EP2446193B1 - Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system - Google Patents

Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system Download PDF

Info

Publication number
EP2446193B1
EP2446193B1 EP10729831.7A EP10729831A EP2446193B1 EP 2446193 B1 EP2446193 B1 EP 2446193B1 EP 10729831 A EP10729831 A EP 10729831A EP 2446193 B1 EP2446193 B1 EP 2446193B1
Authority
EP
European Patent Office
Prior art keywords
combustion
variables
control
values
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10729831.7A
Other languages
German (de)
French (fr)
Other versions
EP2446193A2 (en
Inventor
Matthias Behmann
Till SPÄTH
Klaus Wendelberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2446193A2 publication Critical patent/EP2446193A2/en
Application granted granted Critical
Publication of EP2446193B1 publication Critical patent/EP2446193B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05006Controlling systems using neuronal networks

Definitions

  • the invention relates to a method for controlling a combustion process, in particular in a combustion chamber of a fossil-fired steam generator, in which spatially resolved measured values are determined in the combustion chamber.
  • the invention further relates to a corresponding combustion system.
  • the fuel is first processed (eg grinding the coal in the coal mill, preheating the fuel oil or the like) and then fed controlled with the combustion air to the combustion chamber according to the current heat demand of the system.
  • the introduction of the fuel into the furnace takes place at different points of the steam generator to the so-called burners.
  • the supply of air takes place at various points. At the burners themselves always takes place an air supply.
  • the invention thus utilizes an improved detection of the current state of Feuerungsluien by the use of at least one measurement technique with spatially resolving detection range for the quantitative determination of the combustion products after combustion inside the technical furnace for a differentiated and faster process control.
  • An essential advantage of the invention is that the complex measured value distributions of the spatially resolving measurement technique can be processed by the transformation to simple state or controlled variables using conventional controllers. Furthermore, it is achieved by the inverse transformation that the output signals of the conventional controllers are distributed according to a predetermined optimization target to the existing control variables. Thus, an optimal interaction between the newly defined control concepts and the installed complex measurement technology is achieved. In particular, however, an as efficient as possible, low-wear and running with the lowest possible emissions combustion process is realized by the thus improved control structures.
  • the state variables are determined on the basis of statistical information of the spatially resolved measured values. This has the advantage that here the enormous diversity of information about the existing example, temperature or concentration distributions can be compacted. Weighting can be introduced and other image processing methods used. Another advantage is that in this way process variables arise with which the combustion process can be described and regulated.
  • the distribution of the controller outputs to the actuators is optimized in one embodiment using a neural network.
  • the control interventions can also be finely adjusted using the neural network. This achieves a particularly intelligent and exact control which is robust against the variation of external influences, e.g. variable fuel quality.
  • Decisive in the selection of the measurement technique is that it is suitable for determining essential properties of the combustion with spatial resolution. Measurements are carried out, for example, on a cross section of the combustion chamber near the combustion process. The measured values characterize combustion based on properties such as local concentrations (CO, 02, C02, H20, ...) and temperature.
  • variable transformation VT In the context of a variable transformation VT, these data, which are identified by M measured values MW in the figure, are converted in a first step into state variables that can be used in terms of control technology.
  • the spatial information about the combustion chamber is mapped to individual key figures and thus condensed.
  • an optimization target can be defined as a setpoint.
  • these state variables in combination with conventional, process technology available measurement and process information characterize the current operating state of the combustion process.
  • variable transformation VT converts any desired number of M measured values MW into an arbitrary number of N controlled variables RG, where M and N represent natural numbers and N is usually smaller than M.
  • the control variables RG are state variables which are then used as actual values for individual controllers.
  • the N controlled variables are fed to N regulators R.
  • the control module which contains a subtractor and further control technology components such as a PI controller.
  • This is a conventional control module that may already be present in the technical system to be controlled. It can also be a multi-variable control module, depending on the design variant.
  • the control block considered here also has an input ESW for the desired value of the derived state variable. This is either specified manually, is given constant or load-dependent and should characterize the desired operating behavior. Still exists In addition to the input ERG for the controlled variable RG another input EPG for any other process variables PG, which are detected outside of the spatially resolving measuring system.
  • the control difference between the setpoint and actual value is formed, the control difference by the other process variables varies, for example, to adjust the controller gain as a function of the current load situation, and the existing controller (here PI) supplied, which determines the necessary manipulated variable changes , This signal is present at the output ARA of the controller.
  • control outputs RA there are N controllers, there are N values for the control outputs RA (see figure). It now applies, in a back transformation RT, to convert these signals RA, designated as control outputs, of the number N in such a way that a certain number of K actuators each receive the actuating signal necessary to achieve the control target.
  • the control outputs RA of the N controllers R must now be used to derive control interventions for various actuators with which the combustion process can be favorably influenced. In this case, a control intervention can be made on a plurality of actuators in differentiated strength.
  • Actuators are, for example, the openings of the combustion chamber arranged louvers.
  • the distribution of N control outputs to K actuators takes place (N, K each natural numbers).
  • process variables PG are taken into account, which are recorded outside the spatially resolving measuring system.
  • the distribution of the controller outputs is performed on the actuators in an optimal manner, so that, for example, a minimization of emissions can take place and at the same time the highest possible efficiency of the system becomes.
  • the calculation unit RT also has optimization values OW from the optimizer OPT be supplied. The optimizer receives information from different areas.
  • the optimizer can also obtain measurement results of spatially resolving measuring devices arranged in the combustion chamber.
  • a number M' of the spatially resolved measured values is converted into any number N 'of state variables which are fed to the optimizer OPT.
  • N 'of state variables which are fed to the optimizer OPT.
  • the optimizer OPT may be connected to a neural network NN.
  • a hybrid control structure of conventional control blocks and neural networks is achieved.
  • the neural network is trained with process measures and serves as a specific model for predicting the behavior of the furnace.
  • An iterative optimization algorithm determines the optimum distribution of the control actions on the actuators and correction values for the actuators based on the firing reaction predicted by the neural network. This optimizes the process according to a given target function.
  • the optimization values OW can, for example, also be trim factors.
  • trim factors By means of the trimming factors, the results of the back transformation RT are weighted, shifted and adjusted in accordance with the optimization process in accordance with the desired control target.
  • a total manipulated variable calculation GSB for the existing K actuators takes place.
  • the different control interventions on different actuators from different identified setpoint deviations are superimposed additively to a total control intervention for each actuator.
  • K manipulated variable changes ST are forwarded to the individual actuators such as air dampers or fuel supply devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Verbrennungsprozesses, insbesondere in einem Feuerraum eines fossilbefeuerten Dampferzeugers, bei dem räumlich aufgelöste Messwerte im Feuerraum ermittelt werden. Die Erfindung betrifft ferner ein entsprechendes Verbrennungssystem.The invention relates to a method for controlling a combustion process, in particular in a combustion chamber of a fossil-fired steam generator, in which spatially resolved measured values are determined in the combustion chamber. The invention further relates to a corresponding combustion system.

Beim Verbrennungsprozess eines Dampferzeugers, wie zum Beispiel aus dem US 2007/122757 A bekannt, wird der Brennstoff zunächst aufbereitet (z.B. Mahlen der Kohle in der Kohlemühle, Vorwärmen des Heizöls oder ähnliches) und dann kontrolliert mit der Verbrennungsluft dem Verbrennungsraum entsprechend des aktuellen Wärmebedarfs der Anlage zugeführt. Das Einbringen des Brennstoffs in den Feuerraum erfolgt dabei an verschiedenen Stellen des Dampferzeugers an den so genannten Brennern. Auch das Zuführen der Luft erfolgt an verschiedenen Stellen. An den Brennern selbst findet stets auch eine Luftzuführung statt. Zusätzlich kann es Zuführungen von Luft geben an Stellen, an denen kein Brennstoff in den Feuerraum strömt.In the combustion process of a steam generator, such as from the US 2007/122757 A known, the fuel is first processed (eg grinding the coal in the coal mill, preheating the fuel oil or the like) and then fed controlled with the combustion air to the combustion chamber according to the current heat demand of the system. The introduction of the fuel into the furnace takes place at different points of the steam generator to the so-called burners. Also, the supply of air takes place at various points. At the burners themselves always takes place an air supply. In addition, there may be feeds of air at locations where no fuel is flowing into the furnace.

Es besteht nun die Aufgabe, den Verbrennungsprozess so zu führen, dass er möglichst effizient, verschleißarm und/oder mit möglichst geringen Emissionen abläuft. Die typischen wesentlichen Einflussparameter für den Verbrennungsprozess eines Dampferzeugers sind:

  • Verteilung des Brennstoffes auf die einzelnen Brenner
  • Verteilung der Verbrennungslüfte auf die verschiedenen Feuerungsbereiche
  • Gesamtmassenstrom der Verbrennungsluft
  • Qualität der Brennstoffaufbereitung (z.B. Mahlkraft, Sichterdrehzahl, Sichtertemperatur der Kohlemühlen)
  • Rauchgasrückführung
  • Position von Schwenkbrennern
It is now the task of the combustion process to lead so that it runs as efficient as possible, low-wear and / or with the lowest possible emissions. The typical essential influencing parameters for the combustion process of a steam generator are:
  • Distribution of the fuel to the individual burners
  • Distribution of the combustion air to the different firing ranges
  • Total mass flow of combustion air
  • Quality of the fuel preparation (eg grinding power, classifier speed, classifier temperature of the coal mills)
  • Flue gas recirculation
  • Position of swing burners

Diese Einflussgrößen werden in der Regel zum Zeitpunkt der Inbetriebnahme des Dampferzeugers eingestellt. Dabei werden je nach betrieblichen Randbedingungen verschiedene Optimierungsziele in den Vordergrund gestellt, wie maximaler Anlagenwirkungsgrad, minimale Emissionen (NOx, CO, ... ), minimaler Kohlenstoffgehalt in der Asche (Vollständigkeit der Verbrennung). Durch die zeitliche Variabilität der Prozessparameter - insbesondere die schwankenden Eigenschaften des Brennstoffes (Heizwert, Luftbedarf, Zündverhalten usw.) - ist jedoch eine ständige Überwachung und Anpassung des Verbrennungsprozesses notwendig. In technischen Anlagen wird die Verbrennung daher durch messtechnische Einrichtungen überwacht und die zur Verfügung stehenden Einflussgrößen werden durch Regeleingriffe gemäß der aktuell erfassten Verbrennungssituation modifiziert.These influencing factors are usually set at the time of commissioning of the steam generator. Depending on the operational boundary conditions, different optimization objectives are emphasized, such as maximum system efficiency, minimum emissions (NOx, CO, ...), minimum carbon content in the ash (completeness of combustion). Due to the temporal variability of the process parameters - in particular the fluctuating properties of the fuel (calorific value, air requirement, ignition behavior, etc.) - but a constant monitoring and adjustment of the combustion process is necessary. In technical plants, the combustion is therefore monitored by metrological equipment and the available influencing variables are modified by control interventions according to the currently detected combustion situation.

Die Variation der Einflussparameter während des Anlagenbetriebs wird jedoch nur in sehr begrenztem Maße durchgeführt. Der Grund hierfür ist, dass durch die hohen Temperaturen, sowie die chemisch und mechanisch verschleißreiche Umgebung, nur wenige bis gar keine Messergebnisse in hinreichender Qualität aus der verbrennungsnahen Umgebung zur Verfügung stehen. Es können daher nur Messdaten, die im Rauchgasweg weit weg von der Verbrennung aufgenommen werden, zur Verbrennungsregelung herangezogen werden. Die Prozessdaten stehen somit nur verzögert und ohne spezifischen Bezug zu den einzelnen Stellgliedern für regelungstechnische Optimierungen zur Verfügung. Durch die großen Abmessungen von technischen Großfeuerungen sind die verfügbaren Punktmessungen außerdem oft nicht repräsentativ und geben kein differenziertes Bild der realen räumlichen Prozesssituation wieder.However, the variation of the influencing parameters during the plant operation is carried out only to a very limited extent. The reason for this is that due to the high temperatures, as well as the chemically and mechanically wear-rich environment, only few or no measurement results of sufficient quality from the environment close to the combustion are available. Therefore, only measurement data taken in the flue gas path far away from the combustion can be used for the combustion control. The process data are thus available only with delay and without specific reference to the individual actuators for control engineering optimizations. Moreover, due to the large dimensions of large industrial furnaces, the available point measurements are often not representative and do not reflect a differentiated picture of the real spatial process situation.

Da in vielen Fällen keine Regelung bzw. Optimierung des Verbrennungsprozesses möglich ist, werden die Prozessparameter (z.B. Luftüberschuss) in hinreichendem Abstand zu den technischen Prozessgrenzen eingestellt. Dies verursacht Verluste durch einen Betrieb mit reduzierter Prozesseffizienz, höherem Verschleiß und/oder höheren Emissionen.Since in many cases no regulation or optimization of the combustion process is possible, the process parameters (eg excess air) set at a sufficient distance from the technical process limits. This causes losses through operation with reduced process efficiency, higher wear and / or higher emissions.

Eine ggf. vorhandene Regelung und Optimierung des Verbrennungsprozesses wird nach dem momentanen Stand der Technik mit unterschiedlichen Ansätzen durchgeführt:

  • Regelung des Gesamtluftmassenstromes auf Basis einer Messung des Sauerstoffgehaltes im Rauchgasstrom.
  • Regelung des Verhältnisses zwischen Verbrennungs- und Oberluft auf Basis einer NOx- und ggf. CO-Messung im Rauchgasstrom.
  • Bei Kohlekesseln wird der zugeführte Brennstoffmassenstrom als Drehzahl des Zuteilerbandes, mit dem die Kohle in die Kohlemühle gefördert wird, gemessen. Die genaue Aufteilung des Kohlestroms auf die durch diese Mühle versorgten Brenner wird dabei oft nicht erfasst. Es wird daher angenommen, dass jeder Brenner einen festen Anteil am Brennstoffmassenstrom trägt und die Verbrennungsluft entsprechend einstellt. Es existieren jedoch verschiedene Messsysteme, mit deren Hilfe die Kohleströme der einzelnen Brenner erfasst werden können. Eine genauere Luftregelung, bei der der Luftmassenstrom pro Brenner an den entsprechenden Kohlemassenstrom angepasst wird, wird somit ermöglicht.
  • Bei Kesseln, die mit einer Windbox ausgerüstet sind, ist zunächst auch der Luftmassenstrom pro Luftzuführung unbekannt. Um eine Luftregelung pro Luftzuführung dennoch durchführen zu können, werden die Druckdifferenzen über die einzelnen Luftklappen messtechnisch erfasst und die Luftmassenströme aus diesen Messdaten errechnet. Somit ist wiederum eine genauere, auf den Brennstoff abgestimmte Regelung der Luftmassenströme möglich.
  • Neuronale Netze werden dazu verwendet, den Zusammenhang zwischen den unterschiedlichen Einflussgrößen und den Prozessmessdaten zu lernen. Auf Basis des so entstehenden Neuronalen Modells des Dampferzeugers wird dann eine Optimierung des Verbrennungsprozesses durchgeführt.
  • In der Patentanmeldung EP 1 850 069 B1 ist ein "Verfahren und Regelkreis zur Regelung eines Verbrennungsprozesses" definiert, bei dem eine bildliche Erfassung des Verbrennungsprozesses an den Brennern dazu verwendet wird, Neuronale Netze zu trainieren, mit deren Hilfe dann eine Optimierung der Verbrennung durchgeführt wird.
  • Um der großen räumlichen Ausdehnungen der Großfeuerungen zu begegnen, werden teilweise wichtige Prozessgrößen, wie die Sauerstoffkonzentration im Rauchgas, durch Gittermessungen am Kesselaustritt erfasst. In begrenztem Maße lassen sich somit Rückschlüsse auf die räumliche Verteilung der Prozessgrößen im Verbrennungsprozess ziehen.
Any existing control and optimization of the combustion process is carried out according to the current state of the art with different approaches:
  • Control of the total air mass flow on the basis of a measurement of the oxygen content in the flue gas stream.
  • Control of the ratio between combustion and upper air on the basis of a NOx and possibly CO measurement in the flue gas flow.
  • In coal boilers, the fuel mass flow supplied is measured as the speed of the distributor belt used to convey the coal to the coal mill. The exact distribution of the coal flow to the burners powered by this mill is often not recorded. It is therefore assumed that each burner carries a fixed share of the fuel mass flow and adjusts the combustion air accordingly. However, there are different measuring systems, with the help of the coal flows of the individual burners can be detected. A more precise air control, in which the air mass flow per burner is adapted to the corresponding coal mass flow, is thus made possible.
  • For boilers that are equipped with a windbox, initially the air mass flow per air supply is unknown. In order to still be able to carry out one air control per air supply, the pressure differences across the individual air dampers are measured and the air mass flows are calculated from these measured data. Thus, in turn, a more accurate, tailored to the fuel control of the air mass flows is possible.
  • Neural networks are used to learn the relationship between the different parameters and the process measurement data. On the basis of the resulting neural model of the steam generator, an optimization of the combustion process is then carried out.
  • In the patent application EP 1 850 069 B1 is a "process and control loop for controlling a combustion process" defined, in which a visual detection of the combustion process at the burners is used to train neural networks, with the help of which then an optimization of the combustion is performed.
  • In order to counteract the large spatial dimensions of large combustion plants, important process variables, such as the oxygen concentration in the flue gas, are in part detected by grid measurements at the boiler outlet. To a limited extent, conclusions can be drawn about the spatial distribution of process variables in the combustion process.

Eine noch weitergehende Optimierung der Verbrennung wird möglich, wenn man ein räumlich auflösendes Messsystem einsetzt, mit dessen Hilfe Messdaten aus der unmittelbaren Nähe der Verbrennung zur Verfügung gestellt werden können.An even further optimization of the combustion becomes possible if one uses a spatially resolving measuring system with the help of which measurement data from the immediate vicinity of the combustion can be made available.

Es ist die Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zur Regelung eines Verbrennungsprozesses anzugeben, bei dem räumlich aufgelöste Messwerte im Feuerraum verwendet werden. Eine weitere Aufgabe besteht darin, ein entsprechendes Verbrennungssystem anzugeben.It is the object of the present invention to specify an improved method for controlling a combustion process in which spatially resolved measured values are used in the combustion chamber. Another object is to provide a corresponding combustion system.

Diese Aufgaben werden durch die Merkmale der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen sind jeweils in den abhängigen Patentansprüchen wiedergegeben.These objects are achieved by the features of the independent claims. Advantageous embodiments are given in the dependent claims.

Die wesentlichen Merkmale der Erfindung können wie folgt zusammengefasst werden:

  • Räumliche Messinformationen werden in regelungstechnisch verwertbare Zustandsgrößen transformiert.
  • Zu diesen Zustandsgrößen werden anschließend Sollwerte definiert, die das gewünschte Betriebsverhalten beschreiben.
  • Diese Zustandsgrößen werden dann als Istwerte für insbesondere konventionelle Regelkreise verwendet und dort mit den vorgegebenen Sollwerten verglichen.
  • Die so gebildeten Regeldifferenzen werden Reglern zugeführt, die dann notwendige Stellgrößenänderungen ermitteln.
  • Die Reglerausgänge werden auf die vorhandenen Stellglieder verteilt, wobei eine Rücktransformation der Reglerausgänge auf die vorhandenen Stellglieder stattfindet, da das Ergebnis der Reglerausgänge an die Anlage angepasst werden muss.
The essential features of the invention can be summarized as follows:
  • Spatial measurement information is transformed into controllable state variables.
  • Then setpoints are defined for these state variables, which describe the desired operating behavior.
  • These state variables are then used as actual values for, in particular, conventional control circuits, where they are compared with the predefined setpoint values.
  • The control differences thus formed are fed to regulators, which then determine necessary manipulated variable changes.
  • The controller outputs are distributed to the existing actuators, with an inverse transformation of the controller outputs to the existing actuators, since the result of the controller outputs must be adapted to the system.

Die Erfindung nutzt somit eine verbesserte Erfassung des aktuellen Zustands von Feuerungsprozessen durch den Einsatz mindestens einer Messtechnik mit räumlich auflösendem Erfassungsbereich zur quantitativen Bestimmung der Verbrennungsprodukte nach der Verbrennung im Innern der technischen Feuerungsanlage für eine differenziertere und schnellere Prozessregelung. Ein wesentlicher Vorteil der Erfindung liegt darin, dass die komplexen Messwertverteilungen der räumlich auflösenden Messtechnik durch die Transformation auf einfache Zustands- oder Regelgrößen anhand konventioneller Regler verarbeitet werden können. Ferner wird durch die Rücktransformation erreicht, dass die Ausgangssignale der herkömmlichen Regler gemäß einem vorgegebenen Optimierungsziel auf die vorhandenen Stellgrößen verteilt werden. Es wird somit ein optimales Zusammenspiel zwischen den neu definierten Regelkonzepten und der installierten komplexen Messtechnik erreicht. Insbesondere wird aber durch die derart verbesserten Regelstrukturen ein möglichst effizienter, verschleißarmer und mit möglichst geringen Emissionen ablaufender Verbrennungsprozess realisiert.The invention thus utilizes an improved detection of the current state of Feuerungsprozessen by the use of at least one measurement technique with spatially resolving detection range for the quantitative determination of the combustion products after combustion inside the technical furnace for a differentiated and faster process control. An essential advantage of the invention is that the complex measured value distributions of the spatially resolving measurement technique can be processed by the transformation to simple state or controlled variables using conventional controllers. Furthermore, it is achieved by the inverse transformation that the output signals of the conventional controllers are distributed according to a predetermined optimization target to the existing control variables. Thus, an optimal interaction between the newly defined control concepts and the installed complex measurement technology is achieved. In particular, however, an as efficient as possible, low-wear and running with the lowest possible emissions combustion process is realized by the thus improved control structures.

In einer ersten Ausführungsvariante werden die Zustandsgrößen anhand statistischer Informationen der räumlich aufgelösten Messwerte ermittelt. Dies hat den Vorteil, dass hier die enorme Vielfalt der Informationen über die vorhandenen beispielsweise Temperatur- oder Konzentrationsverteilungen verdichtet werden können. Es können Wichtungen eingeführt werden und andere Methoden der Bildverarbeitung zur Anwendung kommen. Ein weiterer Vorteil besteht darin, dass auf diese Art und Weise Prozessgrößen entstehen, mit denen der Verbrennungsprozess beschrieben und geregelt werden kann.In a first embodiment, the state variables are determined on the basis of statistical information of the spatially resolved measured values. This has the advantage that here the enormous diversity of information about the existing example, temperature or concentration distributions can be compacted. Weighting can be introduced and other image processing methods used. Another advantage is that in this way process variables arise with which the combustion process can be described and regulated.

Weitere Ausführungsvarianten betreffen die Sollwertermittlung. Der Vorteil bei der Vorgabe der Sollwerte liegt darin, dass ein Optimierungsziel konkret und allgemeinverständlich vorgegeben werden kann. Dadurch wird das gewünschte optimale Anlagenverhalten eindeutig und nachvollziehbar beschrieben. Der Anlagenbetreiber hat dann jederzeit die Möglichkeit durch Variation der Sollwerte den optimalen Arbeitspunkt neu zu definieren, z.B. ein höheres Gewicht auf minimale Emissionen zu legen auf Kosten eines etwas schlechteren Wirkungsgrades.Further variants relate to the setpoint determination. The advantage of specifying the target values lies in the fact that an optimization target can be specified concretely and generally intelligible. As a result, the desired optimum system behavior is described clearly and comprehensibly. The plant operator then has the option of redefining the optimum operating point at any time by varying the setpoint values, e.g. put a higher emphasis on minimum emissions at the expense of a slightly lower efficiency.

Die Verteilung der Reglerausgänge auf die Stellglieder wird in einer Ausführungsvariante mit Hilfe eines Neuronalen Netzes optimiert. Die Stelleingriffe können mit Hilfe des Neuronalen Netzes ferner fein justiert werden. Dadurch wird eine besonders intelligente und exakte Regelung erreicht, die robust gegen die Variation äußerer Einflüsse, z.B. veränderlicher Brennstoffqualität ist.The distribution of the controller outputs to the actuators is optimized in one embodiment using a neural network. The control interventions can also be finely adjusted using the neural network. This achieves a particularly intelligent and exact control which is robust against the variation of external influences, e.g. variable fuel quality.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigt die

Figur
ein Schema zur Verdeutlichung der erfindungsgemäßen Verbrennungsregelung.
The invention will be explained in more detail with reference to an embodiment shown in the drawing. It shows the
figure
a scheme to illustrate the combustion control according to the invention.

Der Feuerraum FR eines Kraftwerks oder einer anderen technischen Anlage, in der ein Verbrennungsprozess stattfindet, ist mit einem räumlich auflösenden Messsystem (in der Figur mit MS bezeichnet) ausgerüstet. Dabei kann es sich um beliebige Messsysteme handeln, mit dessen Hilfe Messdaten aus der unmittelbaren Nähe der Verbrennung zur Verfügung gestellt werden. Beispiele für solche Messsysteme sind:

  • Feuerraumkameras, mit deren Hilfe der Verbrennungsvorgang im Feuerraum erfasst werden kann. Dabei werden durch eine Spektralanalyse des von den Flammen emittierten Lichts zusätzliche Informationen über die Verbrennung gewonnen.
  • Anordnung aus Lasern und entsprechenden Detektoren. Hierbei werden Laserstrahlen durch den Feuerraum auf Photodetektoren geleitet. Die Spektralanalyse, der aus dem Feuerraum wieder austretenden Laserstrahlen liefert aufgrund der Absorption bestimmter Wellenlängen eine Information über die Verbrennung selbst. Werden die Laserstrahlen gitterförmig auf mehreren Wegen durch den Feuerraum geschickt, kann die Messinformation räumlich aufgelöst werden.
The combustion chamber FR of a power plant or other technical installation in which a combustion process takes place is equipped with a spatially resolving measuring system (denoted by MS in the figure). These can be any measuring system with the help of which measurement data from the immediate Be provided near the combustion. Examples of such measuring systems are:
  • Combustion chamber cameras with the aid of which the combustion process in the combustion chamber can be detected. In this case, additional information about the combustion is obtained by a spectral analysis of the light emitted by the flames.
  • Arrangement of lasers and corresponding detectors. Here, laser beams are directed through the firebox on photodetectors. The spectral analysis of the laser beam emerging from the combustion chamber again provides information about the combustion itself due to the absorption of certain wavelengths. If the laser beams are sent in lattice form on several paths through the combustion chamber, the measurement information can be spatially resolved.

Entscheidend bei der Auswahl der Messtechnik ist, dass sie zur Bestimmung von wesentlichen Eigenschaften der Verbrennung mit räumlicher Auflösung geeignet ist. Messungen werden dabei beispielsweise auf einem Querschnitt des Feuerraums nahe des Verbrennungsvorgangs durchgeführt. Die ermittelten Messwerte charakterisieren die Verbrennung anhand von Eigenschaften wie beispielsweise lokale Konzentrationen (CO, 02, C02, H20,...) und Temperatur.Decisive in the selection of the measurement technique is that it is suitable for determining essential properties of the combustion with spatial resolution. Measurements are carried out, for example, on a cross section of the combustion chamber near the combustion process. The measured values characterize combustion based on properties such as local concentrations (CO, 02, C02, H20, ...) and temperature.

In allen Fällen erhält man eine Vielzahl unterschiedlichster Messwerte in Abhängigkeit von räumlichen Koordinaten. Am Eingang des erfindungsgemäßen Regelungssystems liegen somit nicht einzelne Messwerte, sondern ganze Messwertverteilungen ähnlich einem zwei- oder dreidimensionalen Muster, an.In all cases, a large number of different measured values are obtained as a function of spatial coordinates. Thus, not individual measured values but entire measured value distributions similar to a two- or three-dimensional pattern are present at the input of the control system according to the invention.

Im Rahmen einer Variablentransformation VT werden diese in der Figur durch M Messwerte MW gekennzeichneten Daten in einem ersten Schritt in regelungstechnisch verwertbare Zustandsgrößen umgewandelt. Die räumliche Information über den Brennraum wird hierbei auf einzelne Kennzahlen abgebildet und somit verdichtet.In the context of a variable transformation VT, these data, which are identified by M measured values MW in the figure, are converted in a first step into state variables that can be used in terms of control technology. The spatial information about the combustion chamber is mapped to individual key figures and thus condensed.

Für die Ableitung der verschiedenen Zustandsgrößen aus der räumlichen Messinformation werden typischerweise folgende Punkte ausgewertet:

  1. a) Gewichtete Mittelwerte mit Betonung bzw. Unterdrückung von Teilen des messtechnisch erfassten Raumes,
  2. b) der Mittelwert der Messgröße über den messtechnisch erfassten Raum.
  3. c) Räumliche Lage des Schwerpunkts der Messwerte,
  4. d) Statistische Kennzahlen für räumliche Verteilungsmuster.
For the derivation of the different state variables from the spatial measurement information, the following points are typically evaluated:
  1. a) Weighted averages with emphasis or suppression of parts of the metrologically recorded space,
  2. b) the mean value of the measurand over the metrologically recorded space.
  3. c) spatial position of the center of gravity of the measured values,
  4. d) Statistical key figures for spatial distribution patterns.

Für die regelungstechnisch verwertbaren Zustandsgrößen kann ein Optimierungsziel als Sollwert definiert werden. Außerdem charakterisieren diese Zustandsgrößen in Verbindung mit herkömmlichen, leittechnisch verfügbaren Mess- und Prozessinformationen den aktuellen Betriebszustand des Verbrennungsprozesses.For the controllable state variables, an optimization target can be defined as a setpoint. In addition, these state variables in combination with conventional, process technology available measurement and process information characterize the current operating state of the combustion process.

Durch die beschriebene Variablentransformation VT wird demnach eine beliebige Anzahl von M Messwerten MW in eine wiederum beliebige Anzahl von N Regelgrößen RG umgewandelt, wobei M und N natürliche Zahlen darstellen und N üblicherweise kleiner als M ist. Bei den Regelgrößen RG handelt es sich um Zustandsgrößen, die anschließend als Istwerte für einzelne Regler verwendet werden.Accordingly, the described variable transformation VT converts any desired number of M measured values MW into an arbitrary number of N controlled variables RG, where M and N represent natural numbers and N is usually smaller than M. The control variables RG are state variables which are then used as actual values for individual controllers.

Die N Regelgrößen werden N Reglern R zugeführt. Dies ist in der Figur anhand des Regelbausteins, der einen Subtrahierer und weitere regelungstechnische Bausteine wie beispielsweise einen PI-Regler enthält, dargestellt. Es handelt sich hierbei um einen herkömmlichen Regelbaustein, der ggfs. in der zu regelnden technischen Anlage bereits vorhanden ist. Es kann sich auch um einen Mehrgrößenregelbaustein handeln, je nach Ausführungsvariante. Der hier betrachtete Regelbaustein weist ferner einen Eingang ESW für den Sollwert der abgeleiteten Zustandsgröße auf. Dieser wird entweder manuell vorgegeben, ist konstant oder lastabhängig vorgegeben und soll das gewünschte Betriebsverhalten charakterisieren. Weiterhin existiert neben dem Eingang ERG für die Regelgröße RG ein weiterer Eingang EPG für weitere beliebige Prozessmessgrößen PG, die außerhalb des räumlich auflösenden Messsystems erfasst werden. Innerhalb des Reglers wird die Regeldifferenz zwischen dem Soll- und Istwert gebildet, die Regeldifferenz durch die weiteren Prozessmessgrößen variiert, z.B. zur Anpassung der Reglerverstärkung in Abhängigkeit der aktuellen Lastsituation, und dem vorhandenen Regler (hier PI-Regler) zugeführt, der die notwendigen Stellgrößenänderungen ermittelt. Dieses Signal liegt am Ausgang ARA des Reglers an.The N controlled variables are fed to N regulators R. This is shown in the figure by means of the control module, which contains a subtractor and further control technology components such as a PI controller. This is a conventional control module that may already be present in the technical system to be controlled. It can also be a multi-variable control module, depending on the design variant. The control block considered here also has an input ESW for the desired value of the derived state variable. This is either specified manually, is given constant or load-dependent and should characterize the desired operating behavior. Still exists In addition to the input ERG for the controlled variable RG another input EPG for any other process variables PG, which are detected outside of the spatially resolving measuring system. Within the controller, the control difference between the setpoint and actual value is formed, the control difference by the other process variables varies, for example, to adjust the controller gain as a function of the current load situation, and the existing controller (here PI) supplied, which determines the necessary manipulated variable changes , This signal is present at the output ARA of the controller.

Sind nun N Regler vorhanden, so existieren an dieser Stelle N Werte für die Regelausgänge RA (vgl. Figur). Es gilt nun, in einer Rücktransformation RT diese als Regelausgänge bezeichneten Signale RA der Anzahl N derart umzuwandeln, dass eine bestimmte Anzahl von K Stellgliedern jeweils das Stellsignal erhält, das zur Erreichung des Regelziels notwendig ist. Mit anderen Worten müssen aus den Regelausgängen RA der N Regler R nun Regeleingriffe für verschiedene Stellglieder abgeleitet werden, mit denen der Verbrennungsprozess günstig beeinflusst werden kann. Hierbei kann ein Regeleingriff auf mehrere Stellglieder in differenzierter Stärke erfolgen.If there are N controllers, there are N values for the control outputs RA (see figure). It now applies, in a back transformation RT, to convert these signals RA, designated as control outputs, of the number N in such a way that a certain number of K actuators each receive the actuating signal necessary to achieve the control target. In other words, the control outputs RA of the N controllers R must now be used to derive control interventions for various actuators with which the combustion process can be favorably influenced. In this case, a control intervention can be made on a plurality of actuators in differentiated strength.

Stellglieder sind beispielsweise die Öffnungen von im Verbrennungsraum angeordneten Luftklappen.
In der Berechnungseinheit RT findet die Aufteilung von N Regelausgängen auf K Stellglieder statt (N, K jeweils natürliche Zahlen). Hierbei werden auch Prozessmessgrößen PG berücksichtigt, die außerhalb des räumlich auflösenden Messsystems erfasst werden. Bei der Rücktransformation der Reglerausgänge auf die vorhandenen Stellgrößen ist es von besonderem Vorteil, dass die Aufteilung der Reglerausgänge auf die Stellglieder auf optimale Art und Weise durchgeführt wird, so dass z.B. eine Minimierung der Emissionswerte stattfinden kann und aber gleichzeitig ein möglichst hoher Wirkungsgrad der Anlage erreicht wird. Dies wird in diesem Ausführungsbeispiel dadurch erreicht, dass der Berechnungseinheit RT auch Optimierungswerte OW aus dem Optimierer OPT zugeführt werden. Der Optimierer erhält Informationen aus unterschiedlichen Bereichen.
Actuators are, for example, the openings of the combustion chamber arranged louvers.
In the calculation unit RT, the distribution of N control outputs to K actuators takes place (N, K each natural numbers). In this process process variables PG are taken into account, which are recorded outside the spatially resolving measuring system. In the inverse transformation of the controller outputs on the existing control variables, it is of particular advantage that the distribution of the controller outputs is performed on the actuators in an optimal manner, so that, for example, a minimization of emissions can take place and at the same time the highest possible efficiency of the system becomes. This is achieved in this exemplary embodiment in that the calculation unit RT also has optimization values OW from the optimizer OPT be supplied. The optimizer receives information from different areas.

Neben Prozessmessgrößen, die außerhalb des räumlich auflösenden Messsystems erfasst werden, kann der Optimierer ebenfalls Messergebnisse der im Verbrennungsraum angeordneten räumlich auflösenden Messeinrichtungen erhalten. Im Rahmen der Variablentransformation VT' wird eine Anzahl M' der räumlich aufgelösten Messwerte in eine beliebige Anzahl N' von Zustandsgrößen umgewandelt, welche dem Optimierer OPT zugeführt werden. Es kann sich dabei um die gleichen Messwerte handeln wie weiter oben beschrieben, alternativ können auch andere Messwerte verwendet werden. Optional kann der Optimierer OPT mit einem neuronalen Netz NN verbunden sein.
In diesem Fall wird eine hybride Regelstruktur aus herkömmlichen Regelbausteinen sowie neuronalen Netzen erreicht. Das Neuronale Netz wird mit Prozessmessgrößen trainiert und dient als spezifisches Modell zur Vorhersage des Verhaltens der Feuerung. Ein iterativer Optimierungsalgorithmus bestimmt anhand der vom Neuronalen Netz vorhergesagten Feuerungsreaktion die optimale Verteilung der Regeleingriffe auf die Stellglieder sowie Korrekturwerte für die Stellglieder. Dadurch wird der Prozess entsprechend einer vorgegebenen Zielfunktion optimiert.
In addition to process variables that are recorded outside of the spatially resolving measuring system, the optimizer can also obtain measurement results of spatially resolving measuring devices arranged in the combustion chamber. In the context of the variable transformation VT ', a number M' of the spatially resolved measured values is converted into any number N 'of state variables which are fed to the optimizer OPT. These may be the same measurements as described above, but other measurements may be used as well. Optionally, the optimizer OPT may be connected to a neural network NN.
In this case, a hybrid control structure of conventional control blocks and neural networks is achieved. The neural network is trained with process measures and serves as a specific model for predicting the behavior of the furnace. An iterative optimization algorithm determines the optimum distribution of the control actions on the actuators and correction values for the actuators based on the firing reaction predicted by the neural network. This optimizes the process according to a given target function.

Bei den Optimierungswerten OW kann es sich beispielsweise auch um Trimmfaktoren handeln. Mittels der Trimmfaktoren werden die Ergebnisse der Rücktransformation RT unter Berücksichtigung des Optimierungsprozesses entsprechend des gewünschten Regelungsziels gewichtet, verschoben und angepasst.The optimization values OW can, for example, also be trim factors. By means of the trimming factors, the results of the back transformation RT are weighted, shifted and adjusted in accordance with the optimization process in accordance with the desired control target.

Anhand der Ausgabewerte der Rücktransformation und gegebenenfalls unter weiterer Berücksichtigung der Ergebnisse aus dem Optimierungsprozess findet abschließend eine Gesamtstellgrößenberechnung GSB für die vorhandenen K Stellglieder statt. Die unterschiedlichen Regeleingriffe auf verschiedene Stellglieder von verschiedenen identifizierten Sollwertabweichungen überlagern sich additiv zu einem Gesamtregeleingriff für jedes Stellglied. Am Ende des Algorithmus werden K Stellgrößenänderungen ST an die einzelnen Stellglieder wie Luftklappen oder Brennstoffzufuhreinrichtungen weitergeleitet.On the basis of the output values of the inverse transformation and, if appropriate, with further consideration of the results from the optimization process, finally, a total manipulated variable calculation GSB for the existing K actuators takes place. The different control interventions on different actuators from different identified setpoint deviations are superimposed additively to a total control intervention for each actuator. At the end of the algorithm K manipulated variable changes ST are forwarded to the individual actuators such as air dampers or fuel supply devices.

Während des gesamten Regelungsverfahrens werden Geschwindigkeit und Größe der einzelnen Regeleingriffe an die gegebenen technischen Randbedingungen und Grenzen der technischen Anlage angepasst. Vom Prozess vorgegebene Grenzen werden nicht überschritten.During the entire control procedure, the speed and size of the individual control interventions are adapted to the given technical boundary conditions and limits of the technical system. The limits specified by the process are not exceeded.

Claims (13)

  1. Method for controlling a combustion process, in particular in a firing chamber (FR) of a fossil-fuel-fired steam generator, wherein spatially resolved measured values (MW) are determined in the firing chamber (FR),
    wherein
    - an arbitrary number of M measured values (MW) is converted with the aid of a variable transformation (VT) in which the spatial information about the combustion chamber is mapped to individual characteristic parameters and consequently compressed into a number of N less than M controlled variables (RG), the controlled variables corresponding to state variables which can be used for closed-loop control purposes and which are subsequently supplied as actual values to N control loops (R),and wherein
    - manipulated variable changes (RA) determined in the N control loops (R) are distributed among K actuating elements in an inverse transformation (RT) taking into account an optimization target, where M, N and K are natural numbers.
  2. Method according to claim 1,
    wherein in the variable transformation (VT, VT') in order to determine the different state variables from the spatial measured values (MW, MW') reference variables from the following group of reference variables are evaluated:
    a) Weighted average values with accentuation or suppression of parts of the space registered by the measurement technology means, and/or
    b) the average value of the measured variable over the space registered by the measurement technology means, and/or
    c) spatial position of the centre of mass of the measured values, and/or
    d) statistical characteristic parameters for spatial distribution patterns.
  3. Method according to claim 1 or 2,
    wherein an optimization target can be defined as a setpoint value (SW) for the state variables, the state variables, in conjunction with conventionally available measurement and process information, characterize the current operating status of the combustion process.
  4. Method according to one of the preceding claims, wherein setpoint values (SW) for the derived state variables are defined in order to specify the desired operating behaviour.
  5. Method according to one of the preceding claims, wherein control interventions are derived for different manipulated variables, the combustion process being influenced in a targeted manner by means of said control interventions, wherein a control intervention acts on a plurality of actuating elements at different degrees of intensity.
  6. Method according to one of the preceding claims, wherein setpoint value deviations are calculated in order to identify deviations for corrective closed-loop control interventions in the process.
  7. Method according to one of the preceding claims, wherein different control interventions applied to different actuating elements by different identified setpoint value deviations are superimposed additively on one another to produce an overall control intervention for each actuating element.
  8. Method according to one of claims 1 to 7,
    wherein in order to achieve the optimization target a neural network is trained with measured process variables and used as a specific model for predicting the firing behaviour.
  9. Method according to claim 8,
    wherein on the basis of the firing response predicted by the neural network a beneficial distribution of the control interventions among the actuating elements as well as correction values for the actuating elements are determined by means of an iterative optimization algorithm.
  10. Method according to one of the preceding claims, wherein the measurement is carried out on a cross-section of the firing chamber close to the combustion zone.
  11. Method according to one of the preceding claims, wherein the local concentrations of CO, O2, CO2, H2O and the temperature or subgroups of these or comparable measured variables are determined as characteristic properties of the combustion.
  12. Combustion system having a firing chamber, in particular for a fossil-fuel-fired steam generator, comprising a closed-loop control system having a combustion diagnosis unit, the combustion diagnosis unit being equipped with a spatially resolving measurement system in the firing chamber,
    characterised in that
    the closed-loop control system is embodied for performing the method according to one of claims 1 to 11.
  13. Fossil-fuel-fired power plant installation having a combustion system according to claim 12.
EP10729831.7A 2009-06-24 2010-06-23 Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system Not-in-force EP2446193B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009030322A DE102009030322A1 (en) 2009-06-24 2009-06-24 Concept for controlling and optimizing the combustion of a steam generator on the basis of spatially resolved measurement information from the combustion chamber
PCT/EP2010/058878 WO2010149687A2 (en) 2009-06-24 2010-06-23 Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system

Publications (2)

Publication Number Publication Date
EP2446193A2 EP2446193A2 (en) 2012-05-02
EP2446193B1 true EP2446193B1 (en) 2014-05-07

Family

ID=43217810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10729831.7A Not-in-force EP2446193B1 (en) 2009-06-24 2010-06-23 Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system

Country Status (11)

Country Link
US (1) US9360209B2 (en)
EP (1) EP2446193B1 (en)
CN (1) CN102460018B (en)
AU (1) AU2010264723B2 (en)
BR (1) BRPI1012684A2 (en)
CA (1) CA2766458C (en)
DE (1) DE102009030322A1 (en)
ES (1) ES2465068T3 (en)
MX (1) MX2012000184A (en)
RU (1) RU2523931C2 (en)
WO (1) WO2010149687A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106628A1 (en) 2022-03-22 2023-09-28 Uniper Technologies GmbH Method for predicting process engineering process values of an incineration plant using a trained neural network

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032887B (en) * 2012-12-31 2015-02-04 河南省电力公司电力科学研究院 Method for realizing energy-saving running of coal burning boiler
CN103615735B (en) * 2013-11-27 2017-02-01 广东电网公司电力科学研究院 Simulation monitoring method of premixed combustion of foamed ceramic burner
CN103615736A (en) * 2013-11-27 2014-03-05 广东电网公司电力科学研究院 Simulation monitoring method of thickness of flame area of foamed ceramic burner
DE102015203978A1 (en) * 2015-03-05 2016-09-08 Stg Combustion Control Gmbh & Co. Kg Method for the controlled operation of a, in particular regenerative, heated industrial furnace, control and regulating device and heatable industrial furnace
EP3356736B1 (en) * 2015-09-28 2022-08-10 Services Pétroliers Schlumberger Burner monitoring and control systems
RU2715302C1 (en) * 2018-12-10 2020-02-26 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Automatic system for diagnosing combustion of pulverized coal fuel in a combustion chamber
RU2713850C1 (en) * 2018-12-10 2020-02-07 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Fuel combustion modes monitoring system by means of torch images analysis using classifier based on convolutional neural network

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347446A (en) * 1991-02-08 1994-09-13 Kabushiki Kaisha Toshiba Model predictive control apparatus
DE4220149C2 (en) * 1992-06-19 2002-06-13 Steinmueller Gmbh L & C Method for regulating the combustion of waste on a grate of a furnace and device for carrying out the method
US5408406A (en) * 1993-10-07 1995-04-18 Honeywell Inc. Neural net based disturbance predictor for model predictive control
US5493631A (en) * 1993-11-17 1996-02-20 Northrop Grumman Corporation Stabilized adaptive neural network based control system
DE19509412C2 (en) * 1995-03-15 1997-01-30 Siemens Ag Method and device for controlling the firing of a steam generator system
US5822740A (en) * 1996-06-28 1998-10-13 Honeywell Inc. Adaptive fuzzy controller that modifies membership functions
DE19710206A1 (en) * 1997-03-12 1998-09-17 Siemens Ag Method and device for combustion analysis and flame monitoring in a combustion chamber
DE19841877A1 (en) * 1998-09-11 2000-04-20 Siemens Ag Method and device for determining the soot loading of a combustion chamber
US6532454B1 (en) * 1998-09-24 2003-03-11 Paul J. Werbos Stable adaptive control using critic designs
US6553924B2 (en) * 1998-10-19 2003-04-29 Eco/Technologies, Llc Co-combustion of waste sludge in municipal waste combustors and other furnaces
NL1013209C2 (en) * 1999-10-04 2001-04-05 Tno Control system for an incineration plant, such as a waste incineration plant.
DE19948377C1 (en) * 1999-10-07 2001-05-23 Siemens Ag Method and device for determining and regulating the excess air in a combustion process
CH694823A5 (en) * 2000-12-08 2005-07-29 Von Roll Umwelttechnik Ag A method for operating an incinerator.
EP1543394B1 (en) 2002-09-26 2006-05-17 Siemens Aktiengesellschaft Method and device for monitoring a technical installation comprising several systems, in particular an electric power station
US7581945B2 (en) * 2005-11-30 2009-09-01 General Electric Company System, method, and article of manufacture for adjusting CO emission levels at predetermined locations in a boiler system
EP1850069B1 (en) 2006-04-25 2008-08-13 Powitec Intelligent Technologies GmbH Method and Control Loop for Controlling a Combustion Process
AU2007247898B8 (en) * 2006-05-05 2012-09-27 Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch A control system for the conversion of a carbonaceous feedstock into gas
DE102006022626B4 (en) * 2006-05-12 2010-09-02 Rwe Power Ag Method of operating a coal-fired steam generator
US8219247B2 (en) * 2009-11-19 2012-07-10 Air Products And Chemicals, Inc. Method of operating a furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106628A1 (en) 2022-03-22 2023-09-28 Uniper Technologies GmbH Method for predicting process engineering process values of an incineration plant using a trained neural network

Also Published As

Publication number Publication date
CA2766458A1 (en) 2010-12-29
WO2010149687A3 (en) 2011-03-03
BRPI1012684A2 (en) 2016-03-29
ES2465068T3 (en) 2014-06-05
AU2010264723B2 (en) 2013-02-21
CA2766458C (en) 2014-10-14
CN102460018B (en) 2016-03-09
EP2446193A2 (en) 2012-05-02
AU2010264723A1 (en) 2012-01-19
WO2010149687A2 (en) 2010-12-29
MX2012000184A (en) 2012-02-28
RU2523931C2 (en) 2014-07-27
US20120125003A1 (en) 2012-05-24
DE102009030322A1 (en) 2010-12-30
US9360209B2 (en) 2016-06-07
CN102460018A (en) 2012-05-16
RU2012102271A (en) 2013-07-27

Similar Documents

Publication Publication Date Title
EP2446193B1 (en) Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system
EP1698827B1 (en) Process for burning fuels and more particularly wastes
EP0696708B1 (en) Method for controlling the burning in combustion plants, especially waste incineration plants
EP1880141B1 (en) Method and apparatus for regulating the functioning of a gas turbine combustor
EP0897086B1 (en) Method for determining the average radiation of a burner bed in an incinerating plant and for the control of the combustion process
DE112007002909T5 (en) Coal-fired boiler device
WO2009013136A1 (en) Method for operating a combustion device, and combustion device for carrying out the method
DE102011079325A1 (en) Method for controlling the air number of a burner
EP3663648B1 (en) Method for regulating the mixing ratio of combustion air and combustion gas in a combustion process
DE102004036911A1 (en) Operating procedure for a combustion plant
DE102014115726A1 (en) STEAM TEMPERATURE CONTROL USING A MODEL-BASED TEMPERATURE COMPENSATION
DE102006015230A1 (en) combustion chamber
EP0499976B1 (en) Method for operating an incineration plant
WO2016139363A1 (en) Method for controlled operation of an, in particular regenerative, heated industrial furnace, open-loop and closed-loop control unit, and heatable industrial furnace
WO2004018940A1 (en) Method for monitoring a thermodynamic process
EP1051585B1 (en) Method and device for operating an incinerator plant
DE3607386C2 (en)
WO2005038345A2 (en) Device and method for optimizing the exhaust gas burn-out rate in incinerating plants
AT412903B (en) METHOD FOR CONTROLLING BZW. CONTROL OF FUELING SYSTEMS AND THEREBY REGULATORY FIRING SYSTEM
EP3964752B1 (en) Method for operating a combustion plant
DE102021124683A1 (en) Method of detecting flame extinction of a burnerMethod of detecting flame extinction of a burner
DE8017259U1 (en) COMBUSTION SYSTEM FOR CONTROLLED COMBUSTION OF SOLID FOSSIL FUELS
DD234915A1 (en) PROCESS FOR THE COMBUSTION OPTIMAL POWER CONTROL OF STEAM GENERATORS WITH RUST FIRES
DE102012021799A1 (en) Heating device and method for optimized combustion of biomass
DE102010031981A1 (en) Method for operating incineration plant, involves applying garbage, particularly domestic garbage, on splicing table of feeding device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 1/02 20060101AFI20130205BHEP

Ipc: F23N 5/02 20060101ALI20130205BHEP

Ipc: F23N 5/00 20060101ALI20130205BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 666992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2465068

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006915

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006915

Country of ref document: DE

Effective date: 20150101

26N No opposition filed

Effective date: 20150210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20150528

Year of fee payment: 6

Ref country code: CZ

Payment date: 20150622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150623

Year of fee payment: 6

Ref country code: FR

Payment date: 20150610

Year of fee payment: 6

Ref country code: NL

Payment date: 20150602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150727

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140623

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140623

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100623

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 666992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623