EP2399262B1 - Method for decontaminating radioactively contaminated surfaces - Google Patents

Method for decontaminating radioactively contaminated surfaces Download PDF

Info

Publication number
EP2399262B1
EP2399262B1 EP10709987A EP10709987A EP2399262B1 EP 2399262 B1 EP2399262 B1 EP 2399262B1 EP 10709987 A EP10709987 A EP 10709987A EP 10709987 A EP10709987 A EP 10709987A EP 2399262 B1 EP2399262 B1 EP 2399262B1
Authority
EP
European Patent Office
Prior art keywords
treatment solution
treatment
component
solution
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10709987A
Other languages
German (de)
French (fr)
Other versions
EP2399262A1 (en
Inventor
Rainer Gassen
Luis Sempere Belda
Werner Schweighofer
Bertram Zeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42538319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2399262(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of EP2399262A1 publication Critical patent/EP2399262A1/en
Application granted granted Critical
Publication of EP2399262B1 publication Critical patent/EP2399262B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for the decontamination of radioactively contaminated surfaces of nuclear installations.
  • a nuclear power plant which is hereinafter referred to by way of example
  • the surfaces of components of the coolant system are exposed to up to about 350 ° C hot water as a coolant in power operation, even classified as corrosion-free CrNi steels and Ni alloys in some Extent be oxidized.
  • an oxide layer is formed, which contains oxygen ions and metal ions.
  • metal ions in dissolved form or as a constituent of oxide particles pass from the oxide layer into the cooling water and are transported by it to the reactor pressure vessel in which fuel elements are located. Due to the nuclear reactions taking place in the fuel elements, neutron radiation is generated which converts part of the metal ions into radioactive elements. For example, the nickel of the above-mentioned materials produces radioactive cobalt-58.
  • the nuclear reactions taking place in the nuclear fuel give rise to alpha-emitting transuranic substances such as Am-241, for example, which leak into the coolant as oxides due to leaks of the fuel rods that receive the nuclear fuel.
  • the radioactive elements are distributed by the circulating cooling water in the primary circuit and deposit on the oxide layer of component surfaces, such as on the surfaces of the tubes of the coolant system again or be incorporated into the oxide layer.
  • the radioactive elements With increasing operating time increases the amount of deposited and / or incorporated radioactive nuclides and, accordingly, the radioactive radiation in the environment of the systems and components of the primary circuit. If you want to reduce this, such as in the case of decommissioning of a nuclear power plant, essentially all the contaminated oxide layer must be removed by means of a decontamination measure.
  • the removal of the oxide layer on component surfaces is carried out, for example, by bringing the component surfaces into contact with a treatment solution containing an organic acid, in the case of a coolant system this being done by filling it with said solution.
  • the organic acid is one which forms water-soluble complex compounds with the metal ions present in the oxide layer.
  • the alloy that makes up a component contains chromium.
  • an oxide layer present on the component contains hardly soluble chromium-III oxides.
  • the surfaces are treated with a strong oxidizing agent such as potassium permanganate or permanganic acid prior to the said acid treatment.
  • the spent cleaning solution containing the components of the oxide layer in dissolved form is either evaporated to a residual amount or passed through ion exchangers. In the latter case, the constituents of the oxide layer present in ionic form are retained by the ion exchanger and thus removed from the cleaning solution.
  • the ion exchange material loaded with the partially radioactive ionic constituents and the residual amount of the cleaning solution remaining on evaporation are respectively supplied in suitable form to an intermediate or final storage.
  • Such a routine such as in the course of maintenance work on the coolant system performed decontamination treatment essentially only gamma radiation emitting nuclides such as Cr-51 and Co-60 are recorded.
  • These nuclides are to a large extent, for example incorporated in an oxide layer of a component, in the form of their oxides, which are relatively easily dissolved by the active substances of conventional decontamination solutions, for example of complexing acids.
  • the oxides of the transuranic elements, such as the Am-241 already mentioned above, are less soluble than the oxides formed from the metals and their radioactive nuclides.
  • oxide particles that are not visible to the naked eye therefore, in comparison with the original oxide layer of the components, enriched with alpha emitters.
  • the particles in question only adhere loosely to the component surface, so that they can be wiped off, for example, in the course of a wipe test with a cloth.
  • the components of the coolant system to be supplied to a recycling or at least can be handled without complex protective measures.
  • the in question adhering to the component surfaces particles can easily peel off and get into the human body via the respiratory tract, which can only be prevented by very complex respiratory protection measures.
  • the measured at a component Radioactivity with regard to gamma and beta radiation as well as with regard to alpha radiation must therefore remain below specified limits, so that the components are no longer subject to the restrictions of radiation protection.
  • a practical problem accompanying any surface decontamination is the further treatment or disposal of the spent decontamination solution containing the radioactive constituents of the detached oxide layer.
  • a feasible way is to pass a spent decontamination solution through an ion exchanger to remove charged components contained therein.
  • the object underlying the invention is to liberate a surface of radioactive particles with the aid of an active component present in aqueous solution, in such a way that the particles are easily removable from the solution.
  • the surfactants mentioned on the one hand in particular metal oxide particles with high efficiency, especially from metallic surfaces can replace and that the particles together with the surfactant an anion exchanger or a mixed-bed ion exchanger, a combination of anion and cation exchanger adhere. If, as is to be striven for, a solution is used which, apart from at least one surfactant, contains no further chemical substances, a particularly simple disposal is ensured after the decontamination has been carried out, since there is no decomposition of the further substances, for example with the aid of UV light, or their removal with the aid of an ion exchanger, which would require an additional amount to be disposed of ion-immersion resin, is required. Further advantageous embodiments are given in the dependent claims.
  • the sample material used for the following examples or experiments comes from dismantled components of the primary coolant circuit of a German pressurized water reactor. These are cut coupons made of niobium-stabilized stainless steel, material number 1.4551, which have an oxide layer on their surface, which contains radioactive elements, as usual for components of the coolant system of nuclear power plants. The coupons were pretreated using a standard decontamination procedure.
  • the samples were processed on a laboratory scale in borosilicate glasses with a capacity of between 500 ml and 2 l. Samples were suspended in the treatment solution in borosilicate glass hanger, stainless steel 1.4551, stainless steel ANSI 316, or PTFE. The heating to the test temperature was carried out by means of electric heating plates. The temperature was adjusted with contact thermometers and kept constant. The mixing of the solution was carried out by using magnetic or mechanical stirrers.
  • the measurement of alpha radiation requires a relatively high effort. In contrast, the determination of the gamma activity is much simpler and faster, and even more precise.
  • the gamma-ray-based activity of the americium isotope 241 was therefore recorded as an indicator of the behavior of alpha-emitting actinides or transurans.
  • Table 1 compares by way of example the development of the activity of Am-241 determined by gamma radiation detectors on one of the described samples with the activity of the isotopes Pu-240, Cm-242 and Am-241 detected with alpha radiation detectors in the untreated state (No. 1) Decontamination with conventional decontamination methods (No. 2) and with a decontamination method in which an active component according to the invention according to this invention was used in various concentrations (Nos. 3, 4, 5). For a comparison To facilitate the removal of activity, in addition to the measured values obtained in Bq / cm 2 , the percentage values relative to the starting quantity are also shown.
  • the minimum temperature for the effectiveness of the active ingredient component or a surfactant thereof from the group consisting of sulfonic acid, phosphonic acid and carboxylic acid is inter alia dependent on the structure (eg length) of the non-polar part of the surfactant and is due to the so-called "Krafft temperature". Below this temperature, the interactions between non-polar parts can not be overcome; the active substance remains in solution as an aggregate. In the case of use octadecylphosphonic acid as active ingredient is the minimum temperature for an effective effect eg 75 ° C. The upper limit is usually dependent on process parameters. For example, it is not desirable for the treatment solution to boil. A common application temperature of decontamination treatments under atmospheric pressure is therefore for example 80-95 ° C or 90-95 ° C.
  • the effectiveness of the proposed surfactants also depends on the nature of their polar portion.
  • the various proposed drug components are comparable (they have a non-polar part through which they interact with each other, and a polar part through which the molecules of the drug are mutually localized and through which the interaction of the drug with polar, charged or ionized particles or surfaces is made possible)
  • there are differences in the chemical properties between different functional groups which are responsible for a different effect also in the area of the decontamination in question here. These differences can be seen by comparing a selection of drug components that have different polar functional groups but identical non-polar parts.
  • the effectiveness of the active component is determined not only by its polar, but also by its non-polar part, in particular by its length or chain length.
  • the size or length of the non-polar parts influences the interactions between the surfactant molecules due to van der Waals forces, whereas larger non-polar parts produce greater interaction forces with comparable structure.
  • this has the consequence that more molecules can be accommodated in the second layer of the bilayer which is not in contact with the surface. This increases The charge density in this layer, which leads to higher interactions with water and higher Coulomb repulsion forces. The mobilization of the activity is thereby favored.
  • the inventive method is preferably for the decontamination of components of the coolant system of a nuclear power plant (see attached Fig. 1 ) used.
  • a more or less thick oxide layer builds up on the surfaces of such components, which, as already mentioned, is radioactively contaminated.
  • the oxide layer is removed as completely as possible.
  • the component surfaces are then treated with a solution containing at least one anionic surfactant from the group of sulfonic acids, phosphonic acids, carboxylic acids and their salts. It is particularly noteworthy that, apart from the surfactant, no further chemical additives are required, ie it is preferably carried out with an aqueous solution containing exclusively at least one surfactant from said group.
  • the second treatment stage is carried out at a temperature above room temperature, that is above about 25 ° C temperature, but operating below 100 ° C, in order to reduce evaporation and thus a loss of water. Preference is given to operating at temperatures of more than 50 ° C, with the best results being achieved at temperatures of more than 80 ° C.
  • the pH of the treatment solution in the second treatment stage is in principle variable. Thus, it is conceivable to accept the pH which results from the surfactant present in the solution. If the surfactant is an acid, it will have a pH in the acidic range to adjust. The best results, especially when using a Phosphonklaivates as a surfactant are achieved in a pH range of 3 to 9.
  • the concentration of the active component, ie a surfactant of the type in question in the second treatment solution is 0.1 g / l to 10 g / l. Below 0.1 g / l, a reduction in the alpha contamination of the component surface does not take place to a significant extent. Above 10 g / l, an increase in the decontamination factor is barely to be observed, so that concentrations in excess of the stated value are virtually ineffective. A very good compromise between the amount of surfactant used and the decontamination efficiency is achieved at surfactant concentrations up to 3 g / l.
  • the first treatment solution is largely freed from the substances contained in it, ie a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
  • a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
  • the treatment solution is irradiated with UV light, whereby the acid is decomposed into carbon dioxide and water.
  • the in the spent decontamination solution contained metal ions are removed by passing the solution through an ion exchanger.
  • Fig. 1 is shown schematically the coolant system of a boiling water reactor. It comprises, in addition to the pressure vessel 1, in which at least in operation a plurality of fuel elements 2 are present, a conduit system 3, which is connected via nozzles 4.5 to the pressure vessel 1, and various internals such as capacitors, the internals in their entirety through the box 6 in Fig. 1 are symbolized.
  • a treatment solution which contains, for example, a complex-forming organic acid.
  • such an decontamination step is preceded by an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
  • an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
  • the entire cooling system is filled, otherwise only parts, for example only a portion of the power system, can be treated.
  • the resulting treatment solution is dosed with a surfactant, preferably phosphonic acid or phosphonic acid salt, and the second treatment stage is carried out ,

Description

Die Erfindung betrifft ein Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen von Nuklearanlagen. Im Falle eines Kernkraftwerkes, auf das im folgenden exemplarisch Bezug genommen wird, werden im Leistungsbetrieb die Oberflächen von Bauteilen des Kühlmittelsystems mit bis zu etwa 350°C heißem Wasser als Kühlmittel beaufschlagt, wobei selbst als korrosionsfrei eingestufte CrNi-Stähle und Ni-Legierungen in gewissem Ausmaß oxidiert werden. Auf den Bauteiloberflächen bildet sich eine Oxidschicht, die Sauerstoffionen und Metallionen enthält.The invention relates to a method for the decontamination of radioactively contaminated surfaces of nuclear installations. In the case of a nuclear power plant, which is hereinafter referred to by way of example, the surfaces of components of the coolant system are exposed to up to about 350 ° C hot water as a coolant in power operation, even classified as corrosion-free CrNi steels and Ni alloys in some Extent be oxidized. On the component surfaces, an oxide layer is formed, which contains oxygen ions and metal ions.

Während des Reaktorbetriebs gelangen aus der Oxidschicht Metallionen in gelöster Form oder als Bestandteil von Oxidpartikeln in das Kühlwasser und werden von diesem zum Reaktordruckbehälter transportiert, in dem sich Brennelemente befinden. Aufgrund der in den Brennelementen ablaufenden Kernreaktionen entsteht Neutronenstrahlung, die einen Teil der Metallionen in radioaktive Elemente umwandelt. Beispielsweise entsteht aus dem Nickel der o.g. Werkstoffe radioaktives Cobalt-58. Bei den im Kernbrennstoff ablaufenden Kernreaktionen entstehen alphastrahlende Transurane wie beispielsweise Am-241, wobei diese über Leckagen der den Kernbrennstoff aufnehmenden Brennstäbe als Oxide in das Kühlmittel gelangen. Die radioaktiven Elemente werden durch das zirkulierende Kühlwasser im Primärkreis verteilt und lagern sich auf der Oxidschicht von Bauteiloberflächen, etwa auf den Oberflächen der Rohre des Kühlmittelsystems wieder ab oder werden in die Oxidschicht eingebaut. Mit zunehmender Betriebsdauer nimmt die Menge der abgelagerten und/oder inkorporierten radioaktiven Nuklide und dementsprechend die radioaktive Strahlung im Umfeld der Systeme und Komponenten des Primärkreises zu. Will man diese, etwa im Falle des Rückbaus eines Kernkraftwerks, reduzieren, muss mittels einer Dekontaminationsmaßnahme im Wesentlichen die gesamte kontaminierte Oxidschicht entfernt werden.During the reactor operation, metal ions in dissolved form or as a constituent of oxide particles pass from the oxide layer into the cooling water and are transported by it to the reactor pressure vessel in which fuel elements are located. Due to the nuclear reactions taking place in the fuel elements, neutron radiation is generated which converts part of the metal ions into radioactive elements. For example, the nickel of the above-mentioned materials produces radioactive cobalt-58. The nuclear reactions taking place in the nuclear fuel give rise to alpha-emitting transuranic substances such as Am-241, for example, which leak into the coolant as oxides due to leaks of the fuel rods that receive the nuclear fuel. The radioactive elements are distributed by the circulating cooling water in the primary circuit and deposit on the oxide layer of component surfaces, such as on the surfaces of the tubes of the coolant system again or be incorporated into the oxide layer. With increasing operating time increases the amount of deposited and / or incorporated radioactive nuclides and, accordingly, the radioactive radiation in the environment of the systems and components of the primary circuit. If you want to reduce this, such as in the case of decommissioning of a nuclear power plant, essentially all the contaminated oxide layer must be removed by means of a decontamination measure.

Aus der DE-A-198 51 852 ist bekannt Stahloberflächen mittels organischer Säure zu dekontaminieren. Entsckende Ionen werden dabei an Ionenaustauschern gebunden.From the DE-A-198 51 852 is known to decontaminate steel surfaces by means of organic acid. Lapping ions are bound to ion exchangers.

Die Entfernung der Oxidschicht auf Komponentenoberflächen erfolgt beispielsweise dadurch, dass die Bauteiloberflächen mit einer eine organische Säure enthaltenden Behandlungslösung in Kontakt gebracht werden, wobei dies im Falle eines Kühlmittelsystems dadurch geschieht, dass dieses mit der genannten Lösung gefüllt wird. Bei der organischen Säure handelt es sich um eine solche, die mit den in der Oxidschicht vorhandenden Metallionen wasserlösliche Komplexverbindungen bildet. In manchen Fällen enthält die Legierung, aus der ein Bauteil besteht, Chrom. In einem solchen Fall enthält eine auf dem Bauteil vorhandene Oxidschicht schwer lösliche Chrom-III-Oxide. Um diese in eine lösliche Form zu überführen, werden die Oberflächen vor der genannten Säurebehandlung mit einem starken Oxidationsmittel wie Kaliumpermanganat oder Permangansäure behandelt. Die Chrom-III-Oxide werden dabei in leichter lösliche Chrom-VI-Oxide umgewandelt. Unabhängig davon, ob eine oxidative Vorbehandlung erfolgt oder nicht wird die die Bestandteile der Oxidschicht in gelöster Form enthaltende verbrauchte Reinigungslösung entweder auf eine Restmenge eingedampft oder über Ionentauscher geleitet. In letzterem Fall werden die in ionischer Form vorliegenden Bestandteile der Oxidschicht von dem Ionenaustauscher zurück gehalten und somit aus der Reinigungslösung entfernt. Das mit den teilweise radioaktiven ionischen Bestandteilen beladene Ionentauschermaterial und die beim Eindampfen zurückbleibende Restmenge der Reinigungslösung werden jeweils in geeigneter Form einem Zwischen- oder Endlager zugeführt.The removal of the oxide layer on component surfaces is carried out, for example, by bringing the component surfaces into contact with a treatment solution containing an organic acid, in the case of a coolant system this being done by filling it with said solution. The organic acid is one which forms water-soluble complex compounds with the metal ions present in the oxide layer. In some cases, the alloy that makes up a component contains chromium. In such a case, an oxide layer present on the component contains hardly soluble chromium-III oxides. To convert them to a soluble form, the surfaces are treated with a strong oxidizing agent such as potassium permanganate or permanganic acid prior to the said acid treatment. The chromium-III oxides are thereby converted into more soluble chromium-VI-oxides. Regardless of whether an oxidative pretreatment takes place or not, the spent cleaning solution containing the components of the oxide layer in dissolved form is either evaporated to a residual amount or passed through ion exchangers. In the latter case, the constituents of the oxide layer present in ionic form are retained by the ion exchanger and thus removed from the cleaning solution. The ion exchange material loaded with the partially radioactive ionic constituents and the residual amount of the cleaning solution remaining on evaporation are respectively supplied in suitable form to an intermediate or final storage.

Bei einer solchen, etwa im Zuge von Revisionsarbeiten am Kühlmittelsystem routinemäßig durchgeführten Dekontaminationsbehandlung werden im Wesentlichen nur Gamma-Strahlung aussendende Nuklide wie Cr-51 und Co-60 erfasst. Diese Nuklide liegen zum großen Teil, beispielsweise inkorporiert in einer Oxidschicht einer Komponente, in Form ihrer Oxide vor, wobei diese von den Wirksubstanzen herkömmlicher Dekontaminationslösungen, beispielsweise von komplexierenden Säuren relativ leicht aufgelöst werden. Die Oxide der Transurane, wie beispielsweise das weiter oben schon erwähnte Am-241, sind schwerer löslich als die aus den Metallen und deren radioaktiven Nukliden gebildeten Oxide. Am Ende einer Dekontaminationsbehandlung vorhandene und vor allem an bereits von einer Oxidschicht befreiten Bauteiloberflächen haftende Oxidpartikel, die mit dem bloßen Auge nicht sichtbar sind, sind daher im Vergleich mit der ursprünglichen Oxidschicht der Bauteile, angereichert mit Alphastrahlern. Die in Rede stehenden Partikel haften nur lose an der Komponentenoberfläche, so dass sie sich etwa im Zuge eines Wischtests mit einem Tuch teilweise abwischen lassen.Such a routine, such as in the course of maintenance work on the coolant system performed decontamination treatment essentially only gamma radiation emitting nuclides such as Cr-51 and Co-60 are recorded. These nuclides are to a large extent, for example incorporated in an oxide layer of a component, in the form of their oxides, which are relatively easily dissolved by the active substances of conventional decontamination solutions, for example of complexing acids. The oxides of the transuranic elements, such as the Am-241 already mentioned above, are less soluble than the oxides formed from the metals and their radioactive nuclides. At the end of a decontamination treatment existing and especially on already freed from an oxide layer component surfaces oxide particles that are not visible to the naked eye, therefore, in comparison with the original oxide layer of the components, enriched with alpha emitters. The particles in question only adhere loosely to the component surface, so that they can be wiped off, for example, in the course of a wipe test with a cloth.

Beispielsweise beim Rückbau einer kerntechnischen Anlage sollen die Komponenten des Kühlmittelsystems einer Wiederverwertung zugeführt werden oder jedenfalls ohne aufwändige Schutzmaßnahmen gehandhabt werden können. Die in Rede stehenden an den Bauteiloberflächen haftenden Partikel können sich leicht ablösen und über die Atemwege in den menschlichen Körper gelangen, was nur durch sehr aufwändige Atemschutzmaßnahmen verhindert werden kann. Die an einer Komponente gemessene Radioaktivität hinsichtlich der Gamma- und Betastrahlung sowie hinsichtlich der Alphastrahlung muss daher unterhalb vorgegebener Grenzwerte bleiben, damit die Bauteile nicht mehr den Beschränkungen des Strahlenschutzes unterliegen.For example, when dismantling a nuclear facility, the components of the coolant system to be supplied to a recycling or at least can be handled without complex protective measures. The in question adhering to the component surfaces particles can easily peel off and get into the human body via the respiratory tract, which can only be prevented by very complex respiratory protection measures. The measured at a component Radioactivity with regard to gamma and beta radiation as well as with regard to alpha radiation must therefore remain below specified limits, so that the components are no longer subject to the restrictions of radiation protection.

Eine praktisch jede Oberflächendekontamination begleitende Problemstellung ist die Weiterbehandlung bzw. Entsorgung der die radioaktiven Bestandteile der abgelösten Oxidschicht enthaltenden verbrauchten Dekontaminationslösung. Wie weiter oben bereits erwähnt, besteht ein gangbarer Weg darin, eine verbrauchte Dekontaminationslösung über einen Ionentauscher zu leiten, um darin enthaltende geladene Bestandteile zu entfernen.A practical problem accompanying any surface decontamination is the further treatment or disposal of the spent decontamination solution containing the radioactive constituents of the detached oxide layer. As already mentioned above, a feasible way is to pass a spent decontamination solution through an ion exchanger to remove charged components contained therein.

Davon ausgehend besteht die der Erfindung zugrunde liegende Aufgabe darin, eine Oberfläche von radioaktiven Partikeln mit Hilfe einer in wässeriger Lösung vorliegenden Wirkkomponente zu befreien, und zwar derart, dass die Partikel auf einfache Weise aus der Lösung entfernbar sind.On this basis, the object underlying the invention is to liberate a surface of radioactive particles with the aid of an active component present in aqueous solution, in such a way that the particles are easily removable from the solution.

Diese Aufgabe wird durch Anspruch 1 gelöst, unter anderem dadurch dass die Oberfläche mit einer wässerigen Lösung behandelt wird, die eine Wirkkomponente zur Entfernung von an der Oberfläche haftenden Partikeln enthält, wobei die Wirkkomponente von wenigstens einem anionischen Tensid aus der Sulfonsäuren, Phos-phonsäuren, Carbonsäuren und Salze dieser Säuren enthaltenden Gruppe gebildet ist.This object is achieved by claim 1, inter alia, by treating the surface with an aqueous solution containing an active component for removing surface-adhering particles, the active component of at least one anionic surfactant being selected from sulfonic acids, phosphonic acids, Carboxylic acids and salts of these acids containing group is formed.

Es hat sich überraschenderweise herausgestellt, dass die genannten Tenside zum einen insbesondere Metalloxid-Partikel mit hohem Wirkungsgrad vor allem von metallischen Oberflächen ablösen kann und dass die Partikel zusammen mit dem Tensid an einem Anionentauscher oder einem Mischbett-Ionentauscher, eine Kombination aus Anionen- und Kationentauscher, haften. Wenn, was anzustreben ist, eine Lösung verwendet wird, die außer wenigstens einem Tensid keine weiteren chemischen Substanzen enthält, ist nach der Durchführung der Dekontamination eine besonders einfache Entsorgung gewährleistet, da weder eine Zersetzung der weiteren Substanzen etwa mit Hilfe von UV-Licht, noch deren Entfernung mit Hilfe eines Ionentauschers, was eine zusätzliche Menge an zu entsorgendem Ionentaucherharz bedingen würde, erforderlich ist. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen wiedergegeben.It has surprisingly been found that the surfactants mentioned on the one hand in particular metal oxide particles with high efficiency, especially from metallic surfaces can replace and that the particles together with the surfactant an anion exchanger or a mixed-bed ion exchanger, a combination of anion and cation exchanger adhere. If, as is to be striven for, a solution is used which, apart from at least one surfactant, contains no further chemical substances, a particularly simple disposal is ensured after the decontamination has been carried out, since there is no decomposition of the further substances, for example with the aid of UV light, or their removal with the aid of an ion exchanger, which would require an additional amount to be disposed of ion-immersion resin, is required. Further advantageous embodiments are given in the dependent claims.

Die Erfindung wird im Folgenden näher erläutert.The invention will be explained in more detail below.

Das verwendete Probenmaterial für die folgenden Beispiele bzw. Versuche stammt aus ausgebauten Bauteilen des Primärkühlmittelkreislaufes eines deutschen Druckwasserreaktors. Es handelt sich um geschnittene Coupons aus Niob-stabilisiertem Edelstahl, Werkstoffnummer 1.4551, die eine bei Bauteilen des Kühlmittelsystems von Kernkraftwerken übliche Oxidschicht auf ihrer Oberfläche aufweisen, die radioaktive Elemente enthält. Die Coupons wurden mit einem üblichen Dekontaminationsverfahren vorbehandelt.The sample material used for the following examples or experiments comes from dismantled components of the primary coolant circuit of a German pressurized water reactor. These are cut coupons made of niobium-stabilized stainless steel, material number 1.4551, which have an oxide layer on their surface, which contains radioactive elements, as usual for components of the coolant system of nuclear power plants. The coupons were pretreated using a standard decontamination procedure.

Die Behandlung der Proben erfolgte im Labormaßstab in Borosilikatgläsern mit einer Kapazität zwischen 500 ml und 2 1. Die Proben wurden in die Behandlungslösung eingehängt, in Hängevorrichtungen aus Borosilikatglas, Edelstahl 1.4551, Edelstahl ANSI 316, oder PTFE. Das Erhitzen auf die Versuchstemperatur erfolgte mit Hilfe von elektrischen Heizplatten. Die Temperatur wurde mit Kontaktthermometern eingestellt und konstant gehalten. Die Durchmischung der Lösung erfolgte durch Einsatz von magnetischen oder mechanischen Rührern.The samples were processed on a laboratory scale in borosilicate glasses with a capacity of between 500 ml and 2 l. Samples were suspended in the treatment solution in borosilicate glass hanger, stainless steel 1.4551, stainless steel ANSI 316, or PTFE. The heating to the test temperature was carried out by means of electric heating plates. The temperature was adjusted with contact thermometers and kept constant. The mixing of the solution was carried out by using magnetic or mechanical stirrers.

Die Messung der auf den Proben vorhandenen Radioaktivität wurde in einem radiochemischen Labor durchgeführt, akkreditiert nach DIN EN ISO/IEC 17025:2005 (Deutsches Akkreditierungssystem Prüfwesen GmbH, Deutscher Akkreditierungsrat (DAR), Akkreditierungsurkunde Nr. DAP-PL-3500.81).The measurement of the radioactivity present on the samples was carried out in a radiochemical laboratory, accredited to DIN EN ISO / IEC 17025: 2005 (German Accreditation System for Testing GmbH, German Accreditation Council (DAR), Accreditation Certificate No. DAP-PL-3500.81).

Für die bessere Lesbarkeit der Ergebnisse wurde die Anzahl von Stellen hinter dem Komma begrenzt, für Berechnungen von z.B. Dekontaminationsfaktoren wurden die kompletten nicht abgerundeten Werte verwendet.For better readability of the results, the number of digits after the decimal point has been limited, for calculations of e.g. Decontamination factors were used the complete non-rounded values.

Repräsentativität der Messung von Am-241 für das Verhalten der alpha-strahlenden Actinoiden Pu, Am, Cm:Representativeness of the Am-241 measurement for the behavior of the alpha-emitting actinides Pu, Am, Cm:

Die Messung von Alphastrahlung erfordert einen relativ hohen Aufwand. Wesentlich einfacher und schneller sowie darüber hinaus auch noch präziser ist dagegen die Bestimmung der Gamma-Aktivität. Als Indikator für das Verhalten der Alphastrahlung aussendenden Actinoide bzw. Transurane wurde daher die auf Gammastrahlung basierende Aktivität des Americium-Isotops 241 erfasst.The measurement of alpha radiation requires a relatively high effort. In contrast, the determination of the gamma activity is much simpler and faster, and even more precise. The gamma-ray-based activity of the americium isotope 241 was therefore recorded as an indicator of the behavior of alpha-emitting actinides or transurans.

Tabelle 1 vergleicht exemplarisch die Entwicklung der über Gammastrahlungsdetektoren ermittelten Aktivität von Am-241 auf einer der beschriebenen Proben mit der Aktivität der Isotopen Pu-240, Cm-242 und Am-241, erfasst mit Alphastrahlungsdetektoren im unbehandelten Zustand (Nr. 1), nach einer Dekontamination mit üblichen Dekontaminationsverfahren (Nr. 2) und mit einem Dekontaminationsverfahren, bei dem eine erfindungsgemäße Wirkkomponente gemäß dieser Erfindung in verschiedenen Konzentrationen (Nr. 3, 4, 5) verwendet wurde. Um einen Vergleich der Aktivitätsentfernung zu erleichtern sind neben den erhaltenen Messwerten in Bq/cm2 auch die prozentualen Werte bezogen auf die Ausgangsmenge wiedergegeben. Es wurden jeweils Tenside mit ein und demselben organischen Rest (CH3-(CH2)15-) verwendet und zwar bei Nr.3 Sulfonsäure, bei Nr. 4 Carboxylsäure und bei Nr. 5 Phosphonsäure. Die Versuche wurden jeweils bei einer Temperatur von 95 °C und einer Tensidkonzentration von 1g/l durchgeführt. Die Behandlungsdauer betrug jeweils etwa 15 h, wobei während der Behandlung die Lösung nicht über Ionentauscher geführt wurde. Tabelle 1: Gammastrahlungsmessung von Am-241 als Leitnuklid Nr. Aktivität durch Alpha-Messung [Bq/cm2] Gamma-Akt. [Bq/cm2] Aktivität durch Alpha-Messung [%] Gamma-Akt. [%] Pu-240 Am-241 Cm-242 Am-241 Pu-240 Am-241 Cm-242 Am-241 1 0,771 5,43 0,6 4,58 100 100 100 100 2 0,079 0,425 0,03 0,413 10,2 7,83 5,02 9,02 3 0,056 0,264 0,019 0,308 7,21 4,86 3,13 6,73 4 0,01 0,042 0,003 0,033 1,28 0,78 0,51 0,73 5 0,001 0,003 0,0001 0,003 0,08 0,05 0,02 0,06 Table 1 compares by way of example the development of the activity of Am-241 determined by gamma radiation detectors on one of the described samples with the activity of the isotopes Pu-240, Cm-242 and Am-241 detected with alpha radiation detectors in the untreated state (No. 1) Decontamination with conventional decontamination methods (No. 2) and with a decontamination method in which an active component according to the invention according to this invention was used in various concentrations (Nos. 3, 4, 5). For a comparison To facilitate the removal of activity, in addition to the measured values obtained in Bq / cm 2 , the percentage values relative to the starting quantity are also shown. Surfactants with one and the same organic radical (CH 3 - (CH 2 ) 15 -) were used in each case, in the case of No. 3 sulfonic acid, in No. 4 carboxylic acid and in No. 5 phosphonic acid. The experiments were each carried out at a temperature of 95 ° C and a surfactant concentration of 1 g / l. The treatment time was about 15 hours, during which the solution was not passed through ion exchangers. Table 1: Gamma radiation measurement of Am-241 as lead nuclide No. Activity by alpha measurement [Bq / cm 2 ] Gamma act. [Bq / cm 2 ] Activity by alpha measurement [%] Gamma act. [%] Pu-240 Am-241 Cm-242 Am-241 Pu-240 Am-241 Cm-242 Am-241 1 0.771 5.43 0.6 4.58 100 100 100 100 2 0.079 0,425 0.03 0.413 10.2 7.83 5.02 9.02 3 0.056 0.264 0.019 0.308 7.21 4.86 3.13 6.73 4 0.01 0,042 0,003 0.033 1.28 0.78 0.51 0.73 5 0.001 0,003 0.0001 0,003 0.08 0.05 0.02 0.06

Die Mindesttemperatur für die Effektivität der Wirkstoffkomponente bzw. eines diese bildenden Tensids aus der Gruppe Sulfonsäure, Phosphonsäure und Carbonsäure ist unter anderem von der Struktur (z.B. Länge) des unpolaren Teiles des Tensids abhängig und ist von der sogenannten "Krafft-Temperatur" bedingt. Unterhalb dieser Temperatur können die Wechselwirkungen zwischen unpolaren Teilen nicht überwunden werden, der Wirkstoff bleibt als Aggregat in Lösung. Im Fall der Verwendung von Octadecylphosphonsäure als Wirkstoffkomponente ist die Mindesttemperatur für eine effektive Wirkung z.B. 75°C. Die obere Grenze ist in der Regel von verfahrenstechnischen Parametern abhängig. Es ist zum Beispiel nicht erwünscht, dass die Behandlungslösung zum Kochen kommt. Eine übliche Anwendungstemperatur von Dekontaminationsbehandlungen unter atmosphärischen Druck ist deswegen beispielsweise 80-95°C oder 90-95 °C.The minimum temperature for the effectiveness of the active ingredient component or a surfactant thereof from the group consisting of sulfonic acid, phosphonic acid and carboxylic acid is inter alia dependent on the structure (eg length) of the non-polar part of the surfactant and is due to the so-called "Krafft temperature". Below this temperature, the interactions between non-polar parts can not be overcome; the active substance remains in solution as an aggregate. In the case of use octadecylphosphonic acid as active ingredient is the minimum temperature for an effective effect eg 75 ° C. The upper limit is usually dependent on process parameters. For example, it is not desirable for the treatment solution to boil. A common application temperature of decontamination treatments under atmospheric pressure is therefore for example 80-95 ° C or 90-95 ° C.

Optimale polare funktionelle Gruppe:Optimal polar functional group:

Die Wirksamkeit der vorgeschlagenen Tenside hängt auch von der Art ihres polaren Teils ab. Obwohl von einem strukturellen Standpunkt aus die verschiedenen vorgeschlagenen Wirkstoffkomponenten vergleichbar sind (sie verfügen über einen unpolaren Teil, durch den sie miteinander in Wechselwirkung treten, und einen polaren Teil, durch den die Moleküle des Wirkstoffes untereinander lokalisiert abgestoßen werden und durch den die Wechselwirkung des Wirkstoffes mit polaren, geladenen oder ionisierten Partikeln oder Oberflächen ermöglicht wird), gibt es zwischen unterschiedlichen funktionellen Gruppen Unterschiede in den chemischen Eigenschaften, die für eine unterschiedliche Wirkung auch im Bereich der hier in Rede stehenden Dekontamination verantwortlich sind. Diese Unterschiede können festgestellt werden, indem man eine Auswahl von Wirkstoffkomponenten vergleicht, die über unterschiedliche polare funktionelle Gruppen, aber über identische unpolare Teile verfügt. Bei den hierzu durchgeführten Versuchen wurden sonstige Versuchsbedingungen wie Art der abzulösenden Oxidschicht, Behandlungstemperatur, pH-Wert, Konzentration der Wirkstoffkomponente und Behandlungszeit gleich gehalten. Die Proben wurden vor der Behandlung mit 3 Zyklen eines für Kernkraftwerke üblichen Dekontaminationsverfahrens behandelt (z.B. mit einer komplexierend wirkenden organischen Säure wie Oxalsäure). In Tabelle 2, welche die Ergebnisse der Versuche wiederspiegelt, ist neben der Aktivität auch der Dekontaminationsfaktor (DF) angegeben, also der Quotient aus Anfangs- und Endaktivität, der eine Einschätzung der Dekontaminationswirksamkeit erlaubt. Aus den Ergebnissen in Tabelle 2 wird deutlich, dass eine Phosponsäure mit der Formel R-PO3H2 (mit R = CH3(CH2)15) sich unter gleichen Bedingungen für die Entfernung der alphastrahlenden Kontamination am besten eignen. Tabelle 2: Beste polare funktionelle Gruppe: Polare Gruppe Aktivität Am-241 [Bq/cm2] DF Vor Nach Carboxylsäure *) 3,08 0,19 16,3 Sulfonsäure *) 3,68 0,45 8,2 Phosphonsäure *) 3,59 0,12 30,7 Sulfat 2,30 0,19 12,1 *) mit CH3-(CH2)15-Rest The effectiveness of the proposed surfactants also depends on the nature of their polar portion. Although from a structural point of view, the various proposed drug components are comparable (they have a non-polar part through which they interact with each other, and a polar part through which the molecules of the drug are mutually localized and through which the interaction of the drug with polar, charged or ionized particles or surfaces is made possible), there are differences in the chemical properties between different functional groups, which are responsible for a different effect also in the area of the decontamination in question here. These differences can be seen by comparing a selection of drug components that have different polar functional groups but identical non-polar parts. In the tests carried out for this purpose, other experimental conditions such as the type of oxide layer to be removed, treatment temperature, pH, concentration of the active ingredient component and treatment time were kept the same. The samples were treated prior to treatment with 3 cycles of a standard for nuclear power plants decontamination process (eg with a complexing organic acid such as oxalic acid). In Table 2, which reflects the results of the experiments, in addition to the activity of the decontamination factor (DF) is also indicated, ie the quotient of initial and final activity, which allows an assessment of the decontamination efficiency. It can be seen from the results in Table 2 that a phosphoric acid having the formula R-PO 3 H 2 (where R = CH 3 (CH 2 ) 15 ) is most suitable for removing the alpha-emitting contamination under the same conditions. Table 2: Best polar functional group: Polar group Activity Am-241 [Bq / cm 2 ] DF In front To Carboxylic acid *) 3.08 0.19 16.3 Sulfonic acid *) 3.68 0.45 8.2 Phosphonic acid *) 3.59 0.12 30.7 sulfate 2.30 0.19 12.1 *) with CH 3 - (CH 2 ) 15 radical

Die Effektivität der Wirkkomponente wird nicht nur durch ihren polaren, sondern auch durch ihren unpolaren Teil, insbesondere durch dessen Länge bzw. Kettenlänge bestimmt. Die Größe bzw. Länge der unpolaren Teile beeinflusst die Wechselwirkungen zwischen den Tensidmolekülen aufgrund von Van-der-Waals-Kräften, wobei bei vergleichbarer Struktur größere unpolare Teile größere Wechselwirkungskräfte hervorrufen. Dies hat im Falle der Bildung von Doppelschichten auf geladenen Oberflächen zum Beispiel die Folge, dass in der zweiten, sich mit der Oberfläche nicht in Kontakt befindenden Schicht der Doppelschicht mehr Moleküle aufgenommen werden können. Dadurch erhöht sich die Ladungsdichte in dieser Schicht, was zu höheren Wechselwirkungen mit Wasser und höheren Coulomb schen Abstoßkräften führt. Die Mobilisierung der Aktivität wird dadurch begünstigt. In den hierzu durchgeführten Versuchen wurden jeweils gleiche Bedingungen (Art der auf den Proben vorhandenen Oxidschicht, Behandlungstemperatur, pH-Wert, Konzentration der Wirkstoffkomponente und Behandlungszeit) eingehalten. Das Ergebnis dieser Versuche geht aus Tabelle 3 hervor. Diese zeigt einen Vergleich zwischen der durchschnittlichen Dekontaminationswirksamkeit verschiedener Wirkstoffkomponenten mit jeweils derselben funktionellen Gruppe (Phosphonsäuregruppe) und unterschiedlichen unpolaren Resten (C14: CH3-(CH2)13-; C16: CH3-(CH2)15-; C18: CH3-(CH2)17). Die Proben wurden vor der Behandlung mit 3 Zyklen eines für Kernkraftwerke üblichen Dekontaminationsverfahrens (siehe oben) behandelt. Neben Aktivitätsangaben wird ebenfalls der übliche Dekontaminationsfaktor (DF) angegeben, der eine Einschätzung der Dekontaminationswirksamkeit vereinfacht. Tabelle 3: Beste Größe des unpolaren Anteils: Mit C14-PO3H2 Am-241 Mit C16-PO3H2 Am-241 Mit C18-PO3H2 Am-241 [Bq/cm2] σ [Bq/cm2] σ [Bq/cm2] σ Vor 6,09 0,79 6,11 2,66 6,79 9,43 Nach 0,28 1,53 0,15 0,02 0,07 0,09 DF 21,9 41,8 102,0 The effectiveness of the active component is determined not only by its polar, but also by its non-polar part, in particular by its length or chain length. The size or length of the non-polar parts influences the interactions between the surfactant molecules due to van der Waals forces, whereas larger non-polar parts produce greater interaction forces with comparable structure. In the case of the formation of bilayers on charged surfaces, for example, this has the consequence that more molecules can be accommodated in the second layer of the bilayer which is not in contact with the surface. This increases The charge density in this layer, which leads to higher interactions with water and higher Coulomb repulsion forces. The mobilization of the activity is thereby favored. In the tests carried out for this purpose, the same conditions (type of oxide layer present on the samples, treatment temperature, pH, concentration of the active ingredient component and treatment time) were observed. The result of these experiments is shown in Table 3. This shows a comparison between the average decontamination efficacy of various drug components each having the same functional group (phosphonic acid) and various non-polar residues (C14: CH 3 - (CH 2) 13 -; C16: CH 3 - (CH 2) 15 -; C18: CH 3 - (CH 2 ) 17 ). The samples were treated prior to treatment with 3 cycles of a conventional decontamination procedure for nuclear power plants (see above). In addition to activity data, the usual decontamination factor (DF) is also given, which simplifies an assessment of the decontamination efficiency. Table 3: Best size of the nonpolar portion: With C14-PO3H2 Am-241 With C16-PO3H2 Am-241 With C18-PO3H2 Am-241 [Bq / cm 2 ] σ [Bq / cm 2 ] σ [Bq / cm 2 ] σ In front 6.09 0.79 6.11 2.66 6.79 9.43 To 0.28 1.53 0.15 0.02 0.07 0.09 DF 21.9 41.8 102.0

Zur Bestimmung des optimalen pH-Bereiches für die Durchführung der Dekontamination wurden vier Proben parallel behandelt, und zwar jeweils unter gleichen Versuchsbedingungen wie Temperatur, Wirkstoffkonzentration oder Expositionszeit, mit Ausnahme des pH-Werts. Dieser wurde in Versuch Nr. 1 durch Zugabe von HNO3 verringert, in Nr. 2 beim eigenen Gleichgewichts-pH des verwendeten Phosphonsäurewirkstoffes belassen, bei Nr. 3 schwach alkalisiert durch Zugabe von NaOH-Lösung und bei Nr. 4 stark alkalisiert durch Zugabe größerer Mengen NaOH. Wie Tabelle 4 zeigt, werden die besten Ergebnisse bei der Neutralisierung der Phosphonsäuregruppe (Nr. 3) erhalten. In diesem Milieu ist die Gruppe zweifach ionisiert als R-PO3 2-, im Gegensatz zum normalen Zustand (R-PO3H-). Bei saurem pH (Nr. 1) wird die Dissoziation der Säuregruppe durch die erhöhte Konzentration von H3O+-Ionen im Wasser gehemmt, der Wirkstoff kann seinen erforderlichen geladenen Zustand nicht erhalten. Im Fall einer stark alkalischen Lösung ist die Säuregruppe vollkommen dissoziiert, somit maximal geladen. Tabelle 4: Optimaler pH-Bereich Nr. pH Am-241 [Bq/cm2] DF Vor Nach 1 1,5 3,75 2,25 1,7 2 4,25 4,63 0,46 10,1 3 6 6,15 0,37 16,8 4 12 3,73 3,36 1,1 To determine the optimal pH range for decontamination, four samples were treated in parallel, each under the same experimental conditions as temperature, Drug concentration or exposure time, except for pH. This was reduced in Experiment No. 1 by addition of HNO 3 , left in No. 2 at its own equilibrium pH of the phosphonic acid used, in No. 3 weakly alkalized by addition of NaOH solution and No. 4 strongly alkalized by adding larger Quantities of NaOH. As Table 4 shows, the best results are obtained in the neutralization of the phosphonic acid group (# 3). In this environment, the group is doubly ionized as R-PO 3 2- , in contrast to the normal state (R-PO 3 H - ). At acid pH (# 1), the dissociation of the acid group is inhibited by the increased concentration of H 3 O + ions in the water, the drug can not maintain its required charged state. In the case of a strongly alkaline solution, the acid group is completely dissociated, thus maximally charged. Table 4: Optimal pH range No. pH Am-241 [Bq / cm 2 ] DF In front To 1 1.5 3.75 2.25 1.7 2 4.25 4.63 0.46 10.1 3 6 6.15 0.37 16.8 4 12 3.73 3.36 1.1

Das erfindungsgemäße Verfahren wird vorzugsweise für die Dekontamination von Bauteilen des Kühlmittelsystems eines Kernkraftwerkes (siehe beigefügte Fig. 1) eingesetzt. Im Betrieb baut sich auf den Oberflächen solcher Bauteile eine mehr oder weniger dicke Oxidschicht auf, die, wie eingangs schon erwähnt worden ist, radioaktiv kontaminiert ist. Zunächst wird die Oxidschicht möglichst vollständig entfernt. Die Bauteiloberflächen werden dann mit einer Lösung behandelt, die wenigstens ein anionisches Tensid aus der Gruppe Sulfonsäuren, Phos-phonsäuren, Carbonsäuren und deren Salze enthält. Besonders hervorzuheben ist dabei, dass außer dem Tensid keine weiteren chemischen Zusätze erforderlich sind, d.h. es wird vorzugsweise mit einer wässrigen Lösung gearbeitet, die ausschließlich wenigstens ein Tensid aus der genannten Gruppe enthält. Da außer dem Tensid keine weiteren Substanzen vorhanden sind, gestaltet sich die Entsorgung der Tensidlösung einfach. Was die von den Bauteiloberflächen abgelösten und in die Tensidlösung übergetretenen Partikel betrifft, so war es überraschend, dass diese mit Hilfe eines Anionentauschers oder eines Mischbett-Ionentauschers, d.h. einer Kombination aus Anionen - und Kationentauscher, aus der Lösung entfernt werden können. Nach einmaligem oder wiederholtem Durchlauf der Tensidlösung durch einen Ionentauscher liegt dann praktisch nur noch Wasser vor, das mit geringem Aufwand auf übliche Art und Weise entsorgt werden kann.The inventive method is preferably for the decontamination of components of the coolant system of a nuclear power plant (see attached Fig. 1 ) used. In operation, a more or less thick oxide layer builds up on the surfaces of such components, which, as already mentioned, is radioactively contaminated. First, the oxide layer is removed as completely as possible. The component surfaces are then treated with a solution containing at least one anionic surfactant from the group of sulfonic acids, phosphonic acids, carboxylic acids and their salts. It is particularly noteworthy that, apart from the surfactant, no further chemical additives are required, ie it is preferably carried out with an aqueous solution containing exclusively at least one surfactant from said group. Since apart from the surfactant no other substances are present, the disposal of the surfactant solution is easy. As regards the particles detached from the component surfaces and transferred into the surfactant solution, it was surprising that they can be removed from the solution with the aid of an anion exchanger or a mixed-bed ion exchanger, ie a combination of anion and cation exchangers. After a single or repeated passage of the surfactant solution through an ion exchanger then practically only water is present, which can be disposed of with little effort in the usual way.

Die zweite Behandlungsstufe wird bei einer oberhalb Raumtemperatur, also oberhalb von etwa 25°C liegenden Temperatur durchgeführt, wobei jedoch unterhalb von 100°C gearbeitet wird, um ein Abdampfen und damit einem Wasserverlust zu verringern. Vorzugsweise wird bei Temperaturen von mehr als 50°C gearbeitet, wobei die besten Ergebnisse bei Temperaturen von mehr als 80°C erreicht werden.The second treatment stage is carried out at a temperature above room temperature, that is above about 25 ° C temperature, but operating below 100 ° C, in order to reduce evaporation and thus a loss of water. Preference is given to operating at temperatures of more than 50 ° C, with the best results being achieved at temperatures of more than 80 ° C.

Der pH-Wert der Behandlungslösung in der zweiten Behandlungsstufe ist prinzipiell variierbar. So ist es denkbar, denjenigen pH-Wert zu akzeptieren, der sich durch das in der Lösung vorhandene Tensid ergibt. Sofern es sich bei dem Tensid um eine Säure handelt, wird sich ein pH-Wert im sauren Bereich einstellen. Die besten Ergebnisse, insbesondere bei der Verwendung eines Phosphonsäurederivates als Tensid werden in einem pH-Wertbereich von 3 bis 9 erreicht.The pH of the treatment solution in the second treatment stage is in principle variable. Thus, it is conceivable to accept the pH which results from the surfactant present in the solution. If the surfactant is an acid, it will have a pH in the acidic range to adjust. The best results, especially when using a Phosphonsäurederivates as a surfactant are achieved in a pH range of 3 to 9.

Die Konzentration der Wirkkomponente, also eines Tensides der in Rede stehenden Art in der zweiten Behandlungslösung beträgt 0,1g/l bis 10g/l. Unterhalb von 0,1g/l findet eine Verringerung der Alphakontamination der Bauteiloberfläche in nennenswertem Ausmaß nicht statt. Oberhalb von 10g/l ist eine Steigerung des Dekontaminationsfaktors kaum noch zu beobachten, so dass über den genannten Wert hinaus gehende Konzentrationen praktisch wirkungslos sind. Ein sehr guter Kompromiss zwischen dem Einsatz an Tensidmenge und der Dekontaminationseffektivität wird bei Tensidkonzentrationen bis 3g/l erreicht.The concentration of the active component, ie a surfactant of the type in question in the second treatment solution is 0.1 g / l to 10 g / l. Below 0.1 g / l, a reduction in the alpha contamination of the component surface does not take place to a significant extent. Above 10 g / l, an increase in the decontamination factor is barely to be observed, so that concentrations in excess of the stated value are virtually ineffective. A very good compromise between the amount of surfactant used and the decontamination efficiency is achieved at surfactant concentrations up to 3 g / l.

Zur Durchführung der zweiten Behandlungsstufe ist es prinzipiell denkbar, die nach der ersten Behandlungslösung vorhandene verbrauchte Reinigungslösung zu entfernen und durch die zweite Behandlungslösung zu ersetzen, also beispielsweise im Falle der Dekontamination des Kühlmittelsystems eines Kernkraftwerkes dieses zu entleeren und anschließend mit der zweiten Behandlungslösung wieder zu füllen. Bei der bevorzugten Vorgehensweise wird jedoch die erste Behandlungslösung weitgehend von den in ihr enthaltenen Substanzen, also einer zum Zwecke der Ablösung der auf einer Bauteiloberfläche vorhandenen Oxidschicht dienenden Dekontaminationssäure und aus der Oxidschicht stammenden Metallionen befreit. Zur Entfernung der Dekontaminationssäure, beispielsweise Oxalsäure oder ähnliche, organische Säuren, wird die Behandlungslösung mit UV-Licht bestrahlt, wodurch die Säure zu Kohlenstoffdioxid und Wasser zersetzt wird. Die in der verbrauchten Dekontaminationslösung enthaltenen Metallionen werden dadurch entfernt, dass die Lösung über einen Ionentauscher geführt wird.To carry out the second treatment stage, it is in principle conceivable to remove the used after the first treatment solution spent cleaning solution and replaced by the second treatment solution, so for example in the case of decontamination of the coolant system of a nuclear power plant to empty this and then refill with the second treatment solution , In the preferred procedure, however, the first treatment solution is largely freed from the substances contained in it, ie a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer. To remove the decontamination acid, for example, oxalic acid or the like, organic acids, the treatment solution is irradiated with UV light, whereby the acid is decomposed into carbon dioxide and water. The in the spent decontamination solution contained metal ions are removed by passing the solution through an ion exchanger.

In der beigefügten Abbildung Fig. 1 ist schematisch das Kühlmittelsystem eines Siedewasserreaktors dargestellt. Es umfasst neben dem Druckbehälter 1, in dem zumindest im Betrieb eine Vielzahl von Brennelementen 2 vorhanden sind, ein Leitungssystem 3, das über Stutzen 4,5 an den Druckbehälter 1 angeschlossen ist, sowie diverse Einbauten wie z.B. Kondensatoren, wobei die Einbauten in ihrer Gesamtheit durch den Kasten 6 in Fig. 1 symbolisiert sind. Zur Durchführung der ersten Behandlungsstufe wird bei einer Dekontamination des gesamten Kühlmittelsystems dieses mit einer Behandlungslösung befüllt, die beispielsweise eine komplexbildende organische Säure enthält. In der Regel wird einem solchen Dekontaminationsschritt ein Oxidationsschritt vorgeschaltet, um, wie eingangs schon erwähnt, in der sich auf den inneren Oberflächen 7 der Bauteile befindlichen Oxidschicht enthaltenes Chrom-III zu Chrom-VI zu oxidieren. Im Falle einer Komplettdekontamination wird das gesamte Kühlsystem gefüllt, ansonsten können auch nur Teile, beispielsweise nur ein Abschnitt des Leistungssystems, behandelt werden.In the attached picture Fig. 1 is shown schematically the coolant system of a boiling water reactor. It comprises, in addition to the pressure vessel 1, in which at least in operation a plurality of fuel elements 2 are present, a conduit system 3, which is connected via nozzles 4.5 to the pressure vessel 1, and various internals such as capacitors, the internals in their entirety through the box 6 in Fig. 1 are symbolized. In order to carry out the first treatment stage, in the event of decontamination of the entire coolant system, it is filled with a treatment solution which contains, for example, a complex-forming organic acid. As a rule, such an decontamination step is preceded by an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI. In the case of complete decontamination, the entire cooling system is filled, otherwise only parts, for example only a portion of the power system, can be treated.

Nachdem die sich im System befindliche verbrauchte Lösung auf die oben beschriebene Weise gereinigt wurde, also die darin enthaltene Dekontaminationssäure zerstört und Metallionen mit Hilfe eines Ionentauschers entfernt wurden, wird der so entstandenen Behandlungslösung ein Tensid, vorzugsweise Phosphonsäure oder Phosphonsäuresalz, dosiert und die zweite Behandlungsstufe durchgeführt.After the consumed solution in the system has been cleaned in the manner described above, ie the decontamination acid contained therein was destroyed and metal ions were removed with the aid of an ion exchanger, the resulting treatment solution is dosed with a surfactant, preferably phosphonic acid or phosphonic acid salt, and the second treatment stage is carried out ,

Claims (21)

  1. Method for chemically decontaminating radioactively contaminated surfaces of a metallic component of nuclear plants, wherein
    - in a first treatment stage, an oxide layer produced on the component due to corrosion of the component material is removed from the component surface using a first aqueous treatment solution, containing an organic decontamination acid, and
    - in a second treatment stage connected thereto, the surface which is at least partially free of oxide is treated using a second aqueous treatment solution, containing an active component for removing particles adhering to the surface, wherein the active component consists of at least one anionic surfactant from the group of sulphonic acids, phosphonic acids and carbonic acids and salts of thereof, wherein the second treatment solution is conducted via an ion exchanger, at the latest after the second treatment stage has finished.
  2. Method according to claim 1,
    characterised in that,
    the surfactants used are ones which feature an organic radical with 12 to 22 carbon atoms.
  3. Method according to claim 2,
    characterised by
    using surfactants with an organic radical with 14 to 18 carbon atoms.
  4. Method according to one of claims 1 to 3,
    characterised in that,
    the second treatment stage is carried out at a temperature of 25°C to less than 100°C.
  5. Method according to claim 4,
    characterised by
    a treatment temperature of greater than 50°C.
  6. Method according to claim 4,
    characterised by
    a treatment temperature of greater than 80°C.
  7. Method according to one of claims 4 to 6,
    characterised by
    a treatment temperature of 95°C maximum.
  8. Method according to one of the preceding claims,
    characterised in that,
    during the second treatment stage, the pH value of the second treatment solution, which results due to the presence of at least one surfactant, is maintained.
  9. Method according to one of claims 1 to 8,
    characterised in that,
    the pH value resulting due to the presence of at least one surfactant in the second treatment solution is altered.
  10. Method according to claim 9,
    characterised in that,
    the pH value is increased.
  11. Method according to one of the preceding claims,
    characterised in that,
    a pH value of 3 to 9 is regulated in the second treatment solution.
  12. Method according to claim 11,
    characterised by
    a pH value of the second treatment solution of 6-8.
  13. Method according to one of the preceding claims,
    characterised in that,
    the active component is contained at a concentration of 0.1 g/L to 10 g/L in the second treatment solution.
  14. Method according to claim 13,
    characterised by
    a concentration of 0.1 g/L to 3 g/L.
  15. Method according to one of the preceding claims,
    characterised in that,
    no further chemical substances are added to the second treatment solution, apart from at least one surfactant and, if necessary, an alkalising medium or acidifier.
  16. Method according to one of the preceding claims,
    characterised in that,
    the second treatment solution is obtained from the first treatment solution, wherein at least one or more decontamination acids serving to remove the oxide layers present on a component surface are removed from the first treatment solution.
  17. Method according to claim 16,
    characterised in that,
    the first treatment solution is irradiated with UV light, so as to break down a decontamination acid into carbon dioxide and water.
  18. Method according to claim 16 or 17,
    characterised in that,
    the first treatment solution is conducted via at least one ion exchanger, so as to remove the metal ions contained therein.
  19. Method according to one of the preceding claims,
    characterised in that,
    the first or the second treatment solution is present in a container and a component which is to be treated is immersed in the respective solution.
  20. Method according to one of claims 1 to 19,
    characterised in that,
    a component surface which is to be treated is the inner surface of a container and/or a pipeline system, wherein the container and/or the pipeline system is filled with the first or the second treatment solution.
  21. Method according to claim 20,
    characterised in that,
    it is applied in the cooling system of a nuclear power plant.
EP10709987A 2009-02-18 2010-02-17 Method for decontaminating radioactively contaminated surfaces Active EP2399262B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009009441 2009-02-18
DE102009002681A DE102009002681A1 (en) 2009-02-18 2009-04-28 Method for the decontamination of radioactively contaminated surfaces
PCT/EP2010/051957 WO2010094692A1 (en) 2009-02-18 2010-02-17 Method for decontaminating radioactively contaminated surfaces

Publications (2)

Publication Number Publication Date
EP2399262A1 EP2399262A1 (en) 2011-12-28
EP2399262B1 true EP2399262B1 (en) 2012-11-21

Family

ID=42538319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709987A Active EP2399262B1 (en) 2009-02-18 2010-02-17 Method for decontaminating radioactively contaminated surfaces

Country Status (10)

Country Link
US (1) US8353990B2 (en)
EP (1) EP2399262B1 (en)
JP (1) JP5584706B2 (en)
KR (1) KR101295017B1 (en)
CN (1) CN102209992B (en)
CA (1) CA2749642C (en)
DE (1) DE102009002681A1 (en)
ES (1) ES2397256T3 (en)
TW (1) TWI595506B (en)
WO (1) WO2010094692A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1402751B1 (en) * 2010-11-12 2013-09-18 Ecir Eco Iniziativa E Realizzazioni S R L METHOD FOR CONDITIONING SCORES ARISING FROM DISPOSAL OF NUCLEAR PLANTS
CN103489495B (en) * 2012-06-14 2016-10-05 中国辐射防护研究院 A kind of fixative for controlling radioaerosol and preparation method
DE102013100933B3 (en) * 2013-01-30 2014-03-27 Areva Gmbh Process for surface decontamination of components of the coolant circuit of a nuclear reactor
DE102013102331B3 (en) 2013-03-08 2014-07-03 Horst-Otto Bertholdt Process for breaking down an oxide layer
CN105393309B (en) * 2013-08-14 2018-01-19 阿海珐有限公司 Method for the radioactive pollution on the surface of reducing the part used in nuclear reactor
DE102013108802A1 (en) * 2013-08-14 2015-02-19 Areva Gmbh Method for reducing the radioactive contamination of a water-bearing circuit of a nuclear power plant
JP2017506151A (en) * 2014-01-22 2017-03-02 ジャン−ミシェル・フジェリュー Yield optimization method for electrolytic extraction of heavy metals in high salt concentration aqueous solution and apparatus for carrying it out
CN105895172A (en) * 2014-12-26 2016-08-24 姚明勤 Quick and effective design measure for passive safety of pressurized water reactor
WO2016124240A1 (en) * 2015-02-05 2016-08-11 Areva Gmbh Method of decontaminating metal surfaces in a cooling system of a nuclear reactor
TWI594265B (en) * 2015-05-13 2017-08-01 森元信吉 Method of treating water contaminated by radiation and sealing atomic furnace device
KR101639651B1 (en) 2015-06-05 2016-08-12 주식회사 큐리텍 Automatic radioactive decontamination apparatus
CA3003488C (en) * 2015-11-03 2023-03-14 Framatome Gmbh Method of decontaminating metal surfaces in a heavy water cooled and moderated nuclear reactor
MX2018003997A (en) 2016-08-04 2018-05-28 Dominion Eng Inc Suppression of radionuclide deposition on nuclear power plant components.
KR102061287B1 (en) * 2018-04-17 2019-12-31 한국수력원자력 주식회사 Dismantling and decontamination system and method of biodegradable concrete of pwr type nuclear power plant
JP7337442B2 (en) * 2019-02-19 2023-09-04 株式会社ディスコ Machining fluid circulation system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793221A (en) * 1972-09-13 1974-02-19 Basf Wyandotte Corp Thickened acid cleaner
AU493149B2 (en) * 1973-09-20 1978-05-17 Basf Wyandotte Corporation Method of cleaning vehicles witha thickened acid composition
DE3339048A1 (en) * 1983-10-27 1985-05-09 Nea Nuclear Engineering Fuer A Process for decontaminating solid bodies, and device and ultrasonic source for carrying out the process
US4729855A (en) * 1985-11-29 1988-03-08 Westinghouse Electric Corp. Method of decontaminating radioactive metal surfaces
US5037482A (en) * 1990-02-16 1991-08-06 Macdermid, Incorporated Composition and method for improving adhesion of coatings to copper surfaces
JPH05148670A (en) * 1991-11-26 1993-06-15 Saga Pref Gov Corrosion inhibitor for metal
GB9422539D0 (en) * 1994-11-04 1995-01-04 British Nuclear Fuels Plc Decontamination processes
DE9420866U1 (en) * 1994-12-29 1995-03-09 Bundesrep Deutschland Decontamination solution for radiation from radioactive contaminated surfaces
US5752206A (en) * 1996-04-04 1998-05-12 Frink; Neal A. In-situ decontamination and recovery of metal from process equipment
US5814204A (en) * 1996-10-11 1998-09-29 Corpex Technologies, Inc. Electrolytic decontamination processes
JP3003684B1 (en) * 1998-09-07 2000-01-31 日本電気株式会社 Substrate cleaning method and substrate cleaning liquid
DE19851852A1 (en) * 1998-11-10 2000-05-11 Siemens Ag Process for the decontamination of a surface of a component
CA2300698C (en) * 1999-02-19 2003-10-07 J. Garfield Purdon Broad spectrum decontamination formulation and method of use
JP4516176B2 (en) * 1999-04-20 2010-08-04 関東化学株式会社 Substrate cleaning solution for electronic materials
US6652661B2 (en) * 2001-10-12 2003-11-25 Bobolink, Inc. Radioactive decontamination and translocation method
US20050187130A1 (en) * 2004-02-23 2005-08-25 Brooker Alan T. Granular laundry detergent composition comprising an anionic detersive surfactant, and low levels of, or no, zeolite builders and phosphate builders
DE102004047572A1 (en) 2004-09-27 2006-04-06 Alfred Kärcher Gmbh & Co. Kg Liquid concentrate set
ATE522907T1 (en) * 2005-11-29 2011-09-15 Areva Np Gmbh METHOD FOR DECONTAMINATION OF A SURFACE HAVING AN OXIDE LAYER OF A COMPONENT OR A SYSTEM OF A NUCLEAR ENGINEERING PLANT
DE102007038947A1 (en) 2007-08-17 2009-02-26 Areva Np Gmbh Method of decontaminating surfaces of nuclear installations contaminated with alpha emitters
DE102007052206A1 (en) * 2007-10-30 2009-05-07 Henkel Ag & Co. Kgaa Bleach-containing washing or cleaning agent in liquid form

Also Published As

Publication number Publication date
CA2749642C (en) 2015-04-07
EP2399262A1 (en) 2011-12-28
TWI595506B (en) 2017-08-11
WO2010094692A1 (en) 2010-08-26
JP2012518165A (en) 2012-08-09
US8353990B2 (en) 2013-01-15
US20110303238A1 (en) 2011-12-15
JP5584706B2 (en) 2014-09-03
CA2749642A1 (en) 2010-08-26
KR101295017B1 (en) 2013-08-09
CN102209992A (en) 2011-10-05
DE102009002681A1 (en) 2010-09-09
CN102209992B (en) 2014-11-05
KR20110118726A (en) 2011-10-31
TW201037730A (en) 2010-10-16
ES2397256T3 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
EP2399262B1 (en) Method for decontaminating radioactively contaminated surfaces
EP2417606B1 (en) Method for decontaminating surfaces
EP2564394B1 (en) Process for decontamination of surfaces
DE3013551A1 (en) DECONTAMINATION OF CORE REACTORS
DE2714245A1 (en) DECONTAMINATION PROCEDURES
EP0313843B1 (en) Process for decontaminating surfaces
DE102017115122B4 (en) Method for decontaminating a metal surface in a nuclear power plant
DE2004600A1 (en) Methods for cleaning radioactive metal surfaces
DE19818772C2 (en) Process for reducing the radioactivity of a metal part
EP2188814B1 (en) Method for decontaminating surfaces, which have been contaminated with alpha emitters, of nuclear plants
EP2787509A1 (en) Method for decomposing an oxide layer
DE3143440A1 (en) METHOD FOR DECONTAMINATING RADIOACTIVELY CONTAMINATED SURFACES OF METAL MATERIALS
DE3046563A1 (en) DECONTAMINATING REAGENT AND METHOD FOR DECONTAMINATING A CORE REACTOR OR PARTS THEREOF
EP0170796B1 (en) Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate
EP3607562B1 (en) Dosing of zinc for decontamination of light water reactors
EP1084078B1 (en) Method for removing nitrate ions from a solution
CH691479A5 (en) Surface treatment of steel.
DE2328283A1 (en) METHOD FOR DETERMINING THE CONTENT OF BROKEN PARTICLES OF ENCLOSED SEPARATE MATERIAL IN COMPACT BODIES OF NUCLEAR REACTORS
DE2511112B2 (en) Process for the decontamination of surfaces of metallic materials
DD237095A3 (en) PROCESS FOR DECONTAMINATING EQUIPMENT OF NUCLEAR STEAM GENERATING EQUIPMENT
DE4310749A1 (en) Electrochemical decontamination of metal component using strongly alkaline electrolyte liq. - used to remove radioactive oxide layers from PWR and BWR components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001703

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2397256

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130305

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AREVA GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

26N No opposition filed

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001703

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010001703

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20131112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100217

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 585453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180221

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010001703

Country of ref document: DE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, 91052 ERLANGEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: AREVA NP GMBH

Effective date: 20190107

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190107

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AREVA NP GMBH

Effective date: 20190111

Ref country code: NL

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190111

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FRAMATOME GMBH

Effective date: 20190516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20210118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210218

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230227

Year of fee payment: 14

Ref country code: ES

Payment date: 20230306

Year of fee payment: 14

Ref country code: CH

Payment date: 20230303

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230220

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240306

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 15

Ref country code: CH

Payment date: 20240301

Year of fee payment: 15