EP2456229A1 - Loudspeaker system and control method - Google Patents

Loudspeaker system and control method Download PDF

Info

Publication number
EP2456229A1
EP2456229A1 EP10191594A EP10191594A EP2456229A1 EP 2456229 A1 EP2456229 A1 EP 2456229A1 EP 10191594 A EP10191594 A EP 10191594A EP 10191594 A EP10191594 A EP 10191594A EP 2456229 A1 EP2456229 A1 EP 2456229A1
Authority
EP
European Patent Office
Prior art keywords
loudspeaker
displacement
signal
estimated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10191594A
Other languages
German (de)
French (fr)
Inventor
Temujin Gautama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knowles Electronics Asia Pte Ltd
Original Assignee
Knowles Electronics Asia Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knowles Electronics Asia Pte Ltd filed Critical Knowles Electronics Asia Pte Ltd
Priority to EP10191594A priority Critical patent/EP2456229A1/en
Priority to PCT/EP2011/070235 priority patent/WO2012066029A1/en
Publication of EP2456229A1 publication Critical patent/EP2456229A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/002Damping circuit arrangements for transducers, e.g. motional feedback circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/003Monitoring arrangements; Testing arrangements for loudspeakers of the moving-coil type

Definitions

  • This invention relates to a loudspeaker system.
  • variable cutoff filters high-pass or other
  • gain stage a gain stage
  • dynamic range compression module the characteristics of which are controlled via a control feedback loop.
  • the measured control signal is referred to as the displacement predictor and it conveys information on how close the loudspeaker is driven to the displacement limit by the input signal.
  • the control method requires modelling of the loudspeaker characteristics so that the displacement can be predicted in response to a given input signal.
  • the model predicts the diaphragm displacement, also referred to as cone excursion, and it can be linear or non-linear.
  • the control system can be used for loudspeaker protection as mentioned above and also linearisation of the loudspeaker output.
  • the input signal is typically pre-processed in such a way that the predicted displacement stays below the limit.
  • the parameters of the loudspeaker model which is used for the prediction of the displacement, are estimated on the basis of measurements of the voltage across and the current flowing into the loudspeaker voice coil.
  • the voice coil voltage and current are thus required.
  • dedicated hardware is required, for example a resistor in series with the voice coil. This affects the electrical characteristics of the loudspeaker circuit or may be cumbersome to implement in such a way that the measurements are for example independent of temperature changes.
  • a loudspeaker system comprising:
  • the pressure sensor is used to record the pressure in the sealed enclosure, and this is used to characterise the loudspeaker membrane displacement.
  • the invention is based on the recognition that a pressure sensor registers a signal that can be used as a measure of the diaphragm displacement.
  • a loudspeaker model can be estimated without a means for sensing the current.
  • a pressure sensor signal can be used, which only requires standard hardware. Since the pressure sensor signal is directly related to the diaphragm displacement, it yields more accurate information than the voice coil current signal with respect to the loudspeaker non-linearities. Therefore, non-linear models can be more easily and more accurately estimated.
  • Information regarding the diaphragm displacement can also be obtained using an accelerometer that is mounted onto the loudspeaker diaphragm.
  • the mounting of the accelerometer would have a considerable effect on the properties of the loudspeaker.
  • the pressure sensor can comprise a microphone and the sealed enclosure can comprise the loudspeaker back volume.
  • the processor is preferably adapted to implement loudspeaker protection on the basis of the estimated loudspeaker membrane displacement.
  • This estimated loudspeaker membrane displacement can thus be derived without voice coil current or voltage monitoring.
  • the invention also provides a method of controlling a loudspeaker output, comprising:
  • the invention provides a system which combines a loudspeaker, a sealed loudspeaker enclosure and a pressure sensor in the sealed enclosure, preferably implemented as a microphone.
  • the signal registered by the microphone within the loudspeaker enclosure is a signal that is directly related to the loudspeaker diaphragm displacement.
  • FIG 1 shows in schematic form the system of the invention.
  • the system comprises a loudspeaker 10 mounted in a sealed enclosure 12, thus corresponding to a closed-box configuration.
  • a microphone 14 is mounted within in the sealed enclosure 12.
  • the microphone can be a completely separate off-the-shelf component that is simply mounted in the enclosure
  • the volume of the enclosure is changed, due to which the pressure within the enclosure changes.
  • the microphone that is mounted within the enclosure registers the pressure, and therefore, the microphone signal is related to the diaphragm displacement.
  • the microphone signal can be used to estimate the loudspeaker model parameters.
  • the electrical impedance which is the frequency transfer function between voice coil voltage and current
  • the model parameters are obtained by minimising the discrepancy between the measured impedance and the impedance predicted by the model with respect to the model parameters.
  • model parameters can be obtained by minimising the discrepancy between the voltage-to-excursion transfer function that is measured and that predicted by the model with respect to the model parameters. In this way, the expected displacement for a given input signal can be predicted before the signal is sent to the loudspeaker.
  • the microphone signal can instead be used directly as a measure of the diaphragm displacement (without the need for a model).
  • the displacement for a given input signal is estimated after the signal is sent to the loudspeaker.
  • a pressure sensor signal can be used to determine voice coil displacement
  • the diaphragm displacement has been measured for one speaker design using a laser displacement meter, and the signal has been compared to the signal recorded by a microphone that is mounted within the same sealed loudspeaker enclosure.
  • the frequency transfer functions from source signal to the laser signal and to the microphone signal are computed and shown in Figure 2 .
  • the invention can be used in systems that are aimed at loudspeaker modelling, protection and linearisation.
  • the signal registered by the microphone can also be used as a reference signal for acoustic echo cancellation (AEC), which offers the advantage that the microphone signal contains the nonlinearities that are due to the non-linear behaviour of the loudspeaker.
  • AEC acoustic echo cancellation
  • FIG. 3 shows a loudspeaker system of the invention.
  • a digital-to-analog converter 30 prepares the analog loudspeaker signal, which is amplified by amplifier 32.
  • the microphone (or other pressure sensor) 14 is used to estimate the loudspeaker displacement, and the displacement estimator is provided to a processor 34, which implements a control algorithm to control the audio processing. This implements loudspeaker protection and/or acoustic signal processing (such as flattening, or frequency selective filtering).
  • the way the displacement signal is used is the same as the way the known displacement estimate derived from electrical analysis or from optical analysis is used. Thus, the acoustic signal processing is not described in detail in this application.
  • Figure 4 shows the control method of the invention.
  • Step 40 comprises the pressure detection in the sealed enclosure in which the loudspeaker is housed.
  • Step 42 comprises estimating the loudspeaker diaphragm displacement from the detected pressure. As shown in Figure 2 , the pressure signal is linearly proportional to the displacement.
  • the microphone sensitivity may be calibrated in such a way that the relationship to the diaphragm displacement is known on an absolute scale. This can be done in a calibration step, where for a given input test signal, the diaphragm displacement is measured (or known) and is related to the microphone signal.
  • Step 44 comprises the known control of the audio processing for the loudspeaker in dependence on the loudspeaker membrane displacement.
  • the invention is based on the recognition that pressure sensing within the loudspeaker enclosure can be used to estimate the loudspeaker diaphragm displacement.
  • the invention can be used in miniature loudspeakers, such as used in portable battery operated devices, such as mobile phones, but it may equally be used in larger devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

A loudspeaker system combines a loudspeaker, a sealed loudspeaker enclosure and a pressure sensor in the sealed enclosure, preferably implemented as a microphone. The signal registered by the microphone within the loudspeaker enclosure is a signal that is directly related to the loudspeaker diaphragm displacement.

Description

    This invention relates to a loudspeaker system.
  • It is well known that the output of a loudspeaker should be controlled in such a way that it is not simply driven by an input signal. For example, an important cause of loudspeaker failures is a mechanical defect that arises when the loudspeaker diaphragm is displaced beyond a certain limit, which is usually supplied by the manufacturer. Going beyond this displacement limit either damages the loudspeaker immediately, or can considerably reduce its expected life-time.
  • There exist several methods to limit the displacement of the diaphragm of a loudspeaker, for example by processing the input signal with variable cutoff filters (high-pass or other), a gain stage, or a dynamic range compression module, the characteristics of which are controlled via a control feedback loop.
  • The measured control signal is referred to as the displacement predictor and it conveys information on how close the loudspeaker is driven to the displacement limit by the input signal. The control method requires modelling of the loudspeaker characteristics so that the displacement can be predicted in response to a given input signal. The model predicts the diaphragm displacement, also referred to as cone excursion, and it can be linear or non-linear.
  • The control system can be used for loudspeaker protection as mentioned above and also linearisation of the loudspeaker output. The input signal is typically pre-processed in such a way that the predicted displacement stays below the limit.
  • The parameters of the loudspeaker model, which is used for the prediction of the displacement, are estimated on the basis of measurements of the voltage across and the current flowing into the loudspeaker voice coil. To identify the parameter values of a loudspeaker model, the voice coil voltage and current are thus required. To sense the current flowing into a loudspeaker voice coil, dedicated hardware is required, for example a resistor in series with the voice coil. This affects the electrical characteristics of the loudspeaker circuit or may be cumbersome to implement in such a way that the measurements are for example independent of temperature changes.
  • It is possible to determine the voice coil displacement mechanically, for example using an optical system which physically (rather than electrically) detects the voice coil position. However, this requires complex additional hardware associated with the loudspeaker.
  • It would therefore be desirable to determine the voice coil displacement in a more cost effective manner and without requiring electrical measurements of the voice coil current or voltage.
  • According to the invention, there is provided a loudspeaker system, comprising:
    • a loudspeaker in a sealed enclosure;
    • a pressure sensor in the sealed enclosure; and
    • a processor adapted to derive an estimate of the loudspeaker membrane displacement from the sensed pressure and for controlling the audio processing for the loudspeaker in dependence on the estimated loudspeaker membrane displacement.
  • The pressure sensor is used to record the pressure in the sealed enclosure, and this is used to characterise the loudspeaker membrane displacement.
  • The invention is based on the recognition that a pressure sensor registers a signal that can be used as a measure of the diaphragm displacement.
  • Using the invention, a loudspeaker model can be estimated without a means for sensing the current. Instead, a pressure sensor signal can be used, which only requires standard hardware. Since the pressure sensor signal is directly related to the diaphragm displacement, it yields more accurate information than the voice coil current signal with respect to the loudspeaker non-linearities. Therefore, non-linear models can be more easily and more accurately estimated.
  • Information regarding the diaphragm displacement can also be obtained using an accelerometer that is mounted onto the loudspeaker diaphragm. However, for small loudspeakers, such as micro-speakers, the mounting of the accelerometer would have a considerable effect on the properties of the loudspeaker.
  • The pressure sensor can comprise a microphone and the sealed enclosure can comprise the loudspeaker back volume.
  • The processor is preferably adapted to implement loudspeaker protection on the basis of the estimated loudspeaker membrane displacement. This estimated loudspeaker membrane displacement can thus be derived without voice coil current or voltage monitoring.
  • The invention also provides a method of controlling a loudspeaker output, comprising:
    • detecting a pressure in a sealed enclosure in which the loudspeaker is housed;
    • estimating the loudspeaker diaphragm displacement from the detected pressure; and
    • controlling audio processing for the loudspeaker in dependence on the estimated loudspeaker membrane displacement.
  • An example of the invention will now be described in detail with reference to the accompanying drawings, in which:
    • Figure 1 shows a loudspeaker enclosure of the invention;
    • Figure 2 shows how the pressure sensor signal can be used to estimate diaphragm displacement;
    • Figure 3 shows a loudspeaker system of the invention; and
    • Figure 4 shows a loudspeaker control method of the invention.
  • The invention provides a system which combines a loudspeaker, a sealed loudspeaker enclosure and a pressure sensor in the sealed enclosure, preferably implemented as a microphone. The signal registered by the microphone within the loudspeaker enclosure is a signal that is directly related to the loudspeaker diaphragm displacement.
  • Figure 1 shows in schematic form the system of the invention.
  • The system comprises a loudspeaker 10 mounted in a sealed enclosure 12, thus corresponding to a closed-box configuration.
  • A microphone 14 is mounted within in the sealed enclosure 12.
  • The microphone can be a completely separate off-the-shelf component that is simply mounted in the enclosure
  • Under closed-box assumptions, the acoustic pressure, p(t), is constant throughout the enclosure, and it is determined by the changes in the volume of the enclosure, ΔV(t): p t = - Δ V t V 0 ρ c 2 ,
    Figure imgb0001

    where V0 is the volume when the diaphragm is in its rest position, ρ is the density of air and c is the speed of sound. The volume change is caused by a displacement, x(t), with respect to the diaphragm rest position (an outward displacement corresponds to a positive displacement): Δ V t = x t S d ,
    Figure imgb0002

    where Sd is the effective diaphragm radiating area. Therefore, p t = - x t S d V 0 ρ c 2 ,
    Figure imgb0003
  • When the loudspeaker diaphragm moves, the volume of the enclosure is changed, due to which the pressure within the enclosure changes. The microphone that is mounted within the enclosure registers the pressure, and therefore, the microphone signal is related to the diaphragm displacement.
  • The microphone signal can be used to estimate the loudspeaker model parameters. In traditional (linear) approaches, the electrical impedance, which is the frequency transfer function between voice coil voltage and current, is measured, after which the model parameters are obtained by minimising the discrepancy between the measured impedance and the impedance predicted by the model with respect to the model parameters. Similarly, model parameters can be obtained by minimising the discrepancy between the voltage-to-excursion transfer function that is measured and that predicted by the model with respect to the model parameters. In this way, the expected displacement for a given input signal can be predicted before the signal is sent to the loudspeaker.
  • The microphone signal can instead be used directly as a measure of the diaphragm displacement (without the need for a model). In this case, the displacement for a given input signal is estimated after the signal is sent to the loudspeaker.
  • To demonstrate that a pressure sensor signal can be used to determine voice coil displacement, the diaphragm displacement has been measured for one speaker design using a laser displacement meter, and the signal has been compared to the signal recorded by a microphone that is mounted within the same sealed loudspeaker enclosure. The frequency transfer functions from source signal to the laser signal and to the microphone signal are computed and shown in Figure 2.
  • The transfer functions have been normalised such that the peak amplitudes correspond to unity. It can be visually observed that there is a close match between the laser displacement (plot 20) and the microphone signal (plot 22). The correspondence degrades for lower frequencies, in this case below 200 Hz.
  • The invention can be used in systems that are aimed at loudspeaker modelling, protection and linearisation. The signal registered by the microphone can also be used as a reference signal for acoustic echo cancellation (AEC), which offers the advantage that the microphone signal contains the nonlinearities that are due to the non-linear behaviour of the loudspeaker.
  • Figure 3 shows a loudspeaker system of the invention. A digital-to-analog converter 30 prepares the analog loudspeaker signal, which is amplified by amplifier 32.
  • The microphone (or other pressure sensor) 14 is used to estimate the loudspeaker displacement, and the displacement estimator is provided to a processor 34, which implements a control algorithm to control the audio processing. This implements loudspeaker protection and/or acoustic signal processing (such as flattening, or frequency selective filtering).
  • The way the displacement signal is used is the same as the way the known displacement estimate derived from electrical analysis or from optical analysis is used. Thus, the acoustic signal processing is not described in detail in this application.
  • Figure 4 shows the control method of the invention.
  • Step 40 comprises the pressure detection in the sealed enclosure in which the loudspeaker is housed.
  • Step 42 comprises estimating the loudspeaker diaphragm displacement from the detected pressure. As shown in Figure 2, the pressure signal is linearly proportional to the displacement.
  • Depending on the control mechanism, it may be necessary to calibrate the microphone sensitivity in such a way that the relationship to the diaphragm displacement is known on an absolute scale. This can be done in a calibration step, where for a given input test signal, the diaphragm displacement is measured (or known) and is related to the microphone signal.
  • Step 44 comprises the known control of the audio processing for the loudspeaker in dependence on the loudspeaker membrane displacement.
  • The use of a microphone has been described above, but there are other pressure sensors that can be mounted in the speaker enclosure, such as piezoresistive pressure sensors.
  • No detailed designs for the microphone, loudspeaker and enclosure have been presented as these are entirely conventional. The invention is based on the recognition that pressure sensing within the loudspeaker enclosure can be used to estimate the loudspeaker diaphragm displacement.
  • The invention can be used in miniature loudspeakers, such as used in portable battery operated devices, such as mobile phones, but it may equally be used in larger devices.
  • Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.

Claims (9)

  1. A loudspeaker system, comprising:
    a loudspeaker (10) in a sealed enclosure (12);
    a pressure sensor (14) in the sealed enclosure (12); and
    a processor adapted to derive an estimate of the loudspeaker membrane displacement from the sensed pressure and for controlling the audio processing for the loudspeaker in dependence on the estimated loudspeaker membrane displacement.
  2. A system as claimed in claim 1, wherein the sealed enclosure comprises the loudspeaker back volume.
  3. A system as claimed in any preceding claim, wherein the pressure sensor comprises a microphone (14).
  4. A system as claimed in any preceding claim, wherein the processor is adapted to implement loudspeaker protection on the basis of the estimated loudspeaker membrane displacement.
  5. A system as claimed in any preceding claim, wherein the estimated loudspeaker membrane displacement is derived without voice coil current or voltage monitoring.
  6. A method of controlling a loudspeaker output, comprising:
    (40) detecting a pressure in a sealed enclosure in which the loudspeaker is housed;
    (42) estimating the loudspeaker diaphragm displacement from the detected pressure; and
    (44) controlling audio processing for the loudspeaker in dependence on the estimated loudspeaker membrane displacement.
  7. A method as claimed in claim 6, wherein detecting a pressure comprises collecting a microphone signal.
  8. A method as claimed in claim 6 or 7, comprising implementing loudspeaker protection on the basis of the estimated loudspeaker membrane displacement.
  9. A method as claimed in any one of claims 6 to 8, comprising deriving an estimated loudspeaker membrane displacement without voice coil current or voltage monitoring.
EP10191594A 2010-11-17 2010-11-17 Loudspeaker system and control method Withdrawn EP2456229A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10191594A EP2456229A1 (en) 2010-11-17 2010-11-17 Loudspeaker system and control method
PCT/EP2011/070235 WO2012066029A1 (en) 2010-11-17 2011-11-16 Loudspeaker system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10191594A EP2456229A1 (en) 2010-11-17 2010-11-17 Loudspeaker system and control method

Publications (1)

Publication Number Publication Date
EP2456229A1 true EP2456229A1 (en) 2012-05-23

Family

ID=43734152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10191594A Withdrawn EP2456229A1 (en) 2010-11-17 2010-11-17 Loudspeaker system and control method

Country Status (2)

Country Link
EP (1) EP2456229A1 (en)
WO (1) WO2012066029A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041765A1 (en) * 2013-09-20 2015-03-26 Cirrus Logic, Inc. Systems and methods for protecting a speaker from overexcursion
EP2879404A1 (en) * 2013-12-02 2015-06-03 BlackBerry Limited Back cavity microphone implementation
EP2966878A1 (en) * 2014-07-10 2016-01-13 Nxp B.V. System for controlling displacement of a loudspeaker
CN107135456A (en) * 2017-04-27 2017-09-05 歌尔丹拿音响有限公司 Audio amplifier gas leak detection device and method, computer-readable recording medium
US9967404B2 (en) 2015-05-28 2018-05-08 Nxp B.V. Echo controller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10341768B2 (en) 2016-12-01 2019-07-02 Cirrus Logic, Inc. Speaker adaptation with voltage-to-excursion conversion
TW201913642A (en) * 2017-09-05 2019-04-01 美律實業股份有限公司 Acoustic sensing device
CN108282725B (en) * 2018-02-14 2024-01-16 钰太芯微电子科技(上海)有限公司 Integrated back cavity pressure sensing sound amplifying system and audio player
CN112637752B (en) * 2020-12-30 2022-08-16 武汉市聚芯微电子有限责任公司 Simple correlation monitoring method and system for resonance frequency and ambient air pressure of loudspeaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028371A1 (en) * 2006-03-06 2009-01-29 General Innovations, Inc. Positionally Sequenced Loudspeaker System
US20100172516A1 (en) * 2006-08-10 2010-07-08 Claudio Lastrucci To systems for acoustic diffusion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028371A1 (en) * 2006-03-06 2009-01-29 General Innovations, Inc. Positionally Sequenced Loudspeaker System
US20100172516A1 (en) * 2006-08-10 2010-07-08 Claudio Lastrucci To systems for acoustic diffusion

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041765A1 (en) * 2013-09-20 2015-03-26 Cirrus Logic, Inc. Systems and methods for protecting a speaker from overexcursion
KR20160060098A (en) * 2013-09-20 2016-05-27 씨러스 로직 인코포레이티드 Systems and methods for protecting a speaker from overexcursion
CN105745943A (en) * 2013-09-20 2016-07-06 美国思睿逻辑有限公司 Systems and methods for protecting a speaker from overexcursion
US9432771B2 (en) 2013-09-20 2016-08-30 Cirrus Logic, Inc. Systems and methods for protecting a speaker from overexcursion
CN105745943B (en) * 2013-09-20 2019-04-02 美国思睿逻辑有限公司 For preventing the system and method for loudspeaker over-deflection
EP2879404A1 (en) * 2013-12-02 2015-06-03 BlackBerry Limited Back cavity microphone implementation
US9432762B2 (en) 2013-12-02 2016-08-30 Blackberry Limited Back cavity microphone implementation
EP2966878A1 (en) * 2014-07-10 2016-01-13 Nxp B.V. System for controlling displacement of a loudspeaker
US9374634B2 (en) 2014-07-10 2016-06-21 Nxp B.V. System for controlling displacement of a loudspeaker
US9967404B2 (en) 2015-05-28 2018-05-08 Nxp B.V. Echo controller
CN107135456A (en) * 2017-04-27 2017-09-05 歌尔丹拿音响有限公司 Audio amplifier gas leak detection device and method, computer-readable recording medium
CN107135456B (en) * 2017-04-27 2020-12-08 歌尔智能科技有限公司 Sound box air leakage detection device and method and computer readable storage medium

Also Published As

Publication number Publication date
WO2012066029A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
EP2456229A1 (en) Loudspeaker system and control method
US9980068B2 (en) Method of estimating diaphragm excursion of a loudspeaker
EP2966878B1 (en) System for controlling diaphragm displacement of a loudspeaker
CN104735600B (en) Loudspeaker controller
CN104837092B (en) Echo cancel method and assembly for Electroacoustic communications equipment
EP2453669A1 (en) Control of a loudspeaker output
CN110463225B (en) Apparatus and method for monitoring a microphone
CN102742300B (en) Control of a loudspeaker output
CN102158793B (en) Method utilizing laser sensor to measure speaker parameters and system
CN102655628B (en) Device and method for detecting high sound pressure-phase shifting characteristic of microphone
CN106797520B (en) The method and hearing aid device system of operating hearing aid system
CN105532020A (en) Microphone with internal parameter calibration
CN110447240B (en) Apparatus and method for monitoring a microphone
CN110476440B (en) Apparatus and method for monitoring a microphone
SE528188C2 (en) Apparatus for identification of bibrotactile thresholds on mechanoreceptors in the skin
WO2017110087A1 (en) Sound reproduction device
KR101962198B1 (en) Acoustic Camera Display Method
CN106092306B (en) A kind of acoustic pressure test method and acoustic pressure test macro
US9560455B2 (en) Offset calibration in a multiple membrane microphone
CN109655735B (en) Power amplifier chip evaluation board and power amplifier chip evaluation board system
US9661430B2 (en) Method of identifying passive radiator parameters
CN104640052A (en) Loudspeaker polarity detector
JP2014175927A (en) Sound calibrator
CN112637752A (en) Simple correlation monitoring method and system for resonance frequency and ambient air pressure of loudspeaker
NL2027119B1 (en) Moveable element for a transducer, transducer, in-ear device and method for determining the occurrence of a condition in a transducer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121124