EP2440449B1 - Method for detecting anomalies on a submarine object - Google Patents

Method for detecting anomalies on a submarine object Download PDF

Info

Publication number
EP2440449B1
EP2440449B1 EP10723085A EP10723085A EP2440449B1 EP 2440449 B1 EP2440449 B1 EP 2440449B1 EP 10723085 A EP10723085 A EP 10723085A EP 10723085 A EP10723085 A EP 10723085A EP 2440449 B1 EP2440449 B1 EP 2440449B1
Authority
EP
European Patent Office
Prior art keywords
underwater
small vehicle
anomaly
soll
transverse distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10723085A
Other languages
German (de)
French (fr)
Other versions
EP2440449A1 (en
Inventor
Detlef Lambertus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP2440449A1 publication Critical patent/EP2440449A1/en
Application granted granted Critical
Publication of EP2440449B1 publication Critical patent/EP2440449B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/42Diving chambers with mechanical link, e.g. cable, to a base of closed type with independent propulsion or direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines

Definitions

  • the invention relates to a method for detecting anomalies on an underwater object, in particular on the underwater part of a hull of a moored watercraft, according to the preamble of claim 1.
  • underwater objects such as foundations of conveyors and wind farms, docks, hulls of in-port vessels and submarines, are exposed to underwater manipulation by divers or guided underwater vehicles unprotected. So unnoticed, for example, can be attached to detention mines, which are then remotely ignited.
  • a mine-hunting system and a mine-hunting method with a plurality of autonomously-acting submersibles are known wherein a first group of such underwater vehicles having sensors is used for mine-finding, and a second group of such under-water vehicles is used to control located mines.
  • off DD 300 802 A7 an underwater body with a fixed arrangement of hydroacoustic transducers for basic distance measurement known that can be used universally in three modes.
  • the invention has for its object to provide a cost-effective method for detecting or detecting anomalies of underwater objects, z. B. from there illegally mounted foreign bodies, such as custody, smuggled goods and the like. To specify that is efficient and largely automated without underwater use of people can be performed.
  • the inventive method has the advantage that with a simple sensor equipment, such as acoustic sensor for Querabstands briefly and pressure cell for depth determination, a very reliable scanning of the underwater object can be performed and by navigating the underwater small vehicle with a constant transverse distance to the underwater object, a profile of the underwater object is obtained in whose profile line an anomaly present on the underwater object, eg an adhering foreign body, clearly emerges.
  • a simple sensor equipment such as acoustic sensor for Querabstandstik and pressure cell for depth determination
  • the detection of the anomaly in the measurement profile line of the acoustic distance sensor can be brought directly to the Waman Servicee in a monitoring center, for example via a towed by the underwater small vehicle light guide and trigger a diving operation for inspection and / or removal of the anomaly, without the underwater small vehicle its Inspection must interrupt or cancel. This provides a significant time savings between detecting and eliminating the anomaly.
  • the position of the underwater small vehicle relative to the underwater object is determined at least when detecting an anomaly.
  • the underwater small vehicle drives at a constant speed and the driving time is continuously measured while driving. If an anomaly is detected, the position of the anomaly is determined from the previously measured travel time and the speed of the underwater small vehicle as well as the depth of the underwater small vehicle. The time measurement is started when the predetermined transverse distance of the underwater small vehicle to the underwater object is measured for the first time. By this procedure, the position of the underwater small vehicle and thus the object-related position of the anomaly can be determined by a simple time measurement.
  • a repeated traversing of the underwater object is carried out and changed at each shutdown, the constant depth.
  • the depth of travel change of the underwater small vehicle can be performed directly at the end of the underwater object by a 180 ° turn of the small vehicle or after a complete avoidance of the underwater object.
  • a surface ship 11 shown schematically, which is located in a harbor basin 12 and moored to a pier 13, that is moored with lines 14, is.
  • an anomaly 16 is shown on the hull 15 of the surface ship 11, e.g. an adhesive mine or a container filled with contraband can be.
  • an unmanned underwater small vehicle 17 is used.
  • Such unmanned, self-propelled underwater small vehicles are widely known in different assembly with sensors and measuring device.
  • the underwater small vehicle 17 used here has, for example, four propeller drives 18 which are used to control or navigate the underwater small vehicle 17 by a navigation device 19 (FIG. Fig. 4 ) are controlled separately.
  • the underwater small vehicle 17 can go straight or be steered to the right or left and up or down.
  • At least one acoustic distance sensor 20 for measuring a horizontal distance extending horizontally to the vehicle axis and a depth sensor 21 for determining the diving depth of the underwater small vehicle 17 are present as sensors in the underwater small vehicle 17 used here.
  • Such an acoustic distance sensor 20 may be, for example, a simple echosounder which emits sound pulses and receives the echoes produced by reflection of the sound pulses and measures the time between the transmission and the echo reception. Taking into account the speed of sound, the distance is calculated from the measured time up to the object which triggers the reflection of the sound pulses.
  • the depth sensor 21 is for example a simple pressure box.
  • the output signals of the sensors 20, 21 are supplied to the navigation device 19.
  • the underwater vehicle small vehicle 17 is used by the surface ship 11 or from the pier 13 into the water, for example - as in Fig. 1 and 2 darg Congress is - behind the stern of the surface ship 11, and travels along the fuselage 15 of the surface ship 11. While driving the underwater small vehicle 17 by means of the acoustic distance sensor 20 continuously the horizontal transverse distance of the underwater small vehicle 17 from the fuselage 15 is measured. The underwater small vehicle 17 is thereby from the navigation device 19 controlled so that it adheres to a predetermined transverse distance from the fuselage 15 at a constant depth. For this purpose, the navigation device 19 (FIG. Fig.
  • the measured during the ride of the underwater small vehicle 17 continuously from the distance sensor 20 actual lateral distance d is also continuously compared with the predetermined target transverse distance d Soll and then when the actual transverse distance d significantly below the target transverse distance d target drops to presence detected an anomaly.
  • the underwater small vehicle 17 is preferably connected via a connecting line 22 (FIG. Fig. 1 ) is connected to a mission monitoring center aboard the surface ship 11, and if an abnormality is detected, an alarm can be triggered via the connection line 22.
  • the current position of the underwater small vehicle 17 is determined relative to the fuselage 15 of the surface ship 11 and communicated via the connecting line 22 of the mission monitoring center.
  • the position determination is carried out in a simple manner in that the underwater small vehicle 17 at constant speed, which is the navigation device 19 as speed setpoint v set is set, runs and from a starting point from the travel time t is measured.
  • the travel time t A measured at the time of detecting the anomaly 16 gives the traveled distance s A in the predetermined diving depth T Soll , whereby the position P A (s A ; T A ) of the underwater small vehicle 17 is fixed.
  • the time t o is selected as the starting point of the time measurement, at which the distance sensor 20 first measures a transverse distance d after exposure of the underwater small vehicle 17, which corresponds to the predetermined desired transverse distance d Soll , then the output position P A (s A ; T A ) of the underwater small vehicle at the same time the position of the anomaly 16 on the fuselage 15 of the surface ship 11th
  • a block diagram of a device installed in the underwater small vehicle 17 is shown, with which the presented method for detecting or detecting the anomaly 16 is performed.
  • the device also has a first edge detector 23, a timer or timer 24, a comparator 25, a second edge detector 26, a gate circuit 27 and a multiplier 28.
  • the output of the acoustic distance sensor 20 is connected both to the navigation device 19 and to the inputs of the edge detectors 23, 26 and the comparator 25.
  • the comparator 25 is supplied via a second input of the predetermined transverse distance d Soll of the underwater small vehicle 17 from the fuselage 15 of the surface ship 11.
  • the gate circuit 27 can be controlled via the output of the comparator 25 and connects the output of the timer 24 and the input of the multiplier 28, as the multiplier, the target speed V Soll of the underwater small vehicle 17 is supplied.
  • the outputs of the two edge detectors 23, 26 are connected to the navigation device 19.
  • Fig. 3 shows to illustrate the presented method, a diagram in which during the ride of the underwater small vehicle 17 is measured by the acoustic distance sensor 20 transverse distance d is shown as a function of travel time t.
  • the acoustic distance sensor 20 measures against the pier wall and thus the Transverse distance d to the pier wall, which is significantly greater than the navigation device 19 predetermined setpoint d target .
  • the underwater small vehicle 17 reaches the anomaly 16 on the fuselage 15, and the output signal of the acoustic distance sensor 20 briefly drops below the desired value d setpoint .
  • the comparator 25 which constantly compares the output from the distance sensor 20 actual value of the transverse distance d from the fuselage 15 with the predetermined target value of the transverse distance d desired , a pulse occurs, which causes the gate 27 for short-term closing.
  • the travel time t A currently measured by the timer 24 is given to the multiplier 28.
  • the currently determined travel time t A is multiplied by the predetermined target speed v Soll of the underwater small vehicle 17.
  • the resulting route s A together with the predetermined depth T set of the underwater small vehicle 17 determines the position of the underwater small vehicle 17 at the moment of finding the anomaly 16 can be transmitted via the connecting line 22 to the mission monitoring center on board the surface ship 11 and integrated into an alarm display. Based on the alarm display, a scuba diving mission can be started by the monitoring center to inspect and eliminate the anomaly 16, wherein the position of the submarine small vehicle 17 determined by the reported route s A and the reported diving depth T Soll indicates the position P A of the anomaly 16 the target for divers use.
  • the underwater small vehicle 17 continues its journey with a constant transverse distance d Soll from the hull 15 of the surface ship 11. If the underwater small vehicle 17 has reached the end of the fuselage 15 and drives beyond it, the acoustic distance sensor 20 again measures the transverse distance to the pier wall, which is significantly greater than the transverse distance to the fuselage 15. At the output of the distance sensor 20, a clear measured value jump occurs towards higher readings. The positive edge of the measured value jump is detected in the second edge detector 26. The latter generates a control pulse, which reaches the navigation device 19 and there a maneuver of the underwater small vehicle 17 triggers, such as a turning maneuver to a changed depth.
  • the described process of running the hull 15 through the underwater small vehicle 17 is repeatedly performed with different depth of the underwater small vehicle 17, so that the entire body 15 is completely scanned in the vertical dimension of the acoustic distance sensor 20. It makes sense for the underwater small vehicle, after leaving the hull area, to make a 180 ° turn and, in the next depth, drive the hull 15 in the opposite direction to its previous lane. In this case, the underwater small vehicle 17 must be equipped with a second acoustic distance sensor whose measuring direction is rotated by 180 ° with respect to the first acoustic distance sensor 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Aufspüren von Anomalien an einem Unterwasserobjekt, insbesondere am Unterwasserteil eines Rumpfes eines vertäuten Wasserfahrzeugs, nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for detecting anomalies on an underwater object, in particular on the underwater part of a hull of a moored watercraft, according to the preamble of claim 1.

In Zeiten zunehmender terroristischer Bedrohung von zivilen und militärischen Einrichtungen bekommt deren permanenter Schutz eine zunehmende Bedeutung. Insbesondere Unterwasserobjekte, wie Fundamente von Förderanlagen und Windparks, Hafenbecken, Schiffsrümpfe von im Hafen liegenden Schiffen und U-Booten, sind Unterwassermanipulationen durch Taucher oder ferngelenkten Unterwasserfahrzeugen ungeschützt ausgesetzt. So können beispielsweise unbemerkt Haftminen angebracht werden, die dann ferngezündet werden.In times of increasing terrorist threat from civilian and military installations, their permanent protection becomes increasingly important. In particular, underwater objects, such as foundations of conveyors and wind farms, docks, hulls of in-port vessels and submarines, are exposed to underwater manipulation by divers or guided underwater vehicles unprotected. So unnoticed, for example, can be attached to detention mines, which are then remotely ignited.

Das Dokument US 2004/0083940 offenbart die Merkmale des Oberbegriffs des Anspruchs 1 und wird als nächstliegender Stand der Technik betrachtet.The document US 2004/0083940 discloses the features of the preamble of claim 1 and is considered to be the closest prior art.

Aus DE 10 2005 014 555 A1 sind ein Minenjagdsystem und ein Verfahren zur Minenjagd mit mehreren autonom agierenden Unterwasserfahrzeugen bekannt, wobei eine erste Gruppe dieser Unterwasserfahrzeuge, die Sensoren aufweist, zur Minenortung eingesetzt wird, und eine zweite Gruppe dieser Unterwasserfahrzeuge zur Bekämpfung georteter Minen eingesetzt wird.Out DE 10 2005 014 555 A1 For example, a mine-hunting system and a mine-hunting method with a plurality of autonomously-acting submersibles are known wherein a first group of such underwater vehicles having sensors is used for mine-finding, and a second group of such under-water vehicles is used to control located mines.

Aus US 2009/0090286 A1 ist ein bewaffnetes, ferngesteuert betriebenes Fahrzeug mit Video- und Sonarsensoren bekannt.Out US 2009/0090286 A1 is an armed, remotely operated vehicle with video and sonar sensors known.

Weiter sind aus DE 10 2005 062 109 A1 ein Verfahren und eine Vorrichtung zur Abwehr von Unterwasser eindringenden Personen bekannt, wobei zunächst eineNext are out DE 10 2005 062 109 A1 a method and a device for the defense against underwater invading persons are known, wherein first a

Person detektiert und verfolgt wird und nachfolgend ein unbemanntes Unterwasserfahrzeug zur Abwehr der detektierten Person eingesetzt wird.Person is detected and tracked and subsequently an unmanned underwater vehicle is used to ward off the detected person.

Ferner ist aus DE 43 02 455 A1 eine Unterwasserdrohne zur Bekämpfung von Minen bekannt, wobei diese Unterwasserdrohne eine zur Metalldetektion geeignete Antenneneinrichtung aufweist.Furthermore, it is off DE 43 02 455 A1 an underwater drone for controlling mines, said underwater drone having a suitable metal detection antenna device.

Schließlich ist aus DD 300 802 A7 ein Unterwasserkörper mit fester Anordnung hydroakustischer Wandler zur Grundabstandsmessung bekannt, der universell in drei Betriebsarten eingesetzt werden kann.Finally is off DD 300 802 A7 an underwater body with a fixed arrangement of hydroacoustic transducers for basic distance measurement known that can be used universally in three modes.

Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges Verfahren zum Aufspüren oder Erkennen von Anomalien an Unterwasserobjekten, z. B. von dort illegal angebrachten Fremdkörpern, wie Haftminen, Schmuggelware und dgl., anzugeben, das effizient ist und weitgehend automatisiert ohne Unterwassereinsatz von Personen durchgeführt werden kann.The invention has for its object to provide a cost-effective method for detecting or detecting anomalies of underwater objects, z. B. from there illegally mounted foreign bodies, such as custody, smuggled goods and the like. To specify that is efficient and largely automated without underwater use of people can be performed.

Die Aufgabe ist erfindungsgemäß durch die Merkmale im Anspruch 1 gelöst.The object is achieved by the features in claim 1.

Das erfindungsgemäße Verfahren hat den Vorteil, dass mit einer einfachen Sensorausstattung, wie akustischen Sensor zur Querabstandsmessung und Druckdose zur Tiefenbestimmung, eine sehr zuverlässige Abtastung des Unterwasserobjekts durchgeführt werden kann und durch Navigieren des Unterwasser-Kleinfahrzeugs mit konstantem Querabstand zum Unterwasserobjekt ein Profil des Unterwasserobjekts erhalten wird, in dessen Profillinie eine am Unterwasserobjekt vorhandene Anomalie, z.B. ein anhaftender Fremdkörper, deutlich hervortritt. Dies ist darin begründet, dass bei Erfassen der Anomalie durch den akustischen Sensor das Unterwasser-Kleinfahrzeug infolge seiner Trägheit seine durch konstanten Querabstand zum Unterwasserobjekt gekennzeichnete Fahrt fortsetzt, dagegen in dem Messprofil des den Querabstand messenden, akustischen Sensors aber eine Profilveränderung, z.B. ein Einbruch oder Senke in der Profillinie, erscheint, die bereits wieder abgeklungen ist, wenn die Fahrtregelung des Unterwasser-Kleinfahrzeugs durch die Navigationsvorrichtung auf den veränderten Querabstand ansprechen würde, so dass das Unterwasser-Kleinfahrzeug ungeachtet des sich kurzzeitig verändernden Querabstands zum Unterwasserobjekt seinen Kurs im vorbestimmen, konstanten Querabstand zum Unterwasserobjekt unverändert fortsetzt. Das Erkennen der Anomalie in der Messprofillinie des akustischen Abstandssensors kann unmittelbar, z.B. über einen vom Unterwasser-Kleinfahrzeug nachgeschleppten Lichtleiter, zur Wamanzeige in einer Überwachungszentrale gebracht werden und einen Tauchereinsatz zur Inspektion und/oder Entfernen der Anomalie auslösen, ohne dass das Unterwasser-Kleinfahrzeug seine Inspektionsfahrt unter- oder abbrechen muss. Dadurch wird ein deutlicher Zeitgewinn zwischen Erkennen und Beseitigen der Anomalie erzielt.The inventive method has the advantage that with a simple sensor equipment, such as acoustic sensor for Querabstandsmessung and pressure cell for depth determination, a very reliable scanning of the underwater object can be performed and by navigating the underwater small vehicle with a constant transverse distance to the underwater object, a profile of the underwater object is obtained in whose profile line an anomaly present on the underwater object, eg an adhering foreign body, clearly emerges. This is due to the fact that when detecting the anomaly by the acoustic sensor, the undersea small vehicle continues due to its inertia characterized by constant transverse distance to the underwater object ride, however, in the measurement profile of the transverse distance measuring acoustic sensor but a profile change, such as a burglary or Depression in the profile line appears, which has subsided again, if the cruise control of the underwater small vehicle by the navigation device would respond to the changed transverse distance, so that the underwater small vehicle regardless of the short-term changing transverse distance to the underwater object continues its course in the predetermined, constant transverse distance to the underwater object unchanged. The detection of the anomaly in the measurement profile line of the acoustic distance sensor can be brought directly to the Wamanzeige in a monitoring center, for example via a towed by the underwater small vehicle light guide and trigger a diving operation for inspection and / or removal of the anomaly, without the underwater small vehicle its Inspection must interrupt or cancel. This provides a significant time savings between detecting and eliminating the anomaly.

Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Advantageous embodiments of the method according to the invention with advantageous developments and embodiments of the invention will become apparent from the other claims.

Gemäß einer vorteilhaften Ausführungsform des Verfahrens wird zumindest bei Erkennen einer Anomalie die Position des Unterwasser-Kleinfahrzeugs relativ zum Unterwasserobjekt festgestellt. Durch diese Positionsbestimmung des Unterwasser-Kleinfahrzeugs lässt sich eine objektbezogene Lokalisierung der Anomalie leicht vornehmen und der Inspektions- und/oder Beseitigungseinsatz durch Taucher zeitkomprimiert und effizient gestalten.According to an advantageous embodiment of the method, the position of the underwater small vehicle relative to the underwater object is determined at least when detecting an anomaly. By determining the position of the underwater small vehicle an object-related localization of the anomaly can be easily made and the inspection and / or disposal operation by divers time-compressed and efficient.

Gemäß einer vorteilhaften Ausführungsform der Erfindung fährt das Unterwasser-Kleinfahrzeug mit konstanter Geschwindigkeit und wird während der Fahrt die Fahrzeit laufend gemessen. Bei Erkennen einer Anomalie wird aus der bis dahin gemessenen Fahrzeit und der Fahrgeschwindigkeit des Unterwasser-Kleinfahrzeugs sowie der Tauchtiefe des Unterwasser-Kleinfahrzeugs die Position der Anomalie bestimmt. Die Zeitmessung wird gestartet, wenn der vorgegebene Querabstand des Unterwasser-Kleinfahrzeugs zum Unterwasserobjekt erstmals gemessen wird. Durch diese Verfahrensweise kann durch eine einfache Zeitmessung die Position des Unterwasser-Kleinfahrzeugs und damit die objektbezogene Position der Anomalie festgestellt werden.According to an advantageous embodiment of the invention, the underwater small vehicle drives at a constant speed and the driving time is continuously measured while driving. If an anomaly is detected, the position of the anomaly is determined from the previously measured travel time and the speed of the underwater small vehicle as well as the depth of the underwater small vehicle. The time measurement is started when the predetermined transverse distance of the underwater small vehicle to the underwater object is measured for the first time. By this procedure, the position of the underwater small vehicle and thus the object-related position of the anomaly can be determined by a simple time measurement.

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird ein mehrmaliges Abfahren des Unterwasserobjekts durchgeführt und bei jedem Abfahren die konstante Fahrtiefe geändert. Durch dieses Abfahren des Unterwasserobjekts in unterschiedlichen Tauchtiefen können mit einem einfachen akustische Sensor mit kleiner vertikaler Bündelung des akustischen Abtaststrahls auch die Tiefenkomponente der Anomalie für den Tauchereinsatz ausreichend genau bestimmt werden. Dabei kann die Fahrtiefenänderung des Unterwasser-Kleinfahrzeugs unmittelbar am Ende des Unterwasserobjekts durch eine 180°-Kehrtwende des Kleinfahrzeugs oder nach einem vollständigen Umfahren des Unterwasserobjekts durchgeführt werden.According to an advantageous embodiment of the invention, a repeated traversing of the underwater object is carried out and changed at each shutdown, the constant depth. By this movement of the underwater object in different depths can be determined sufficiently accurately with a simple acoustic sensor with small vertical bundling of the acoustic scanning beam and the depth component of the anomaly for the diving operation. In this case, the depth of travel change of the underwater small vehicle can be performed directly at the end of the underwater object by a 180 ° turn of the small vehicle or after a complete avoidance of the underwater object.

Das erfindungsgemäße Verfahren ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen in schematisierter Darstellung:

Fig. 1
eine Seitenansicht eines in einem Hafenbecken vertäuten Oberflächenschiffes,
Fig. 2
eine Draufsicht des Oberflächenschiffes in Fig. 1,
Fig. 3
ein bei Abtasten des Rumpfes des Oberflächenschiffes in Fig. 1 und 2 durch einen akustischen Abstandssensor bei Fahrt des Unterwasser-Kleinfahrzeugs entstehendes Diagramm des Querabstands des Unterwasser-Kleinfahrzeugs vom Rumpf des Oberflächenschiffes in Abhängigkeit von der Fahrzeit,
Fig. 4
ein Blockschaltbild einer Vorrichtung zur Durchführung des Verfahrens zum Aufspüren oder Erkennen einer Anomalie am Rumpf des Oberflächenschiffes in Fig. 1 und 2.
The inventive method is described in more detail below with reference to an embodiment shown in the drawing. In a schematic representation:
Fig. 1
a side view of a moored in a harbor surface ship,
Fig. 2
a top view of the surface ship in Fig. 1 .
Fig. 3
one upon scanning the hull of the surface ship in Fig. 1 and 2 Diagram showing the transverse distance of the underwater small vehicle from the hull of the surface ship as a function of the travel time, as a result of an acoustic distance sensor when the underwater small vehicle is traveling;
Fig. 4
a block diagram of an apparatus for performing the method for detecting or detecting anomaly on the hull of the surface ship in Fig. 1 and 2 ,

Zur Erläuterung des hier vorgestellten Verfahrens zum Aufspüren, Erkennen oder Entdecken von Anomalien an einem stationären Unterwasserobjekt ist in Fig. 1 und 2 ein Oberflächenschiff 11 schematisiert dargestellt, das in einem Hafenbecken 12 liegt und an einer Pier 13 vertäut, d.h. mit Leinen 14 festgemacht, ist.In order to explain the method presented here for detecting, detecting or detecting anomalies on a stationary underwater object, is in Fig. 1 and 2 a surface ship 11 shown schematically, which is located in a harbor basin 12 and moored to a pier 13, that is moored with lines 14, is.

Im Unterwasserbereich ist am Rumpf 15 des Oberflächenschiffes 11 eine Anomalie 16 dargestellt, die z.B. einer Haftmine oder ein mit Schmuggelgut gefüllter Behälter sein kann.In the underwater area, an anomaly 16 is shown on the hull 15 of the surface ship 11, e.g. an adhesive mine or a container filled with contraband can be.

Um eine solche Anomalie 16 an dem ansonsten glatten Rumpf 15 des Oberflächenschiffs 11 aufzuspüren, wird ein unbemanntes Unterwasser-Kleinfahrzeug 17 eingesetzt. Solche unbemannten, eigenangetriebenen Unterwasser-Kleinfahrzeuge sind in unterschiedlicher Bestückung mit Sensoren und Messvorrichtung mannigfaltig bekannt. Das hier eingesetzte Unterwasser-Kleinfahrzeug 17 verfügt beispielsweise über vier Propellerantriebe 18, die zum Steuern oder Navigieren des Unterwasser-Kleinfahrzeugs 17 von einer Navigationsvorrichtung 19 (Fig. 4) getrennt angesteuert werden. Je nach Drehzahl der einzelnen Propellerantriebe 18, von denen jeweils zwei vertikal übereinander und zwei horizontal nebeneinander angeordnet sind, kann das Unterwasser-Kleinfahrzeug 17 geradeaus fahren oder nach rechts oder links und aufwärts oder abwärts gelenkt werden. Als Sensoren sind in dem hier eingesetzten Unterwasser-Kleinfahrzeug 17 mindestens ein akustischer Abstandssensor 20 zum Vermessen einer horizontal zur Fahrzeugachse sich erstreckenden Querdistanz und ein Tiefensensor 21 zur Bestimmung der Tauchtiefe des Unterwasser-Kleinfahrzeugs 17 vorhanden. Ein solcher akustischer Abstandssensor 20 kann z.B. ein einfaches Echolot sein, das Schallimpulse aussendet und die durch Reflexion der Schallimpulse entstandenen Echos empfängt und die Zeit zwischen dem Senden und dem Echoempfang misst. Aus der bemessenen Zeit wird unter Berücksichtung der Schallgeschwindigkeit die Strecke bis zu dem die Reflexion der Schallimpulse auslösenden Objekt berechnet. Der Tiefensensor 21 ist z.B. eine einfache Druckdose. Die Ausgangssignale der Sensoren 20, 21 sind der Navigationsvorrichtung 19 zugeführt.In order to detect such anomaly 16 on the otherwise smooth hull 15 of the surface ship 11, an unmanned underwater small vehicle 17 is used. Such unmanned, self-propelled underwater small vehicles are widely known in different assembly with sensors and measuring device. The underwater small vehicle 17 used here has, for example, four propeller drives 18 which are used to control or navigate the underwater small vehicle 17 by a navigation device 19 (FIG. Fig. 4 ) are controlled separately. Depending on the speed of the individual propeller drives 18, of which two are arranged vertically one above the other and two horizontally next to each other, the underwater small vehicle 17 can go straight or be steered to the right or left and up or down. At least one acoustic distance sensor 20 for measuring a horizontal distance extending horizontally to the vehicle axis and a depth sensor 21 for determining the diving depth of the underwater small vehicle 17 are present as sensors in the underwater small vehicle 17 used here. Such an acoustic distance sensor 20 may be, for example, a simple echosounder which emits sound pulses and receives the echoes produced by reflection of the sound pulses and measures the time between the transmission and the echo reception. Taking into account the speed of sound, the distance is calculated from the measured time up to the object which triggers the reflection of the sound pulses. The depth sensor 21 is for example a simple pressure box. The output signals of the sensors 20, 21 are supplied to the navigation device 19.

Das Unterwasserfahrzeug-Kleinfahrzeug 17 wird vom Oberflächenschiff 11 oder von der Pier 13 aus ins Wasser eingesetzt, z.B. - wie dies in Fig. 1 und 2 dargstellt ist - hinter dem Heck des Oberflächenschiffs 11, und fährt entlang des Rumpfes 15 des Oberflächenschiffs 11. Während der Fahrt des Unterwasser-Kleinfahrzeugs 17 wird mittels des akustischen Abstandssensors 20 fortlaufend der horizontale Querabstand des Unterwasser-Kleinfahrzeugs 17 vom Rumpf 15 gemessen. Das Unterwasser-Kleinfahrzeug 17 wird dabei von der Navigationsvorrichtung 19 so gesteuert, dass es in konstanter Tiefe einen vorgegebenen Querabstand vom Rumpf 15 einhält. Hierzu werden der Navigationsvorrichtung 19 (Fig. 4) zum einen die Fahrtiefe und der Querabstand als Sollwerte TSoll und dSoll vorgegeben und zum andern die Messwerte von Abstandssensor 20 und Tiefensensor 21 als Ist-Werte d und T zugeführt. Ein entsprechender Regelkreis in der Navigationsvorrichtung 19 generiert abhängig davon Steuerbefehle für die vier Propellerantriebe 18, die das Unterwasser-Kleinfahrzeug 17 auf den angesprochenen Kurs halten.The underwater vehicle small vehicle 17 is used by the surface ship 11 or from the pier 13 into the water, for example - as in Fig. 1 and 2 dargstellt is - behind the stern of the surface ship 11, and travels along the fuselage 15 of the surface ship 11. While driving the underwater small vehicle 17 by means of the acoustic distance sensor 20 continuously the horizontal transverse distance of the underwater small vehicle 17 from the fuselage 15 is measured. The underwater small vehicle 17 is thereby from the navigation device 19 controlled so that it adheres to a predetermined transverse distance from the fuselage 15 at a constant depth. For this purpose, the navigation device 19 (FIG. Fig. 4 ) on the one hand the depth of travel and the transverse distance as setpoint values T set and d set set and on the other hand, the measured values of distance sensor 20 and depth sensor 21 as actual values d and T supplied. Depending on this, a corresponding control loop in the navigation device 19 generates control commands for the four propeller drives 18, which hold the underwater small vehicle 17 on the addressed course.

Der während der Fahrt des Unterwasser-Kleinfahrzeugs 17 fortlaufend vom Abstandssensor 20 gemessene Ist-Querabstand d wird zudem fortlaufend mit dem vorgegebenen Soll-Querabstand dSoll verglichen und dann, wenn der Ist-Querabstand d signifikant unter den Soll-Querabstand dSoll absinkt auf Vorhandensein einer Anomalie erkannt. Das Unterwasser-Kleinfahrzeug 17 ist vorzugsweise über eine Verbindungsleitung 22 (Fig. 1) mit einer Missions-Überwachungszentrale an Bord des Oberflächenschiffes 11 verbunden, und bei Aufspüren einer Anomalie kann über die Verbindungsleitung 22 ein Alarm ausgelöst werden. Dabei wird im Moment der Anomalieaufspürung auch die momentane Position des Unterwasser-Kleinfahrzeugs 17 relativ zum Rumpf 15 des Oberflächenschiffs 11 bestimmt und über die Verbindungsleitung 22 der Missions-Überwachungszentrale mitgeteilt. Die Positionsbestimmung erfolgt in einfacher Weise dadurch, dass das Unterwasser-Kleinfahrzeug 17 mit konstanter Geschwindigkeit, die der Navigationsvorrichtung 19 als Geschwindigkeitssollwert vSoll vorgegeben wird, fährt und von einem Startpunkt aus die Fahrzeit t gemessen wird. Die im Zeitpunkt des Erkennens der Anomalie 16 gemessene Fahrzeit tA ergibt die zurückgelegte Fahrstrecke sA in der vorgegebenen Tauchtiefe TSoll, womit die Position PA (sA; TA) des Unterwasser-Kleinfahrzeugs 17 festgelegt ist. Wird als Startpunkt der Zeitmessung der Zeitpunkt to gewählt, bei dem der Abstandssensor 20 nach Aussetzen des Unterwasser-Kleinfahrzeugs 17 erstmals einen Querabstand d misst, der dem vorgegebenen Soll-Querabstand dSoll entspricht, so ist die ausgegebene Position PA (sA; TA) des Unterwasser-Kleinfahrzeugs zugleich die Position der Anomalie 16 am Rumpf 15 des Oberflächenschiffs 11.The measured during the ride of the underwater small vehicle 17 continuously from the distance sensor 20 actual lateral distance d is also continuously compared with the predetermined target transverse distance d Soll and then when the actual transverse distance d significantly below the target transverse distance d target drops to presence detected an anomaly. The underwater small vehicle 17 is preferably connected via a connecting line 22 (FIG. Fig. 1 ) is connected to a mission monitoring center aboard the surface ship 11, and if an abnormality is detected, an alarm can be triggered via the connection line 22. At the moment of the Anomalieaufspürung also the current position of the underwater small vehicle 17 is determined relative to the fuselage 15 of the surface ship 11 and communicated via the connecting line 22 of the mission monitoring center. The position determination is carried out in a simple manner in that the underwater small vehicle 17 at constant speed, which is the navigation device 19 as speed setpoint v set is set, runs and from a starting point from the travel time t is measured. The travel time t A measured at the time of detecting the anomaly 16 gives the traveled distance s A in the predetermined diving depth T Soll , whereby the position P A (s A ; T A ) of the underwater small vehicle 17 is fixed. If the time t o is selected as the starting point of the time measurement, at which the distance sensor 20 first measures a transverse distance d after exposure of the underwater small vehicle 17, which corresponds to the predetermined desired transverse distance d Soll , then the output position P A (s A ; T A ) of the underwater small vehicle at the same time the position of the anomaly 16 on the fuselage 15 of the surface ship 11th

In Fig. 4 ist beispielhaft ein Blockschaltbild einer im Unterwasser-Kleinfahrzeug 17 installierten Vorrichtung dargestellt, mit der das vorgestellte Verfahren zum Aufspüren oder Entdecken der Anomalie 16 durchgeführt wird. Neben der bereits angesprochenen Navigationsvorrichtung 19 und den bereits angesprochenen Sensoren 20, 21 weist die Vorrichtung noch einen ersten Flankendetektor 23, einen Zeitgeber oder Timer 24, einen Komparator 25, einen zweiten Flankendetektor 26, eine Torschaltung 27 und einen Multiplizierer 28 auf. Der Ausgang des akustischen Abstandssensors 20 ist sowohl an die Navigationsvorrichtung 19 als auch an die Eingänge der Flankendetektoren 23, 26 und des Komparators 25 angeschlossen. Dem Komparator 25 ist über einen zweiten Eingang der vorgegebene Querabstand dSoll des Unterwasser-Kleinfahrzeugs 17 vom Rumpf 15 des Oberflächenschiffs 11 zugeführt. Die Torschaltung 27 ist über den Ausgang des Komparators 25 ansteuerbar und verbindet den Ausgang des Timers 24 und dem Eingang des Multiplizierers 28, dem als Multiplikator die Sollgeschwindigkeit vSoll des Unterwasser-Kleinfahrzeugs 17 zugeführt ist. Die Ausgänge der beiden Flankendetektoren 23, 26 sind an die Navigationsvorrichtung 19 angeschlossen.In Fig. 4 By way of example, a block diagram of a device installed in the underwater small vehicle 17 is shown, with which the presented method for detecting or detecting the anomaly 16 is performed. In addition to the already mentioned navigation device 19 and the previously mentioned sensors 20, 21, the device also has a first edge detector 23, a timer or timer 24, a comparator 25, a second edge detector 26, a gate circuit 27 and a multiplier 28. The output of the acoustic distance sensor 20 is connected both to the navigation device 19 and to the inputs of the edge detectors 23, 26 and the comparator 25. The comparator 25 is supplied via a second input of the predetermined transverse distance d Soll of the underwater small vehicle 17 from the fuselage 15 of the surface ship 11. The gate circuit 27 can be controlled via the output of the comparator 25 and connects the output of the timer 24 and the input of the multiplier 28, as the multiplier, the target speed V Soll of the underwater small vehicle 17 is supplied. The outputs of the two edge detectors 23, 26 are connected to the navigation device 19.

Fig. 3 zeigt zur Verdeutlichung des vorgestellten Verfahrens ein Diagramm, in dem der während der Fahrt des Unterwasser-Kleinfahrzeugs 17 von dem akustischen Abstandssensor 20 gemessene Querabstand d als Funktion der Fahrzeit t dargestellt ist. Das hinter dem Heck des Überwasserschiffes 11 ausgesetzte Unterwasser-Kleinfahrzeug 17 nimmt Fahrt auf und gelangt zum Zeitpunkt t0 bei konstanter Geschwindigkeit in der Tauchtiefe TSoll an die Heckkante des Rumpfs 15. Während dieser Fahrstrecke misst der akustische Abstandssensor 20 gegen die Pierwand und damit den Querabstand d zur Pierwand, der deutlich größer ist als der der Navigationsvorrichtung 19 vorgegebene Sollwert dSoll. Erreicht das Unterwasser-Kleinfahrzeug 17 den Rumpf 15 des Unterwasserschiffs 11, so tritt am Ausgang des akustischen Abstandssensors 20 ein deutlicher Messwertsprung auf, da der nunmehr vom Abstandssensor 20 gegen den Rumpf 15 gemessene Querabstand d sehr viel kleiner ist als der zuvor gegen die Pierwand gemessene Querabstand. Dieser negative Messwertsprung führt am Ausgang des ersten Flankendetektors 23 zu einem Steuerimpuls, mit dem einerseits der Abstandsregelkreis der Navigationsvorrichtung 19 eingeschaltet und andererseits der Timer 24 gestartet wird. Das Unterwasser-Kleinfahrzeug 17 wird nunmehr auf einem Kurs gesteuert, auf dem das Unterwasser-Kleinfahrzeug 17 den vorgegebenen Querabstand dSoll zum Rumpf 15 konstant einhält. Fig. 3 shows to illustrate the presented method, a diagram in which during the ride of the underwater small vehicle 17 is measured by the acoustic distance sensor 20 transverse distance d is shown as a function of travel time t. The underwater small vehicle 17, which is exposed behind the stern of the surface vessel 11, picks up speed and arrives at the tt depth T setpoint at the t 0 at a constant speed. During this route, the acoustic distance sensor 20 measures against the pier wall and thus the Transverse distance d to the pier wall, which is significantly greater than the navigation device 19 predetermined setpoint d target . If the underwater small vehicle 17 reaches the fuselage 15 of the underwater hull 11, a clear measured value jump occurs at the exit of the acoustic distance sensor 20, since the transverse distance d measured now by the distance sensor 20 against the fuselage 15 is much smaller than that previously measured against the pier wall transverse distance. This negative measurement jump leads at the output of the first edge detector 23 to a control pulse, with the one hand, the distance control circuit of the navigation device 19 is turned on and on the other hand, the timer 24 is started. The underwater small vehicle 17 is now controlled on a course on which the underwater small vehicle 17, the predetermined transverse distance d target to the fuselage 15 maintains constant.

Zum Zeitpunkt tA gelangt das Unterwasser-Kleinfahrzeug 17 zu der Anomalie 16 am Rumpf 15 und das Ausgangssignal des akustischen Abstandssensors 20 sinkt kurzfristig unter den Soll-Wert dSoll ab. Am Ausgang des Komparators 25, der ständig den vom Abstandssensor 20 ausgegebenen Ist-Wert des Querabstands d vom Rumpf 15 mit dem vorgegebenen Soll-Wert des Querabstands dSoll vergleicht, tritt ein Impuls auf, der die Torschaltung 27 zum kurzzeitigen Schließen veranlassst. Dadurch wird die vom Timer 24 momentan gemessene Fahrzeit tA an den Multiplizierer 28 gegeben. Im Multiplizierer 28 wird die momentan festgestellte Fahrzeit tA mit der vorgegebenen Soll-Geschwindigkeit vSoll des Unterwasser-Kleinfahrzeugs 17 multipliziert. Die daraus hervorgehende Fahrstrecke sA die zusammen mit der vorgegebenen Tauchtiefe TSoll des Unterwasser-Kleinfahrzeugs 17 die Position des Unterwasser-Kleinfahrzeugs 17 im Moment des Aufspürens der Anomalie 16 festgelegt, kann über die Verbindungsleitung 22 zur Missions-Überwachungszentrale an Bord des Oberflächenschiffes 11 übertragen und dort in eine Alarmanzeige integriert werden. Aufgrund der Alarmanzeige kann von der Überwachungszentrale ein Tauchereinsatz zur Inspektion und Beseitigung der Anomalie 16 gestartet werden, wobei die durch die gemeldete Fahrstrecke sA und die gemeldete Tauchtiefe TSoll festgelegte Position des Unterwasser-Kleinfahrzeugs 17 die Position PA der Anomalie 16 angibt, die die Zielvorgabe für den Tauchereinsatz bildet.At time t A , the underwater small vehicle 17 reaches the anomaly 16 on the fuselage 15, and the output signal of the acoustic distance sensor 20 briefly drops below the desired value d setpoint . At the output of the comparator 25, which constantly compares the output from the distance sensor 20 actual value of the transverse distance d from the fuselage 15 with the predetermined target value of the transverse distance d desired , a pulse occurs, which causes the gate 27 for short-term closing. As a result, the travel time t A currently measured by the timer 24 is given to the multiplier 28. In the multiplier 28, the currently determined travel time t A is multiplied by the predetermined target speed v Soll of the underwater small vehicle 17. The resulting route s A together with the predetermined depth T set of the underwater small vehicle 17 determines the position of the underwater small vehicle 17 at the moment of finding the anomaly 16 can be transmitted via the connecting line 22 to the mission monitoring center on board the surface ship 11 and integrated into an alarm display. Based on the alarm display, a scuba diving mission can be started by the monitoring center to inspect and eliminate the anomaly 16, wherein the position of the submarine small vehicle 17 determined by the reported route s A and the reported diving depth T Soll indicates the position P A of the anomaly 16 the target for divers use.

Unabhängig davon setzt das Unterwasser-Kleinfahrzeug 17 seine Fahrt mit konstantem Querabstand dSoll vom Rumpf 15 des Oberflächenschiffes 11 fort. Hat das Unterwasser-Kleinfahrzeug 17 das Ende des Rumpfs 15 erreicht und fährt über diesen hinaus, so misst der akustische Abstandssensor 20 wiederum den Querabstand zur Pierwand, der deutlich größer ist als der Querabstand zum Rumpf 15. Am Ausgang des Abstandssensors 20 tritt ein deutlicher Messwertsprung zu höheren Messwerten hin auf. Die positive Flanke des Messwertsprungs wird im zweiten Flankendetektor 26 detektiert. Letztere erzeugt einen Steuerimpuls, der zu der Navigationsvorrichtung 19 gelangt und dort ein Manöver des Unterwasser-Kleinfahrzeugs 17 auslöst, z.B. ein Wendemanöver auf eine veränderte Tauchtiefe.Independently of this, the underwater small vehicle 17 continues its journey with a constant transverse distance d Soll from the hull 15 of the surface ship 11. If the underwater small vehicle 17 has reached the end of the fuselage 15 and drives beyond it, the acoustic distance sensor 20 again measures the transverse distance to the pier wall, which is significantly greater than the transverse distance to the fuselage 15. At the output of the distance sensor 20, a clear measured value jump occurs towards higher readings. The positive edge of the measured value jump is detected in the second edge detector 26. The latter generates a control pulse, which reaches the navigation device 19 and there a maneuver of the underwater small vehicle 17 triggers, such as a turning maneuver to a changed depth.

Der beschrieben Vorgang des Abfahrens des Rumpfs 15 durch das Unterwasser-Kleinfahrzeug 17 wird wiederholt mit unterschiedlicher Tauchtiefe des Unterwasser-Kleinfahrzeugs 17 durchgeführt, so dass der gesamte Rumpf 15 auch in der Vertikalabmessung vom akustischen Abstandssensor 20 vollständig abgetastet wird. Sinnvollerweise führt das Unterwasser-Kleinfahrzeug nach Verlassen des Rumpfbereichs eine 180° Wende durch und fährt in der nächsten Tauchtiefe den Rumpf 15 in Gegenrichtung zur seiner vorhergehende Fahrbahn ab. In diesem Fall muss das Unterwasser-Kleinfahrzeug 17 mit einem zweiten akustischen Abstandssensor ausgestattet sein, dessen Messrichtung um 180° gegenüber der des ersten akustischen Abstandssensors 20 gedreht ist.The described process of running the hull 15 through the underwater small vehicle 17 is repeatedly performed with different depth of the underwater small vehicle 17, so that the entire body 15 is completely scanned in the vertical dimension of the acoustic distance sensor 20. It makes sense for the underwater small vehicle, after leaving the hull area, to make a 180 ° turn and, in the next depth, drive the hull 15 in the opposite direction to its previous lane. In this case, the underwater small vehicle 17 must be equipped with a second acoustic distance sensor whose measuring direction is rotated by 180 ° with respect to the first acoustic distance sensor 20.

Alle in der vorgenannten Figurenbeschreibung, in den Ansprüchen und in der Beschreibungseinleitung genannten Merkmale sind sowohl einzeln als auch in beliebiger Kombination miteinander einsetzbar.All mentioned in the above description of the figures, in the claims and in the introduction of the description features can be used individually as well as in any combination with each other.

Claims (4)

  1. A method for locating anomalies (16) on an underwater object, in particular in the underwater area of a hull (15) of a moored water vehicle, characterized in that an unmanned miniature underwater vehicle (17) that is equipped with a navigation device (19) and an acoustic sensor that measures transversely to the direction of travel moves at a constant depth (Tsoll) along the underwater object during which the transverse distance of the miniature underwater vehicle (7) from the underwater object is measured with the acoustic sensor, that the miniature underwater vehicle (17) is steered with the navigation device (19) in such a manner that the miniature underwater vehicle (17) maintains a constant given transverse distance (dsoll) from the hull (17), and that the measured transverse distance (d) is continuously compared with the given transverse distance (dsoll) and upon a significant deviation an anomaly (16) on the underwater object is recognized.
  2. The method according to claim 1, characterized in that the underwater object is passed by several times and upon each pass the constant depth (Tsoll) of the miniature underwater vehicle (17) is changed.
  3. The method according to claim 1 or 2, characterized in that the position of the miniature underwater vehicle (17) to the underwater object is determined at least upon recognition of an anomaly.
  4. The method according to claim 3, characterized in that the miniature underwater vehicle (17) travels with a constant speed (vsoll), that the travel time (t) is continuously measured and that upon recognition of an anomaly the horizontal component of the position of the anomaly (16) is determined from the travel time (tA) measured up to that point and from the travel speed (vsoll) of the miniature underwater vehicle (17).
EP10723085A 2009-06-09 2010-05-25 Method for detecting anomalies on a submarine object Active EP2440449B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009024342A DE102009024342B9 (en) 2009-06-09 2009-06-09 Method for detecting anomalies on an underwater object
PCT/EP2010/057172 WO2010142526A1 (en) 2009-06-09 2010-05-25 Method for detecting anomalies on a submarine object

Publications (2)

Publication Number Publication Date
EP2440449A1 EP2440449A1 (en) 2012-04-18
EP2440449B1 true EP2440449B1 (en) 2013-04-03

Family

ID=42684802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10723085A Active EP2440449B1 (en) 2009-06-09 2010-05-25 Method for detecting anomalies on a submarine object

Country Status (4)

Country Link
US (1) US8820261B2 (en)
EP (1) EP2440449B1 (en)
DE (1) DE102009024342B9 (en)
WO (1) WO2010142526A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056517A1 (en) * 2010-12-29 2012-07-05 Atlas Elektronik Gmbh Recognition device and recognition method for detecting an underwater body arranged in a body of water and having a chemical substance, and system with underwater vehicle and recognition device
US10330641B2 (en) * 2012-10-27 2019-06-25 Valerian Goroshevskiy Metallic constructions monitoring and assessment in unstable zones of the earth's crust
CN103577808A (en) * 2013-11-11 2014-02-12 哈尔滨工程大学 Frogman recognition method
EP3265351A4 (en) 2015-03-03 2018-10-17 Massachusetts Institute Of Technology Underwater vehicle design and control methods
DE102018110659A1 (en) * 2018-05-03 2019-11-07 Subdron Gmbh Method for controlling an underwater vehicle
US11753126B2 (en) * 2021-01-12 2023-09-12 Raytheon Company Underwater vehicle inspection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD300802A7 (en) * 1983-03-07 1992-08-06 Inst F Regelungstechn Im Komb Arrangement of hydroacoustic transducers for basic distance measurement in towed underwater bodies
DE4302455A1 (en) * 1993-01-29 1994-08-04 Diehl Gmbh & Co Underwater drone for mine detection
US5321667A (en) * 1993-04-27 1994-06-14 Raytheon Company Sonar systems
GB2359049A (en) * 2000-02-10 2001-08-15 H2Eye Remote operated vehicle
AUPR560001A0 (en) * 2001-06-08 2001-07-12 Hostetler, Paul Blair Mapping method and apparatus
DE102005014555B4 (en) * 2005-03-31 2010-07-29 Atlas Elektronik Gmbh Mine hunting system and method for mine hunting
DE102005062109A1 (en) * 2005-12-23 2008-09-25 Atlas Elektronik Gmbh Person e.g. diver, protecting method for use in underwater prohibited area, involves operating unmanned underwater craft equipped with defense unit to expectation area when detecting person entering into prohibited area
US8220408B2 (en) 2007-07-31 2012-07-17 Stone William C Underwater vehicle with sonar array
US20090090286A1 (en) * 2007-10-09 2009-04-09 Korolenko Kryill V Armed Remotely Operated Vehicle

Also Published As

Publication number Publication date
DE102009024342B9 (en) 2012-01-05
WO2010142526A1 (en) 2010-12-16
DE102009024342B3 (en) 2010-11-25
US20120103245A1 (en) 2012-05-03
US8820261B2 (en) 2014-09-02
EP2440449A1 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
EP2440449B1 (en) Method for detecting anomalies on a submarine object
EP2830935B1 (en) Method for detecting sea mines ans sea mine detection system
DE10156827B4 (en) System for determining the position of underwater objects
EP2423101B1 (en) Unmanned submarine and method for operating an unmanned submarine
EP2768725B1 (en) Unmanned underwater vehicle and method for localizing and examining an object arranged at the bottom of a body of water and system having the unmanned underwater vehicle
DE102010035899B4 (en) Unmanned underwater vehicle and method of operating an unmanned underwater vehicle
EP1827964B1 (en) Method for detecting and neutralizing submarine objects
EP2435998A1 (en) Method for the computer-supported control of a ship
DE69113462T3 (en) METHOD AND DEVICE FOR SEARCHING AN OBJECT.
EP1827965A1 (en) Device and method for tracking an underwater vessel
EP2492713A1 (en) Towed sensor assembly and method for performing a sonar mission using such a towed sensor assembly
WO2017076386A1 (en) Method for determining sonar data, and underwater vehicle
DE102017221446B4 (en) Device and method for berthing or casting off a ship at a pier
DE19807525B4 (en) Device for trajectory control for a towed by a watercraft to a towed, in its horizontal movement is not self-controllable or controlled towed
DE102014100623B4 (en) Apparatus and method for studying the seabed condition
WO2021244863A2 (en) Depth-variable trailing sonar and method for operation
EP3356220B1 (en) Method for retrieving an underwater vehicle, escort vehicle and a vehicle combination
EP2377756B1 (en) Evaluation of ship dynamics
EP3265839B1 (en) Method for calculating a confidence echo signal that is exempt from multipath propagation effects and for determining a distance and/or a direction to an echo source and device and vehicle
DE102018110659A1 (en) Method for controlling an underwater vehicle
EP3620367B1 (en) Optical detection of fish in shoals
DE102011018278A1 (en) Method and device for determining target parameters
DE202023000414U1 (en) Protective device for watercraft
DE102016107558B4 (en) Device for releasably connecting a wire and method for discharging the device into a body of water with the device
EP3268705B1 (en) Method for separating a group of ships, and watercraft and device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 604535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002799

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130403

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

BERE Be: lapsed

Owner name: ATLAS ELEKTRONIK G.M.B.H.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

26N No opposition filed

Effective date: 20140106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002799

Country of ref document: DE

Effective date: 20140106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100525

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130525

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 604535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 11

Ref country code: NO

Payment date: 20200527

Year of fee payment: 11

Ref country code: DE

Payment date: 20200520

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 11

Ref country code: IS

Payment date: 20200414

Year of fee payment: 11

Ref country code: IT

Payment date: 20200528

Year of fee payment: 11

Ref country code: SE

Payment date: 20200527

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002799

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210525

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210525

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531