EP2407261B1 - Method for automatic positioning a spout of a metallurgical container - Google Patents

Method for automatic positioning a spout of a metallurgical container Download PDF

Info

Publication number
EP2407261B1
EP2407261B1 EP10169765.4A EP10169765A EP2407261B1 EP 2407261 B1 EP2407261 B1 EP 2407261B1 EP 10169765 A EP10169765 A EP 10169765A EP 2407261 B1 EP2407261 B1 EP 2407261B1
Authority
EP
European Patent Office
Prior art keywords
spout
measuring
measuring device
transverse direction
curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10169765.4A
Other languages
German (de)
French (fr)
Other versions
EP2407261A1 (en
Inventor
Helmut Ebner
Manfred Huegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP10169765.4A priority Critical patent/EP2407261B1/en
Priority to CN2011102786320A priority patent/CN102445150A/en
Publication of EP2407261A1 publication Critical patent/EP2407261A1/en
Application granted granted Critical
Publication of EP2407261B1 publication Critical patent/EP2407261B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/08Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like for bottom pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to a method for automatically detecting the position of a spout of a metallurgical vessel, in particular a converter, a pan or a G tellverteilers, by means of a measuring device with a non-contact measuring grid or a non-contact measuring curtain.
  • the WO 2009/141184 A1 shows the use of a measuring plate and a stereo camera for determining a spout in a metallurgical vessel.
  • Light grids with measuring beams perpendicular to one another and light curtains with only one row of measuring beams for the detection of objects are out US 5 281 809 A .
  • EP 0 978 735 A2 and EP 1 391 752 A2 known.
  • the light grids or light curtains are used as safety systems that switch off an engine when an object enters, for example. How the light grids or curtains can be used for determining the position is not apparent from these writings.
  • a measuring device with a non-contact measuring grid for determining the muscle volume on a leg or arm wherein the measuring grid is formed by two rows of measuring beams, and a first row in a first transverse direction and a second row are arranged in a second transverse direction of the measuring device ; and each measuring beam is associated with a measuring beam generation detection device for generating and detecting the measuring beam, which is connected to a movable outer frame of the measuring device.
  • an automatic position detection of a spout of a metallurgical vessel can be performed, does not emerge from the Scriptures.
  • the meter is positioned below the spout of the metallurgical vessel, wherein the spout can be closed or opened by, for example, a spool or plug closure so that the spout neither touches the meter nor penetrates the metering grid inside the meter (step a).
  • the measuring device is moved vertically upwards into a first position (step b), preferably at least until the spout penetrates the measuring grid of the measuring device for the first time.
  • the actual position of the spout is detected without contact by means of the measuring grid, wherein the measuring grid is formed by at least two, orthogonally successive, rows of measuring beams.
  • measured data are evaluated, the measured data comprising at least a plurality of x-measured values and a plurality of y-measured values, the x-measured values of a first transverse direction of the measuring grid and the y-measured values of a second transverse direction of the measuring grid.
  • the actual position of the spout at the first position can be determined by means of the x-measured values on the actual position of the spout at the first position in a first transverse direction of the spout and by means of the y-measured values be deduced in a second transverse direction of the spout, wherein the first transverse direction of the spout is orthogonal to the second transverse direction of the spout.
  • this solution does not use a two-dimensional measuring grid but only a one-dimensional measuring curtain, so that only the position of the spout in a transverse direction can be determined during a detection.
  • the measuring device is pivoted in a normal plane to the longitudinal axis of the spout by an angle ⁇ , preferably by 90 ° (step d) and then the detection is repeated again (step e), so that the position of the spout in the first and the second transverse direction of the spout is completely determined.
  • the pivoting of the measuring device is particularly easy.
  • the measuring device moves after the step c by a travel distance ⁇ in a second position vertically upwards and Subsequently, the step c is performed again, wherein the position of the spout is detected at the second position. If the steps according to this embodiment are carried out several times in succession, the position of the spout is detected discretely or continuously over the travel path of the measuring device.
  • the positioning and method of the measuring device is performed by a multi-axis robot.
  • the closure of the spout of the metallurgical vessel can be opened or closed by the multi-axis robot, possibly after a tool change.
  • the measuring device continuously detects the actual position of the spout during the method.
  • the meter is stopped before step c so that step c is performed in the stopped state.
  • the detected in step c actual position of the spout is fed to a control device, this calculates a deviation of a target position of the spout (10) from the actual position and determined using an algorithm a manipulated variable, whereby the Actual position of the multifunction robot loaded with the manipulated variable is positioned closer to the target position.
  • the measuring beam is as an uninterrupted, for example pulsed, or interrupted light beam, in particular in the region of Infrared, visible light or ultraviolet light formed.
  • the measuring beams of the first and the second transverse direction of the measuring grid are arranged in one plane, or if these have a small offset, if appropriate.
  • a measuring beam generation detection device is designed as a one-way light barrier, wherein the one-way light barrier comprises a transmitter and an opposite receiver.
  • a measuring beam generation detection device is designed as a reflex light barrier, and the reflex light barrier comprises a transmitter-receiver and an opposing reflector, wherein preferably a transmitter and a receiver are formed in a common housing as a transmitter-receiver ,
  • a measurement beam generation detection device includes a light source for generating a light band and an opposing line scan camera.
  • the transmitter is designed as an infrared diode, light-emitting diode or as a laser diode and the receiver is designed as a phototransistor.
  • a transmitter and a receiver are formed in a common housing.
  • a transmitter and a receiver are formed in a common housing.
  • several transmitters and receivers are housed in a common housing.
  • a measuring device 1 is shown with a non-contact measuring grid 5 for automatic position detection of a spout of a metallurgical vessel;
  • Fig. 1A shows an outline and
  • Fig. 1B shows a floor plan.
  • the location of the spout is understood to mean an at least two-dimensional location of the spout, for example the indication of the location at which the longitudinal axis of the spout is located.
  • the measuring device 1 is designed to be movable by means of the holder 4 of a multi-axis multifunction robot, so that the position along the longitudinal axis of the spout can be determined.
  • the measuring device 1 on a non-contact measuring grid 5, which discretely dissolves the position of the spout in two transverse directions.
  • the measuring grid 5 itself is formed by two rows of measuring beams 5, wherein a first row in a first transverse direction x and a second row in a second transverse directions y are arranged.
  • each measurement beam 5 is assigned a measurement beam generation detection device.
  • the measuring beam generation detection devices are designed as reflex light barriers, each measuring beam generation detection device having a transmitter-receiver 6 and an opposite reflector 7.
  • FIGS. 2A and 2B is a measuring device 1 with a likewise non-contact measuring curtain 8 for automatic position detection of a spout of a metallurgical vessel shown;
  • Fig. 2A shows an outline and
  • Fig. 2B shows a floor plan.
  • the measuring curtain 8 is different to the FIGS. 1A and 1B formed only by a series of measuring beams 5, which are arranged in a first transverse direction x.
  • the position of the spout with respect to a first transverse direction of the spout can be resolved in a detection step.
  • Fig. 3 the method steps in the automatic position detection of a spout 10 of a trained as a pan 9 metallurgical vessel by means of a measuring device 1 with a non-contact measuring grid are shown.
  • the meter 1 is positioned substantially vertically below the spout 10 so that the spout 10 neither touches the meter 1 nor cuts the metering grid;
  • the positioned measuring device 1 on the one hand has a vertical distance to the lower end of the projection 13 of the spout 10, on the other hand aligned the intersection of the diagonal of the measuring grid approximately with the longitudinal axis 14 of the projection 13 of the spout 10.
  • Each transverse direction x and y of the measuring device 1 is associated with a respective row 15, 16 of twelve measuring beam generation detection devices, wherein a single measuring beam generation detection device as a reflex photoelectric sensor with a transmitter-receiver 6 and an associated reflector 7 is formed.
  • Each transmitter-receiver 6 emits a trained as a light beam measuring beam 5, which - if the measuring beam is not interrupted - reflected by the opposite reflector 7 and thus received by the transmitter-receiver 6 again; In this first case, the transmitter-receiver 6 is assigned a digital measured value "1".
  • the measuring beam 5 is interrupted, the received light quantity drops below a threshold value, so that in this second case the transmitter-receiver 6 is assigned a digital measured value "0".
  • the position of the spout 10 is defined within the measuring grid 3, wherein the position of the spout 10 in the first transverse direction x within the fifth to tenth measuring beam and in the second transverse direction y within the fourth to tenth measuring beam can be specified. Since the measuring grid 3 as in Fig. 4 Equidistant with respect to the first and the second transverse direction x, y is formed, the position of the spout 10 with respect to the zero point N of the measuring grating 3 is known.
  • lattice constant G 20mm
  • the measuring device 1 In order to determine the position of the spout 10 at a plurality of positions, the measuring device 1 is moved to the measuring grid after step c in a different position, for example, a process path ⁇ vertically upward, and then the step c repeated (see. Fig. 3 this being represented by the trajectory 12b). In this case, it does not matter whether the method of the measuring device 1 is stopped during the position determination (step c), or whether the position determination takes place continuously during the movement.
  • a control deviation of a desired position from an actual position of the spout 10 is calculated and a control device, not shown, which is integrated in the controller of the multi-function robot, Determines a manipulated variable with the aid of an algorithm, whereby the actual position of the multifunction robot loaded with the manipulated variable is positioned closer to the target position.
  • Figs. 5A and 5B 1 shows a transverse direction x of the measuring device 1 associated with twelve measuring beam generation detection devices, wherein - as in Fig. 4 -
  • a single measuring beam generation detection device is designed as a reflex light barrier with a transmitter-receiver 6 and an associated reflector 7.
  • a first component of the position of the spout 10 is defined within the measuring curtain 8, wherein the position of the spout 10 in the first transverse direction x within the third to eighth measurement beam can be specified.
  • the measuring device is pivoted by 90 °, wherein the pivoted state in Fig. 5B is shown.
  • a second component of the position of the spout 10 is defined within the measuring curtain 8, wherein the position of the spout 10 in the second transverse direction x can be specified within the fourth to tenth measuring beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

Gebiet der TechnikField of engineering

Die vorliegende Erfindung betrifft ein Verfahren zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes, insbesondere eines Konverters, einer Pfanne oder eines Gießverteilers, mittels eines Messgeräts mit einem berührungslos arbeitenden Messgitter oder einem berührungslos arbeitenden Messvorhang.The present invention relates to a method for automatically detecting the position of a spout of a metallurgical vessel, in particular a converter, a pan or a Gießverteilers, by means of a measuring device with a non-contact measuring grid or a non-contact measuring curtain.

Stand der TechnikState of the art

Einem Fachmann auf dem Gebiet des Gießereiwesens bzw. der Metallurgie sind unterschiedliche Lösungen zur Lagererkennung einer Ausgusses eines metallurgischen Gefäßes bekannt:A specialist in the field of foundry or metallurgy, different solutions for bearing detection of a spout of a metallurgical vessel are known:

Nach einer Lösung werden dafür optische Stereokameras verwendet, wobei über die Lage einer Messlatte, die auf dem Ausguss platziert bzw. mit diesem verbunden ist, die Lage des Ausgusses bestimmt wird. Diese Lösung setzt voraus,

  • dass die Messlatte auf dem Ausguss exakt platziert wurde, sodass von der Lage der Messlatte auf die Lage des Ausgusses rückgeschlossen werden kann,
  • dass auf dem Ausguss ausreichend Platz vorhanden ist, um die Messlatte zu platzieren,
  • dass die Messlatte während des Betriebs sauber gehalten werden kann, und
  • dass bei der Lagebestimmung freie Sicht auf die Messlatte gegeben ist.
After a solution optical stereo cameras are used for this purpose, wherein the position of the spout is determined by the position of a bar, which is placed on the spout or connected to this. This solution requires
  • that the bar has been placed exactly on the spout so that the position of the spout can be deduced from the position of the spout,
  • that there is enough space on the spout to raise the bar,
  • that the bar can be kept clean during operation, and
  • that in the determination of the position is given a clear view of the bar.

Die WO 2009/141184 A1 zeigt die Verwendung einer Messplatte und einer Stereokamera zur Bestimmung eines Ausgusses in einem metallurgischen Gefäß.The WO 2009/141184 A1 shows the use of a measuring plate and a stereo camera for determining a spout in a metallurgical vessel.

Nach einer anderen Lösung wird der Ausguss von Laserstrahlen 3-dimensional abgetastet und daraus die Lage des Ausgusses bestimmt. Diese Lösung ist ungünstig,

  • da der Abtastvorgang im Allgemeinen sehr lange dauert,
  • da erfahrungsgemäß Laserstrahlen in Umgebungen mit hohem Staubanteil in der Atmosphäre sehr störanfällig sind,
  • da die bei der Abtastung anfallende Menge an Messdaten groß ist, und
  • da die Auswertung der 3D Messdaten aufwändig ist.
According to another solution, the spout of laser beams is scanned 3-dimensional and determines the location of the spout. This solution is unfavorable
  • since the scanning process generally takes a very long time,
  • experience has shown that laser beams in environments with a high dust content in the atmosphere are very prone to failure,
  • because the amount of measurement data obtained during the scan is large, and
  • because the evaluation of the 3D measurement data is expensive.

Aus der WO 01/38900 A1 und der DE 198 30 265 A1 ist die Verwendung eines Laserscanners zur Bestimmung eines Ausgusses in einem metallurgischen Gefäß.From the WO 01/38900 A1 and the DE 198 30 265 A1 is the use of a laser scanner to determine a spout in a metallurgical vessel.

Lichtgitter mit senkrecht aufeinander stehenden Messstrahlen sowie Lichtvorhänge mit nur einer Reihe von Messstrahlen zur Detektion von Objekten sind aus US 5 281 809 A , EP 0 978 735 A2 und EP 1 391 752 A2 bekannt. Dabei werden die Lichtgitter bzw. Lichtvorhänge als Sicherheitssysteme verwendet, die beim Eintritt eines Objekts z.B. eine Maschine ausschalten. Wie die Lichtgitter bzw. -vorhänge zur Lagebestimmung verwendet werden können, geht aus diesen Schriften nicht hervor.Light grids with measuring beams perpendicular to one another and light curtains with only one row of measuring beams for the detection of objects are out US 5 281 809 A . EP 0 978 735 A2 and EP 1 391 752 A2 known. The light grids or light curtains are used as safety systems that switch off an engine when an object enters, for example. How the light grids or curtains can be used for determining the position is not apparent from these writings.

Aus der DE 196 06 524 A1 ist ein Messgerät mit einem berührungslos arbeitenden Messgitter zur Bestimmung des Muskelvolumens an einem Bein oder Arm bekannt, wobei das Messgitter durch zwei Reihen von Messstrahlen gebildet wird, und eine erste Reihe in einer ersten Querrichtung und eine zweite Reihe in einer zweiten Querrichtung des Messgeräts angeordnet sind; und jedem Messstrahl eine Messstrahl-Erzeugungs-Detektionseinrichtung zur Erzeugung und Detektion des Messstrahls zugeordnet ist, die mit einem verfahrbaren Außenrahmen des Messgeräts verbunden ist. Wie mit dem Messgerät eine automatische Lageerkennung eines Ausgusses eines metallurgischen Gefäßes durchgeführt werden kann, geht aus der Schrift nicht hervor.From the DE 196 06 524 A1 a measuring device with a non-contact measuring grid for determining the muscle volume on a leg or arm is known, wherein the measuring grid is formed by two rows of measuring beams, and a first row in a first transverse direction and a second row are arranged in a second transverse direction of the measuring device ; and each measuring beam is associated with a measuring beam generation detection device for generating and detecting the measuring beam, which is connected to a movable outer frame of the measuring device. As with the measuring device, an automatic position detection of a spout of a metallurgical vessel can be performed, does not emerge from the Scriptures.

Die Aufgabe der Erfindung ist es, die Nachteile des Stands der Technik zu überwinden und ein Verfahren zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes darzustellen, mit dem die Lage des Ausgusses

  • rasch, d.h. innerhalb einen kurzen Zeit für die Messung und Auswertung,
  • mit möglichst einfachen Mitteln,
  • ohne eine aufwändige Auswertung, und
  • mit hoher Genauigkeit
bestimmt werden kann.The object of the invention is to overcome the disadvantages of the prior art and to provide a method for automatically detecting the position of a spout of a metallurgical vessel, with which the position of the spout
  • quickly, ie within a short time for the measurement and evaluation,
  • with the simplest possible means,
  • without a costly evaluation, and
  • with high accuracy
can be determined.

Zusammenfassung der ErfindungSummary of the invention

Diese Aufgabe wird durch das eingangs genannte Verfahren mit folgenden Verfahrensschritten gelöst:

  1. a) Positionieren des Messgeräts senkrecht unterhalb des Ausgusses, sodass der Ausguss weder das Messgerät berührt noch das Messgitter schneidet;
  2. b) Verfahren des Messgeräts senkrecht nach oben in eine erste Position;
  3. c) Berührungsloses Detektieren der IST-Lage des Ausgusses durch das Auswerten von Messdaten für das örtlich diskretisierte Messgitter des Messgeräts, wobei die Messdaten zumindest mehrere x-Messwerte, die einer ersten Querrichtung des Messgitters zugeordnet sind, und mehrere y-Messwerte, die einer zweiten Querrichtung des Messgitters zugeordnet sind, umfassen und ein Messwert genau einem Messstrahl des Messgitters zugeordnet ist, sodass mittels der x-Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer ersten Querrichtung des Ausgusses, und mittels der y-Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer zweiten Querrichtung des Ausgusses, die orthogonal zur ersten Querrichtung des Ausgusses steht, aufgelöst wird.
This object is achieved by the aforementioned method with the following method steps:
  1. a) Position the meter vertically below the spout so that the spout does not touch the meter or cut the metering grid;
  2. b) moving the meter vertically upwards to a first position;
  3. c) Contactless detection of the actual position of the spout by the evaluation of measured data for the locally discretized measuring grid of the measuring device, wherein the measured data at least a plurality of x-measured values, which are associated with a first transverse direction of the measuring grid, and a plurality of y-measured values, a second Are associated with the transverse direction of the measuring grid, and a measured value is assigned to exactly one measuring beam of the measuring grid, so that by means of the x-measured values the actual position of the spout at the first position in a first transverse direction of the spout, and by means of the y-measured values the actual position of the spout Location of the Spout at the first position in a second transverse direction of the spout, which is orthogonal to the first transverse direction of the spout is dissolved.

Zuerst wird das Messgerät unterhalb des Ausgusses des metallurgischen Gefäßes positioniert, wobei der Ausguss beispielsweise durch einen Schieber- oder einen Stopfenverschluss geschlossen bzw. geöffnet werden kann, sodass der Ausguss weder das Messgerät berührt noch das Messgitter im Inneren des Messgeräts durchdringt (Schritt a). Anschließend wird das Messgerät senkrecht nach oben in eine erste Position verfahren (Schritt b), vorzugsweise zumindest bis der Ausguss das Messgitter des Messgeräts zum ersten Mal durchdringt. Anschließend wird die IST-Lage des Ausgusses mittels des Messgitters berührungslos detektiert, wobei das Messgitter durch zumindest zwei, orthogonal aufeinander stehende, Reihen von Messstrahlen gebildet wird. Bei der Detektion der IST-Lage des Ausgusses werden Messdaten ausgewertet, wobei die Messdaten zumindest mehrere x-Messwerte und mehrere y-Messwerte umfassen, die x-Messwerte einer ersten Querrichtung des Messgitters und die y-Messwerte einer zweiten Querrichtung des Messgitters zugeordnet sind. Da jeder Messwert genau mit einem Messstrahl des Messgitters korrespondiert, kann mittels der x-Messwerte auf die IST-Lage des Ausgusses bei der ersten Position in einer ersten Querrichtung des Ausgusses und mittels der y-Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer zweiten Querrichtung des Ausgusses rückgeschlossen werden, wobei die erste Querrichtung des Ausgusses orthogonal zur zweiten Querrichtung des Ausgusses steht.First, the meter is positioned below the spout of the metallurgical vessel, wherein the spout can be closed or opened by, for example, a spool or plug closure so that the spout neither touches the meter nor penetrates the metering grid inside the meter (step a). Subsequently, the measuring device is moved vertically upwards into a first position (step b), preferably at least until the spout penetrates the measuring grid of the measuring device for the first time. Subsequently, the actual position of the spout is detected without contact by means of the measuring grid, wherein the measuring grid is formed by at least two, orthogonally successive, rows of measuring beams. In the detection of the actual position of the spout, measured data are evaluated, the measured data comprising at least a plurality of x-measured values and a plurality of y-measured values, the x-measured values of a first transverse direction of the measuring grid and the y-measured values of a second transverse direction of the measuring grid. Since each measured value corresponds exactly to a measuring beam of the measuring grid, the actual position of the spout at the first position can be determined by means of the x-measured values on the actual position of the spout at the first position in a first transverse direction of the spout and by means of the y-measured values be deduced in a second transverse direction of the spout, wherein the first transverse direction of the spout is orthogonal to the second transverse direction of the spout.

Die oben genannte Aufgabe wird ebenfalls durch das eingangs genannte Verfahren mit folgenden Verfahrensschritten gelöst:

  1. a) Positionieren des Messgeräts senkrecht unterhalb des Ausgusses, sodass der Ausguss weder das Messgerät berührt noch den Messvorhang schneidet;
  2. b) Verfahren des Messgeräts senkrecht nach oben in eine erste Position;
  3. c) Berührungslose Detektion einer ersten Komponente der IST-Lage des Ausgusses durch das Auswerten von Messdaten für den planaren, örtlich diskretisierten Messvorhang, wobei die Messdaten mehrere Messwerte umfassen, die einer ersten Querrichtung des Messvorhangs zugeordnet sind, und ein Messwert genau einem Messstrahl des Messvorhangs zugeordnet ist, sodass mittels der Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer ersten Querrichtung des Ausgusses aufgelöst wird;
  4. d) Verschwenken des Messgeräts in einer Normalebene zur Längsachse des Ausgusses um einen Winkel α, vorzugsweise um 90°;
  5. e) Berührungslose Detektion einer zweiten Komponente der IST-Lage des Ausgusses durch das Auswerten von Messdaten für den planaren, örtlich diskretisierten Messvorhang, wobei die Messdaten mehrere Messwerte umfassen, die der Querrichtung des Messvorhangs zugeordnet sind, und ein Messwert genau einem Messstrahl des Messvorhangs zugeordnet ist, sodass mittels der Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer zweiten Querrichtung des Ausgusses aufgelöst wird.
The above object is also achieved by the method mentioned above with the following method steps:
  1. a) Position the meter vertically below the spout so that the spout does not touch the meter or cut the meter curtain;
  2. b) moving the meter vertically upwards to a first position;
  3. c) Non-contact detection of a first component of the actual position of the spout by evaluating measured data for the planar, locally discretized measuring curtain, wherein the measured data comprises a plurality of measured values associated with a first transverse direction of the measuring curtain and a measured value exactly one measuring beam of the measuring curtain is assigned, so that by means of the measured values, the actual position of the spout at the first position in a first transverse direction of the spout is resolved;
  4. d) pivoting of the measuring device in a normal plane to the longitudinal axis of the spout by an angle α, preferably by 90 °;
  5. e) Non-contact detection of a second component of the actual position of the spout by evaluating measured data for the planar, locally discretized measuring curtain, the measured data comprising a plurality of measured values associated with the transverse direction of the measuring curtain, and a measured value associated with exactly one measuring beam of the measuring curtain is such that by means of the measured values, the actual position of the spout at the first position in a second transverse direction of the spout is resolved.

Im Unterschied zur erstgenannten Lösung wird bei dieser Lösung nicht ein zweidimensionales Messgitter sondern lediglich ein eindimensionaler Messvorhang verwendet, sodass bei einer Detektion lediglich die Lage des Ausgusses in einer Querrichtung bestimmt werden kann. Nach der ersten Detektion (Schritt c) wird das Messgerät in einer Normalebene zur Längsachse des Ausgusses um einen Winkel α, vorzugsweise um 90°, geschwenkt (Schritt d) und anschließend die Detektion nochmals wiederholt (Schritt e), sodass die Lage des Ausgusses in der ersten und der zweiten Querrichtung des Ausgusses vollständig bestimmt ist.In contrast to the first-mentioned solution, this solution does not use a two-dimensional measuring grid but only a one-dimensional measuring curtain, so that only the position of the spout in a transverse direction can be determined during a detection. After the first detection (step c), the measuring device is pivoted in a normal plane to the longitudinal axis of the spout by an angle α, preferably by 90 ° (step d) and then the detection is repeated again (step e), so that the position of the spout in the first and the second transverse direction of the spout is completely determined.

Nach einer zweckmäßigen Ausführungsform werden folgende Verfahrensschritte durchgeführt:

  1. i) Positionieren des Messgeräts im Wesentlichen senkrecht unterhalb des Ausgusses, sodass der Ausguss weder das Messgerät berührt noch den Messvorhang schneidet;
  2. ii) Verfahren des Messgeräts im Wesentlichen senkrecht nach oben in eine erste Position;
  3. iii) Berührungslose Detektion einer ersten Komponente der IST-Lage des Ausgusses durch das Auswerten von Messdaten für den planaren, örtlich diskretisierten Messvorhang, wobei die Messdaten mehrere Messwerte umfassen, die einer Querrichtung des Messvorhangs zugeordnet sind, und ein Messwert genau einem Messstrahl des Messvorhangs zugeordnet ist, sodass mittels der Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer ersten Querrichtung des Ausgusses aufgelöst wird;
  4. iv) Verfahren des Messgeräts im Wesentlichen senkrecht nach unten, sodass der Ausguss weder das Messgerät berührt noch den Messvorhang schneidet;
  5. v) Verschwenken des Messgeräts in einer Normalebene zur Längsachse des Ausgusses um einen Winkel α, vorzugsweise um 90°;
  6. vi) Verfahren des Messgeräts im Wesentlichen senkrecht nach oben in die erste Position;
  7. vii) Berührungslose Detektion einer zweiten Komponente der IST-Lage des Ausgusses durch das Auswerten von Messdaten für den planaren, örtlich diskretisierten Messvorhang, wobei die Messdaten mehrere Messwerte umfassen, die der Querrichtung des Messvorhangs zugeordnet sind, und ein Messwert genau einem Messstrahl des Messvorhangs zugeordnet ist, sodass mittels der Messwerte die IST-Lage des Ausgusses bei der ersten Position in einer zweiten Querrichtung des Ausgusses aufgelöst wird.
According to an expedient embodiment, the following method steps are carried out:
  1. i) positioning the meter substantially vertically below the spout so that the spout neither touches the meter nor cuts the metering curtain;
  2. ii) moving the measuring instrument substantially vertically upwards to a first position;
  3. iii) Non-contact detection of a first component of the actual position of the spout by the evaluation of measured data for the planar, locally discretized measuring curtain, wherein the measured data comprises a plurality of measured values, which are associated with a transverse direction of the measuring curtain, and a measured value assigned to exactly one measuring beam of the measuring curtain is such that by means of the measured values, the actual position of the spout at the first position in a first transverse direction of the spout is resolved;
  4. (iv) moving the instrument substantially vertically downwards so that the spout neither touches the instrument nor cuts the measuring curtain;
  5. v) pivoting of the measuring device in a normal plane to the longitudinal axis of the spout by an angle α, preferably by 90 °;
  6. vi) moving the measuring device substantially vertically upwards to the first position;
  7. vii) Non-contact detection of a second component of the actual position of the spout by the evaluation of measured data for the planar, locally discretized measuring curtain, wherein the measured data comprises a plurality of measured values, which are associated with the transverse direction of the measuring curtain, and a measured value assigned to exactly one measuring beam of the measuring curtain is such that by means of the measured values, the actual position of the spout at the first position in a second transverse direction of the spout is resolved.

Mittels der letztgenannten Ausführungsform ist das Verschwenken des Messgeräts besonders einfach möglich.By means of the latter embodiment, the pivoting of the measuring device is particularly easy.

Nach einer vorteilhaften Ausführungsform verfährt das Messgerät nach dem Schritt c um einen Verfahrweg Δ in eine zweite Position senkrecht nach oben und anschließend wird wieder der Schritt c durchgeführt, wobei die Lage des Ausgusses an der zweiten Position detektiert wird. Führt man die Schritte nach dieser Ausführungsform mehrmals hintereinander aus, wird die Lage des Ausgusses diskret oder kontinuierlich über den Verfahrweg des Messgeräts detektiert.According to an advantageous embodiment, the measuring device moves after the step c by a travel distance Δ in a second position vertically upwards and Subsequently, the step c is performed again, wherein the position of the spout is detected at the second position. If the steps according to this embodiment are carried out several times in succession, the position of the spout is detected discretely or continuously over the travel path of the measuring device.

Nach einer vorteilhaften Ausführungsform wird das Positionieren und Verfahren des Messgerätes von einem Mehrachsen-Roboter durchgeführt. Nach der erfolgten Detektion der Lage des Ausgusses, kann - gegebenenfalls nach einem Werkzeugwechsel - der Verschluss des Ausgusses des metallurgischen Gefäßes vom Mehrachsen-Roboter geöffnet oder geschlossen werden.According to an advantageous embodiment, the positioning and method of the measuring device is performed by a multi-axis robot. After the detection of the position of the spout, the closure of the spout of the metallurgical vessel can be opened or closed by the multi-axis robot, possibly after a tool change.

Nach einer weiteren vorteilhaften Ausführungsform, detektiert das Messgerät während des Verfahrens kontinuierlich die IST-Lage des Ausgusses.According to a further advantageous embodiment, the measuring device continuously detects the actual position of the spout during the method.

Alternativ dazu wird das Messgerät vor Schritt c angehalten, sodass Schritt c im angehaltenen Zustand durchgeführt wird.Alternatively, the meter is stopped before step c so that step c is performed in the stopped state.

Nach einer weiteren vorteilhaften Ausführungsform, wird die in Schritt c detektierte IST-Lage des Ausgusses einer Regeleinrichtung zugeführt, diese errechnet eine Regelabweichung einer SOLL-Lage des Ausgusses (10) von der IST-Lage und ermittelt unter Zuhilfenahme eines Algorithmus eine Stellgröße, wodurch die IST-Lage des mit der Stellgröße beaufschlagten Multifunktions-Roboters näher an der SOLL-Lage positioniert wird. Mittels dieser Ausführungsform ist gewährleistet, dass das Messgerät den Konturen des Ausgusses folgt, sodass einerseits auch komplizierte Geometrien des Ausgusses detektierbar sind und andererseits eine Kollision des Ausgusses mit dem Messgerät zuverlässig vermieden wird.According to a further advantageous embodiment, the detected in step c actual position of the spout is fed to a control device, this calculates a deviation of a target position of the spout (10) from the actual position and determined using an algorithm a manipulated variable, whereby the Actual position of the multifunction robot loaded with the manipulated variable is positioned closer to the target position. By means of this embodiment it is ensured that the measuring device follows the contours of the spout, so that on the one hand complicated geometries of the spout are detectable and on the other hand a collision of the spout with the measuring device is reliably avoided.

Nach einer zweckmäßigen Ausführungsform ist der Messstrahl als ein ununterbrochener, beispielsweise gepulster, oder unterbrochener Lichtstrahl, insbesondere im Bereich des Infrarots, des sichtbaren Lichts oder des ultravioletten Lichts, ausgebildet.According to an expedient embodiment, the measuring beam is as an uninterrupted, for example pulsed, or interrupted light beam, in particular in the region of Infrared, visible light or ultraviolet light formed.

Eine möglichst unmittelbare Umsetzung des erstgenannten Verfahrens ist möglich, wenn bei einem Messgerät mit einem berührungslos arbeitenden Messgitter zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes, insbesondere eines Konverters, einer Pfanne oder eines Gießverteilers

  • das Messgerät mittels eines Halters von einem mehrachsigen Multifunktions-Roboter verfahrbar ausgebildet ist und ein örtlich diskretisiertes Messgitter aufweist;
  • das Messgitter durch zwei Reihen von Messstrahlen gebildet wird, wobei eine erste Reihe in einer ersten Querrichtung und eine zweite Reihe in einer zweiten Querrichtung des Messgeräts angeordnet sind; und
  • jedem Messstrahl eine Messstrahl-Erzeugungs-Detektionseinrichtung zur Erzeugung und Detektion des Messstrahls zugeordnet ist, die mit einem verfahrbaren Außenrahmen des Messgeräts verbunden ist.
Implementation of the former method as directly as possible is possible if, in the case of a measuring device with a non-contact measuring grid for the automatic position detection of a spout of a metallurgical vessel, in particular a converter, a ladle or a casting distributor
  • the measuring device is movable by means of a holder of a multi-axis multi-function robot and has a locally discretized measuring grid;
  • the measuring grid is formed by two rows of measuring beams, a first row being arranged in a first transverse direction and a second row being arranged in a second transverse direction of the measuring instrument; and
  • each measuring beam is associated with a measuring beam generation detection device for generating and detecting the measuring beam, which is connected to a movable outer frame of the measuring device.

Hierbei spielt es keine Rolle, ob die Messstrahlen der ersten und der zweiten Querrichtung des Messgitters in einer Ebene angeordnet sind, oder ob diese gegebenenfalls einen geringen Versatz aufweisen.In this case, it does not matter whether the measuring beams of the first and the second transverse direction of the measuring grid are arranged in one plane, or if these have a small offset, if appropriate.

Eine möglichst unmittelbare Umsetzung des zweitgenannten Verfahrens ist möglich, wenn bei einem Messgerät mit einem berührungslos arbeitenden Messvorhang zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes, insbesondere eines Konverters, einer Pfanne oder eines Gießverteilers

  • das Messgerät mittels eines Halters von einem mehrachsigen Multifunktions-Roboter verfahrbar ausgebildet ist und einen örtlich diskretisierten, planaren Messvorhang aufweist;
  • der Messvorhang durch eine Reihe von Messstrahlen gebildet wird, wobei die Reihe in einer ersten Querrichtung des Messgeräts angeordnet ist; und
  • jedem Messstrahl eine Messstrahl-Erzeugungs-Detektionseinrichtung zur Erzeugung und Detektion des Messstrahls zugeordnet ist, die mit einem verfahrbaren Außenrahmen des Messgeräts verbunden ist.
The most direct implementation of the second-mentioned method is possible if in a measuring device with a non-contact measuring curtain for automatic position detection of a spout of a metallurgical vessel, in particular a converter, a pan or a Gießverteilers
  • the measuring device is movable by means of a holder of a multi-axis multi-function robot and has a locally discretized, planar measuring curtain;
  • the measuring curtain is formed by a series of measuring beams, the row being arranged in a first transverse direction of the measuring device; and
  • each measuring beam is associated with a measuring beam generation detection device for generating and detecting the measuring beam, which is connected to a movable outer frame of the measuring device.

Nach einer einfachen Ausführungsform ist eine Messstrahl-Erzeugungs-Detektionseinrichtung als eine Einweg-Lichtschranke ausgebildet, wobei die Einweg-Lichtschranke einen Sender und einen gegenüberliegenden Empfänger umfasst.According to a simple embodiment, a measuring beam generation detection device is designed as a one-way light barrier, wherein the one-way light barrier comprises a transmitter and an opposite receiver.

Nach einer weiteren Ausführungsform ist eine Messstrahl-Erzeugungs-Detektionseinrichtung als eine Reflex-Lichtschranke ausgebildet, und umfasst die Reflex-Lichtschranke einen Sender-Empfänger und einen gegenüberliegenden Reflektor, wobei vorzugsweise ein Sender und ein Empfänger in einem gemeinsamen Gehäuse als Sender-Empfänger ausgebildet sind.According to a further embodiment, a measuring beam generation detection device is designed as a reflex light barrier, and the reflex light barrier comprises a transmitter-receiver and an opposing reflector, wherein preferably a transmitter and a receiver are formed in a common housing as a transmitter-receiver ,

Wiederum nach einer weiteren Ausführungsform umfasst eine Messstrahl-Erzeugungs-Detektionseinrichtung eine Lichtquelle zur Erzeugung eines Lichtbands und eine gegenüberliegende Zeilenkamera.In yet another embodiment, a measurement beam generation detection device includes a light source for generating a light band and an opposing line scan camera.

Nach einer zweckmäßigen Ausführungsform ist der Sender als Infrarotdiode, Leuchtdiode oder als Laserdiode ausgebildet und der Empfänger als Phototransistor ausgebildet.According to an expedient embodiment, the transmitter is designed as an infrared diode, light-emitting diode or as a laser diode and the receiver is designed as a phototransistor.

Bei einem Sender-Empfänger sind ein Sender und ein Empfänger in einem gemeinsamen Gehäuse ausgebildet. Natürlich ist es auch möglich, dass mehrere Sender und Empfänger in einem gemeinsamen Gehäuse untergebracht sind.In a transceiver, a transmitter and a receiver are formed in a common housing. Of course, it is also possible that several transmitters and receivers are housed in a common housing.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei auf die folgenden Figuren Bezug genommen wird, die Folgendes zeigen:

  • Fig 1 (Fig 1A und 1B) eine Darstellung eines Messgerätes mit einem Messgitter in zwei Rissen,
  • Fig 2 (Fig 2A und 2B) eine Darstellung eines Messgerätes mit einem Messvorhang in zwei Rissen,
  • Fig 3 eine Darstellung der Verfahrensschritte bei der Detektion der Lage eines Ausgusses mittels eines Messgeräts mit einem Messgitter,
  • Fig 4 eine Darstellung eines Messgitters, das von einem Ausguss geschnitten wird, und
  • Fig 5 (Fig 5A und 5B) zwei Darstellungen eines Messvorhangs, das von einem Ausguss geschnitten wird.
Further advantages and features of the present invention will become apparent from the following description of non-limiting embodiments, reference being made to the following figures, which show the following:
  • FIG. 1 (FIGS. 1A and 1B ) a representation of a measuring device with a measuring grid in two cracks,
  • Fig. 2 (Figs. 2A and 2B ) a representation of a measuring device with a measuring curtain in two cracks,
  • Fig. 3 a representation of the method steps in the detection of the position of a spout by means of a measuring device with a measuring grid,
  • Fig. 4 a representation of a measuring grid, which is cut from a spout, and
  • Fig. 5 (Figs. 5A and 5B ) two representations of a measuring curtain cut from a spout.

Beschreibung der AusführungsformenDescription of the embodiments

In den Figuren 1A und 1B ist ein Messgerät 1 mit einem berührungslos arbeitenden Messgitter 5 zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes dargestellt; Fig 1A zeigt einen Aufriss und Fig 1B zeigt einen Grundriss. Unter der Lage des Ausgusses versteht man eine zumindest zweidimensionale Ortsangabe des Ausgusses, beispielsweise die Angabe des Ortes an dem sich die Längsachse des Ausgusses befindet. Das Messgerät 1 ist mittels des Halters 4 von einem mehrachsigen Multifunktions-Roboter verfahrbar ausgebildet, sodass die Lage entlang der Längsachse des Ausgusses ermittelt werden kann. Hierzu weist das Messgerät 1 ein berührungslos arbeitendes Messgitter 5 auf, das die Lage des Ausgusses in zwei Querrichtungen diskret auflöst. Das Messgitter 5 selbst wird durch zwei Reihen von Messstrahlen 5 gebildet, wobei eine erste Reihe in einer ersten Querrichtung x und eine zweite Reihe in einer zweiten Querrichtungen y angeordnet sind. Zur automatischen Lageerkennung des Ausgusses ist jedem Messstrahl 5 eine Messstrahl-Erzeugung-Detektionseinrichtung zugeordnet. Im konkreten Fall sind die Messstrahl-Erzeugung-Detektionseinrichtungen als Reflex-Lichtschranken ausgebildet, wobei jede Messstrahl-Erzeugung-Detektionseinrichtung einen Sender-Empfänger 6 und einen gegenüberliegenden Reflektor 7 aufweist. Mittels des Messgitters 3 kann die Lage des Ausgusses bezüglich der ersten und der zweiten Querrichtung des Ausgusses aufgelöst werden.In the Figures 1A and 1B a measuring device 1 is shown with a non-contact measuring grid 5 for automatic position detection of a spout of a metallurgical vessel; Fig. 1A shows an outline and Fig. 1B shows a floor plan. The location of the spout is understood to mean an at least two-dimensional location of the spout, for example the indication of the location at which the longitudinal axis of the spout is located. The measuring device 1 is designed to be movable by means of the holder 4 of a multi-axis multifunction robot, so that the position along the longitudinal axis of the spout can be determined. For this purpose, the measuring device 1 on a non-contact measuring grid 5, which discretely dissolves the position of the spout in two transverse directions. The measuring grid 5 itself is formed by two rows of measuring beams 5, wherein a first row in a first transverse direction x and a second row in a second transverse directions y are arranged. For automatic position detection of the spout, each measurement beam 5 is assigned a measurement beam generation detection device. In the specific case, the measuring beam generation detection devices are designed as reflex light barriers, each measuring beam generation detection device having a transmitter-receiver 6 and an opposite reflector 7. By means of the measuring grid 3, the position of the spout with respect first and the second transverse direction of the spout to be resolved.

In den Figuren 2A und 2B ist ein Messgerät 1 mit einem ebenfalls berührungslos arbeitenden Messvorhang 8 zur automatischen Lageerkennung eines Ausgusses eines metallurgischen Gefäßes dargestellt; Fig 2A zeigt einen Aufriss und Fig 2B zeigt einen Grundriss. Der Messvorhang 8 wird im Unterscheid zu den Fig 1A und 1B nur durch eine Reihe von Messstrahlen 5 gebildet, die in einer ersten Querrichtung x angeordnet sind. Mittels des Messvorhangs 8 kann bei einem Detektionsschritt die Lage des Ausgusses bezüglich einer ersten Querrichtung des Ausgusses aufgelöst werden.In the FIGS. 2A and 2B is a measuring device 1 with a likewise non-contact measuring curtain 8 for automatic position detection of a spout of a metallurgical vessel shown; Fig. 2A shows an outline and Fig. 2B shows a floor plan. The measuring curtain 8 is different to the FIGS. 1A and 1B formed only by a series of measuring beams 5, which are arranged in a first transverse direction x. By means of the measuring curtain 8, the position of the spout with respect to a first transverse direction of the spout can be resolved in a detection step.

In Fig 3 sind die Verfahrensschritte bei der automatischen Lageerkennung eines Ausgusses 10 eines als Pfanne 9 ausgebildeten metallurgischen Gefäßes mittels eines Messgeräts 1 mit einem berührungslos arbeitenden Messgitter dargestellt. Zuerst wird das Messgerät 1 im Wesentlichen senkrecht unterhalb des Ausgusses 10 positioniert, sodass der Ausguss 10 das Messgerät 1 weder berührt noch das Messgitter schneidet; konkret weist das positionierte Messgerät 1 einerseits einen vertikalen Abstand zum unteren Ende des Ansatzes 13 des Ausgusses 10 auf, andererseits fluchtet der Schnittpunkt der Diagonale des Messgitters in etwa mit der Längsachse 14 des Ansatzes 13 des Ausgusses 10. Beim Positionieren wird das Messgerät 1 mittels eines nicht dargestellten Multifunktions-Roboters entlang der Trajektorie 12a verfahren (Schritt a). Anschließend verfährt das Messgerät 1 im Wesentlichen entlang der Trajektorie 12b senkrecht nach oben Z zumindest bis der Ansatz 13 das Messgitter durchdringt (Schritt b).In Fig. 3 the method steps in the automatic position detection of a spout 10 of a trained as a pan 9 metallurgical vessel by means of a measuring device 1 with a non-contact measuring grid are shown. First, the meter 1 is positioned substantially vertically below the spout 10 so that the spout 10 neither touches the meter 1 nor cuts the metering grid; Concretely, the positioned measuring device 1 on the one hand has a vertical distance to the lower end of the projection 13 of the spout 10, on the other hand aligned the intersection of the diagonal of the measuring grid approximately with the longitudinal axis 14 of the projection 13 of the spout 10. When positioning the measuring device 1 by means of a not shown multifunction robot along the trajectory 12 a method (step a). Subsequently, the measuring device 1 moves substantially along the trajectory 12b vertically upwards Z at least until the projection 13 penetrates the measuring grid (step b).

Die Verfahrensschritte bei der berührungslosen Detektion der Lage des Ausgusses werden in Fig 4 näher dargestellt: Jeder Querrichtung x und y des Messgeräts 1 ist jeweils eine Reihe 15,16 von zwölf Messstrahl-Erzeugungs-Detektionseinrichtungen zugeordnet, wobei eine einzelne Messstrahl-Erzeugungs-Detektionseinrichtung als eine Reflex-Lichtschranke mit einem Sender-Empfänger 6 und einem zugeordneten Reflektor 7 ausgebildet ist. Jeder Sender-Empfänger 6 sendet einen als Lichtstrahl ausgebildeten Messstrahl 5 aus, der - falls der Messstrahl nicht unterbrochen wird - vom gegenüberliegenden Reflektor 7 reflektiert und somit vom Sender-Empfänger 6 wieder empfangen wird; in diesem ersten Fall ist dem Sender-Empfänger 6 ein digitaler Messwert "1" zugeordnet. Wird der Messstrahl 5 unterbrochen, fällt die empfangene Lichtmenge unter einem Schwellwert ab, sodass in diesem zweiten Fall dem Sender-Empfänger 6 ein digitaler Messwert "0" zugeordnet ist. Im konkreten Fall werden vier Messstrahlen 5, die den sechsten bis neunten Sender-Empfänger 6 aus der ersten Reihe 15 von Messstrahl-Erzeugungs-Detektionseinrichtung, sowie fünf Messstrahlen 5, die den fünften bis neunten Sender-Empfänger 6 aus der zweiten Reihe 16 von Messstrahl-Erzeugungs-Detektionseinrichtung zugeordnet sind, unterbrochen, sodass die x-Messwerte und die y-Messwerte jeweils als Vektoren Messwerte x = 1 1 1 1 1 0 0 0 0 1 1 1

Figure imgb0001
Messwerte y = 1 1 1 1 0 0 0 0 0 1 1 1
Figure imgb0002
angeschrieben werden können. Somit ist aber die Lage des Ausgusses 10 innerhalb des Messgitters 3 definiert, wobei die Lage des Ausgusses 10 in der ersten Querrichtung x innerhalb des fünften bis zehnten Messstrahls und in der zweiten Querrichtung y innerhalb des vierten bis zehnten Messstrahls angegeben werden kann. Da das Messgitter 3 so wie in Fig 4 äquidistant bzgl. der ersten und der zweiten Querrichtung x,y ausgebildet ist, ist die Lage des Ausgusses 10 bzgl. des Nullpunkts N des Messgitters 3 bekannt. Konkret beträgt der Abstand zwischen zwei benachbarten Messstrahlen 5, nachfolgend als Gitterkonstante G bezeichnet, G=20mm, sodass die Lage der Längsachse des Ausgusses 10 als Vektor x y = G 5 + 10 2 4 + 10 2 = 20 7.5 7 = 150 140 mm
Figure imgb0003
angegeben werden kann. Da aber über die Stellung des Multifunktions-Roboters auch die Position und Ausrichtung des Halters 4 des Messgeräts bekannt ist, ist somit aber auch die Lage des Ausgusses 10 vollständig bestimmt.The process steps in the contactless detection of the position of the spout are in Fig. 4 Each transverse direction x and y of the measuring device 1 is associated with a respective row 15, 16 of twelve measuring beam generation detection devices, wherein a single measuring beam generation detection device as a reflex photoelectric sensor with a transmitter-receiver 6 and an associated reflector 7 is formed. Each transmitter-receiver 6 emits a trained as a light beam measuring beam 5, which - if the measuring beam is not interrupted - reflected by the opposite reflector 7 and thus received by the transmitter-receiver 6 again; In this first case, the transmitter-receiver 6 is assigned a digital measured value "1". If the measuring beam 5 is interrupted, the received light quantity drops below a threshold value, so that in this second case the transmitter-receiver 6 is assigned a digital measured value "0". In the specific case, four measuring beams 5, the sixth to ninth transceiver 6 from the first row 15 of measuring beam generation detection means, and five measuring beams 5, the fifth to ninth transceiver 6 from the second row 16 of measuring beam Generation means are interrupted, so that the x-measured values and the y-measured values are each as vectors readings x = 1 1 1 1 1 0 0 0 0 1 1 1
Figure imgb0001
readings y = 1 1 1 1 0 0 0 0 0 1 1 1
Figure imgb0002
can be written. Thus, however, the position of the spout 10 is defined within the measuring grid 3, wherein the position of the spout 10 in the first transverse direction x within the fifth to tenth measuring beam and in the second transverse direction y within the fourth to tenth measuring beam can be specified. Since the measuring grid 3 as in Fig. 4 Equidistant with respect to the first and the second transverse direction x, y is formed, the position of the spout 10 with respect to the zero point N of the measuring grating 3 is known. Specifically, the distance between two adjacent measuring beams 5, hereinafter referred to as lattice constant G, G = 20mm, so that the position of the longitudinal axis of the spout 10 as a vector x y = G 5 + 10 2 4 + 10 2 = 20 7.5 7 = 150 140 mm
Figure imgb0003
can be specified. However, since the position and orientation of the holder 4 of the measuring device is also known on the position of the multi-function robot, the position of the spout 10 is thus completely determined.

Um die Lage des Ausgusses 10 bei mehreren Positionen zu bestimmen, wird das Messgerät 1 mit dem Messgitter nach Schritt c in eine andere Position, z.B. um einen Verfahrenweg Δ senkrecht nach oben, verfahren und anschließend der Schritt c wiederholt (vgl. Fig 3, wobei dies durch die Trajektorie 12b dargestellt wird). Hierbei spielt es keine Rolle, ob das Verfahren des Messgeräts 1 bei der Lagebestimmung (Schritt c) angehalten wird, oder ob die Lagebestimmung kontinuierlich während der Verfahrbewegung erfolgt.In order to determine the position of the spout 10 at a plurality of positions, the measuring device 1 is moved to the measuring grid after step c in a different position, for example, a process path Δ vertically upward, and then the step c repeated (see. Fig. 3 this being represented by the trajectory 12b). In this case, it does not matter whether the method of the measuring device 1 is stopped during the position determination (step c), or whether the position determination takes place continuously during the movement.

Wird bei der Lagebestimmung eine signifikante Abweichung des Ausgusses 10 vom Zentrum des Messgitters 3 festgestellt, wird eine Regelabweichung einer SOLL-Lage von einer IST-Lage des Ausgusses 10 errechnet und eine nicht dargestellte Regeleinrichtung, die in den Regler des Multifunktions-Roboters integriert ist, ermittelt unter Zuhilfenahme eines Algorithmus eine Stellgröße, wodurch die IST-Lage des mit der Stellgröße beaufschlagten Multifunktions-Roboters näher an der SOLL-Lage positioniert wird.If a significant deviation of the spout 10 from the center of the measuring grid 3 is determined during the position determination, a control deviation of a desired position from an actual position of the spout 10 is calculated and a control device, not shown, which is integrated in the controller of the multi-function robot, Determines a manipulated variable with the aid of an algorithm, whereby the actual position of the multifunction robot loaded with the manipulated variable is positioned closer to the target position.

Die Verfahrensschritte bei der berührungslosen Detektion der Lage des Ausgusses 10 mittels eines Messgeräts 1 mit einem Messvorhang 8 werden in den Fig 5A und 5B näher dargestellt: Einer Querrichtung x des Messgeräts 1 sind zwölf Messstrahl-Erzeugungs-Detektionseinrichtungen zugeordnet, wobei - so wie in Fig 4 - eine einzelne Messstrahl-Erzeugungs-Detektionseinrichtung als eine Reflex-Lichtschranke mit einem Sender-Empfänger 6 und einem zugeordneten Reflektor 7 ausgebildet ist. In Fig 5A werden bei der ersten Messung vier Messstrahlen 5, die vierten bis siebten Sender-Empfänger 6 von Messstrahl-Erzeugungs-Detektionseinrichtung, vom Ausguss 10 unterbrochen, sodass die Messwerte als ein Vektor Messwerte = 1 1 1 0 0 0 0 1 1 1 1 1

Figure imgb0004
angeschrieben werden können. Somit ist aber eine erste Komponente der Lage des Ausgusses 10 innerhalb des Messvorhangs 8 definiert, wobei die Lage des Ausgusses 10 in der ersten Querrichtung x innerhalb des dritten bis achten Messstrahls angegeben werden kann.The process steps in the non-contact detection of the position of the spout 10 by means of a measuring device 1 with a measuring curtain 8 are in the Figs. 5A and 5B 1 shows a transverse direction x of the measuring device 1 associated with twelve measuring beam generation detection devices, wherein - as in Fig. 4 - A single measuring beam generation detection device is designed as a reflex light barrier with a transmitter-receiver 6 and an associated reflector 7. In Fig. 5A For example, in the first measurement, four measurement beams 5, the fourth to seventh transmitter-receivers 6 of measurement beam generation detection means, are interrupted by the spout 10, so that the measurement values are considered as a vector readings = 1 1 1 0 0 0 0 1 1 1 1 1
Figure imgb0004
can be written. Thus, however, a first component of the position of the spout 10 is defined within the measuring curtain 8, wherein the position of the spout 10 in the first transverse direction x within the third to eighth measurement beam can be specified.

Anschließend wird das Messgerät um 90° verschwenkt, wobei der verschwenkte Zustand in Fig 5B dargestellt ist.Subsequently, the measuring device is pivoted by 90 °, wherein the pivoted state in Fig. 5B is shown.

Die Messung wird sodann wiederholt, wobei die Messwerte wiederum als ein Vektor Messwerte = 1 1 1 1 0 0 0 0 0 1 1 1

Figure imgb0005
angeschrieben werden können. Somit ist aber auch eine zweite Komponente der Lage des Ausgusses 10 innerhalb des Messvorhangs 8 definiert, wobei die Lage des Ausgusses 10 in der zweiten Querrichtung x innerhalb des vierten bis zehnten Messstrahls angegeben werden kann.The measurement is then repeated, again with the measurements as a vector readings = 1 1 1 1 0 0 0 0 0 1 1 1
Figure imgb0005
can be written. Thus, however, a second component of the position of the spout 10 is defined within the measuring curtain 8, wherein the position of the spout 10 in the second transverse direction x can be specified within the fourth to tenth measuring beam.

Da der Messvorhang 8 in Fig 5A und 5B äquidistant bzgl. der ersten Querrichtung x ausgebildet ist, ist die Lage des Ausgusses 10 bzgl. des Nullpunkts N des Messvorhangs 8 bekannt. Konkret beträgt der Abstand zwischen zwei benachbarten Messstrahlen 5, nachfolgend wieder als Gitterkonstante G bezeichnet, G=20mm, sodass die Lage der Längsachse des Ausgusses 10 als Vektor x y = G 3 + 8 2 4 + 10 2 = 20 5.5 7 = 110 140 mm

Figure imgb0006
angegeben werden kann. Da aber über die Stellung des Multifunktions-Roboters auch die Position und Ausrichtung des Halters 4 des Messgeräts bekannt ist, ist somit aber auch die Lage des Ausgusses 10 vollständig bestimmt. Liste der Bezugszeichen 1 Messgerät 2 Außenrahmen 3 Messgitter 4 Halter 5 Messstrahl 6 Sender-Empfänger 7 Reflektor 8 Messvorhang 9 Pfanne 10 Ausguss 12a, 12b Trajektorie Messgerät 13 Ansatz 14 Längsachse 15 erste Reihe 16 zweite Reihe α Winkel x erste Querrichtung des Messgeräts y zweite Querrichtung des Messgeräts x erste Querrichtung des Ausgusses Y zweite Querrichtung des Ausgusses Z Längsrichtung des Ausgusses N Nullpunkt Since the measuring curtain 8 in Figs. 5A and 5B Equidistant with respect to the first transverse direction x is formed, the position of the spout 10 with respect to the zero point N of the measuring curtain 8 is known. Specifically, the distance between two adjacent measuring beams 5, hereinafter again referred to as lattice constant G, G = 20mm, so that the position of the longitudinal axis of the spout 10 as a vector x y = G 3 + 8th 2 4 + 10 2 = 20 5.5 7 = 110 140 mm
Figure imgb0006
can be specified. However, since the position and orientation of the holder 4 of the measuring device is also known on the position of the multi-function robot, the position of the spout 10 is thus completely determined. List of reference numbers 1 gauge 2 outer frame 3 measuring grid 4 holder 5 measuring beam 6 Transmitter-receiver 7 reflector 8th measuring curtain 9 pan 10 spout 12a, 12b Trajectory measuring device 13 approach 14 longitudinal axis 15 first row 16 second row α angle x first transverse direction of the measuring device y second transverse direction of the measuring device x first transverse direction of the spout Y second transverse direction of the spout Z Longitudinal direction of the spout N zero

Claims (7)

  1. Method for automatically detecting the position of a spout (10) of a metallurgical container, in particular a converter, a pan (9) or a tundish, by means of a measuring device (1) with a contactlessly operating measuring grid (3), having the following method steps of:
    a) positioning (12a) the measuring device (1) vertically beneath the spout (10), with the result that the spout (10) neither touches the measuring device (1) nor intersects the measuring grid (3);
    b) moving (12b) the measuring device (1) substantially vertically upwards (Z) into a first position;
    c) contactlessly detecting the actual position of the spout (10) by evaluating measurement data for the locally discretized measuring grid (3) of the measuring device (1), the measurement data comprising at least a plurality of x measured values, which are assigned to a first transverse direction (x) of the measuring grid, and a plurality of y measured values, which are assigned to a second transverse direction (y) of the measuring grid, and one measured value being assigned to precisely one measuring beam (5) of the measuring grid (3), with the result that the actual position of the spout (10) in the first position in a first transverse direction (X) of the spout (10) is resolved using the x measured values, and the actual position of the spout (10) in the first position in a second transverse direction (Y) of the spout (10), which is orthogonal to the first transverse direction (X) of the spout (10), is resolved using the y measured values.
  2. Method for automatically detecting the position of a spout (10) of a metallurgical container, in particular a converter, a pan (9) or a tundish, by means of a measuring device (1) with a contactlessly operating measuring curtain (8), having the following method steps of:
    a) positioning (12a) the measuring device (1) vertically beneath the spout (10), with the result that the spout (10) neither touches the measuring device (1) nor intersects the measuring curtain (8);
    b) moving (12b) the measuring device (1) vertically upwards (Z) into a first position;
    c) contactlessly detecting a first component of the actual position of the spout (10) by evaluating measurement data for the planar, locally discretized measuring curtain (8), the measurement data comprising a plurality of measured values, which are assigned to a first transverse direction (x) of the measuring curtain (8), and one measured value being assigned to precisely one measuring beam (5) of the measuring curtain (8), with the result that the actual position of the spout (10) in the first position in a first transverse direction (X) of the spout (10) is resolved using the measured values;
    d) pivoting the measuring device (1) in a normal plane with respect to the longitudinal axis (Z) of the spout (10) through an angle (α), preferably 90°;
    e) contactlessly detecting a second component of the actual position of the spout (10) by evaluating measurement data for the planar, locally discretized measuring curtain (8), the measurement data comprising a plurality of measured values, which are assigned to the transverse direction (x) of the measuring curtain (8), and one measured value being assigned to precisely one measuring beam (5) of the measuring curtain (8), with the result that the actual position of the spout (10) in the first position in a second transverse direction (Y) of the spout (10) is resolved using the measured values.
  3. Method according to either of Claims 1 and 2, characterized in that the measuring device (1) is moved vertically upwards (Z) by a movement distance (Δ) into a second position after step c, and step c is then carried out again, the position of the spout (10) at the second position being detected.
  4. Method according to one of Claims 1 to 3, characterized in that the measuring device (1) is positioned and moved by a multi-axis robot.
  5. Method according to one of Claims 1 to 4, characterized in that the measuring device (1) continuously detects the actual position of the spout (10) during movement.
  6. Method according to one of Claims 1 to 4, characterized in that the measuring device (10) is stopped before step c.
  7. Method according to one of Claims 1 to 6, characterized in that the measuring beam (5) is in the form of an uninterrupted or interrupted light beam, in particular in the range of infrared, visible light or ultraviolet light.
EP10169765.4A 2010-07-16 2010-07-16 Method for automatic positioning a spout of a metallurgical container Active EP2407261B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10169765.4A EP2407261B1 (en) 2010-07-16 2010-07-16 Method for automatic positioning a spout of a metallurgical container
CN2011102786320A CN102445150A (en) 2010-07-16 2011-07-15 Method and measurer for automatic positioning a spout of a metallurgical container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10169765.4A EP2407261B1 (en) 2010-07-16 2010-07-16 Method for automatic positioning a spout of a metallurgical container

Publications (2)

Publication Number Publication Date
EP2407261A1 EP2407261A1 (en) 2012-01-18
EP2407261B1 true EP2407261B1 (en) 2016-04-20

Family

ID=43034263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10169765.4A Active EP2407261B1 (en) 2010-07-16 2010-07-16 Method for automatic positioning a spout of a metallurgical container

Country Status (2)

Country Link
EP (1) EP2407261B1 (en)
CN (1) CN102445150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062161A (en) * 2018-08-23 2018-12-21 大连重工环保工程有限公司 A kind of tank switching station automatic tapping control system
CN110109190A (en) * 2019-04-16 2019-08-09 浙江大华机器人技术有限公司 A kind of object space determines method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008908C2 (en) * 2012-05-31 2013-12-04 Gemco Eng Bv TRANSPORT DEVICE FOR A CASTING UNIT.
EP3170584B1 (en) * 2014-07-14 2019-05-08 Yamaha Hatsudoki Kabushiki Kaisha Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606524A1 (en) * 1996-02-22 1997-08-28 Joern Uwe Fischbach Determining arm or leg muscle volume e.g. for training or for medical treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371959A (en) * 1989-08-10 1991-03-27 Hitachi Zosen Corp Equipment for pouring molten metal in ladle in continuous casting equipment
US5198661A (en) * 1992-02-28 1993-03-30 Scientific Technologies Incorporated Segmented light curtain system and method
DE19830265A1 (en) * 1998-07-07 2000-01-13 Margrit Dislich Process for optimizing the opening rate of steel ladles
DE19835884A1 (en) * 1998-08-07 2000-02-10 Sick Ag Light curtain
DE19957375A1 (en) * 1999-11-29 2001-06-07 Specialty Minerals Michigan Method for identifying and determining the position of a metallurgical vessel in particular
DE20212769U1 (en) * 2002-08-21 2002-10-24 Leuze Lumiflex Gmbh & Co light Curtain
JP4914031B2 (en) * 2005-06-23 2012-04-11 富士通フロンテック株式会社 MOBILE BODY MEASURING DEVICE AND MOBILE BODY MEASURING METHOD
AT506865B1 (en) * 2008-05-20 2010-02-15 Siemens Vai Metals Tech Gmbh DEVICE FOR IMPROVING ACCURACY CHARACTERISTICS OF HANDLING DEVICES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606524A1 (en) * 1996-02-22 1997-08-28 Joern Uwe Fischbach Determining arm or leg muscle volume e.g. for training or for medical treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062161A (en) * 2018-08-23 2018-12-21 大连重工环保工程有限公司 A kind of tank switching station automatic tapping control system
CN109062161B (en) * 2018-08-23 2021-04-23 大连重工环保工程有限公司 Automatic tapping control system of reladling station
CN110109190A (en) * 2019-04-16 2019-08-09 浙江大华机器人技术有限公司 A kind of object space determines method and system

Also Published As

Publication number Publication date
CN102445150A (en) 2012-05-09
EP2407261A1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
DE102016118617B4 (en) measuring system
EP2407261B1 (en) Method for automatic positioning a spout of a metallurgical container
DE102018124712A1 (en) Work system, method for performing work on an object and robot
EP1837622B1 (en) Method and device for determining the geometrical data of a cable crimp
DE102013018222A1 (en) Object-taking device and method for picking up an object
DE102018133693B3 (en) Procedure for calibrating the alignment of a moving object sensor
EP2490092A1 (en) Method for autonomous localisation of a driver-less motorised vehicle
DE3625564A1 (en) METHOD FOR DETERMINING THE DIAMETER OF THE WHEELS OF RAIL VEHICLES AND DEVICE THEREFOR
EP2950043B1 (en) Method for determining a closed trajectory by a laser, and a laser light sensor and device for determining a closed trajectory
WO2019115117A1 (en) Method for starting up a field device in a simplified manner
DE102020120119A1 (en) Device for position and attitude estimation
DE112008000261B4 (en) Method of tracking the level of condensate collected in the graduated cylinder of a standard distillation apparatus
EP2159554A1 (en) Method for monitoring the status of a power measuring device, power measuring device and power measuring module
WO2013166538A1 (en) Method for automated manipulation of a bending tool, and manufacturing device
DE102010015780A1 (en) Operation of a coordinate measuring machine or a machine tool
AT502931A2 (en) WORK AREA MONITORING FOR AUTOMATED, PROGRAM-CONTROLLED MACHINES AND ROBOTS
EP1653202A1 (en) Method and device for measurement of a volume flow of a belt conveyor
DE102015203726B4 (en) Apparatus and method for inspecting a closure
EP2356400A1 (en) Robot for automatic 3-d measurement and method
EP2995391B1 (en) Calibration method for a bending machine and such a bending machine
DE102006005990B4 (en) Workpiece measurement for 3-D position detection in several multi-robot stations
EP2584418B1 (en) Method and device for locating a grasping point of an object in an assembly
EP2447739B1 (en) Method for optically detecting objects and light button
WO2019219331A1 (en) Determining the orientation of at least one object and method for relatively orienting rollers
WO2018015314A2 (en) Method and apparatus for determining the spatially resolved fill level in a bulk material container

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120618

17Q First examination report despatched

Effective date: 20120716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 791839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011472

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160720

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 791839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 14

Ref country code: BE

Payment date: 20230719

Year of fee payment: 14