microwave structure, the radiation dose (expressed in Joules / kg) of photons emitted by said target and this whatever the energy level of the electrons striking the target.

Le contrôle du courant de faisceau permet, par exemple, de maintenir une dose de radiation constante quelque soit le niveau d'énergie des électrons lors des impulsions.Controlling the beam current makes it possible, for example, to maintain a constant radiation dose regardless of the energy level of the electrons during the pulses.

Dans le cas de dispositif d'inspection de conteneurs l'utilisation d'un tel dispositif d'accélération selon l'invention à énergie variable très rapidement et dans des proportions importantes et entrecroisées permet une détection plus fine avec une plus grande résolution des détails du contenu du conteneur. En outre, il permet un large spectre d'analyse des éléments irradiés avec la possibilité de détecter la famille de matériaux définis par leur nombre atomiqueIn the case of a container inspection device, the use of such an acceleration device according to the invention with variable energy very rapidly and in large and intersecting proportions allows a finer detection with greater resolution of the details of the invention. contents of the container. In addition, it allows a wide spectrum of analysis of irradiated elements with the ability to detect the family of materials defined by their atomic number

Le dispositif n'est pas limitatif à l'application industrielle d'inspection de conteneurs, il peut être aussi utilisé dans le domaine médical et notamment en radiothérapie.The device is not limited to the industrial application of container inspection, it can also be used in the medical field and in particular in radiotherapy.

Claims (11)

  1. Electron acceleration hyperfrequency device comprising:
    - an electron gun (50) which supplies an electron beam (54) along an axis ZZ',
    - a hyperfrequency structure (60) for accelerating the electrons of the beam supplied by the electron gun, the hyperfrequency structure having, along the axis ZZ', two opposing ends (62, 64), one of the ends (62) at the side of the electron gun comprising an input (66) of the electron beam, the other end (64) comprising an output (68) of the accelerated electrons of the beam, between the two ends of the hyperfrequency structure, a series of n coupled cavities C1, C2,... Ci,... Cx,... Cn, along the axis ZZ', having a central resonance frequency f0, x being the rank of the cavity in the series of n cavities, the first cavity C1 of the series of n cavities being at the side of the end (62) at the side of the electron gun, the hyperfrequency structure further having an input (74) of the hyperfrequency excitation signal Urf via an input cavity Ci which is part of the series of n cavities,
    - a radiofrequency generator (76) which can be controlled in terms of frequency Fv and which comprises a frequency control input (78), a hyperfrequency output which supplies the hyperfrequency excitation signal Urf at the frequency Fv at the input (74) of the hyperfrequency signal of the hyperfrequency structure,
    - a central unit UC (90) which supplies a signal for controlling the frequency Fv at the frequency control input (78) of the radiofrequency generator (76),
    the central unit UC being configured to control at least the frequency Fv of the radiofrequency generator (76) around the central resonance frequency f0 in order to supply at the output (68) of the hyperfrequency structure (60) a series of pulses 11, 12, l3,....ly,.... of accelerated electrons having levels of energy E1, E2, E3, ... Ey, ... which can vary from one pulse ly to the following pulse l(y+1), respectively, y being the rank of the pulse in the series of pulses, a frequency Fvy of the excitation signal Urf during a pulse ly producing an energy Ey of the accelerated electrons at the output of the hyperfrequency structure,
    characterised in that the input cavity is a cavity close to the end (62) of the hyperfrequency structure at the side of the electron gun and is selected from the first cavity C1, that is, x = 1, and a cavity Ci in the order of x=n/3.
  2. Hyperfrequency device according to claim 1, characterised in that the radiofrequency generator (76) comprises a klystron (80) which operates as a hyperfrequency amplifier and a local oscillator OL (82), the hyperfrequency input of the klystron being affected by a hyperfrequency output of the local oscillator which comprises the frequency control input (78) of the excitation hyperfrequency signal Ufr, the power output of the klystron (80) being applied to the input (74) of the hyperfrequency excitation signal of the hyperfrequency structure.
  3. Hyperfrequency device according to either claim 1 or claim 2, characterised in that the electron gun (50) comprises a grid (100) for controlling the flow of the electron beam.
  4. Hyperfrequency device according to claim 3, characterised in that the central unit UC (90) comprises a control output (110) which supplies to the grid (100) of the gun a voltage Uc for controlling the flow of the electron beam.
  5. Hyperfrequency device according to any one of claims 1 to 4, characterised in that the radiofrequency generator (76) comprises an input (96) for controlling the level of the hyperfrequency excitation signal Urf controlled by the control unit UC.
  6. Hyperfrequency device according to any one of claims 1 to 5, characterised in that the excitation signal Urf is applied to the third cavity (C3) of the series of n coupled cavities C1, C2, ..., Ci,... Cx, ... Cn, the first cavity (C1) of the series being the cavity which is closest to the electron gun (50).
  7. Hyperfrequency device according to any one of claims 1 to 6, characterised in that the hyperfrequency structure (60) for accelerating electrons comprises from 40 to 50 cavities, that is, n between 40 and 50, operating at a central frequency of 3 GHz, the variation of the central frequency f0 of the radiofrequency generator (76) affecting the hyperfrequency structure being in the order of 1 MHz, the frequency Fv varying between Fv = fo + or -500 KHz in order to obtain the maximum variations of the energy E1, E2, E3,... Ey,... of the respective pulses 11, 12, 13,... ly .. between 3 and 25 MeV.
  8. Hyperfrequency device according to any one of claims 1 to 7, characterised in that the central unit UC is configured to supply a duration L of a pulse ly between 3 and 4 microseconds.
  9. Container inspection device, characterised in that it comprises an electron acceleration hyperfrequency device according to any one of claims 1 to 8.
  10. Method for operating an electron acceleration hyperfrequency device according to any one of claims 1 to 8, comprising at least the step of:
    changing the frequency Fv of the radiofrequency generator around the central resonance frequency f0 in order to supply at the output (68) of the hyperfrequency structure (60) a series of pulses l1, l2, l3,... ly,... of accelerated electrons having levels of energy E1, E2, E3, ... Ey,.. which can vary from one pulse ly to the following pulse l(y+1), respectively, y being the rank of the pulse in the series of pulses, a frequency Fvy of the excitation signal Urf during a pulse ly producing an energy Ey of the accelerated electrons at the output of the hyperfrequency structure.
  11. Method for operating an electron acceleration hyperfrequency device according to claim 10, the electron gun (50) comprising a grid (100) for controlling the flow of the electron beam, characterised in that it further involves controlling the flow of the electron beam in order to control the electrons at the output of the hyperfrequency structure.
EP10745594.1A 2009-08-21 2010-08-19 Microwave device for accelerating electrons Active EP2468080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10745594T PL2468080T3 (en) 2009-08-21 2010-08-19 Microwave device for accelerating electrons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0904023A FR2949289B1 (en) 2009-08-21 2009-08-21 ELECTRONIC ACCELERATION HYPERFREQUENCY DEVICE
PCT/EP2010/062110 WO2011020882A1 (en) 2009-08-21 2010-08-19 Microwave device for accelerating electrons

Publications (2)

Publication Number Publication Date
EP2468080A1 EP2468080A1 (en) 2012-06-27
EP2468080B1 true EP2468080B1 (en) 2017-07-05

Family

ID=42062578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10745594.1A Active EP2468080B1 (en) 2009-08-21 2010-08-19 Microwave device for accelerating electrons

Country Status (6)

Country Link
US (1) US8716958B2 (en)
EP (1) EP2468080B1 (en)
ES (1) ES2641769T3 (en)
FR (1) FR2949289B1 (en)
PL (1) PL2468080T3 (en)
WO (1) WO2011020882A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470193B (en) * 2013-09-22 2017-07-25 同方威视技术股份有限公司 Control the method and its system of standing wave accelerator
US9655227B2 (en) * 2014-06-13 2017-05-16 Jefferson Science Associates, Llc Slot-coupled CW standing wave accelerating cavity
US10636609B1 (en) * 2015-10-09 2020-04-28 Accuray Incorporated Bremsstrahlung target for radiation therapy system
RU2705207C2 (en) * 2018-03-23 2019-11-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Electron accelerator based on ferroelectric plasma cathode
CN112843497B (en) * 2021-01-05 2022-09-16 中国科学院上海高等研究院 Proton beam scanning device and scanning method based on radio frequency deflection cavity technology
CN112870560B (en) * 2021-01-05 2022-09-20 中国科学院上海高等研究院 Proton beam solid angle distribution device based on radio frequency deflection cavity technology

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887580A (en) * 1957-04-26 1959-05-19 Gen Electric Variable output control for linear accelerators
CA990404A (en) * 1974-08-01 1976-06-01 Stanley O. Schriber Double pass linear accelerator operating in a standing wave mode
US4347547A (en) * 1980-05-22 1982-08-31 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
US4400650A (en) * 1980-07-28 1983-08-23 Varian Associates, Inc. Accelerator side cavity coupling adjustment
US4485346A (en) * 1982-07-15 1984-11-27 The United States Of America As Represented By The United States Department Of Energy Variable-energy drift-tube linear accelerator
JPS6128215A (en) * 1984-07-18 1986-02-07 Tokyo Inst Of Technol Microwave pulse source
US5029259A (en) * 1988-08-04 1991-07-02 Mitsubishi Denki Kabushiki Kaisha Microwave electron gun
US5381072A (en) * 1992-02-25 1995-01-10 Varian Associates, Inc. Linear accelerator with improved input cavity structure and including tapered drift tubes
US5661377A (en) * 1995-02-17 1997-08-26 Intraop Medical, Inc. Microwave power control apparatus for linear accelerator using hybrid junctions
US5811943A (en) * 1996-09-23 1998-09-22 Schonberg Research Corporation Hollow-beam microwave linear accelerator
US5744919A (en) * 1996-12-12 1998-04-28 Mishin; Andrey V. CW particle accelerator with low particle injection velocity
GB2334139B (en) * 1998-02-05 2001-12-19 Elekta Ab Linear accelerator
US6316876B1 (en) * 1998-08-19 2001-11-13 Eiji Tanabe High gradient, compact, standing wave linear accelerator structure
US6493424B2 (en) * 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
US6465957B1 (en) * 2001-05-25 2002-10-15 Siemens Medical Solutions Usa, Inc. Standing wave linear accelerator with integral prebunching section
AU2003270910A1 (en) * 2002-09-27 2004-04-19 Scantech Holdings, Llc System for alternately pulsing energy of accelerated electrons bombarding a conversion target
ITMI20022608A1 (en) * 2002-12-09 2004-06-10 Fond Di Adroterapia Oncologic A Tera LINAC WITH DRAWING TUBES FOR THE ACCELERATION OF A BAND OF IONS.
US7400094B2 (en) * 2005-08-25 2008-07-15 Varian Medical Systems Technologies, Inc. Standing wave particle beam accelerator having a plurality of power inputs
US7649328B2 (en) * 2007-12-07 2010-01-19 Duly Research Inc. Compact high-power pulsed terahertz source
US8232748B2 (en) * 2009-01-26 2012-07-31 Accuray, Inc. Traveling wave linear accelerator comprising a frequency controller for interleaved multi-energy operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011020882A1 (en) 2011-02-24
FR2949289B1 (en) 2016-05-06
ES2641769T3 (en) 2017-11-13
FR2949289A1 (en) 2011-02-25
US20120200238A1 (en) 2012-08-09
EP2468080A1 (en) 2012-06-27
PL2468080T3 (en) 2017-12-29
US8716958B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
EP2468080B1 (en) Microwave device for accelerating electrons
US8203289B2 (en) Interleaving multi-energy x-ray energy operation of a standing wave linear accelerator using electronic switches
US8284898B2 (en) Interleaving multi-energy X-ray energy operation of a standing wave linear accelerator
EP0013242B1 (en) Generator for very high frequency electromagnetic waves
EP0165146B1 (en) Free electron laser
EP3510843A1 (en) Plasma accelerator
US20040195951A1 (en) Method and apparatus for trapping and accelerating electrons in plasma
Thomas et al. Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs
FR2830371A1 (en) VIRTUAL CATHODE MICROWAVE WAVE GENERATOR
Miura et al. Stable generation of quasi-monoenergetic electron beams with laser-driven plasma-based acceleration by suppressing nanosecond prepulse
EP0401066B1 (en) Permanent magnet helical wiggler for free-electron lasers
EP1077019B1 (en) X-ray source and its use in radiography
Shintake Review of the worldwide SASE FEL development
FR2936648A1 (en) HIGH POWER COMPACT MICROWAVE TUBE
Clayton et al. A 2 MeV, 100 mA electron accelerator for a small laboratory environment
Chopra A technical tutorial on Free Electron Lasers and short review of their recent novel applications
Khan et al. Commissioning Results from the BESSY II Femtoslicing Source
Kelley et al. 6.1 Free-electron lasers: 6 Free-electron lasers
Rupp et al. Experimental Setup
FR2675334A1 (en) PROCESS FOR REDUCING INSTABILITIES OF LOADED PARTICLE BEAMS GROUPED IN PACKETS.
Banerjee et al. High-harmonic generation in plasmas by relativistic Thomson scattering
FR2815810A1 (en) Electron accelerator, for non-destructive testing or irradiation of products or substances, has cavity excited so that it presents maximum electric field in direction of cavity axis and zero magnetic field
Nakamura Progress on laser plasma accelerator development using transversely and longitudinally shaped plasmas
EP2750485A1 (en) Method for controlling the time profile of the speed of an electron beam
FR3000290A1 (en) SOURCE OF ELECTRON TRANSMISSION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010043436

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2641769

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 907440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010043436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: WANNERSTRASSE 9/1, 8045 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220728

Year of fee payment: 13

Ref country code: IT

Payment date: 20220726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220718

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230728

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230713

Year of fee payment: 14

Ref country code: ES

Payment date: 20230905

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 14

Ref country code: DE

Payment date: 20230718

Year of fee payment: 14

Ref country code: BE

Payment date: 20230719

Year of fee payment: 14