EP2292329B1 - Polymer substrate with fluorescent structure, method for production of same and application of same - Google Patents

Polymer substrate with fluorescent structure, method for production of same and application of same Download PDF

Info

Publication number
EP2292329B1
EP2292329B1 EP09011507.2A EP09011507A EP2292329B1 EP 2292329 B1 EP2292329 B1 EP 2292329B1 EP 09011507 A EP09011507 A EP 09011507A EP 2292329 B1 EP2292329 B1 EP 2292329B1
Authority
EP
European Patent Office
Prior art keywords
polymer substrate
fluorescent
sample chamber
cover plate
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09011507.2A
Other languages
German (de)
French (fr)
Other versions
EP2292329A1 (en
EP2292329A9 (en
Inventor
Thomas Fischer
Joachim Stumpe
Valentin Kahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Ibidi GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Ibidi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Ibidi GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP09011507.2A priority Critical patent/EP2292329B1/en
Priority to US12/876,881 priority patent/US9597688B2/en
Publication of EP2292329A1 publication Critical patent/EP2292329A1/en
Publication of EP2292329A9 publication Critical patent/EP2292329A9/en
Application granted granted Critical
Publication of EP2292329B1 publication Critical patent/EP2292329B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers

Definitions

  • the invention relates to polymer substrates provided with fluorescence features in which fluorescence characteristics, ie fluorescent structures, are produced photochemically by UV irradiation.
  • fluorescence characteristics ie fluorescent structures
  • suitable fluorophors can be produced by suitable UV irradiation, which exhibit marked and detectable emission upon excitation with light of suitable wavelength. If such irradiation is carried out in a structured manner, emission patterns can be generated in this way in polymer substrates, which can be used, for example, as a recovery grid in fluorescence microscopy.
  • Another field of application relates to product authentication, which is made possible by the polymer substrates provided with fluorescence features according to the invention.
  • sample chambers In the field of culturing cells, a wide variety of sample chambers are used. These are mostly polymer-based and range from the cell culture bottle to slides and ⁇ -slides from ibidi to multiwell plates.
  • sample chambers can have contiguous areas on which cells grow from 1 mm 2 to 100 cm 2 . Since cells typically have a diameter of 1 .mu.m to 30 .mu.m, finding individual cells in large-area chambers without recovery structures is almost impossible.
  • the EP 2 008 715 A1 also describes a recovery grid, which is formed as part of the plastic body or is introduced into the plastic body.
  • the systems described here are based on non-fluorescent recovery gratings.
  • Another area of the prior art underlying the present invention relates to the authentication of products, especially consumer products.
  • fluorescence films can be structured by bleaching existing autofluorescence.
  • the FR 2 755902 A1 relates to a method for producing a labeled product as an integral component, wherein the label is caused by a fluorescent structure.
  • FR 2 909 922 A1 For example, a method is known for marking various materials, such as metal, plastic or ceramic, for example, wherein the marking is generated by laser bombardment in the picosecond range.
  • the DE 42 41 663 A1 relates to a method of marking an article, wherein the article is provided with a bar code which is readable by means of visible or UV light.
  • the preferred polymer substrates are low intrinsic fluorescence polymers, i. with an intrinsic fluorescence on the order of a cover glass in the excitation and emission range of 200 nm to 1000 nm. These include in particular COC, COP, PMMA, aliphatic polyesters and polyurethanes and polyethers. Particularly good polymers are suitable without UV stabilizers. For optical microscopy, in particular polymers with a refractive index between 1.4 and 1.6, in particular with 1.51 and / or a Abbe number over 50 and / or with a low birefringence are suitable.
  • a fluorescent structure is understood to mean structures up to the optical resolution limit. Typically, however, structures with a lateral resolution of several ⁇ m are used.
  • the fluorescent structure should have at least twice as high intensity as the non-fluorescent structure.
  • the structure should have such a high intensity that it can be easily recognized even at exposure times of less than one second with commercial fluorescence microscopes. This is already the case with a factor of 10.
  • the generated fluorophores the form the fluorescent structure, firmly bound in the polymer substrate and form a unit with it.
  • the fluorescent structures are thus an integral part of the carrier.
  • the modified polymer is characterized by the fact that both the fluorescent regions and the non-fluorescent regions consist of the identical original material. Therefore, the fluorophores also can not diffuse or sweat out.
  • These properties clearly delimit the structures produced, for example, from a printed, otherwise applied structure (eg an embossed or lasered structure) or dye-doped polymer systems.
  • no, possibly cell toxic, fluorescent dyes have to be used, which are applied to the polymer.
  • a structuring of the polymer substrate with fluorescent regions is produced.
  • a mask or a locally positionable radiation source is preferably used. If the UV irradiation is carried out in a structured manner, only the areas that have been irradiated will fluoresce significantly. In the non-irradiated areas, however, no substantial increase in the base emission is achieved. In this way, patterns can be generated which become visible upon excitation with light of suitable wavelength.
  • Such a photochemical structuring produces patterned fluorescent areas that are long-term stable and stable to environmental influences. Furthermore, they are characterized by the fact that they do not lose their edge sharpness by diffusion or similar processes. In addition, the features thus produced can not be removed without trace.
  • the fluorescent structure in the polymer substrate consists of several elements in the form of bars, lines, characters, figures, interference patterns, or combinations thereof.
  • fluorescent structures can be generated with only limited by the substrate size limited overall extent of the pattern.
  • the lateral resolution of the elements of the fluorescent structure is limited only by the method of introduction and the wavelength of the light.
  • the individual structural elements of the fluorescence pattern typically have a lateral extent of less than 100 ⁇ m, preferably less than 10 ⁇ m.
  • a method is also provided for producing the polymer substrate described above, in which a polymer substrate is at least partially subjected to irradiation in the wavelength range below 300 nm to produce fluorescent structures.
  • the preparation of the fluorescent structures by UV irradiation using masks by imaging or contact exposure takes place.
  • plates which have an exemplary variation of regions that are either transparent or non-transparent to the irradiation light used.
  • both radiation sources with coherent (laser direct writing) and focused beam (sample positioning) can be used for structuring.
  • Radiation sources used are preferably radiation sources with emission wavelengths or emission wavelength ranges in the range below 300 nm. These include, in particular, deuterium lamps, excimer lamps (Xe), excimer lasers (F 2 , ArF, KrF) or solid-state lasers (Nd: YVO 4 / YLF).
  • the polymer substrate used is preferably a polymer film.
  • the UV-generated generation of the fluorophores can be monitored in the absorption spectrum of the polymer substrate by an increase in the extinction in the UV range. However, these changes do not significantly affect the optical transmissivity in the visible region of the light to the human eye.
  • the polymer substrates can be provided without damage on the front or back with fluorescent features. Their production requires no exclusion of atmospheric oxygen.
  • the fluorescent features are further characterized by the fact that they are generated directly in materials that are used anyway for products from different areas. There are no additional coatings, imprints or other application fluorophores, fluorescent labels or their precursors. The fact that the features are produced directly in the material used, makes it much easier and cheaper to manufacture this compared to other methods. In addition, it is a fully optical process that does not require any wet-chemical development processes.
  • Such emission patterns can be used to provide substrates for fluorescence microscopy with a recovery grid.
  • the recovery grids are designed as a grid, which is also provided with numbers or letters. These recovery grids facilitate the retrieval of certain sample areas by being precisely charac- terised by the grid grid.
  • the recovery grids do not significantly affect biological processes and are sufficiently stable to perform longer observations on biological and other samples with greater reliability and reproducibility.
  • the described, photochemically generated characteristics are very well suited for typical excitation conditions in fluorescence microscopy; they are visible in all fluorescence channels (blue, green, yellow and red).
  • the lateral resolution in such produced features is sufficiently high, e.g. to allow a mapped observation of cells of different types.
  • Chambers in which such gratings can be introduced are in the DE 100 04 135 , of the DE 101 05 711 , of the EP 02 777 215 , of the EP 05 041 563 , of the EP 06 015 167 , of the EP 07 012 400 and the EP 09 006 487 described.
  • the upper part has at least one recess.
  • By connecting to the lower part of a reservoir is formed.
  • the recess of the upper part of the reservoir is then designed as a closed channel / tube or as an open-topped container.
  • the bottom formed by the base may be a foil or a coated glass carrier.
  • the bottom has a preferred thickness of 50 .mu.m to 250 .mu.m and / or an Abbe number greater than 50 and / or a refractive index between 1.2 and 1.8, in particular between 1.45 and 1.55. These properties are particularly well suited for (high-resolution) microscopy.
  • the bottom or film can be irradiated both from the side on which the cells are to be cultivated later and from the corresponding opposite side in order to produce fluorescent structures.
  • microfluidic analysis chambers can be provided with corresponding features.
  • coated glass supports can also be used.
  • Glass cover glasses are coated with a COP or COC layer to then introduce into this layer via the method described fluorescent grating.
  • the layer may e.g. be applied by spincoating etc.
  • labels, labels and products made of polymers can be provided with a feature by the structured UV irradiation, which becomes clearly visible only by excitation with light of suitable wavelength and intensity.
  • the counterfeiting security of the product increases and a non-erasable product individualization can be carried out, for example via barcodes.
  • This can be realized by a laser marking system, wherein the feature can also be read electronically.
  • Fig. 1 shows an emission spectrum of a polymer substrate according to the invention before and after the generation of fluorescence regions.
  • the irradiation for the generation of the fluorescence regions took place here with an ArF excimer laser.
  • the irradiation time was 10 seconds.
  • a polymer substrate according to the invention which has number patterns which were produced with the aid of a mask.
  • This is a fluorescence micrograph under excitation at a wavelength of 365 nm and 200x magnification.
  • a mask pattern chrome on silica glass
  • the mask rests with the chrome side. It is irradiated with a 30W deuterium lamp for 3 hours. Then the mask is removed and the emission pattern can be visualized by excitation at 365 nm.
  • a mask pattern chrome on silica glass
  • the mask rests with the chrome side. It is irradiated with an ArF excimer laser (193 nm) for 10 seconds. The mask is then removed and the emission pattern can be visualized by excitation at 365 nm, 436 nm or 515 nm.

Description

Die Erfindung betrifft mit Fluoreszenzmerkmalen versehene Polymersubstrate, in denen durch UV-Bestrahlung photochemisch Fluoreszenzmerkmale, d.h. fluoreszierende Strukturen, erzeugt werden. So können in Polymersubstraten mit einer geringen Eigenfluoreszenz durch geeignete UV-Bestrahlung Fluorophore erzeugt werden, die bei Anregung mit Licht geeigneter Wellenlänge eine markante und detektierbare Emission zeigen. Wird eine derartige Bestrahlung strukturiert durchgeführt, können auf diese Weise in Polymersubstraten Emissionsmuster erzeugt werden, die z.B. als Wiederfindungsgitter in der Fluoreszenz-Mikroskopie angewendet werden können. Ein weiteres Anwendungsfeld betrifft die Produkt-Authentifizierung, die durch die erfindungsgemäßen mit Fluoreszenzmerkmalen versehenen Polymersubstrate ermöglicht wird.The invention relates to polymer substrates provided with fluorescence features in which fluorescence characteristics, ie fluorescent structures, are produced photochemically by UV irradiation. For example, in polymer substrates with a low intrinsic fluorescence, suitable fluorophors can be produced by suitable UV irradiation, which exhibit marked and detectable emission upon excitation with light of suitable wavelength. If such irradiation is carried out in a structured manner, emission patterns can be generated in this way in polymer substrates, which can be used, for example, as a recovery grid in fluorescence microscopy. Another field of application relates to product authentication, which is made possible by the polymer substrates provided with fluorescence features according to the invention.

Auf dem Gebiet der Kultivierung von Zellen werden unterschiedlichste Probenkammern verwendet. Diese sind zumeist polymerbasiert und reichen von der Zellkulturflasche über Objektträger und µ-Slides der Firma ibidi bis hin zu Multiwellplatten.In the field of culturing cells, a wide variety of sample chambers are used. These are mostly polymer-based and range from the cell culture bottle to slides and μ-slides from ibidi to multiwell plates.

Diese Probenkammern können zusammenhängende Flächen, auf denen Zellen wachsen, von 1 mm2 bis 100 cm2 aufweisen. Da Zellen typischerweise einen Durchmesser von 1 µm bis 30 µm aufweisen, ist das Wiederfinden einzelner Zellen in großflächigen Kammern ohne Wiederfindungsstrukturen fast unmöglich.These sample chambers can have contiguous areas on which cells grow from 1 mm 2 to 100 cm 2 . Since cells typically have a diameter of 1 .mu.m to 30 .mu.m, finding individual cells in large-area chambers without recovery structures is almost impossible.

So ist aus der DE 100 04 135 ein Wiederfindungsgitter auf einer Kunststofffolie bekannt, wobei die Kunststofffolie in die Probenkammer integriert ist. Die EP 2 008 715 A1 beschreibt ebenfalls ein Wiederfindungsgitter, das als Teil des Kunststoffkörpers ausgebildet ist bzw. in den Kunststoffkörper eingebracht ist. Die hier beschriebenen Systeme basieren auf nicht-fluoreszierenden Wiederfindungsgittern.So is out of the DE 100 04 135 a recovery grid on a plastic film, wherein the plastic film is integrated into the sample chamber. The EP 2 008 715 A1 also describes a recovery grid, which is formed as part of the plastic body or is introduced into the plastic body. The systems described here are based on non-fluorescent recovery gratings.

Ein weiterer Bereich des Standes der Technik, der der vorliegenden Erfindung zugrunde liegt, betrifft die Authentifizierung von Produkten, insbesondere Konsumprodukten.Another area of the prior art underlying the present invention relates to the authentication of products, especially consumer products.

Die Authentifizierung von Produkten erfolgt derzeit im Stand der Technik durch das Aufbringen von fluoreszierendem Material auf Polymerfolien mittels diverser Druckverfahren. Andere Methoden zur Authentifikation von Produkten sehen vor, dass eine Charakterisierung der Eigenfluoreszenz von Polymeren erfolgt, wobei bei der Herstellung der Polymere Fluoreszenzfarbstoffe als Dopanden beigefügt wurden. ( WO 2005/054830 ).The authentication of products currently takes place in the prior art by the application of fluorescent material on polymer films by means of various printing processes. Other methods of authenticating products provide for the characterization of the intrinsic fluorescence of polymers, with the preparation of the polymers having added fluorescent dyes as dopants. ( WO 2005/054830 ).

Weiterhin kann in Folien die Fluoreszenz strukturiert werden, indem eine bestehende Eigenfluoreszenz ausgeblichen wird.Furthermore, in fluorescence films can be structured by bleaching existing autofluorescence.

Ebenso sind Verfahren zur Strukturierung von Fluoreszenz bekannt, bei denen Polymere eingesetzt werden, die kovalent gebundene Precursor enthalten oder denen solche als Dopanden zugesetzt werden müssen.Likewise, methods for structuring fluorescence are known in which polymers are used which contain covalently bonded precursors or to which such must be added as dopants.

Ebenso sind komplexere Systeme bekannt, die Fluoreszenz als Mittel der Authentifikation nutzen, wobei jedoch Formveränderungen der Folienkombinationen erforderlich sind ( WO 2003/101755 ). Eine weitere Variante sieht vor, dass die Anisotropie von Fluoreszenz-Dopanden in gestreckten Folien ausgenutzt wird, um Authentifikationsmaterialien herzustellen ( WO 2004/087795 ). All diesen Methoden zur Authentifikation von Produkten ist gemein, dass die Fluorophore flächig gleichmäßig im Material verteilt sind, so dass keine strukturierten FluoreszenzBereiche vorliegen.Likewise, more complex systems are known which use fluorescence as a means of authentication, but with changes in the shape of the film combinations are required ( WO 2003/101755 ). Another variant provides that the anisotropy of fluorescence dopants in stretched films is exploited in order to produce authentication materials ( WO 2004/087795 ). All these methods for the authentication of products have in common that the fluorophores are distributed evenly throughout the material so that there are no structured areas of fluorescence.

Die FR 2 755902 A1 betrifft ein Verfahren zur Herstellung eines markierten Produktes als integralen Bestandteil, wobei die Markierung durch eine fluoreszierende Struktur hervorgerufen wird.The FR 2 755902 A1 relates to a method for producing a labeled product as an integral component, wherein the label is caused by a fluorescent structure.

In QI C. -L. ET AL.: "Blue light emission from pulsed laser ablated polyethylene" OPTOELECTRONICS LETTERS, Bd. 4, Nr. 1, Januar 2008 (2008-01), ist beschrieben, dass eine fluoreszierende Struktur dadurch erzeugt werden kann, dass die Oberfläche von Polytetrafluorethylen durch Bestrahlung mit einem fokussierten, gepulsten Laser erfolgte, wobei eine Flu oreszenzemission der abgedampften PTFE-Bereiche festgestellt werden konnte.In QI C.-L. ET AL .: "Blue light emission from pulsed laser ablated polyethylene" OPTOELECTRONICS LETTERS, Vol. 4, No. 1, January 2008 (2008-01), it is described that a fluorescent structure can be produced by subjecting the surface of polytetrafluoroethylene to irradiation with a focused pulsed laser, whereby a fluence oreszenzemission the evaporated PTFE areas could be determined.

In CARLSSON D.J. ET AL.: "Photooxidation of polypropylene films. V. Origin of preferential surface oxidation "MACROMOLECULES, Bd. 4, Nr. 2, 1971, Seiten 179-184 wird die Photooxidation von Polypropylenfolien beschrieben.In CARLSSON DJ ET AL .: "Photooxidation of polypropylene films.""Origin of preferential surface oxidation." MACROMOLECULES, Vol. 4, No. 2, 1971, pages 179-184 the photooxidation of polypropylene films is described.

Aus BAKER A.K. ET AL.: "Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrFlaser irradiation APPLIED PHYSICS A (SOLIDS AND SUR-FACES), Bd. A57, Nr. 6, Dezember 1993 (1993-12), Seiten 543-544, Germany ISSN: 0721-7250 ist der Einsatz von Polymeren für Opto-elektronische und optische Anwendungen bekannt. Es wird weiter beschrieben, dass die Laserbestrahlung von PMMA zu einem starken Anstieg der Lichtabsorption im nahmen UV-Bereich führt.Out BAKER AK ET AL .: Refractive index modification of polymethylmethacrylate (PMMA) thin films by KrFlaser irradiation APPLIED PHYSICS A (SOLIDS AND SUR-FACES), Vol. A57, No. 6, December 1993 (1993-12), pages 543 -544, Germany ISSN: 0721-7250 the use of polymers for optoelectronic and optical applications is known. It is further described that the laser irradiation of PMMA leads to a strong increase in light absorption in the UV range.

In US 2004/055492 A1 wird ein Verfahren zur Markierung von Polymeren beschrieben, wobei das Polymer eine Komponente aufweist, die durch Bestrahlung mit Laserlicht irreversible in eine zweite Komponente überführt wird, sodass ein sichtbarer Kontrast des Polymers erfolgt.In US 2004/055492 A1 describes a method for marking polymers, wherein the polymer has a component which is irreversibly transferred by irradiation with laser light in a second component, so that a visible contrast of the polymer takes place.

Aus FR 2 909 922 A1 ist ein Verfahren zur Markierung verschiedener Materialien, wie beilspielsweise Metall, Kunststoff oder Keramik, bekannt, wobei die Markierung durch Laserbeschuss im Picosekundenbereich erzeugt wird.Out FR 2 909 922 A1 For example, a method is known for marking various materials, such as metal, plastic or ceramic, for example, wherein the marking is generated by laser bombardment in the picosecond range.

Die DE 42 41 663 A1 betrifft ein Verfahren zur Kennzeichnung eines Gegenstandes, bei dem der Gegenstand mit einem Strichcode versehen wird, der mittels sichtbaren bzw. UV-Licht auslesbar ist.The DE 42 41 663 A1 relates to a method of marking an article, wherein the article is provided with a bar code which is readable by means of visible or UV light.

Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, mit Fluoreszenzmerkmalen versehene Polymersubstrate bereitzustellen, die einfach herzustellen sind und eine einfache Erkennung oder Detektion ermöglichten.Based on this, it was an object of the present invention to provide fluorescent polymer substrates, which are easy to prepare and allow easy detection or detection.

Diese Aufgabe wird durch das Polymersubstrat mit den Merkmalen des Anspruchs 1 und das Verfahren zu dessen Herstellung mit den Merkmalen des Anspruchs 17 gelöst. In den Ansprüchen 24 bis 28 werden erfindungsgemäße Verwendungen des Polymersubstrats aufgeführt. Ebenso wird eine Probenkammer gemäß Anspruch 7 be reitgestellt, die dieses Polymersubstrat aufweist. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf.This object is achieved by the polymer substrate having the features of claim 1 and the process for its preparation having the features of claim 17. In claims 24 to 28 uses according to the invention of the polymer substrate are listed. Likewise, a sample chamber according to claim 7 be provided having this polymer substrate. The other dependent claims show advantageous developments.

Erfindungsgemäß wird ein Polymersubstrat mit einer fluoreszierenden Struktur als integralen Bestandteil bereitgestellt, wobei die fluoreszierende Struktuein photochemisch erzeugtes Wiederfindungsgitter ist. Bei den bevorzugten Polymersubstraten handelt es sich um Polymere mit einer geringen Eigenfluoreszenz, d.h. mit einer Eigenfluoreszenz in der Größenordnung eines Deckglases im Anregungs- und Emmissionsbereich von 200 nm bis 1.000 nm. Dazu gehören insbesondere COC, COP, PMMA, aliphatische Polyester und Polyurethane sowie Polyether. Besonders gut sind Polymere ohne UV-Stabilisatoren geeignet. Für die optische Mikroskopie sind insbesondere Polymere mit einem Brechungsindex zwischen 1,4 und 1,6 insbesondere mit 1,51 und/oder einer Abbezahl über 50 und/oder mit einer geringen Doppelbrechung geeignet.According to the present invention, there is provided a polymer substrate having a fluorescent structure as an integral part, wherein the fluorescent structure is a photochemically generated recovery grid. The preferred polymer substrates are low intrinsic fluorescence polymers, i. with an intrinsic fluorescence on the order of a cover glass in the excitation and emission range of 200 nm to 1000 nm. These include in particular COC, COP, PMMA, aliphatic polyesters and polyurethanes and polyethers. Particularly good polymers are suitable without UV stabilizers. For optical microscopy, in particular polymers with a refractive index between 1.4 and 1.6, in particular with 1.51 and / or a Abbe number over 50 and / or with a low birefringence are suitable.

Unter einer fluoreszierenden Struktur werden dabei Strukturen bis hin zur optischen Auflösungsgrenze verstanden. Typischerweise werden aber Strukturen mit einer lateralen Auflösung von mehreren µm verwendet. Bevorzugt soll die fluoreszierende Struktur mindestens eine doppelt so hohe Intensität wie die nicht fluoreszierende Struktur aufweisen. Für klassische Anwendungen soll die Struktur eine so hohe Intensität aufweisen, dass diese bereits bei Belichtungszeiten unter einer Sekunde mit handelsüblichen Forschungsfluoreszenzmikroskopen gut zu erkennen ist. Dies ist bei einem Faktor 10 bereits gegeben.A fluorescent structure is understood to mean structures up to the optical resolution limit. Typically, however, structures with a lateral resolution of several μm are used. Preferably, the fluorescent structure should have at least twice as high intensity as the non-fluorescent structure. For classical applications, the structure should have such a high intensity that it can be easily recognized even at exposure times of less than one second with commercial fluorescence microscopes. This is already the case with a factor of 10.

Erfindungsgemäß sind die erzeugten Fluorophore, die die fluoreszierende Struktur bilden, fest im dem Polymersubstrat gebunden und bilden mit ihm eine Einheit. Die fluoreszierenden Strukturen sind somit ein integraler Bestandteil des Trägers. Das so modifizierte Polymer zeichnet sich dadurch aus, das sowohl die fluoreszierenden Bereiche als auch die nicht fluoreszierenden Bereiche aus dem identischen Ursprungsmaterial bestehen. Deshalb können die Fluorophore darüber hinaus auch nicht diffundieren oder ausschwitzen. Diese Eigenschaften grenzen die erzeugten Strukturen z.B. deutlich von einer aufgedruckten, anderweitig aufgebrachten Struktur (z.B. einer eingeprägten oder eingelaserten Struktur) oder Farbstoffdotierten Polymersystemen ab. Es müssen zudem keine, eventuell zelltoxischen, Fluoreszenzfarbstoffe verwendet werden, die auf das Polymer aufgebracht werden.According to the invention, the generated fluorophores, the form the fluorescent structure, firmly bound in the polymer substrate and form a unit with it. The fluorescent structures are thus an integral part of the carrier. The modified polymer is characterized by the fact that both the fluorescent regions and the non-fluorescent regions consist of the identical original material. Therefore, the fluorophores also can not diffuse or sweat out. These properties clearly delimit the structures produced, for example, from a printed, otherwise applied structure (eg an embossed or lasered structure) or dye-doped polymer systems. In addition, no, possibly cell toxic, fluorescent dyes have to be used, which are applied to the polymer.

Erfindungsgemäß wird eine Strukturierung des Polymersubstrates mit fluoreszenten Bereichen erzeugt. Hierzu wird bevorzugt eine Maske oder eine lokal positionierbare Strahlungsquelle eingesetzt. Wird die UV-Bestrahlung strukturiert vorgenommen, so fluoreszieren signifikant nur die Bereiche, die bestrahlt wurden. In den unbestrahlten Bereichen jedoch wird keine wesentliche Erhöhung der Grundemission erzielt. Auf diese Weise können Muster erzeugt werden, die bei Anregung mit Licht geeigneter Wellenlänge sichtbar werden. Eine so erfolgte photochemische Strukturierung erzeugt musterhaft fluoreszierende Bereiche, die langzeitstabil und stabil gegenüber Umwelteinflüssen sind. Weiterhin zeichnen sie sich dadurch aus, dass sie ihre Kantenschärfe nicht durch Diffusion oder ähnliche Prozesse verlieren. Außerdem lassen sich die so erzeugten Merkmale nicht spurenfrei entfernen.According to the invention, a structuring of the polymer substrate with fluorescent regions is produced. For this purpose, a mask or a locally positionable radiation source is preferably used. If the UV irradiation is carried out in a structured manner, only the areas that have been irradiated will fluoresce significantly. In the non-irradiated areas, however, no substantial increase in the base emission is achieved. In this way, patterns can be generated which become visible upon excitation with light of suitable wavelength. Such a photochemical structuring produces patterned fluorescent areas that are long-term stable and stable to environmental influences. Furthermore, they are characterized by the fact that they do not lose their edge sharpness by diffusion or similar processes. In addition, the features thus produced can not be removed without trace.

Vorzugsweise besteht die fluoreszierende Struktur im Polymersubstrat aus mehreren Elementen in Form von Strichen, Linien, Zeichen, Figuren, Interferenzmustern oder Kombinationen hiervon.Preferably, the fluorescent structure in the polymer substrate consists of several elements in the form of bars, lines, characters, figures, interference patterns, or combinations thereof.

Wie oben beschrieben können fluoreszierende Strukturen mit nur durch die Substratgröße beschränkter Gesamtausdehnung des Musters erzeugt werden. Die laterale Auflösung der Elemente der fluoreszierenden Struktur wird nur von der Methode der Einbringung und der Lichtwellenlänge beschränkt. Die einzelnen Strukturelemente der Fluoreszenzmuster besitzen jedoch typischerweise eine laterale Ausdehnung von weniger als 100 µm, vorzugsweise weniger als 10 µm.As described above, fluorescent structures can be generated with only limited by the substrate size limited overall extent of the pattern. The lateral resolution of the elements of the fluorescent structure is limited only by the method of introduction and the wavelength of the light. However, the individual structural elements of the fluorescence pattern typically have a lateral extent of less than 100 μm, preferably less than 10 μm.

Erfindungsgemäß wird ebenso ein Verfahren zur Herstellung des zuvor beschriebenen Polymersubstrates bereitgestellt, bei dem ein Polymersubstrat zumindest bereichsweise einer Bestrahlung im Wellenlängenbereich unterhalb von 300 nm zur Erzeugung von fluoreszierenden Strukturen unterzogen wird.According to the invention, a method is also provided for producing the polymer substrate described above, in which a polymer substrate is at least partially subjected to irradiation in the wavelength range below 300 nm to produce fluorescent structures.

Gemäß einer erfindungsgemäßen Variante erfolgt dabei die Herstellung der fluoreszierenden Strukturen durch UV-Bestrahlung unter Verwendung von Masken durch Abbildung oder Kontaktbelichtung.According to a variant of the invention, the preparation of the fluorescent structures by UV irradiation using masks by imaging or contact exposure takes place.

Als Maske zur Strukturierung werden vorzugsweise Platten verwendet, die eine musterhafte Variation von Bereichen, die für das verwendete Bestrahlungslicht entweder transparent oder nicht-transparent sind, aufweisen. Bevorzugt werden metallische Platten eingesetzt, die musterhafte Durchbrechungen besitzen. Besonders bevorzugt werden Masken aus Chrom auf Kieselglas.As a mask for structuring, it is preferable to use plates which have an exemplary variation of regions that are either transparent or non-transparent to the irradiation light used. Preference is given to using metallic plates which have patterned openings. Particularly preferred are masks made of chrome on silica glass.

Es können zur Strukturierung alternativ zu Masken sowohl Strahlungsquellen mit kohärentem (Laser-Direktschreiben) als auch fokussiertem Strahl (Probenpositionierung) eingesetzt werden.As an alternative to masks, both radiation sources with coherent (laser direct writing) and focused beam (sample positioning) can be used for structuring.

Als Strahlungsquellen werden vorzugsweise Strahlungsquellen mit Emissionswellenlängen oder Emissionswellenlängenbereichen im Bereich unterhalb von 300 nm eingesetzt. Hierzu zählen insbesondere Deuterium-Lampen, Excimer-Lampen (Xe), Excimer-Laser (F2, ArF, KrF) oder Festkörper-Laser (Nd: YVO4/YLF).Radiation sources used are preferably radiation sources with emission wavelengths or emission wavelength ranges in the range below 300 nm. These include, in particular, deuterium lamps, excimer lamps (Xe), excimer lasers (F 2 , ArF, KrF) or solid-state lasers (Nd: YVO 4 / YLF).

Als Polymersubstrat wird vorzugsweise eine Polymerfolie eingesetzt.The polymer substrate used is preferably a polymer film.

Die UV-generierte Erzeugung der Fluorophoren kann im Absorptionsspektrum des Polymersubstrates durch eine Zunahme der Extinktion im UV-Bereich verfolgt werden. Diese Veränderungen beeinträchtigen jedoch nicht wesentlich die optische Durchlässigkeit im für das menschliche Auge sichtbaren Bereich des Lichtes. Die Polymersubstrate können beschädigungsfrei auf der Vorder- oder Rückseite mit Fluoreszenzmerkmalen versehen werden. Ihre Erzeugung erfordert keinen Ausschluss vom Luftsauerstoff.The UV-generated generation of the fluorophores can be monitored in the absorption spectrum of the polymer substrate by an increase in the extinction in the UV range. However, these changes do not significantly affect the optical transmissivity in the visible region of the light to the human eye. The polymer substrates can be provided without damage on the front or back with fluorescent features. Their production requires no exclusion of atmospheric oxygen.

Aufgrund einer hohen Bandbreite von Absorption und Emission der erzeugten Fluorophore können unterschiedliche Fluoreszenzfarben entsprechend den Anregungsbedingungen generiert werden.Due to a high range of absorption and emission of the generated fluorophores, different fluorescence colors can be generated according to the excitation conditions.

Die Fluoreszenzmerkmale zeichnen sich weiterhin dadurch aus, dass sie direkt in Materialien erzeugt werden, die ohnehin für Produkte aus verschiedenen Bereichen verwendet werden. Es sind keine zusätzlichen Beschichtungen, Bedruckungen oder anderes Aufbringen von Fluorophoren, Fluoreszenz-Labeln oder deren Precursoren nötig. Dadurch, dass die Merkmale direkt im verwendeten Material erzeugt werden, vereinfacht und verbilligt sich Herstellung dieser beträchtlich gegenüber anderen Verfahren. Darüber hinaus handelt es sich um einen voll-optischen Prozess, der keinerlei nasschemische Entwicklungsprozesse erfordert.The fluorescent features are further characterized by the fact that they are generated directly in materials that are used anyway for products from different areas. There are no additional coatings, imprints or other application fluorophores, fluorescent labels or their precursors. The fact that the features are produced directly in the material used, makes it much easier and cheaper to manufacture this compared to other methods. In addition, it is a fully optical process that does not require any wet-chemical development processes.

Solche Emissionsmuster können genutzt werden, um Substrate für die Fluoreszenz-Mikroskopie mit einem Wiederfindungsgitter zu versehen. Typischerweise sind die Wiederfindungsgitter als Gitterraster ausgeführt, das auch mit Zahlen oder Buchstaben versehen ist. Diese Wiederfindungsgitter erleichtern das Wiederfinden bestimmter Probenareale dadurch, dass diese anhand des Gitterrasters genau charakterisierbar sind. Die Wiederfindungsgitter beeinflussen biologische Prozesse nicht wesentlich und sind ausreichend stabil, um längere Beobachtungen an biologischen und anderen Proben bei höherer Zuverlässigkeit und Reproduzierbarkeit durchführen zu können.Such emission patterns can be used to provide substrates for fluorescence microscopy with a recovery grid. Typically, the recovery grids are designed as a grid, which is also provided with numbers or letters. These recovery grids facilitate the retrieval of certain sample areas by being precisely charac- terised by the grid grid. The recovery grids do not significantly affect biological processes and are sufficiently stable to perform longer observations on biological and other samples with greater reliability and reproducibility.

Die beschriebenen, photochemisch erzeugten Merkmale eignen sich aufgrund ihrer Absorptions- und Emissionseigenschaften sehr gut für typische Anregungsbedingungen bei der Fluoreszenzmikroskopie, sie sind in allen Fluoreszenzkanälen sichtbar (blau, grün, gelb und rot). Die laterale Auflösung bei derartig erzeugten Merkmalen ist ausreichend hoch, um z.B. ein kartiertes Beobachten von Zellen verschieden Typs zu ermöglichen.Due to their absorption and emission properties, the described, photochemically generated characteristics are very well suited for typical excitation conditions in fluorescence microscopy; they are visible in all fluorescence channels (blue, green, yellow and red). The lateral resolution in such produced features is sufficiently high, e.g. to allow a mapped observation of cells of different types.

Kammern, in die solche Gitter eingebracht werden können, sind in der DE 100 04 135 , der DE 101 05 711 , der EP 02 777 215 , der EP 05 041 563 , der EP 06 015 167 , der EP 07 012 400 und der EP 09 006 487 beschrieben.Chambers in which such gratings can be introduced are in the DE 100 04 135 , of the DE 101 05 711 , of the EP 02 777 215 , of the EP 05 041 563 , of the EP 06 015 167 , of the EP 07 012 400 and the EP 09 006 487 described.

Dabei handelt es sich im Wesentlichen um Kammern, die mindestens aus einem Oberteil und einem Unterteil bestehen. Dabei weist das Oberteil mindestens eine Aussparung auf. Durch das Verbinden mit dem Unterteil wird ein Reservoir gebildet. Je nach Geometrie der Aussparung des Oberteils ist das Reservoir dann als ein geschlossener Kanal/Röhre oder als nach oben offenes Behältnis ausgebildet.These are essentially chambers which consist of at least one upper part and one lower part. In this case, the upper part has at least one recess. By connecting to the lower part of a reservoir is formed. Depending on the geometry of the recess of the upper part of the reservoir is then designed as a closed channel / tube or as an open-topped container.

Der durch das Unterteil gebildete Boden kann eine Folie oder ein beschichteter Glasträger sein. Der Boden hat eine bevorzugte Dicke von 50 µm bis 250 µm und/oder eine Abbe-Zahl größer 50 und/oder einen Brechungsindex zwischen 1,2 und 1,8 insbesondere zwischen 1,45 und 1,55. Diese Eigenschaften sind besonders gut für die (hochauflösende) Mikroskopie geeignet. Der Boden oder die Folie kann sowohl von der Seite, auf welcher später die Zellen kultiviert werden sollen, als auch von der entsprechend gegenüberliegenden Seite bestrahlt werden, um fluoreszierende Strukturen zu erzeugen. Bei Verwendung hochauflösender Mikroskopietechniken mit einer entsprechend geringen Tiefenschärfe (ca. unter 50 µm, typischerweise unter 10 µm) ist es vorteilhaft, die Seite fluoreszenzzumarkieren, auf der später die wiederzufindenden Zellen wachsen werden. Dadurch befinden sich die Zellen und das Gitter gleichzeitig im optischen Fokus, wobei das fluoreszierende Element integraler Bestandteil des Polymerträgers ist.The bottom formed by the base may be a foil or a coated glass carrier. The bottom has a preferred thickness of 50 .mu.m to 250 .mu.m and / or an Abbe number greater than 50 and / or a refractive index between 1.2 and 1.8, in particular between 1.45 and 1.55. These properties are particularly well suited for (high-resolution) microscopy. The bottom or film can be irradiated both from the side on which the cells are to be cultivated later and from the corresponding opposite side in order to produce fluorescent structures. When using high-resolution microscopy techniques with a correspondingly small depth of field (approximately less than 50 μm, typically less than 10 μm), it is advantageous to fluorescently mark the side on which the cells to be recovered will later grow. As a result, the cells and the lattice are simultaneously in optical focus, the fluorescent element being an integral part of the polymer carrier.

Wird die gegenüberliegende Seite bestrahlt, können auch bereits gedeckelte mikrofluidische Analysekammern mit entsprechenden Merkmalen versehen werden.If the opposite side is irradiated, already covered microfluidic analysis chambers can be provided with corresponding features.

Es können auch Verbundfolien aus verschiedenen Materialien verwendet werden, bei denen mindestens eine Komponente die gewünschten Eigenschaften besitzt.It is also possible to use composite films of different materials in which at least one component has the desired properties.

Insbesondere können auch beschichtete Glasträger verwenden werden. So können z.B. Glasdeckgläser mit einer COP- oder COC-Schicht beschichtet werden, um dann in diese Schicht über das beschriebene Verfahren Fluoreszenzgitter einzubringen. Die Schicht kann z.B. durch Spincoaten etc. aufgebracht werden.In particular, coated glass supports can also be used. Thus, e.g. Glass cover glasses are coated with a COP or COC layer to then introduce into this layer via the method described fluorescent grating. The layer may e.g. be applied by spincoating etc.

Ein weiteres Feld der Anwendung betrifft die Produkt-Authentifizierung. So können Label, Etiketten und Produkte aus Polymeren durch die strukturierte UV-Bestrahlung mit einem Merkmal versehen werden, das erst durch Anregung mit Licht geeigneter Wellenlänge und Intensität deutlich sichtbar wird. Auf diese Weise erhöht sich die Fälschungssicherheit des Produktes und es kann eine nicht-löschbare Produktindividualisierung zum Beispiel über Barcodes vorgenommen werden. Dies kann durch ein Laserbeschriftungssystem realisiert werden, wobei das Merkmal auch elektronisch gelesen werden kann.Another field of application concerns product authentication. Thus, labels, labels and products made of polymers can be provided with a feature by the structured UV irradiation, which becomes clearly visible only by excitation with light of suitable wavelength and intensity. In this way, the counterfeiting security of the product increases and a non-erasable product individualization can be carried out, for example via barcodes. This can be realized by a laser marking system, wherein the feature can also be read electronically.

Anhand der nachfolgenden Figuren und Beispiele soll der anmeldungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten speziellen Ausführungsformen einschränken zu wollen.With reference to the following figures and examples, the object according to the application is intended to be explained in more detail, without wishing to restrict it to the specific embodiments shown here.

Fig. 1 zeigt ein Emissionsspektrum eines erfindungsgemäßen Polymersubstrats vor und nach der Erzeugung von Fluoreszenzbereichen. Die Bestrahlung zur Erzeugung der Fluoreszenzbereiche erfolgte hier mit einem ArF-Excimer-Laser. Die Bestrahlungsdauer betrug 10 Sekunden. Durch die Bestrahlung ist eine deutliche Zunahme der Extinktion im Wellenlängenbereich unterhalb von 300 nm und starke Zunahme der Emission von 400 bis 600 nm festzustellen. Fig. 1 shows an emission spectrum of a polymer substrate according to the invention before and after the generation of fluorescence regions. The irradiation for the generation of the fluorescence regions took place here with an ArF excimer laser. The irradiation time was 10 seconds. By the irradiation is a clear Increase in absorbance in the wavelength range below 300 nm and strong increase in the emission from 400 to 600 nm.

In Fig. 2 ist ein erfindungsgemäßes Polymersubstrat dargestellt, das Zahlenmuster aufweist, die mit Hilfe einer Maske erzeugt wurden. Es handelt sich hierbei um eine fluoreszenzmikroskopische Aufnahme unter Anregung bei einer Wellenlänge von 365 nm und 200-facher Vergrößerung.In Fig. 2 a polymer substrate according to the invention is shown which has number patterns which were produced with the aid of a mask. This is a fluorescence micrograph under excitation at a wavelength of 365 nm and 200x magnification.

Beispiel 1example 1

Auf eine COC-Folie wird eine Maske (musterhaft Chrom auf Kieselglas) befestigt, so dass die Maske mit der Chromseite schlüssig aufliegt. Es erfolgt eine Bestrahlung mit einer 30W Deuterium-Lampe für 3 Stunden. Anschließend wird die Maske entfernt und das Emissionsmuster kann durch Anregung bei 365 nm sichtbar gemacht.On a COC film, a mask (pattern chrome on silica glass) is attached, so that the mask rests with the chrome side. It is irradiated with a 30W deuterium lamp for 3 hours. Then the mask is removed and the emission pattern can be visualized by excitation at 365 nm.

Beispiel 2Example 2

Auf eine COC-Folie wird eine Maske (musterhaft Chrom auf Kieselglas) befestigt, so dass die Maske mit der Chromseite schlüssig aufliegt. Es erfolgt eine Bestrahlung mit einem ArF-Excimer-Laser (193 nm) für 10 Sekunden. Anschließend wird die Maske entfernt und das Emissionsmuster kann durch Anregung bei 365 nm, 436 nm oder 515 nm sichtbar gemacht werden.On a COC film, a mask (pattern chrome on silica glass) is attached, so that the mask rests with the chrome side. It is irradiated with an ArF excimer laser (193 nm) for 10 seconds. The mask is then removed and the emission pattern can be visualized by excitation at 365 nm, 436 nm or 515 nm.

Claims (28)

  1. Polymer substrate having a fluorescent structure as an integral component, wherein the fluorescent structure is a photo-chemically generated recovery grid.
  2. Polymer substrate according to claim 1, characterised in that the polymer substrate before the photochemical treatment and the starting materials for the production of the polymer substrate contain fundamentally no fluorophores or precursors thereof.
  3. Polymer substrate according to claim 2, characterised in that the polymer substrate has fluorescent and non-fluorescent regions, wherein the fluorescent and non-fluorescent regions of the polymer substrate consist of the identical starting materials.
  4. Polymer substrate according to one of the preceding claims, characterised in that the intensity of the emission of the fluorescent regions doubles, in particular is 10 times as high as the intensity of the emission of the non-fluorescent regions.
  5. Polymer substrate according to one of the preceding claims, characterised in that the polymer substrate is selected from the group consisting of cyclic olefin copolymers (COC), cyclic olefin polymers (COP), polymethyl methacrylate (PMMA), aliphatic polyesters, polyurethanes, polyethers or composites hereof.
  6. Polymer substrate according to one of the preceding claims, characterised in that the fluorescent structures consist of several elements in the form of dashes, lines, characters, interference patterns or combinations hereof.
  7. Polymer substrate according to the preceding claim, characterised in that the elements have a resolution that is sufficient for information coding of 1µm to 1000mm, preferably 1µm to 1mm, particularly preferably 1µm to 100µm.
  8. Sample chamber containing a polymer substrate according to one of the preceding claims.
  9. Sample chamber according to claim 8, characterised in that the fluorescent structure and the objects/cells to be recovered are situated in a focal plane.
  10. Sample chamber according to one of claims 8 or 9, characterised in that the recovery grid and the objects/cells to be recovered are separated from one another spatially in the sample chamber.
  11. Sample chamber according to one of claims 8 to 10, characterised in that the sample chamber has a base plate and a cover plate, wherein a recess is provided in the base plate, such that a receiving region is formed by the base plate and the cover plate, wherein the polymer substrate is provided in the cover plate.
  12. Sample chamber according to claim 11, characterised in that the recess in the base plate has a base, such that a hollow space is formed by the cover plate.
  13. Sample chamber according to claim 12, characterised in that the base plate and/or cover plate has a channel flowing from outside into the receiving region, in particular a through hole.
  14. Sample chamber according to one of claims 11 to 13, characterised in that the cover plate has a thickness of 50pm - 250mm, in particular 100µm - 200pm.
  15. Sample chamber according to one of claims 11 to 14, characterised in that the cover plate is formed as a film.
  16. Sample chamber according to claim 15, wherein the fluorescent structure is introduced into the film.
  17. Method for the production of a polymer substrate according to one of claims 1 to 7, in which a polymer substrate undergoes irradiation, at least in regions, in the wavelength range below 300nm for the generation of fluorescent structures.
  18. Method according to claim 17, characterised in that fluorescent structures are generated from several elements in the form of dashes, lines, characters, interference patterns or combinations hereof.
  19. Method according to one of claims 17 or 18, characterised in that the elements are generated with a resolution sufficient for information coding of 1µm to 1000mm, preferably from 1µm to 1mm, particularly preferably from 1µm to 100µm.
  20. Method according to one of claims 17 to 19, characterised in that fluorescent structures are generated by UV-irradiation using masks by imaging or contact exposure.
  21. Method according to claim 20, characterised in that plates having a pattern of transparent and non-transparent regions are used as masks.
  22. Method according to one of claims 17 to 19, characterised in that fluorescent structures are generated using positioning systems by irradiation with coherent or focused light.
  23. Method according to one of claims 17 to 22, characterised in that radiation sources having emission wavelengths or emission ranges of below 300nm are used for the structured generation of the fluorescent structures, in particular selected from the group consisting of deuterium lamps, excimer lamps (Xe), excimer lasers (F2, ArF, KrF) or solid-body lasers (Nd: YVO4/YLF).
  24. Use of the polymer substrate according to one of claims 1 to 7 in a sample chamber.
  25. Use of the polymer substrate according to one of claims 1 to 7 as a label or as tags for product authentication or product individualisation.
  26. Use according to claim 25, characterised in that the fluorescent features contain information for product authentication or/and product individualisation in a coded or uncoded manner.
  27. Use of the polymer substrate according to one of claims 1 to 7, in particular in the form of films, blister packaging and hollow bodies, as packaging elements.
  28. Use according to one of claims 24 to 27, wherein the fluorescent features contain information in machine-readable form, in particular bar codes and dot patterns.
EP09011507.2A 2009-09-08 2009-09-08 Polymer substrate with fluorescent structure, method for production of same and application of same Active EP2292329B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09011507.2A EP2292329B1 (en) 2009-09-08 2009-09-08 Polymer substrate with fluorescent structure, method for production of same and application of same
US12/876,881 US9597688B2 (en) 2009-09-08 2010-09-07 Polymer substrate with fluorescent structure, method for the production thereof and the use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09011507.2A EP2292329B1 (en) 2009-09-08 2009-09-08 Polymer substrate with fluorescent structure, method for production of same and application of same

Publications (3)

Publication Number Publication Date
EP2292329A1 EP2292329A1 (en) 2011-03-09
EP2292329A9 EP2292329A9 (en) 2011-05-04
EP2292329B1 true EP2292329B1 (en) 2014-11-12

Family

ID=41786355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09011507.2A Active EP2292329B1 (en) 2009-09-08 2009-09-08 Polymer substrate with fluorescent structure, method for production of same and application of same

Country Status (2)

Country Link
US (1) US9597688B2 (en)
EP (1) EP2292329B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11977028B2 (en) * 2020-04-15 2024-05-07 Northwestern University Mechanical-bond-induced exciplex fluorescence

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241663C2 (en) * 1992-12-04 1997-05-28 Borus Spezialverfahren Procedure for marking and recognizing an object
JP3068483B2 (en) * 1996-02-08 2000-07-24 株式会社東芝 Pattern reading method and optical signal reading device
FR2755902B1 (en) * 1996-11-20 1999-02-12 Sarl Ind Laser Partner PROCESS FOR PRODUCING, ON A PRODUCT, AN INVISIBLE MARKING, WHICH CAN BE REVEALED
DE10004135B4 (en) 2000-01-31 2005-04-28 Ibidi Gmbh Chamber for cell cultures
NL1015686C2 (en) * 2000-07-12 2002-01-15 Dsm Nv Method for irreversibly applying laser irradiation of a marking on a polymer molded part to the naked eye.
US7378280B2 (en) * 2000-11-16 2008-05-27 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
DE10105711B4 (en) 2001-02-08 2005-03-10 Ibidi Gmbh Sample carriers for chemical and biological samples
JP2002239484A (en) * 2001-02-16 2002-08-27 Ushio Inc Apparatus for treating substrate by using dielectric barrier discharge lamp
EP1458483B1 (en) 2001-09-28 2014-01-08 ibidi GmbH Flow chamber
US8206666B2 (en) * 2002-05-21 2012-06-26 Battelle Memorial Institute Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
GB0212638D0 (en) 2002-05-31 2002-07-10 Ucb Sa Authentication means
GB0307615D0 (en) 2003-04-02 2003-05-07 Ucb Sa Authentication means
US7169615B2 (en) 2003-11-26 2007-01-30 General Electric Company Method of authenticating polymers, authenticatable polymers, methods of making authenticatable polymers and authenticatable articles, and articles made there from
JP4945893B2 (en) * 2004-11-11 2012-06-06 大日本印刷株式会社 Pattern forming substrate
ATE500895T1 (en) * 2005-07-05 2011-03-15 Ibidi Gmbh MICROFLUID DEVICE AND METHOD FOR GENERATING DIFFUSIVE GRADIENTS
DK1880764T3 (en) * 2006-07-20 2012-12-17 Ibidi Gmbh Specimen holder for cell growth study
FR2909922B1 (en) * 2006-12-14 2010-08-13 Att Advanced Track & Trace METHOD AND DEVICE FOR MARKING OBJECTS AND MATERIALS.
DE502007006368D1 (en) * 2007-06-25 2011-03-10 Ibidi Gmbh sample chamber
US20100186524A1 (en) * 2008-02-05 2010-07-29 Enertechnix, Inc Aerosol Collection and Microdroplet Delivery for Analysis

Also Published As

Publication number Publication date
EP2292329A1 (en) 2011-03-09
EP2292329A9 (en) 2011-05-04
US9597688B2 (en) 2017-03-21
US20110086420A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
EP3140127B1 (en) Multi-layer body and method for the production thereof
DE102006038270A1 (en) Security and / or value document with a pattern of radiation-modified components
WO2013064268A1 (en) Optically variable security element
EP2566653B1 (en) Method for applying a marking onto the surface of a diamond or brilliant and for verifying its authenticity
DE102004022080A1 (en) Value document with visually recognizable markings
EP2484537A2 (en) Authentication of security documents by means of photochromic dyes
EP2869998A1 (en) Method for producing security document blanks that can be personalized in color, security documents personalized in color, and method for personalization
DE102005045642A1 (en) Inorganic marking particles for the identification of products for the proof of originality, methods of preparation and use
EP1616216B1 (en) High resolution spatial imaging
DE102020120669B4 (en) Authentication marker for authenticating an item, method for producing an authentication marker, item marked with an authentication marker and method for examining an item marked with an authentication marker
EP2941355A1 (en) Method for producing a security element having a laser-sensitive recording layer
DE102018106430A1 (en) Security element with micro or nanostructuring
EP2780172A1 (en) Laser-marked polymer workpiece
EP2292329B1 (en) Polymer substrate with fluorescent structure, method for production of same and application of same
DE19949945A1 (en) Data carriers with authenticity features and manufacturing processes therefor
WO2007115720A1 (en) Storage medium comprising a security feature and method for producing a storage medium comprising a security feature
DE102008005136A1 (en) Document and method for producing a document
EP3012784B1 (en) Selective optical data carrier
EP2828094A1 (en) Method for producing a security composite body, and security composite body having two refractive structures
WO2004090950A2 (en) Creation of a permanent structure with high three-dimensional resolution
EP2227788B1 (en) Security system comprising an integrated micro-optical magnification system
DE102015207268A1 (en) Security element and method for producing a security element
DE102019113651A1 (en) Security element with anamorphically changed image
DE102020208256B4 (en) Security element with a microstructured security feature and method for production
DE102009047164A1 (en) Sensor i.e. electrochemical sensor, for determining measured variable in pH glass electrode in food technology field, has marker arranged between electrolyte-filled interior and outer shell surface, so that marker yields identification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IBIDI GMBH

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

17Q First examination report despatched

Effective date: 20130426

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101AFI20140313BHEP

INTG Intention to grant announced

Effective date: 20140328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 695413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010199

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010199

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150908

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150908

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 695413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090908

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170921

Year of fee payment: 9

Ref country code: BE

Payment date: 20170921

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181001

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009010199

Country of ref document: DE

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009010199

Country of ref document: DE

Owner name: IBIDI GMBH, DE

Free format text: FORMER OWNERS: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; IBIDI GMBH, 82152 PLANEGG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 15

Ref country code: DE

Payment date: 20230921

Year of fee payment: 15