EP2371977B1 - Cobalt alloy and method for its manufacture - Google Patents

Cobalt alloy and method for its manufacture Download PDF

Info

Publication number
EP2371977B1
EP2371977B1 EP11158754.9A EP11158754A EP2371977B1 EP 2371977 B1 EP2371977 B1 EP 2371977B1 EP 11158754 A EP11158754 A EP 11158754A EP 2371977 B1 EP2371977 B1 EP 2371977B1
Authority
EP
European Patent Office
Prior art keywords
alloy
cobalt
carbides
accordance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11158754.9A
Other languages
German (de)
French (fr)
Other versions
EP2371977A1 (en
Inventor
Jozef H.G. Mattheij
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Turbo Services Venlo BV
Original Assignee
Sulzer Turbo Services Venlo BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Turbo Services Venlo BV filed Critical Sulzer Turbo Services Venlo BV
Priority to EP11158754.9A priority Critical patent/EP2371977B1/en
Publication of EP2371977A1 publication Critical patent/EP2371977A1/en
Application granted granted Critical
Publication of EP2371977B1 publication Critical patent/EP2371977B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling

Definitions

  • the invention relates to a cobalt alloy according to the preamble of the independent claim of this category and to a method for producing such a cobalt alloy.
  • Cobalt alloys or cobalt-based alloys, commonly associated with the so-called superalloys, are now commonly used for high temperature applications, and particularly in corrosive environments. They are characterized by a high (warm) strength and also offer a high creep resistance and a good resistance to galling, abrasion and Reibverschleiss in general.
  • cobalt-based alloys are also used for parts of gas turbines that may typically be exposed to temperatures of up to over 1000 ° C under severe oxidizing conditions during operation.
  • One example is the turbine blades, especially those in the hottest part of the turbine.
  • cobalt alloys as a welding or coating material both for the production but also for the repair of turbine blades.
  • cobalt-based alloys contain the following components: In addition to the cobalt element cobalt, nickel is often added, mainly to stabilize the austenitic structure. This refers to the structure that corresponds to the cubic face-centered (fcc: face centered cubic) structure of the Austentit.
  • chromium is added especially for the purpose of improving the corrosion resistance. It is also known to add carbon to the alloy which serves to form carbides which increase strength, hardness and wear resistance. In addition to chromium, other metals such as tungsten, tantalum, hafnium, molybdenum or zirconium are added to form carbides.
  • a directionally solidified cobalt-based alloy in which tantalum carbides are precipitated in a fibrous structure.
  • the tantalum carbides are incorporated as a directed fibrous phase, that is, the individual tantalum carbides are each formed as a longitudinally extended fiber, these fibers are aligned substantially parallel to each other along a preferred direction.
  • alloys that can be used for tools. These alloys consist of 10 to 40% tungsten and / or molybdenum, 0.5 to 4% carbon and at least one reactive metal from the group chromium, vanadium, niobium, tantalum. Silicon or manganese. The remainder of the alloy consists of a mixture of iron and cobalt. The alloys do not contain nickel.
  • the JP-A-09 206986 describes a valve for an engine made of an alloy.
  • the alloy contains chromium, tungsten, silicon, carbon, molybdenum, nickel, niobium and cobalt. No statement is made on the atomic ratio of carbide-forming metal (niobium) to carbon.
  • the CH-A-504 926 describes armor made using alloy welding wires.
  • the alloys include carbon, silicon, manganese, chromium, tungsten, molybdenum, copper, iron, nickel and cobalt. No statement is made on the atomic ratio of carbide-forming metal (niobium) to carbon.
  • a cobalt alloy consisting of at least 30 weight percent cobalt, nickel, namely at most 20 weight percent nickel, 5 to 30 weight percent chromium, 0.4 to 2.5 weight percent carbon and at least one carbide-forming metal that forms carbides with the carbon, wherein the atomic ratio in the Alloy from the carbide-forming metal to which carbon is at least 0.8, said alloy optionally further comprising one or more of molybdenum, tungsten, aluminum, titanium, niobium, iron, silicon, manganese, vanadium, boron, zirconium and impurities.
  • the carbides are present as stable carbides in the form of a finely divided phase without preferential direction in the alloy.
  • this cobalt alloy has a significantly higher high-temperature stability, in particular with regard to the carbides.
  • cobalt-base alloys which are characterized by directional solidification, in which the carbides are precipitated in a directional fiber structure
  • the cobalt alloy according to the invention can be described as an equiaxial alloy.
  • the individual carbides have no significant preferred direction, so they are not fibrous for example, but rather comparable grains.
  • These carbides are fine and distributed substantially uniformly over the cobalt matrix, that is, the carbides form a finely divided phase.
  • a preferred direction as in the directionally solidified cobalt alloys does not exist in the inventive cobalt alloy.
  • the components designated as optional, which may be part of the cobalt alloy according to the invention, are elements which are usually used as additives in superalloys, in particular in cobalt-base alloys.
  • the carbides are at least predominantly of the MC type.
  • the atomic ratio of metal to carbon in the respective carbide is one to one, so each carbon atom is connected to exactly one metal atom to form a carbide.
  • a method for producing such a cobalt alloy is further proposed in which the components of the alloy are transferred by heat input into a melt and then to produce the finely divided carbides a cooling at a cooling rate of at least one degree per second, in particular at least ten degrees per second. This rapid cooling produces the finely divided carbide phase.
  • the desired structure of the carbide phase can be realized, namely the fine distribution of the carbides and the avoidance of a preferred direction as present in the directionally solidified alloys is.
  • the invention proposes a cobalt alloy which contains carbides and which is characterized in particular in that the carbides are in the form of a finely divided phase without preferential direction in the alloy.
  • the carbides do not form fibers aligned along a preferential direction, as in the directionally solidified cobalt alloys, but the individual carbides are formed like grains, their excretion is equiaxial and they are finely dispersed the cobalt matrix.
  • the atomic ratio of the metal M to carbon C in the carbide is one to one.
  • the alloy according to the invention consists of at least 30% by weight (wt.%) Of cobalt (Co) serving as the base material and balancing material of the alloy, at most 20% by weight of nickel (Ni), 5 to 30% by weight of chromium (Cr). , 0.4 to 2.5 wt.% Carbon (C) and at least one carbide-forming metal that forms carbides with the carbon.
  • the atomic ratio of the carbide-forming metal or the carbide-forming metals M and the carbon C is at least 0.8, that is, of the atomic ratio per carbon atom C at least 0.8 metal atom M is present. This ensures, among other things, that predominantly MC type carbides are eliminated.
  • the alloy may further include one or more of the following elements commonly used in cobalt base alloys: molybdenum, tungsten, aluminum, titanium, niobium, iron, silicon, manganese, vanadium, boron, zirconium, and impurities
  • At least the predominant part of the carbides is in each case smaller than five micrometers, preferably smaller or approximately equal to one micrometer.
  • the carbide-forming metal comprises at least one metal selected from the group consisting of tantalum (Ta), hafnium (Hf), zirconium (Zr) and niobium (Nb). Tantalum is particularly preferred.
  • Ta tantalum
  • Hf hafnium
  • Zr zirconium
  • Nb niobium
  • Tantalum is particularly preferred.
  • the fact that some elements, such as zirconium or niobium, are mentioned both as carbide formers and as optional components of the alloy, is to be understood to include a first part that serves as a carbide former and a second part that does not form carbides, but rather a carbide can fulfill other function in the alloy.
  • tantalum as the carbide-forming metal
  • the tantalum it being possible for the tantalum to be replaced completely or partially and at about the atomic ratio one to one by hafnium and / or zirconium.
  • "Atomic ratio one to one" means that a number of tantalum atoms by an equal number of hafnium atoms or an equal number of zirconium atoms, or a the same number of a mixture of hafnium and zirconium atoms can be replaced.
  • the components of the alloy are transferred into a melt by introduction of heat and then rapid cooling takes place to produce the finely divided carbides with a cooling rate of at least one degree per second, in particular at least ten degrees per second.
  • the heat input takes place by laser welding, because in this process the required cooling rate is relatively easy to implement.
  • the cobalt alloy according to the invention and the method according to the invention can be used in particular for welding or coating, in particular by means of laser welding.
  • the starting material for the alloy is provided in the form of a powder mixture.
  • the starting material contains (apart from impurities) 10% by weight of nickel, 20% by weight of chromium, 20% by weight of tantalum, 1.2% by weight of carbon.
  • the rest is cobalt.
  • the tantalum may be wholly or partially replaced at about the atomic ratio one to one by hafnium and / or zirconium.
  • This powder is then applied to a substrate in a laser welding process known per se. With the laser beam, a molten bath is locally generated on the substrate, in which the powder is introduced. During the subsequent cooling, which takes place with at least one degree per second, the cobalt alloy according to the invention then forms with the finely distributed carbide phase.
  • the powder thus serves as a weld filler in a laser welding process.
  • Fig. 1 shows an enlarged view of a layer of the embodiment of an inventive alloy.
  • the lighter spots or points form the carbide phase, which in the Republicsgemäss black or darker matrix is embedded.
  • the individual carbides are formed like grains, their excretion takes place equiaxially, ie without preferential direction, and they are finely and evenly distributed over the cobalt matrix.
  • the majority of the carbides have an extension that is less than or equal to one micrometer.
  • the in Fig. 1 Alloy held at 1000 ° C for a thousand hours.
  • Fig. 1 shows the cobalt alloy after this annealing treatment.
  • the cobalt alloy according to the invention is suitable both as a welding material, for example for the production of welds or for repairing workpieces or for build-up welding, for example for the production of components, as well as a coating material, for example to provide a protective layer against (hot) corrosion or corrosion on a substrate Apply wear.
  • the cobalt alloy according to the invention or the process according to the invention for producing or repairing parts of a gas turbine is particularly suitable for producing and repairing turbine blades.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Die Erfindung betrifft eine Kobaltlegierung gemäss dem Oberbegriff des unabhängigen Patentanspruchs dieser Kategorie sowie ein Verfahren zum Herstellen einer solchen Kobaltlegierung.The invention relates to a cobalt alloy according to the preamble of the independent claim of this category and to a method for producing such a cobalt alloy.

Kobaltlegierungen bzw. Kobaltbasislegierungen, die üblicherweise zu den sogenannten Superlegierungen gehören, werden heute häufig für Hochtemperaturanwendungen und insbesondere in korrosiven Umgebungen eingesetzt. Sie zeichnen sich durch eine hohe (Warm-) Festigkeit aus und bieten zudem eine hohe Kriechfestigkeit sowie einen guten Widerstand gegen Fressen, Abrieb und Reibverschleiss im allgemeinen.Cobalt alloys, or cobalt-based alloys, commonly associated with the so-called superalloys, are now commonly used for high temperature applications, and particularly in corrosive environments. They are characterized by a high (warm) strength and also offer a high creep resistance and a good resistance to galling, abrasion and Reibverschleiss in general.

Insbesondere werden Kobaltbasislegierungen auch für Teile von Gasturbinen verwendet, die im Betrieb typischerweise Temperaturen von bis zu über 1000°C unter stark oxidierenden Bedingungen ausgesetzt sein können. Ein Beispiel sind die Turbinenschaufeln, vor allem diejenigen, die sich im heissesten Bereich der Turbine befinden. Hier ist es bekannt, Kobaltlegierungen als Schweiss- oder Beschichtungsmaterial sowohl für die Herstellung aber auch für die Reparatur von Turbinenschaufeln zu verwenden.In particular, cobalt-based alloys are also used for parts of gas turbines that may typically be exposed to temperatures of up to over 1000 ° C under severe oxidizing conditions during operation. One example is the turbine blades, especially those in the hottest part of the turbine. Here it is known to use cobalt alloys as a welding or coating material both for the production but also for the repair of turbine blades.

Üblicherweise enthalten bekannte Kobaltbasislegierungen die folgenden Komponenten: Neben dem Basis- bzw. Ausgleichelement Kobalt wird häufig Nickel hinzugefügt, hauptsächlich, um die austenitische Struktur zu stabilisieren. Damit ist die Struktur gemeint, welche der kubisch flächenzentrierten (fcc: face centered cubic) Struktur des Austentit entspricht.Conventionally, known cobalt-based alloys contain the following components: In addition to the cobalt element cobalt, nickel is often added, mainly to stabilize the austenitic structure. This refers to the structure that corresponds to the cubic face-centered (fcc: face centered cubic) structure of the Austentit.

Ferner wird insbesondere zur Verbesserung der Korrosionsbeständigkeit Chrom beigefügt. Auch ist es bekannt, der Legierung Kohlenstoff beizumischen, der dazu dient Karbide zu formen, welche die Festigkeit, die Härte und den Verschleisswiderstand erhöhen. Neben Chrom werden auch andere Metalle wie beispielsweise Wolfram, Tantal, Hafnium, Molybdän oder Zirkonium zur Bildung von Karbiden beigefügt.Further, chromium is added especially for the purpose of improving the corrosion resistance. It is also known to add carbon to the alloy which serves to form carbides which increase strength, hardness and wear resistance. In addition to chromium, other metals such as tungsten, tantalum, hafnium, molybdenum or zirconium are added to form carbides.

Aus der US-A-4,058,415 ist beispielsweise eine gerichtet erstarrte (directionally solidified) Kobaltbasislegierung bekannt, bei welcher Tantalkarbide in einer Faserstruktur ausgeschieden werden. In der Kobaltmatrix sind die Tantalkarbide als eine gerichtet faserige Phase eingelagert, das heisst die einzelnen Tantalkarbide sind jeweils als eine längserstreckte Faser ausgebildet, wobei diese Fasern im Wesentlichen parallel zueinander entlang einer Vorzugsrichtung ausgerichtet sind.From the US-A-4,058,415 For example, a directionally solidified cobalt-based alloy is known in which tantalum carbides are precipitated in a fibrous structure. In the cobalt matrix, the tantalum carbides are incorporated as a directed fibrous phase, that is, the individual tantalum carbides are each formed as a longitudinally extended fiber, these fibers are aligned substantially parallel to each other along a preferred direction.

Aus der US-A-3 655 365 sind verschiedene Legierungen bekannt, die für Werkzeuge eingesetzt werden können. Diese Legierungen bestehen aus 10 bis 40 % Wolfram und/oder Molybdän, 0,5 - 4 % Kohlenstoff und zumindest einem reaktiven Metall aus der Gruppe Chrom, Vanadium, Niob, Tantalum. Silizium oder Mangan. Der Rest der Legierung besteht aus einer Mischung von Eisen und Kobalt. Die Legierungen enthalten kein Nickel.From the US-A-3,655,365 Various alloys are known that can be used for tools. These alloys consist of 10 to 40% tungsten and / or molybdenum, 0.5 to 4% carbon and at least one reactive metal from the group chromium, vanadium, niobium, tantalum. Silicon or manganese. The remainder of the alloy consists of a mixture of iron and cobalt. The alloys do not contain nickel.

Die JP-A-09 206986 beschreibt ein Ventil für einen Motor, das aus einer Legierung hergestellt ist. Die Legierung enthält Chrom, Wolfram, Silizium, Kohlenstoff, Molybdän, Nickel, Niob und Kobalt. Es wird keine Aussage zum Atomverhältnis aus dem karbidbildenden Metall (Niob) zum Kohlenstoff gemacht.The JP-A-09 206986 describes a valve for an engine made of an alloy. The alloy contains chromium, tungsten, silicon, carbon, molybdenum, nickel, niobium and cobalt. No statement is made on the atomic ratio of carbide-forming metal (niobium) to carbon.

Die CH-A-504 926 beschreibt Aufpanzerungen, die unter Verwendung von Schweissdrähten aus Legierungen hergestellt werden. Die Legierungen enthalten Kohlenstoff, Silizium, Mangan, Chrom, Wolfram, Molybdän, Kupfer, Eisen, Nickel und Kobalt. Es wird keine Aussage zum Atomverhältnis aus dem karbidbildenden Metall (Niob) zum Kohlenstoff gemacht.The CH-A-504 926 describes armor made using alloy welding wires. The alloys include carbon, silicon, manganese, chromium, tungsten, molybdenum, copper, iron, nickel and cobalt. No statement is made on the atomic ratio of carbide-forming metal (niobium) to carbon.

Auch wenn sich Kobaltbasislegierungen mit Karbiden in vieler Hinsicht bewährt haben, so hat sich doch gezeigt, dass insbesondere bei hohen Temperaturen viele der Karbide nicht stabil sind, sich zersetzen und an Korngrenzen ausgeschieden bzw. abgelagert werden. Hieraus resultiert eine reduzierte Kriechfestigkeit und die Legierung wird anfälliger für Rissbildungen, insbesondere an den Korngrenzen.Although cobalt-based alloys have been proven in many respects with carbides, it has been shown that especially at high temperatures Temperatures many of the carbides are not stable, decompose and excreted at grain boundaries or deposited. This results in a reduced creep strength and the alloy becomes more susceptible to cracking, especially at the grain boundaries.

Ausgehend von diesem Stand der Technik ist es daher eine Aufgabe der Erfindung, eine Kobaltlegierung vorzuschlagen, die diesen Nachteil nicht aufweist und insbesondere bei hohen Temperaturen dauerhaft sehr gute mechanische Eigenschaften aufweist. Ferner soll ein Verfahren zum Herstellen einer solchen Kobaltlegierung vorgeschlagen werden.Starting from this prior art, it is therefore an object of the invention to propose a cobalt alloy which does not have this disadvantage and in particular has permanently very good mechanical properties at high temperatures. Furthermore, a method for producing such a cobalt alloy is to be proposed.

Die diese Aufgabe lösenden Gegenstände der Erfindung sind durch die Merkmale der unabhängigen Patentansprüche gekennzeichnet.The problem-solving objects of the invention are characterized by the features of the independent claims.

Erfindungsgemäss wird also eine Kobaltlegierung vorgeschlagen, bestehend aus mindestens 30 Gewichtsprozent Kobalt, Nickel, nämlich höchstens 20 Gewichtsprozent Nickel, 5 bis 30 Gewichtsprozent Chrom, 0.4 bis 2.5 Gewichtsprozent Kohlenstoff sowie mindestens einem karbidbildenden Metall das mit dem Kohlenstoff Karbide bildet, wobei das Atomverhältnis in der Legierung aus dem karbidbildenden Metall zu dem Kohlenstoff mindestens 0.8 beträgt, wobei die Legierung optional ferner eines oder mehrere der Elemente Molybdän, Wolfram, Aluminium, Titan, Niob, Eisen, Silizium, Mangan, Vanadium, Bor, Zirkonium sowie Verunreinigungen enthalten kann. Die Karbide liegen als stabile Karbide in Form einer fein verteilten Phase ohne Vorzugsrichtung in der Legierung vor.According to the invention, therefore, a cobalt alloy is proposed, consisting of at least 30 weight percent cobalt, nickel, namely at most 20 weight percent nickel, 5 to 30 weight percent chromium, 0.4 to 2.5 weight percent carbon and at least one carbide-forming metal that forms carbides with the carbon, wherein the atomic ratio in the Alloy from the carbide-forming metal to which carbon is at least 0.8, said alloy optionally further comprising one or more of molybdenum, tungsten, aluminum, titanium, niobium, iron, silicon, manganese, vanadium, boron, zirconium and impurities. The carbides are present as stable carbides in the form of a finely divided phase without preferential direction in the alloy.

Es hat sich gezeigt, dass diese Kobaltlegierung eine deutlich höhere Hochtemperaturstabilität aufweist, insbesondere hinsichtlich der Karbide. Im Unterschied zu bekannten Kobaltbasislegierungen, die durch eine gerichtete Erstarrung gekennzeichnet sind, bei der die Karbide in einer gerichteten Faserstruktur ausgeschieden werden, lässt sich die erfindungsgemässe Kobaltlegierung als eine äquiaxiale Legierung bezeichnen. Die einzelnen Karbide haben keine wesentliche Vorzugsrichtung, sind also beispielsweise nicht faserartig ausgebildet sonder eher Körnern vergleichbar. Diese Karbide sind fein und im wesentlichen gleichmässig über die Kobaltmatrix verteilt, das heisst die Karbide bilden eine fein verteilte Phase. Eine Vorzugsrichtung wie in den gerichtet erstarrten Kobaltlegierungen existiert bei der erfindungsgemässen Kobaltlegierung nicht.It has been shown that this cobalt alloy has a significantly higher high-temperature stability, in particular with regard to the carbides. In contrast to known cobalt-base alloys, which are characterized by directional solidification, in which the carbides are precipitated in a directional fiber structure, the cobalt alloy according to the invention can be described as an equiaxial alloy. The individual carbides have no significant preferred direction, so they are not fibrous for example, but rather comparable grains. These carbides are fine and distributed substantially uniformly over the cobalt matrix, that is, the carbides form a finely divided phase. A preferred direction as in the directionally solidified cobalt alloys does not exist in the inventive cobalt alloy.

Bei den als optional bezeichneten Komponenten, die Bestandteil der erfindungsgemässen Kobaltlegierung sein können, handelt es sich um Elemente, die üblicherweise in Superlegierungen, insbesondere in Kobaltbasislegierungen als Zusätze verwendet werden.The components designated as optional, which may be part of the cobalt alloy according to the invention, are elements which are usually used as additives in superalloys, in particular in cobalt-base alloys.

Vorzugsweise sind die Karbide zumindest überwiegend vom MC Typ. Bei diesem besonders stabilen Typ ist in dem jeweiligen Karbid das Atomverhältnis von Metall zu Kohlenstoff eins zu eins, also ist jedes Kohlenstoffatom mit genau einem Metallatom zu einem Karbid verbunden.Preferably, the carbides are at least predominantly of the MC type. In this particular stable type, the atomic ratio of metal to carbon in the respective carbide is one to one, so each carbon atom is connected to exactly one metal atom to form a carbide.

Erfindungsgemäss wird ferner ein Verfahren zum Herstellen einer solchen Kobaltlegierung vorgeschlagen, bei welchem die Komponenten der Legierung durch Wärmeeintrag in eine Schmelze überführt werden und anschliessend zur Erzeugung der fein verteilten Karbide eine Abkühlung mit einer Kühlrate von mindestens einem Grad pro Sekunde, insbesondere mindestens zehn Grad pro Sekunde, erfolgt. Diese schnelle Abkühlung erzeugt die fein verteilte Karbidphase.According to the invention, a method for producing such a cobalt alloy is further proposed in which the components of the alloy are transferred by heat input into a melt and then to produce the finely divided carbides a cooling at a cooling rate of at least one degree per second, in particular at least ten degrees per second. This rapid cooling produces the finely divided carbide phase.

Für die Erzeugung der fein verteilten Karbidphase ohne Vorzugsrichtung hat es sich als wesentlich erwiesen, dass ein möglichst rasches Abkühlen der Legierung realisiert wird. Es hat sich gezeigt, dass bei einer Kühlrate von mindestens einem Grad pro Sekunde, insbesondere mindestens zehn Grad pro Sekunde, die gewünschte Struktur der Karbidphase realisierbar ist, nämlich die feine Verteilung der Karbide und das Vermeiden einer Vorzugsrichtung wie sie bei den gerichtet erstarrten Legierungen vorhanden ist.For the production of the finely divided carbide phase without preferential direction, it has proven to be essential that a rapid cooling of the alloy is realized. It has been found that at a cooling rate of at least one degree per second, in particular at least ten degrees per second, the desired structure of the carbide phase can be realized, namely the fine distribution of the carbides and the avoidance of a preferred direction as present in the directionally solidified alloys is.

Weitere vorteilhafte Massnahmen und Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Further advantageous measures and embodiments of the invention will become apparent from the dependent claims.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels und anhand der Zeichnung näher erläutert. In der einzigen Zeichnungsfigur zeigt:

Fig. 1:
eine vergrösserte Ansicht einer Schicht aus einem Ausführungsbeispiel einer erfindungsgemässen Legierung.
In the following the invention will be explained in more detail with reference to an embodiment and with reference to the drawing. In the single drawing figure shows:
Fig. 1:
an enlarged view of a layer of an embodiment of an inventive alloy.

Durch die Erfindung wird eine Kobaltlegierung vorgeschlagen, welche Karbide enthält und die insbesondere dadurch gekennzeichnet ist, dass die Karbide in Form einer fein verteilten Phase ohne Vorzugsrichtung in der Legierung vorliegen. Damit ist gemeint, dass die Karbide nicht -wie dies in den gerichtet verfestigten Kobaltlegierungen der Fall ist- jeweils Fasern bilden, die entlang einer Vorzugsrichtung ausgerichtet sind, sondern die einzelnen Karbide sind wie Körner ausgebildet, ihre Ausscheidung erfolgt äquiaxial und sie sind fein verteilt über die Kobaltmatrix.The invention proposes a cobalt alloy which contains carbides and which is characterized in particular in that the carbides are in the form of a finely divided phase without preferential direction in the alloy. By this it is meant that the carbides do not form fibers aligned along a preferential direction, as in the directionally solidified cobalt alloys, but the individual carbides are formed like grains, their excretion is equiaxial and they are finely dispersed the cobalt matrix.

Dabei ist es bevorzugt, dass hauptsächlich besonders stabile Karbide vom MC Typ gebildet werden, das heisst das Atomverhältnis vom Metall M zum Kohlenstoff C im Karbid ist eins zu eins.It is preferred that mainly particularly stable carbides of the MC type are formed, that is, the atomic ratio of the metal M to carbon C in the carbide is one to one.

Um diese fein verteilte Karbidphase in der Kobaltmatrix zu realisieren, wird ein schnelles Abkühlen der Legierung realisiert.To realize this finely divided carbide phase in the cobalt matrix, a rapid cooling of the alloy is realized.

Abgesehen von Verunreinigungen besteht die erfindungsgemässe Legierung aus mindestens 30 Gewichtsprozent (Gew.%) Kobalt (Co), das als Basismaterial und Ausgleichmaterial der Legierung dient, höchstens 20 Gew.% Nickel (Ni), 5 bis 30 Gew.% Chrom (Cr), 0.4 bis 2.5 Gew.% Kohlenstoff (C) sowie mindestens einem karbidbildenden Metall, das mit dem Kohlenstoff Karbide bildet. Das Atomverhältnis aus dem karbidbildenden Metall bzw. den karbidbildenden Metallen M und dem Kohlenstoff C beträgt mindestens 0.8, dass heisst vom Atomverhältnis ist pro Kohlenstoffatom C mindestens 0.8 Metallatom M vorhanden. Hierdurch wird unter anderem gewährleistet, dass überwiegend Karbide vom MC Typ ausgeschieden werden. Optional kann die Legierung ferner noch eines oder mehrere der folgenden Elemente enthalten, die üblicherweise in Kobaltbasislegierungen verwendet werden: Molybdän, Wolfram, Aluminium, Titan, Niob, Eisen, Silizium, Mangan, Vanadium, Bor, Zirkonium sowie Verunreinigungen enthalten kannApart from impurities, the alloy according to the invention consists of at least 30% by weight (wt.%) Of cobalt (Co) serving as the base material and balancing material of the alloy, at most 20% by weight of nickel (Ni), 5 to 30% by weight of chromium (Cr). , 0.4 to 2.5 wt.% Carbon (C) and at least one carbide-forming metal that forms carbides with the carbon. The atomic ratio of the carbide-forming metal or the carbide-forming metals M and the carbon C is at least 0.8, that is, of the atomic ratio per carbon atom C at least 0.8 metal atom M is present. This ensures, among other things, that predominantly MC type carbides are eliminated. Optionally, the alloy may further include one or more of the following elements commonly used in cobalt base alloys: molybdenum, tungsten, aluminum, titanium, niobium, iron, silicon, manganese, vanadium, boron, zirconium, and impurities

Um eine möglichst feine Verteilung der Karbide über die Kobaldmatrix zu erzielen, ist es bevorzugt, dass zumindest der überwiegende Teil der Karbide jeweils kleiner als fünf Mikrometer ist, vorzugsweise kleiner oder etwa gleich ein Mikrometer.In order to achieve the finest possible distribution of the carbides over the cobalt matrix, it is preferred that at least the predominant part of the carbides is in each case smaller than five micrometers, preferably smaller or approximately equal to one micrometer.

Als karbid bildende Metalle eignen sich einige Metalle. Vorzugsweise umfasst das karbidbildende Metall mindestens ein Metall aus der Gruppe, die aus Tantal (Ta), Hafnium (Hf), Zirkonium (Zr) und Niob (Nb) besteht. Dabei ist Tantal besonders bevorzugt. Dass manche Elemente wie beispielsweise Zirkonium oder Niob sowohl als Karbidbildner als auch als optionale Komponente der Legierung genannt sind, ist so zu verstehen, dass diese Elemente einen ersten Teil umfassen, der als Karbidbildner dient und einen zweiten Teil, der keine Karbide bildet, sondern eine andere Funktion in der Legierung erfüllen kann.As carbide-forming metals, some metals are suitable. Preferably, the carbide-forming metal comprises at least one metal selected from the group consisting of tantalum (Ta), hafnium (Hf), zirconium (Zr) and niobium (Nb). Tantalum is particularly preferred. The fact that some elements, such as zirconium or niobium, are mentioned both as carbide formers and as optional components of the alloy, is to be understood to include a first part that serves as a carbide former and a second part that does not form carbides, but rather a carbide can fulfill other function in the alloy.

In der Praxis hat es sich bewährt, wenn als karbidbildendes Metall 5 bis 30Gew.% Tantal enthalten sind, wobei das Tantal ganz oder teilweise und etwa im Atomverhältnis eins zu eins durch Hafnium und/oder Zirkonium ersetzt sein kann. "Im Atomverhältnis eins zu eins" bedeutet dabei, dass eine Anzahl von Tantal-Atomen durch eine gleich grosse Anzahl von Hafnium-Atomen oder eine gleich grosse Anzahl von Zirkonium-Atomen, oder eine gleich grosse Anzahl einer Mischung von Hafnium- und Zirkoniumatomen ersetzt werden kann.In practice, it has proven useful to contain 5 to 30% by weight of tantalum as the carbide-forming metal, it being possible for the tantalum to be replaced completely or partially and at about the atomic ratio one to one by hafnium and / or zirconium. "Atomic ratio one to one" means that a number of tantalum atoms by an equal number of hafnium atoms or an equal number of zirconium atoms, or a the same number of a mixture of hafnium and zirconium atoms can be replaced.

Bei dem erfindungsgemässe Verfahren zum Herstellen der erfindungsgemässen Kobaltlegierung werden die Komponenten der Legierung durch Wärmeeintrag in eine Schmelze überführt und anschliessend erfolgt zur Erzeugung der fein verteilten Karbide eine schnelle Abkühlung mit einer Kühlrate von mindestens einem Grad pro Sekunde, insbesondere mindestens zehn Grad pro Sekunde.In the method according to the invention for producing the cobalt alloy according to the invention, the components of the alloy are transferred into a melt by introduction of heat and then rapid cooling takes place to produce the finely divided carbides with a cooling rate of at least one degree per second, in particular at least ten degrees per second.

Gemäss einer bevorzugten Verfahrensführung erfolgt der Wärmeeintrag durch Laserschweissen, weil bei diesem Prozess die erforderliche Kühlrate relativ einfach zu realisieren ist.According to a preferred process control, the heat input takes place by laser welding, because in this process the required cooling rate is relatively easy to implement.

Die erfindungsgemässe Kobaltlegierung und das erfindungsgemässe Verfahren lassen sich insbesondere zum Schweissen oder Beschichten, insbesondere mittels Laserschweissens verwenden.The cobalt alloy according to the invention and the method according to the invention can be used in particular for welding or coating, in particular by means of laser welding.

Beispiel:Example:

Das Ausgangsmaterial für die Legierung wird in Form einer Pulvermischung bereitgestellt. Das Ausgangsmaterial enthält (abgesehen von Verunreinigungen) 10 Gew.% Nickel, 20 Gew% Chrom, 20 Gew% Tantal, 1.2 Gew% Kohlenstoff. Der Rest ist Kobalt. Das Tantal kann ganz oder teilweise und etwa im Atomverhältnis eins zu eins durch Hafnium und/oder Zirkonium ersetzt sein. Dieses Pulver wird nun in einem an sich bekannten Laserschweissprozess auf ein Substrat aufgebracht. Mit dem Laserstrahl wird auf dem Substrat lokal ein Schmelzbad erzeugt, in welches das Pulver eingebracht wird. Beim anschliessenden Abkühlen, das mit mindestens einem Grad pro Sekunde erfolgt, bildet sich dann die erfindungsgemässe Kobaltlegierung mit der fein verteilten Karbidphase. Das Pulver dient hier also als Schweisszusatz (weld filler) in einem Laserschweissprozess.The starting material for the alloy is provided in the form of a powder mixture. The starting material contains (apart from impurities) 10% by weight of nickel, 20% by weight of chromium, 20% by weight of tantalum, 1.2% by weight of carbon. The rest is cobalt. The tantalum may be wholly or partially replaced at about the atomic ratio one to one by hafnium and / or zirconium. This powder is then applied to a substrate in a laser welding process known per se. With the laser beam, a molten bath is locally generated on the substrate, in which the powder is introduced. During the subsequent cooling, which takes place with at least one degree per second, the cobalt alloy according to the invention then forms with the finely distributed carbide phase. The powder thus serves as a weld filler in a laser welding process.

Fig. 1 zeigt eine vergrösserte Ansicht einer Schicht aus dem Ausführungsbeispiel einer erfindungsgemässen Legierung. Die helleren Flecken bzw. Punkte bilden die Karbidphase, die in der darstellungsgemäss schwarzen bzw. dunkleren Matrix eingelagert ist. Es ist deutlich zu erkennen, dass die einzelnen Karbide wie Körner ausgebildet sind, ihre Ausscheidung erfolgt äquiaxial , also ohne Vorzugsrichtung, und sie sind fein und gleichmässig verteilt über die Kobaltmatrix. Der überwiegende Teil der Karbide hat eine Erstreckung die kleiner oder etwa gleich einem Mikrometer ist. Um zu demonstrieren, dass die Karbide insbesondere auch bei hohen Temperaturen stabil sind, wurde die in Fig. 1 dargestellte Legierung tausend Stunden bei 1000°C gehalten. Fig. 1 zeigt die Kobaltlegierung nach dieser Glühbehandlung. Fig. 1 shows an enlarged view of a layer of the embodiment of an inventive alloy. The lighter spots or points form the carbide phase, which in the Darstellungsgemäss black or darker matrix is embedded. It can be clearly seen that the individual carbides are formed like grains, their excretion takes place equiaxially, ie without preferential direction, and they are finely and evenly distributed over the cobalt matrix. The majority of the carbides have an extension that is less than or equal to one micrometer. To demonstrate that the carbides are stable even at high temperatures, the in Fig. 1 Alloy held at 1000 ° C for a thousand hours. Fig. 1 shows the cobalt alloy after this annealing treatment.

Die erfindungsgemässe Kobaltlegierung eignet sich sowohl als Schweissmaterial, zum Beispiel zur Erzeugung von Schweissnähten oder zum Reparieren von Werkstücken oder zum Auftragsschweissen, beispielsweise zur Herstellung von Komponenten, als auch als Beschichtungsmaterial, beispielsweise, um auf einem Substrat eine Schutzschicht gegen (Heiss-) Korrosion oder Verschleiss aufzubringen.The cobalt alloy according to the invention is suitable both as a welding material, for example for the production of welds or for repairing workpieces or for build-up welding, for example for the production of components, as well as a coating material, for example to provide a protective layer against (hot) corrosion or corrosion on a substrate Apply wear.

Insbesondere eignet sich die erfindungsgemässe Kobaltlegierung bzw. das erfindungsgemässe Verfahren zur Herstellung oder zur Reparatur von Teilen einer Gasturbine insbesondere zur Herstellung und zur Reparatur von Turbinenschaufeln.In particular, the cobalt alloy according to the invention or the process according to the invention for producing or repairing parts of a gas turbine is particularly suitable for producing and repairing turbine blades.

Claims (7)

  1. A cobalt alloy comprising at least 30% by weight cobalt, 0 to 20% by weight nickel, 5 to 30% by weight chromium, 0.4 to 2.5% by weight carbon as well as at least one carbide-forming metal which forms carbides with the carbon, wherein the atomic ratio in the alloy of the carbide-forming metal to the carbon amounts to at least 0.8, wherein the alloy can include contaminants and the carbides are present in the alloy in the form of a finely dispersed phase without a preferred direction,
    characterized by
    10% by weight nickel, 20% by weight chromium, 20% by weight tantalum, as the carbide-forming metal, 1.2% by weight carbon and the remainder cobalt, wherein the tantalum can be replaced entirely or partially and in an atomic ratio of one to one by hafnium and/or zirconium.
  2. A cobalt alloy in accordance with claim 1, wherein the carbides are predominantly of the MC type.
  3. A cobalt alloy in accordance with one of the preceding claims, wherein at least the predominant part of the carbides is in each case smaller than five micrometers, preferably smaller than or approximately equal to one micrometer.
  4. A method for manufacturing a cobalt alloy in accordance with one of the claims 1 to 3, wherein the components of the alloy are converted into a melt by heat input and a cooling subsequently takes place with a cooling rate of at least one degree per second, in particular at least ten degrees per second, to produce the finely dispersed carbides.
  5. A method in accordance with claim 4, wherein the heat input takes place by laser welding.
  6. Use of a cobalt alloy in accordance with any one of the claims 1 to 3 or of a method in accordance with one of the claims 4 or 5 for welding or coating, in particular by means of laser welding.
  7. Use of a cobalt alloy in accordance with any one of the claims 1 to 3 or of a method in accordance with one of the claims 4 or 5 for manufacturing or for repairing parts of a gas turbine, in particular of turbine vanes.
EP11158754.9A 2010-03-19 2011-03-18 Cobalt alloy and method for its manufacture Active EP2371977B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11158754.9A EP2371977B1 (en) 2010-03-19 2011-03-18 Cobalt alloy and method for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10157037 2010-03-19
EP11158754.9A EP2371977B1 (en) 2010-03-19 2011-03-18 Cobalt alloy and method for its manufacture

Publications (2)

Publication Number Publication Date
EP2371977A1 EP2371977A1 (en) 2011-10-05
EP2371977B1 true EP2371977B1 (en) 2016-03-16

Family

ID=42167706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11158754.9A Active EP2371977B1 (en) 2010-03-19 2011-03-18 Cobalt alloy and method for its manufacture

Country Status (2)

Country Link
US (1) US20110225823A1 (en)
EP (1) EP2371977B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663605A (en) * 2016-07-29 2018-02-06 泰州市艾瑞克新型材料有限公司 Single crystal turbine blade sawtooth is preced with damping area wear-resistant coating and its preparation technology
CN106636761B (en) * 2016-12-26 2018-06-19 重庆派馨特机电有限公司 A kind of wear-resistant mixing head laser cladding alloyed powder
SG11202012575WA (en) * 2019-03-07 2021-09-29 Mitsubishi Power Ltd Cobalt based alloy product
CN109898082A (en) * 2019-04-15 2019-06-18 东南大学 A kind of iron-based amorphous nanometer crystalline laser melting coating composite coating and preparation and test method
US11155904B2 (en) * 2019-07-11 2021-10-26 L.E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT265804B (en) * 1965-09-03 1968-10-25 Boehler & Co Ag Geb Manufacture of wear-resistant armoring
US3655365A (en) * 1970-05-01 1972-04-11 Iit Res Inst High speed tool alloys and process
FR2239537B1 (en) * 1973-07-30 1976-11-12 Onera (Off Nat Aerospatiale)
US4058415A (en) 1975-10-30 1977-11-15 General Electric Company Directionally solidified cobalt-base eutectic alloys
US4481034A (en) * 1982-05-24 1984-11-06 Massachusetts Institute Of Technology Process for producing high hafnium carbide containing alloys
US5422072A (en) * 1992-12-24 1995-06-06 Mitsubishi Materials Corp. Enhanced Co-based alloy
JPH09157780A (en) * 1995-12-05 1997-06-17 Hitachi Ltd High corrosion resistant cobalt base alloy
JPH09206986A (en) * 1996-01-29 1997-08-12 Mitsubishi Materials Corp Engine valve excellent in high temp. wear resistance
US5916518A (en) * 1997-04-08 1999-06-29 Allison Engine Company Cobalt-base composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELIHU F. BRADLEY: "Superalloys A Technical Guide", 1 May 1989, ASM INTERNATIONAL, Metals Park, OH 44073, pages: 39 - 40 *
SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTAMT -", MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN, DE, 1 January 1993 (1993-01-01), pages 178 - 190, XP000961882, ISSN: 0026-6884 *

Also Published As

Publication number Publication date
EP2371977A1 (en) 2011-10-05
US20110225823A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
DE3023576C2 (en)
DE60309266T2 (en) Welding material, gas turbine blade or gas turbine injector and method of repairing gas turbine blades and gas turbine injectors
DE3937526C2 (en) Wear-resistant titanium alloy, process for its production and its use
EP3733326A1 (en) Method for producing a steel component with an additive production method
DE2827667A1 (en) METHOD FOR APPLYING A SURFACE DOUBLE LAYER BY FUSION WELDING
EP2371977B1 (en) Cobalt alloy and method for its manufacture
EP3069803A1 (en) Blade for a turbine engine made from different materials and method for producing the same
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
EP3682988A1 (en) Method for producing rotor blades from ni base alloys and rotor blade produced according to said method
EP3973205B1 (en) Method for producing a friction brake body for a friction brake
CH709882A2 (en) Process for joining high temperature materials and articles made therewith.
WO2021084025A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
DE60108037T2 (en) Nickel-based alloy and its use in forgings or welding operations
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
DE1922314A1 (en) Process for tempering alloys
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
DE3331806A1 (en) GAS TURBINE BURNER
DE60310283T3 (en) High temperature element for a gas turbine
DE19531260C2 (en) Process for producing hot-work steel
DE3212768A1 (en) WELDING PROCESS
DE602004002906T2 (en) High temperature resistant member for use in gas turbines
EP3321001B1 (en) Material and use of same
EP2830806B1 (en) Method for producing an aluminum piston
DE102018208737A1 (en) Y, Y` hardened cobalt-nickel base alloy, powder, component and process
AT413544B (en) HIGH-HARD NICKEL BASE ALLOY FOR WEAR-RESISTANT HIGH-TEMPERATURE TOOLS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120405

17Q First examination report despatched

Effective date: 20140408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150916

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 781318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009085

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160316

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009085

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170116

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160517

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 781318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 13

Ref country code: CH

Payment date: 20230401

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 14