EP2282029B2 - Self-propelled machine - Google Patents

Self-propelled machine Download PDF

Info

Publication number
EP2282029B2
EP2282029B2 EP09008470.8A EP09008470A EP2282029B2 EP 2282029 B2 EP2282029 B2 EP 2282029B2 EP 09008470 A EP09008470 A EP 09008470A EP 2282029 B2 EP2282029 B2 EP 2282029B2
Authority
EP
European Patent Office
Prior art keywords
hydraulic
hydraulic medium
cooling
operation temperature
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09008470.8A
Other languages
German (de)
French (fr)
Other versions
EP2282029B1 (en
EP2282029A1 (en
Inventor
Ralf Weiser
Tobias Noll
Andreas Letz
Martin Buschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41697972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2282029(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to AT09008470T priority Critical patent/ATE503092T1/en
Priority to DE502009000490T priority patent/DE502009000490D1/en
Priority to EP09008470.8A priority patent/EP2282029B2/en
Priority to US12/821,925 priority patent/US20100326067A1/en
Priority to CN2010102202512A priority patent/CN101936211B/en
Priority to CN2010202491912U priority patent/CN201794654U/en
Publication of EP2282029A1 publication Critical patent/EP2282029A1/en
Publication of EP2282029B1 publication Critical patent/EP2282029B1/en
Publication of EP2282029B2 publication Critical patent/EP2282029B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0427Heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/66Temperature control methods

Definitions

  • the invention relates to a self-propelled road finisher or feeder according to the preamble of claim 1.
  • a drive concept for functional and working components has become established for such road finishers and feeders, in which the internal combustion engine acts as the primary drive source, but the functional and working components are operated exclusively or almost exclusively hydraulically, for example by means of hydrostatic drive units.
  • the road finisher builds at least one surface layer with a varying working width on a subgrade made of the paving material, levels and compacts it.
  • a feeder keeps a sufficiently large supply of the paving material ready and feeds the road finisher in such a way that the road finisher can work continuously.
  • the feeder and the following road paver travel at a low paving speed on the planum, eg up to around 20 m/min. When transporting to another construction site, a transport speed of up to around 20 km/h is normal for both machines.
  • the processing of hot bituminous paving material or concrete paving material results in very special requirements for the hydraulic system and the combustion engine, for example due to the material consistency, its stickiness, its processing temperature, its drag resistance when paving on the subgrade or conveying resistance when loading, and also from the Driving resistance that varies depending on the construction site coupled with climatic influences, so that at least some hydrostatic drive units have to be extremely powerful, respond quickly and designed for continuous operation and at the same time have to be individually controlled during operation.
  • This requires powerful hydraulic pumps, sometimes long hydraulic paths between the hydraulic pumps and the hydrostatic drive units, while taking into account high safety and environmental standards.
  • a road finisher or feeder with a total weight of around 20 tons contains a considerable volume of hydraulic medium in the hydraulic circuit, for example up to 400 liters or more.
  • Hydraulic media commonly used for such machines have a behavior of the kinematic viscosity over the temperature in which the viscosity decreases strongly degressively with increasing temperature, initially up to about 60°C, and by about 100°C remains very low. temperatures of around 100°C however, critical for seals and hoses in the hydraulic circuit of such self-propelled machines. At about 60°C the viscosity is only half that at 40°C, and is only about one tenth the viscosity at about 0°C. Between about 75°C to 80°C the viscosity is even only about one fifth of the viscosity at 40°C.
  • the internal combustion engine that serves as the primary drive source has to compensate for pumping losses. In normal operation, for example, it runs with a nominal output of 160 kW at around 2000 rpm.
  • the pumping losses significantly worsen the energy efficiency or energy balance of the self-propelled machine and, based on the operating hours of such a machine per year, offer considerable potential for saving primary energy, such as diesel fuel.
  • a large multi-section cooler is used as a cooling device for the engine cooling water of the internal combustion engine, the hydraulic medium, and in this case also the charge air of the supercharged diesel engine, for example, is provided, with which optimal engine operating temperature and 100% engine performance are always ensured, even at full load operation and high outside temperatures of up to 50°C.
  • the cooling device has at least one fan that is operated as a function of the engine speed, for example.
  • the cooling device is traditionally designed for the internal combustion engine.
  • the hydraulic medium cooling area of the cooling device is designed in such a way that overheating of the hydraulic medium is reliably avoided even under extreme working conditions.
  • the cooling control takes place with regard to the optimum operating temperature of the combustion engine.
  • the hydraulic medium is cooled so much over e.g. more than 95% of the operating time that its operating temperature does not exceed approx. 40°C. Dictated by the viscosity behavior of the hydraulic medium over the operating temperature, in order to compensate for example the pumping losses of the hydraulic medium, this entails wasting a significant part of the rated engine power actually generated for the processing of the paving material.
  • a common cooling device for cooling water and hydraulic oil is known, which is associated with a common fan driven by a hydraulic motor.
  • the cooling device is controlled in such a way that the cooling water reaches a target temperature as quickly as possible at a predetermined engine speed, which is then kept constant, while at the same time the operating temperature of the hydraulic oil is brought to the same temperature of around 80° as the temperature of the cooling water. If there is an increased cooling requirement for the cooling water, the hydraulic oil may also be cooled too much.
  • the invention is based on the object of specifying a self-propelled machine for processing bituminous and/or concrete paving material, the internal combustion engine of which, despite the special requirements due to the difficult workability of the paving materials, can be operated with an improved energy balance or energy efficiency, saves a significant amount of fuel, and the environment gentle.
  • the operating temperature of the hydraulic medium is increased as quickly as possible and then regulated within an operating temperature range in which the additional load on the internal combustion engine, for example due to pumping losses of the hydraulic medium, is minimized.
  • this can be the case when the machine takes a break from operation at high outside temperatures, low humidity and unfavorable processing conditions of the paving material and difficult ground and driving conditions because it has to wait for the delivery of fresh paving material, with the combustion engine being operated at idle and the Engine cooling capacity is reduced.
  • the hydraulic medium operating temperature adjustment and control device then regulates, for example, with maximum efficiency in order to reliably avoid overheating of the hydraulic medium.
  • a considerable amount of fuel can be saved over the period of use of the machine in normal operation per year.
  • This improvement in the energy efficiency of the internal combustion engine goes hand in hand with optimized operation of the pumps and hydrostatic drive units and rapid response behavior in the hydraulic circuit at all times.
  • a hydraulic medium cooler that is separate from the cooling liquid cooling area is even provided as the hydraulic medium cooling area.
  • This at least one cooler is associated with a fan that can be speed-controlled and/or switched on and off as required, which is connected to the hydraulic medium operating temperature setting and control device.
  • the separate arrangement of the hydraulic medium cooler otherwise avoids, for example, unavoidable heating or cooling situations for the hydraulic medium cooler, which could occur when the cooling liquid cooling area and the hydraulic medium cooling area are in close proximity.
  • this concept may be advantageous for the machine in order to take account of the already cramped space conditions in the coolant cooling area and/or to improve the weight distribution in the machine.
  • a valve that can be actuated by the hydraulic medium operating temperature setting and control device is to be arranged in the hydraulic circuit in a bypass bypassing the hydraulic medium cooling area, and expediently to completely bypass the hydraulic medium cooling area via the bypass at least after the start of normal operation of the machine when the hydraulic medium is cold, e.g. also when operating a heating device for faster heating of the hydraulic medium in the hydraulic circuit or in the hydraulic circuits.
  • At least one hydraulic medium heating device is even provided in the hydraulic circuit. This is connected to the hydraulic medium operating temperature adjustment and control device and can be operated via this.
  • the heating device not only makes it possible to bring the hydraulic medium to the optimal operating temperature as quickly as possible, but also to maintain the optimal operating temperature range in normal operation if the desired increased operating temperature cannot be set or maintained simply by minimizing or switching off the cooling capacity.
  • the hydraulic medium heating device is provided on or in the reservoir of the hydraulic medium.
  • a maximum amount of the hydraulic medium is usually stored in the reservoir, for example about 400 liters, under relatively moderate return pressure, so that the heating device works efficiently and can be designed to be less pressure-resistant.
  • a circulation pump that can be controlled by the hydraulic medium operating temperature setting and regulating device is expediently provided in the hydraulic medium cooling area or adjacent to it, preferably in a short-circuit section provided between the reservoir and the hydraulic medium cooling area or in the bypass of the hydraulic circuit or hydraulic circuits.
  • the delivery rate of the hydraulic medium can be varied via the circulation pump, for example, in order to intensify or minimize the cooling.
  • At least one signal transmitter for the actual hydraulic medium temperature and/or hydraulic and/or thermal load situations of at least one selected pump and/or one selected hydrostatic drive unit is provided and connected to the hydraulic medium operating temperature adjustment and control device as a control reference variable transmitter.
  • a pump and/or a hydrostatic drive unit is appropriately selected that is extremely powerful or at which extreme hydraulic Operating situations can be expected, so that the hydraulic medium operating temperature setting and control device is quickly informed of a critical condition and can regulate accordingly.
  • a machine for processing bituminous or concrete paving material using an internal combustion engine, especially a diesel engine, as the primary drive source for at least one hydraulic system with pumps and hydrostatic drive units is operated in such a way that to improve the energy efficiency of the internal combustion engine during operation or from the start of operation of the Machine the hydraulic medium independently of the load condition of the internal combustion engine and the engine cooling control depending on the hydraulic load condition in the at least one hydraulic circuit and depending on the ambient climate brought as quickly as possible to an increased operating temperature of at least about 60 ° C and then in an operating temperature range of above about 60°C is regulated in order to waste as little as possible compensation power of the combustion engine with the optimally low viscosity of the hydraulic medium and to save as much fuel as possible.
  • FIG. 1 shows, as an example of a self-propelled machine F, a road finisher for processing bituminous and/or concrete paving material in the production of surface layers, for example of traffic areas or the like.
  • the machine F has a chassis 32 with a chassis 33 having wheels in the embodiment shown (alternatively a caterpillar chassis) and an internal combustion engine M, e.g a diesel engine, as the primary power source.
  • the machine has a large number of functional and working components that are predominantly operated hydraulically and are supplied with drive power by the internal combustion engine M.
  • a material bunker 36 is located on the chassis 32, from which a longitudinal conveyor device 37 extends in the chassis 32 to the rear end of the chassis, where a transverse distribution device 38 with a height adjustment device 47 and a drive 39 are arranged.
  • a screed 34 is articulated on the chassis 32, the angle of attack of which can be adjusted by means of leveling cylinders 41 and which can be raised by hydraulic cylinders 42.
  • Adjusting cylinders 46, hydraulically operated tampers 44 and hydraulically operated, optional pressure bars 45 are provided in the screed.
  • Bunker wall adjustment cylinders 41 are provided for the bunker 36 .
  • a cooling device K is assigned to the internal combustion engine M, for example with a multi-field cooler and a fan which is driven, for example, proportionally to the speed of the internal combustion engine M.
  • the aforementioned functional and working components of the machine F are operated for processing the paving material by means of hydrostatic drive units or cylinders.
  • At least one hydraulic circuit H ( Figures 2, 3 ) and hydraulic pumps and valve assemblies are provided.
  • the various pumps are driven by the internal combustion engine, for example via a pump transfer case.
  • a generator is driven by the internal combustion engine M, which makes electrical power available.
  • a reservoir for a hydraulic medium (hydraulic oil), which can have a capacity of several 100 liters, is also provided for the hydraulic circuit or circuits (including connecting lines and connecting hoses).
  • the cooling device K is designed in such a way that the cooling liquid of the internal combustion engine, if necessary its intake air or charge air, and also the hydraulic medium are cooled, with a cooling control system being provided which primarily treats the cooling liquid of the internal combustion engine M in such a way that the internal combustion engine during normal operation (e.g. nominal speed around 2000 rpm with a nominal output of around 160 kW) always has the optimum operating temperature.
  • a cooling control system being provided which primarily treats the cooling liquid of the internal combustion engine M in such a way that the internal combustion engine during normal operation (e.g. nominal speed around 2000 rpm with a nominal output of around 160 kW) always has the optimum operating temperature.
  • the hydraulic medium reaches an operating temperature of at least about 60° C., preferably between about 75° C. and 80° C. or slightly more, and a hydraulic medium operating temperature range of, for example, 75° C. to 80° C. in normal operation and independently of ambient climatic conditions are complied with is in accordance with 2 in the Machine F is provided with a hydraulic medium operating temperature adjustment and control device R, which preferably controls the operating temperature of the hydraulic medium independently of the cooling control system S for the coolant of the internal combustion engine M.
  • In 2 is assigned to the internal combustion engine M, for example a diesel engine, a multi-section cooler or a set of coolers 1 consisting of several coolers, which in the embodiment shown, not according to the invention, has a cooling area 1a for the intake air or charge air; a cooling area 1b for the cooling liquid of the internal combustion engine M, and a cooling area 1c for the hydraulic medium, and which is assigned a common fan 2 with a drive motor 3, which is controlled by the cooling control system S with regard to the optimal operating temperature of the internal combustion engine M. With 4 the energy supply to the drive motor 3 is indicated.
  • the drive motor 3 can be fed, for example, from the hydraulic system, or electrically via the generator G driven by the internal combustion engine M, or directly or indirectly via the crankshaft of the internal combustion engine M.
  • a pump transfer case 5 at the outputs of which several hydraulic pumps 6 are mounted, which are hydraulically connected via connecting lines or pressure hoses to various hydrostatic drive units 7, 8, 9, 10 for the basis 1 explained working and functional components of the machine are connected.
  • a common return line 11 extends from the hydrostatic drive units 7 to 10 to a hydraulic medium reservoir 12, usually a large-volume metal container, to which valve components 13, for example, can be attached.
  • the reservoir 12 can be connected to the cooling area 1c via a line 14 .
  • the return line 11 can also be connected to the cooling area 1c.
  • a bypass 15 can be provided between the reservoir 12 or the valve arrangement 13 and the return line 11, in which a valve 16, which can be controlled by the control device R, can be contained for the hydraulic medium flow.
  • the internal combustion engine M is mounted on an engine bracket 17 which is mounted on abutments 19 of the chassis 32 of the machine F via engine mounts 18 in a vibration-insulated manner.
  • the generator G which is driven, for example (not shown), by the pump transfer case 5, can be mounted on the engine bracket 17.
  • At least one heating device 20 can be provided for the hydraulic circuit or all hydraulic circuits H of the hydraulic system, for example in the return line 11, or in or on the reservoir 12, or at another suitable location in the machine F.
  • the heating device 20 is 2 eg via a controllable by the control device R Control 21 from the generator G electrically operated.
  • the heating device 20 could use the cooling water and/or waste heat from at least the internal combustion engine M.
  • a temperature sensor 22 for the operating temperature of the hydraulic medium (or a sensor for the hydraulic load condition) is arranged at least on one selected, or at several or all, hydrostatic drive units 7 to 10 (or the pumps 6) or at other suitable points of the hydraulic circuit H connected to the control device R.
  • a temperature sensor 22 can also be located on or in the reservoir 12, or in or near the cooling area 1c.
  • at least one information transmitter 23, e.g. a temperature and/or humidity sensor, is provided and connected to the control device R, which detects the ambient climate.
  • a preferably computerized main control CU of the machine F can also be connected to (or combined with) the control device R and provide information i7, e.g. in real time or in preparation, e.g.
  • the hydraulic medium operating temperature setting and control device R has a programming and/or setting section P, on which, for example, the desired operating temperature of the hydraulic medium can be set and monitored, and, expediently, a selection device W, on which a hydraulic medium operating temperature of at least about 60°C, preferably even about 75°C, to which the hydraulic medium should be brought as quickly as possible after starting operation, and an operating temperature range in normal operation of at least about 60°C, preferably about 75°C to 80°C , or preferably even up to almost 90°C, within which the operating temperature of the hydraulic medium should be maintained during normal operation of the machine when processing the paving material, regardless of how the cooling control system S controls the cooling of at least the cooling liquid for the internal combustion engine M.
  • a circulation pump 29 can be used.
  • At least one shielding or deflection device 30 is expediently provided for the hydraulic medium in the air flow path from the fan 2 to the cooling area 1c, with which the cooling capacity generated by the fan 2 can be regulated individually for the cooling area 1c, for example via an actuator 31, which is controlled by the Control device R can be actuated, or not shown, by at least one thermostat or other temperature sensor in the hydraulic circuit.
  • the shielding or deflection device 30 could, for example, include flaps, slats or other elements that control the air flow.
  • the operating temperature of the hydraulic medium in the hydraulic circuit H is independent of the control intervention of the cooling control system S, at least for the cooling liquid of the internal combustion engine M depending on hydraulic load situations in the hydraulic circuit, especially on the hydraulic pumps 6 and/or the hydrostatic drive units 7 to 10, preferably on a selected pump or drive unit from which e.g.
  • the combustion smotor M has to compensate with additional fuel consumption.
  • the cooling area 1c for the hydraulic medium is structurally separated from the cooling areas 1a and 1b of the cooling device 1.
  • the cooling area 1c is formed by an independent hydraulic medium cooler 24, which is connected, for example, to the return line 11 and the connecting line 14 connected to the reservoir 12, and to which an independent blower 2a with its own drive motor 3a and its own drive power supply 4a is assigned.
  • the fan 2a is operated via the controller R as shown.
  • the drive motor 3a can either be a hydraulic motor or an electric motor or (not shown) is driven by the crankshaft of the internal combustion engine, for example via a switchable clutch.
  • the cooler 24 can be placed in the cooling device K, or at a suitable position in the machine F.
  • cooling fins 25 are provided on the reservoir 12 and another fan 26 can be provided with a drive motor 27, which is also controlled, for example, by the control device R, in order to additionally cool the hydraulic medium in the reservoir 12 if necessary.
  • the heating device 20 is also arranged on or in the reservoir 12 in order, if required, for example to reach the desired operating temperature of at least about 60°C or more as quickly as possible, or to reliably maintain the desired operating temperature range of above 60°C, the Additional heating of the hydraulic medium.
  • the graph in 4 shows for a common hydraulic medium (hydraulic oil specification HLP 46 according to DIN 51524, part 2) the behavior of the kinematic viscosity KV plotted on the vertical axis over the operating temperature T.
  • HLP 46 hydraulic oil specification
  • the kinematic viscosity is only half of the kinematic viscosity at an operating temperature of about 40°C and substantially less than one tenth of the viscosity at about 0°C.
  • the viscosity is only about half of the viscosity at 60°C.
  • This viscosity behavior of the specified hydraulic medium (other, common hydraulic media for machines for processing paving material show a similar behavior of the kinematic viscosity over the operating temperature) is in the machine F of Figures 1 to 3 , and also the machine F in figure 5 , used to improve the energy efficiency of the internal combustion engine and save fuel by setting the relatively high operating temperature of at least about 60°C and maintaining an operating temperature range of above about 60°C, in which the hydraulic medium is individually cooled and/or heated independently of the engine cooling will.
  • figure 5 illustrates as paving material processing machine F a feeder for feeding, for example, the road finisher from 1 drives with paving material in front of the road finisher on the subgrade, is supplied with the paving material intermittently from trucks or continuously via a conveyor device, and the road finisher always fills enough paving material into the bunker 36 so that the road finisher can continuously produce a surface layer.
  • a feeder for feeding for example, the road finisher from 1 drives with paving material in front of the road finisher on the subgrade, is supplied with the paving material intermittently from trucks or continuously via a conveyor device, and the road finisher always fills enough paving material into the bunker 36 so that the road finisher can continuously produce a surface layer.
  • the feeder shown has on its chassis 32 the running gear 33, for example a caterpillar running gear, with at least one drive 43 and a very large bunker 36.
  • the feeder is self-propelled and contains the liquid-cooled internal combustion engine M, for example a diesel engine, with the cooling device K at least for the cooling liquid as the primary drive source.
  • a hydraulically operated transverse conveying device 48 can be arranged in the bunker 36, from which an ascending hydraulically operated longitudinal conveying device 49 which has a hydraulically adjustable discharge end 52 extends to the rear and upwards.
  • the conveyor device 49 can have a further hydraulic device 50 .
  • the feeder as the machine F processing the paving material contains, for example, hydrostatic drive units for the travel drives 43, the transverse conveyor device 48, bunker adjustment wall cylinders (not shown), the device 50 and the discharge end 51, for which the internal combustion engine M drives corresponding hydraulic pumps in at least one hydraulic circuit.
  • the cooling device K can according to 3 be designed to keep the hydraulic medium in the hydraulic circuit independent of the cooling set the coolant of the internal combustion engine M to a hydraulic medium operating temperature of at least about 60°C, depending on hydraulic load situations and the ambient climate, and keep it in a hydraulic medium operating temperature range of above about 60°C, preferably between 75°C and 80°C, so as to optimize the responsiveness in the hydraulic circuit, reduce the viscosity of the hydraulic medium, and reduce the fuel consumption of the internal combustion engine, which can thus drive the feeder more efficiently and actuate the hydraulic working and functional components more efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Temperature (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The machine (F) has a setting and regulating device for setting operation temperature of hydraulic medium to about 60[deg] C. The hydraulic medium cooling region includes a cooler having a fan that is switched ON and OFF, while regulating the speed of fan. The hydraulic medium cooler is structurally separated from the cooling liquid cooling region. The fan is connected with the setting and regulating device. A thermostatic valve controlled by the setting and regulating device is arranged in the hydraulic circuit within a bypass deviating from the cooler.

Description

Die Erfindung betrifft einen selbstfahrenden Straßenfertiger oder Beschicker gemäß Oberbegriff des Anspruchs 1.The invention relates to a self-propelled road finisher or feeder according to the preamble of claim 1.

Für solche Straßenfertiger und Beschicker hat sich ein Antriebskonzept für Funktions- und Arbeitskomponenten durchgesetzt, bei welchem der Verbrennungsmotor als Primärantriebsquelle fungiert, die Funktions- und Arbeitskomponenten jedoch ausschließlich oder fast ausschließlich auf hydraulischem Weg, z.B. mittels hydrostatischer Antriebseinheiten, betrieben werden. Der Straßenfertiger baut auf einem Planum aus dem Einbaumaterial wenigstens eine Deckenschicht mit variierender Arbeitsbreite ein, ebnet und verdichtet diese. Ein Beschicker hält eine ausreichend große Vorratsmenge des Einbaumaterials bereit und beschickt den Straßenfertiger so, dass der Straßenfertiger kontinuierlich arbeiten kann. Dabei fahren der Beschicker und der nachfolgende Straßenfertiger mit niedriger Einbaufahrgeschwindigkeit auf dem Planum, z.B. bis etwa 20 m/min. Bei Transportfahrt zu einer anderen Baustelle ist für beide Maschinen eine Transportgeschwindigkeit bis etwa 20 km/h üblich. Aus der Verarbeitung von heißem bituminösem Einbaumaterial oder Beton-Einbaumaterial resultieren sehr spezielle Anforderungen an das Hydrauliksystem und den Verbrennungsmotor, bedingt beispielsweise durch die Materialkonsistenz, dessen Klebrigkeit, dessen Verarbeitungstemperatur, dessen Schleppwiderstand beim Einbau auf dem Planum oder Förderwiderstand beim Beschicken, und auch aus dem baustellenabhängig variierenden Fahrwiderstand gepaart mit klimatischen Einflüssen, so dass zumindest einige hydrostatische Antriebseinheiten extrem leistungsstark, schnell ansprechend und für Dauerbetrieb ausgelegt und im Betrieb gleichzeitig individuell geregelt werden müssen. Dies erfordert starke Hydraulikpumpen, teilweise lange hydraulische Wege zwischen den Hydraulikpumpen und den hydrostatischen-Antriebseinheiten, und dabei die Berücksichtigung hoher Sicherheits- und Umweltstandards. Einen Straßenfertiger oder Beschicker mit einem Gesamtgewicht von rund 20 Tonnen enthält im Hydraulikkreis ein erhebliches Volumen Hydraulikmedium, beispielsweise bis zu 400 Liter, oder mehr. Für solche Maschinen übliche Hydraulikmedien (beispielsweise Spezifikation: HLP 46 nach DIN 51524 Teil 2) haben ein Verhalten der kinematischen Viskosität über der Temperatur, bei dem mit zunehmender Temperatur die Viskosität stark degressiv zunächst bis etwa 60°C abnimmt, und um etwa 100°C sehr niedrig bleibt. Temperaturen von etwa 100°C sind jedoch für Dichtungen und Schläuche im Hydraulikkreis solcher selbstfahrenden Maschinen kritisch. Bei etwa 60°C ist die Viskosität nur halb so hoch wie bei 40°C, und ist nur etwa ein Zehntel der Viskosität bei etwa 0°C. Zwischen etwa 75°C bis 80°C ist die Viskosität sogar nur etwa ein Fünftel der Viskosität bei 40°C. Je geringer die Viskosität des Hydraulikmediums ist, desto niedriger sind Pumpverluste, umso feinfühliger sprechen hydrostatische Antriebseinheiten und Pumpen an, und umso effizienter arbeiten diese. Pumpverluste muss der als Primärantriebsquelle dienende Verbrennungsmotor kompensieren, der beispielsweise im Normalbetrieb mit einer Nennleistung von 160 kW bei etwa 2000 U/min läuft. Die Pumpverluste verschlechtern die Energieeffizienz oder Energiebilanz der selbstfahrenden Maschine erheblich, und bieten bezogen auf die Betriebsstunden einer solchen Maschine pro Jahr erhebliches Potential zur Einsparung von Primärenergie, wie Dieseltreibstoff.A drive concept for functional and working components has become established for such road finishers and feeders, in which the internal combustion engine acts as the primary drive source, but the functional and working components are operated exclusively or almost exclusively hydraulically, for example by means of hydrostatic drive units. The road finisher builds at least one surface layer with a varying working width on a subgrade made of the paving material, levels and compacts it. A feeder keeps a sufficiently large supply of the paving material ready and feeds the road finisher in such a way that the road finisher can work continuously. The feeder and the following road paver travel at a low paving speed on the planum, eg up to around 20 m/min. When transporting to another construction site, a transport speed of up to around 20 km/h is normal for both machines. The processing of hot bituminous paving material or concrete paving material results in very special requirements for the hydraulic system and the combustion engine, for example due to the material consistency, its stickiness, its processing temperature, its drag resistance when paving on the subgrade or conveying resistance when loading, and also from the Driving resistance that varies depending on the construction site coupled with climatic influences, so that at least some hydrostatic drive units have to be extremely powerful, respond quickly and designed for continuous operation and at the same time have to be individually controlled during operation. This requires powerful hydraulic pumps, sometimes long hydraulic paths between the hydraulic pumps and the hydrostatic drive units, while taking into account high safety and environmental standards. A road finisher or feeder with a total weight of around 20 tons contains a considerable volume of hydraulic medium in the hydraulic circuit, for example up to 400 liters or more. Hydraulic media commonly used for such machines (e.g. specification: HLP 46 according to DIN 51524 Part 2) have a behavior of the kinematic viscosity over the temperature in which the viscosity decreases strongly degressively with increasing temperature, initially up to about 60°C, and by about 100°C remains very low. temperatures of around 100°C however, critical for seals and hoses in the hydraulic circuit of such self-propelled machines. At about 60°C the viscosity is only half that at 40°C, and is only about one tenth the viscosity at about 0°C. Between about 75°C to 80°C the viscosity is even only about one fifth of the viscosity at 40°C. The lower the viscosity of the hydraulic medium, the lower the pumping losses, the more sensitively hydrostatic drive units and pumps respond and the more efficiently they work. The internal combustion engine that serves as the primary drive source has to compensate for pumping losses. In normal operation, for example, it runs with a nominal output of 160 kW at around 2000 rpm. The pumping losses significantly worsen the energy efficiency or energy balance of the self-propelled machine and, based on the operating hours of such a machine per year, offer considerable potential for saving primary energy, such as diesel fuel.

Wie aus dem Prospekt "SUPER 1603-1" der Firma Joseph Vögele AG, 68146 Mannheim, DE, Seiten 4, 5, bekannt, ist ein großer Mehrfeldkühler als Kühlvorrichtung für das Motorkühlwasser des Verbrennungsmotors, das Hydraulikmedium, und in diesem Fall auch die Ladeluft des z.B. aufgeladenen Dieselmotors vorgesehen, mit dem selbst bei Volllastbetrieb und hohen Außentemperaturen bis zu 50°C immer optimale Motorbetriebs-Temperatur und 100 %ige Motorleistung sichergestellt sind. Die Kühlvorrichtung weist zumindest ein Gebläse auf, das beispielsweise abhängig von der Motordrehzahl betrieben wird. Die Kühlvorrichtung ist traditionell für den Verbrennungsmotor ausgelegt. Der Hydraulikmedium-Kühlbereich der Kühlvorrichtung ist so ausgelegt, dass selbst unter extremen Arbeitsbedingungen eine Überhitzung des Hydraulikmediums zuverlässig vermieden wird. Die Kühlregelung erfolgt jedoch im Hinblick auf die optimale Betriebstemperatur des Verbrennungsmotors. Deshalb wird das Hydraulikmedium über z.B. mehr als 95 % der Betriebsdauer so stark gekühlt, dass seine Betriebstemperatur ca. 40°C nicht überschreitet. Diktiert durch das Viskositätsverhalten des Hydraulikmediums über die Betriebstemperatur bedingt dies zum Kompensieren beispielsweise der Pumpverluste des Hydraulikmediums eine Vergeudung eines signifikanten Teils der eigentlich für die Verarbeitung des Einbaumaterials erzeugten Motornennleistung.As is known from the brochure "SUPER 1603-1" from Joseph Vögele AG, 68146 Mannheim, DE, pages 4, 5, a large multi-section cooler is used as a cooling device for the engine cooling water of the internal combustion engine, the hydraulic medium, and in this case also the charge air of the supercharged diesel engine, for example, is provided, with which optimal engine operating temperature and 100% engine performance are always ensured, even at full load operation and high outside temperatures of up to 50°C. The cooling device has at least one fan that is operated as a function of the engine speed, for example. The cooling device is traditionally designed for the internal combustion engine. The hydraulic medium cooling area of the cooling device is designed in such a way that overheating of the hydraulic medium is reliably avoided even under extreme working conditions. However, the cooling control takes place with regard to the optimum operating temperature of the combustion engine. For this reason, the hydraulic medium is cooled so much over e.g. more than 95% of the operating time that its operating temperature does not exceed approx. 40°C. Dictated by the viscosity behavior of the hydraulic medium over the operating temperature, in order to compensate for example the pumping losses of the hydraulic medium, this entails wasting a significant part of the rated engine power actually generated for the processing of the paving material.

In der Praxis wird in solchen selbstfahrenden Maschinen zum Verarbeiten von bituminösem oder Beton-Einbaumaterial der Bedeutung der Viskosität des Hydraulikmediums für die Energiebilanz oder Energieeffizienz des Verbrennungsmotors bisher aus übertriebenem Sicherheitsdenken keine Bedeutung zugemessen. Andererseits nehmen Bestrebungen zu, auch mit solchen Maschinen die Umwelt zu schonen (globale Erwärmung, Reduktion von CO2 und NOx-Emissionen. Einsparung nicht erneuerbarer Energieträger).In practice, in such self-propelled machines for processing bituminous or concrete paving material, the importance of the viscosity of the hydraulic medium for the energy balance or energy efficiency of the internal combustion engine has hitherto not been given any importance due to exaggerated safety concerns. On the other hand, efforts are increasing to protect the environment with such machines (global warming, reduction of CO 2 and NO x emissions, saving of non-renewable energy sources).

Aus EP 1 741 893 A ist eine gemeinsame Kühlvorrichtung für Kühlwasser und Hydrauliköl bekannt, der ein gemeinsames, durch einen Hydromotor angetriebenes Gebläse zugeordnet ist. Die Regelung der Kühlvorrichtung erfolgt so, dass das Kühlwasser bei einer vorbestimmten Motordrehzahl möglichst schnell eine Solltemperatur erreicht, die dann konstant gehalten wird, während gleichzeitig die Betriebstemperatur des Hydrauliköls auf die gleiche Temperatur von etwa 80° gebracht wird wie die Temperatur des Kühlwassers. Bei erhöhtem Kühlbedarf des Kühlwassers wird zwangsweise auch das Hydrauliköl gegebenenfalls zu stark gekühlt.Out of EP 1 741 893 A a common cooling device for cooling water and hydraulic oil is known, which is associated with a common fan driven by a hydraulic motor. The cooling device is controlled in such a way that the cooling water reaches a target temperature as quickly as possible at a predetermined engine speed, which is then kept constant, while at the same time the operating temperature of the hydraulic oil is brought to the same temperature of around 80° as the temperature of the cooling water. If there is an increased cooling requirement for the cooling water, the hydraulic oil may also be cooled too much.

In einem aus US 6 076 488 A bekannten Kühlsystem sind der Kühlbereich für das Hydraulikmedium und der Kühlbereich für das Kühlwasser in Anströmrichtung eines gemeinsamen, über einen Hydromotor angetriebenen Gebläses hintereinander angeordnet, so dass das Hydraulikmedium stets stärker gekühlt wird als das Kühlwasser. Es werden für die jeweiligen Betriebstemperaturen Sollwerte vorgegeben und eingehalten, wobei das Hydraulikmedium stets etwas kühler gehalten bleibt als das Kühlwasser. Erhöhter Kühlbedarf des Kühlwassers bedingt eine noch stärkere Abkühlung des Hydraulikmediums unabhängig von der Belastung im Hydrauliksystem.in one out U.S. 6,076,488 A known cooling system, the cooling area for the hydraulic medium and the cooling area for the cooling water are arranged one behind the other in the direction of flow of a common fan driven by a hydraulic motor, so that the hydraulic medium is always cooled more than the cooling water. Target values are specified and adhered to for the respective operating temperatures, with the hydraulic medium always being kept slightly cooler than the cooling water. Increased cooling requirements of the cooling water require even greater cooling of the hydraulic medium, regardless of the load in the hydraulic system.

Weiterer Stand der Technik ist zu finden in US 4 785 915 A , WO 2006/046902 A , DE 44 39 454 A und EP 1 870 576 A . Die DE 196 34 503 A1 beschreibt einen gattungsgemäßen Straßenfertiger. Dieser verfügt über eine Hydrauliköl-Kühlvorrichtung mit einem Gebläse, das sich beim Ausschalten des Straßenfertigers abschaltet.Further prior art can be found in U.S.A. 4,785,915 , WO 2006/046902 A , DE 44 39 454 A and EP 1 870 576 A . the DE 196 34 503 A1 describes a generic paver. This has a hydraulic oil cooling device with a fan that switches off when the paver is switched off.

Der Erfindung liegt die Aufgabe zugrunde, eine selbstfahrende Maschine zum Verarbeiten von bituminösem und/oder Beton-Einbaumaterial anzugeben, deren Verbrennungsmotor trotz der speziellen Anforderungen aufgrund der schwierigen Verarbeitbarkeit der Einbaumaterialien mit verbesserter Energiebilanz bzw. Energieeffizienz betreibbar ist, nennenswert Brennstoff spart, und die Umwelt schont.The invention is based on the object of specifying a self-propelled machine for processing bituminous and/or concrete paving material, the internal combustion engine of which, despite the special requirements due to the difficult workability of the paving materials, can be operated with an improved energy balance or energy efficiency, saves a significant amount of fuel, and the environment gentle.

Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.The task is solved with the features of claim 1.

Dank der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung wird die Betriebstemperatur des Hydraulikmediums so rasch wie möglich gesteigert und dann innerhalb eines Betriebstemperaturbereiches geregelt, bei dem die zusätzliche Belastung des Verbrennungsmotors durch beispielsweise Pumpverluste des Hydraulikmediums minimiert wird. Dies bedeutet zwar eine bewusste Abkehr von dem konventionellen Konzept, beispielsweise aus Gründen der Betriebssicherheit die Betriebstemperatur des Hydraulikmediums extrem niedrig zu halten, erhöht andererseits aber das Risiko für die Betriebssicherheit faktisch überhaupt nicht, da die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regel-vorrichtung den gewählten Betriebstemperaturbereich zuverlässig einhält und die Kühlleistung abhängig vom hydraulischen Belastungszustand und dem Umgebungsklima dann maximiert, wenn eine Tendenz zum Übersteigen des tolerierbaren Betriebstemperaturbereiches entstehen sollte. Beispielsweise kann dies der Fall sein, wenn bei hohen Außentemperaturen, niedriger Luftfeuchtigkeit und ungünstigen Verarbeitungskonditionen des Einbaumaterials und schwierigen Boden- und Fahrverhältnissen die Maschine eine Betriebspause macht, weil auf die Anlieferung frischen Einbaumaterials gewartet werden muss, wobei der Verbrennungsmotor im Leerlauf betrieben wird und die Motor-Kühlleistung herabgeregelt wird. Die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung regelt dann z.B. mit maximaler Leistungsfähigkeit, um eine Überhitzung des Hydraulikmediums zuverlässig zu vermeiden. Insgesamt lässt sich so über die Einsatzzeit der Maschine im Normalbetrieb pro Jahr eine erhebliche Menge an Brennstoff einsparen. Diese Verbesserung der Energieeffizienz des Verbrennungsmotors geht einher mit optimiertem Arbeiten der Pumpen und hydrostatischen Antriebseinheiten und einem jederzeitigen raschen Ansprechverhalten im Hydraulickreis. Gegebenenfalls kann ohne Einbuße bei der Verarbeitung des Einbaumaterials ein leistungsschwächerer und verbrauchsoptimierter Verbrennungsmotor verwendet werden. Hierbei ist sogar ein vom Kühlflüssigkeits-Kühlbereich separierter Hydraulikmedium-Kühler als Hydraulikmedium-Kühlbereich vorgesehen. Diesem wenigstens einen Kühler ist ein drehzahlregelbares und/oder bedarfsabhängig ein- und ausschaltbares Gebläse zugeordnet, das, mit der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung verbunden ist. Die separate Anordnung des Hydraulikmedium-Kühlers vermeidet andernfalls beispielsweise unvermeidbare Aufheizungs- oder Abkühlungssituationen für den Hydraulikmedium-Kühler, die bei räumlich enger Nachbarschaft zwischen dem Kühlflüssigkeits-Kühlbereich und dem Hydraulikmedium-Kühlbereich auftreten könnten. Außerdem ist dieses Konzept unter Umständen für die Maschine von Vorteil, um ohnedies beengten Platzverhältnissen beim Kühlflüssigkeits-Kühlbereich Rechnung zu tragen, und/oder die Gewichtsverteilung in der Maschine zu verbessern. Zur Regelung des optimalen Hydraulikmedium-Betriebstemperaturbereiches oder zum raschen Einstellen der gewünschten Hydraulikmedium-Betriebstemperatur unabhängig von der Motor-Kühlung ist im Hydraulikkreis in einem den Hydraulikmedium-Kühlbereich umgehenden Bypass ein von der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung betätigbares Ventil anzuordnen, und zweckmäßig über den Bypass den Hydraulikmedium-Kühlbereich zumindest nach Aufnahme des Normalbetriebes der Maschine bei kaltem Hydraulikmedium vollständig zu umgehen, z.B. auch bei Betrieb einer Heizeinrichtung zum rascheren Aufheizen des Hydraulikmediums im Hydraulikkreis oder in den Hydraulikkreisen.Thanks to the hydraulic medium operating temperature adjustment and control device, the operating temperature of the hydraulic medium is increased as quickly as possible and then regulated within an operating temperature range in which the additional load on the internal combustion engine, for example due to pumping losses of the hydraulic medium, is minimized. Although this means a conscious departure from the conventional concept, for example to keep the operating temperature of the hydraulic medium extremely low for reasons of operational safety, on the other hand it does not actually increase the risk for operational safety at all, since the Hydraulic medium operating temperature adjustment and control device reliably maintains the selected operating temperature range and then maximizes the cooling capacity depending on the hydraulic load condition and the ambient climate if there is a tendency to exceed the tolerable operating temperature range. For example, this can be the case when the machine takes a break from operation at high outside temperatures, low humidity and unfavorable processing conditions of the paving material and difficult ground and driving conditions because it has to wait for the delivery of fresh paving material, with the combustion engine being operated at idle and the Engine cooling capacity is reduced. The hydraulic medium operating temperature adjustment and control device then regulates, for example, with maximum efficiency in order to reliably avoid overheating of the hydraulic medium. Overall, a considerable amount of fuel can be saved over the period of use of the machine in normal operation per year. This improvement in the energy efficiency of the internal combustion engine goes hand in hand with optimized operation of the pumps and hydrostatic drive units and rapid response behavior in the hydraulic circuit at all times. If necessary, a less powerful and consumption-optimized internal combustion engine can be used without any loss in the processing of the installation material. In this case, a hydraulic medium cooler that is separate from the cooling liquid cooling area is even provided as the hydraulic medium cooling area. This at least one cooler is associated with a fan that can be speed-controlled and/or switched on and off as required, which is connected to the hydraulic medium operating temperature setting and control device. The separate arrangement of the hydraulic medium cooler otherwise avoids, for example, unavoidable heating or cooling situations for the hydraulic medium cooler, which could occur when the cooling liquid cooling area and the hydraulic medium cooling area are in close proximity. In addition, this concept may be advantageous for the machine in order to take account of the already cramped space conditions in the coolant cooling area and/or to improve the weight distribution in the machine. In order to regulate the optimum hydraulic medium operating temperature range or to quickly set the desired hydraulic medium operating temperature independently of the motor cooling, a valve that can be actuated by the hydraulic medium operating temperature setting and control device is to be arranged in the hydraulic circuit in a bypass bypassing the hydraulic medium cooling area, and expediently to completely bypass the hydraulic medium cooling area via the bypass at least after the start of normal operation of the machine when the hydraulic medium is cold, e.g. also when operating a heating device for faster heating of the hydraulic medium in the hydraulic circuit or in the hydraulic circuits.

Da es unter ungünstigen Umgebungsklimakonditionen, z.B. bei niedrigen Außentemperaturen und dgl. oder geringer Verarbeitungsrate eines sehr leicht zu verarbeitenden Einbaumaterials, z.B. für eine dünne Deckenschicht, gegebenenfalls nicht ausreicht, das Hydraulikmedium nur so wenig zu kühlen wie möglich, um eine optimal niedrige Viskosität zu erzielen, ist erfindungsgemäß im Hydraulikkreis sogar wenigstens eine Hydraulikmedium-Heizeinrichtung vorgesehen. Diese ist an die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung angeschlossen und kann über diese betrieben werden. Die Heizeinrichtung ermöglicht es nicht nur, das Hydraulikmedium so rasch wie möglich auf die optimale Betriebstemperatur zu bringen, sondern auch den optimalen Betriebstemperaturbereich im Normalbetrieb zu halten, falls die gewünschte angehobene Betriebstemperatur nicht allein durch Minimieren oder Abschalten der Kühlleistung einstellbar bzw. haltbar sein sollte.Since under unfavorable ambient climatic conditions, e.g. at low outside temperatures and the like or low processing rate of a paving material that is very easy to process, e.g. for a thin ceiling layer, it may not be sufficient to cool the hydraulic medium as little as possible in order to achieve an optimally low viscosity According to the invention, at least one hydraulic medium heating device is even provided in the hydraulic circuit. This is connected to the hydraulic medium operating temperature adjustment and control device and can be operated via this. The heating device not only makes it possible to bring the hydraulic medium to the optimal operating temperature as quickly as possible, but also to maintain the optimal operating temperature range in normal operation if the desired increased operating temperature cannot be set or maintained simply by minimizing or switching off the cooling capacity.

Erfindungsgemäß ist die Hydraulikmedium-Heizeinrichtung am oder im Reservoir des Hydraulikmediums vorgesehen. Im Reservoir ist üblicherweise eine maximale Menge des Hydraulikmediums gespeichert, z.B. etwa 400 Liter, und zwar unter relativ moderatem Rücklaufdruck, so dass die Heizeinrichtung effizient arbeitet und wenig druckfest ausgebildet werden kann.According to the invention, the hydraulic medium heating device is provided on or in the reservoir of the hydraulic medium. A maximum amount of the hydraulic medium is usually stored in the reservoir, for example about 400 liters, under relatively moderate return pressure, so that the heating device works efficiently and can be designed to be less pressure-resistant.

Zweckmäßig wird in dem Hydraulikmedium-Kühlbereich oder angrenzend an diesen eine durch die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung steuerbare Zirkulationspumpe vorgesehen, vorzugsweise in einem zwischen dem Reservoir und dem Hydraulikmedium-Kühlbereich vorgesehenen Kurzschlussabschnitt oder dem Bypass des Hydraulikkreises oder der Hydraulikkreise. Über die Zirkulationspumpe kann beispielsweise kühlbedarfsabhängig die Förderrate des Hydraulikmediums variiert werden, um die Kühlung zu intensivieren oder zu minimieren.A circulation pump that can be controlled by the hydraulic medium operating temperature setting and regulating device is expediently provided in the hydraulic medium cooling area or adjacent to it, preferably in a short-circuit section provided between the reservoir and the hydraulic medium cooling area or in the bypass of the hydraulic circuit or hydraulic circuits. Depending on the cooling requirement, the delivery rate of the hydraulic medium can be varied via the circulation pump, for example, in order to intensify or minimize the cooling.

Bei einer zweckmäßigen Ausführungsform ist wenigstens ein Signalgeber für die Hydraulikmedium-Isttemperatur und/oder hydraulische und/oder thermische Lastsituationen zumindest einer ausgewählten Pumpe und/oder einer ausgewählten hydrostatischen Antriebseinheit vorgesehen und als Regelführungsgrößengeber an die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung angeschlossen. Hierbei wird zweckmäßig eine Pumpe und/oder eine hydrostatische Antriebseinheit ausgewählt, die extrem leistungsfähig ist oder bei der extreme hydraulische Betriebssituationen erwartet werden können, so dass die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung rasch über einen kritischen Zustand informiert wird und entsprechend regeln kann.In an expedient embodiment, at least one signal transmitter for the actual hydraulic medium temperature and/or hydraulic and/or thermal load situations of at least one selected pump and/or one selected hydrostatic drive unit is provided and connected to the hydraulic medium operating temperature adjustment and control device as a control reference variable transmitter. Here, a pump and/or a hydrostatic drive unit is appropriately selected that is extremely powerful or at which extreme hydraulic Operating situations can be expected, so that the hydraulic medium operating temperature setting and control device is quickly informed of a critical condition and can regulate accordingly.

Grundsätzlich wird erfindungsgemäß eine Maschine zum Verarbeiten von bituminösem oder Beton-Einbaumaterial unter Nutzen eines Verbrennungsmotors, speziell eines Dieselmotors, als Primärantriebsquelle für wenigstens ein Hydrauliksystem mit Pumpen und hydrostatischen Antriebseinheiten so betrieben, dass zur Verbesserung der Energieeffizienz des Verbrennungsmotors im Betrieb bzw. ab Betriebsaufnahme der Maschine das Hydraulikmedium unabhängig von der Lastkondition des Verbrennungsmotors und der Motor-Kühlregelung abhängig vom hydraulischen Belastungszustand in dem wenigstens einen Hydraulikkreis und abhängig vom Umgebungsklima möglichst schnell auf eine angehobene Betriebstemperatur von mindestens etwa 60°C gebracht und dann in einem Betriebstemperatur-Bereich von oberhalb etwa 60°C geregelt wird, um mit der optimal niedrigen Viskosität des Hydraulikmediums möglichst wenig Kompensationsleistung des Verbrennungsmotors zu vergeuden und möglichst viel Brennstoff einzusparen.Basically, according to the invention, a machine for processing bituminous or concrete paving material using an internal combustion engine, especially a diesel engine, as the primary drive source for at least one hydraulic system with pumps and hydrostatic drive units is operated in such a way that to improve the energy efficiency of the internal combustion engine during operation or from the start of operation of the Machine the hydraulic medium independently of the load condition of the internal combustion engine and the engine cooling control depending on the hydraulic load condition in the at least one hydraulic circuit and depending on the ambient climate brought as quickly as possible to an increased operating temperature of at least about 60 ° C and then in an operating temperature range of above about 60°C is regulated in order to waste as little as possible compensation power of the combustion engine with the optimally low viscosity of the hydraulic medium and to save as much fuel as possible.

Ausführungsformen des Erfindungsgegenstandes werden anhand der Zeichnungen erläutert. Es zeigen:

Fig. 1
eine schematische Seitenansicht einer selbstfahrenden Maschine zum Verarbeiten von Einbaumaterial, und zwar eines Straßenfertigers,
Fig. 2
ein schematisches Blockschaltbild eines hydraulischen Antriebskonzeptes der Maschine in nicht erfindungsgemäßer Ausführungsform,
Fig. 3
eine erfindungsgemäße Detailvariante zu Fig. 2,
Fig. 4
ein Schaubild der kinematischen Viskosität eines Hydraulikmediums über der Betriebstemperatur, und
Fig. 5
eine schematische Seitenansicht einer anderen Maschine zum Verarbeiten von Einbaumaterial, nämlich eines Beschickers.
Embodiments of the subject invention are explained with reference to the drawings. Show it:
1
a schematic side view of a self-propelled machine for processing paving material, namely a road finisher,
2
a schematic block diagram of a hydraulic drive concept of the machine in an embodiment not according to the invention,
3
a detail variant according to the invention 2 ,
4
a graph of the kinematic viscosity of a hydraulic medium versus the operating temperature, and
figure 5
a schematic side view of another machine for processing paving material, namely a feeder.

Fig. 1 zeigt als Beispiel einer selbstfahrenden Maschine F einen Straßenfertiger zum Verarbeiten von bituminösem und/oder Beton-Einbaumaterial bei der Herstellung von Deckenschichten beispielsweise von Verkehrsflächen oder dgl.. 1 shows, as an example of a self-propelled machine F, a road finisher for processing bituminous and/or concrete paving material in the production of surface layers, for example of traffic areas or the like.

Die Maschine F weist ein Chassis 32 mit einem in der gezeigten Ausführungsform Räder aufweisenden Fahrwerk 33 (alternativ ein Raupenfahrwerk) und einen Verbrennungsmotor M, z.B. einen Dieselmotor, als Primärantriebsquelle auf. Die Maschine besitzt eine Vielzahl Funktions- und Arbeitskomponenten, die überwiegend hydraulisch betrieben und von dem Verbrennungsmotor M mit Antriebsleistung versorgt werden. Auf dem Chassis 32 befindet sich ein Materialbunker 36, von dem sich im Chassis 32 eine Längsfördervorrichtung 37 zum hinteren Chassisende erstreckt, wo eine Querverteileinrichtung 38 mit einer Höhenverstellung 47 und einem Antrieb 39 angeordnet sind. Am Chassis 32 ist eine Einbaubohle 34 angelenkt, deren Anstellwinkel durch Nivellierzylinder 41 einstellbar und die durch Hydraulikzylinder 42 anhebbar ist. In der Einbaubohle sind Verstellzylinder 46, hydraulisch betriebene Tamper 44 und hydraulisch betriebene, optionale Pressleisten 45 vorgesehen. Für den Bunker 36 sind Bunkerwand-Verstellzylinder 41 vorgesehen. Dem Verbrennungsmotor M ist eine Kühlvorrichtung K zugeordnet, z.B. mit einem Mehrfeldkühler und einem Gebläse, das, beispielsweise, proportional zur Drehzahl des Verbrennungsmotors M angetrieben wird.The machine F has a chassis 32 with a chassis 33 having wheels in the embodiment shown (alternatively a caterpillar chassis) and an internal combustion engine M, e.g a diesel engine, as the primary power source. The machine has a large number of functional and working components that are predominantly operated hydraulically and are supplied with drive power by the internal combustion engine M. A material bunker 36 is located on the chassis 32, from which a longitudinal conveyor device 37 extends in the chassis 32 to the rear end of the chassis, where a transverse distribution device 38 with a height adjustment device 47 and a drive 39 are arranged. A screed 34 is articulated on the chassis 32, the angle of attack of which can be adjusted by means of leveling cylinders 41 and which can be raised by hydraulic cylinders 42. Adjusting cylinders 46, hydraulically operated tampers 44 and hydraulically operated, optional pressure bars 45 are provided in the screed. Bunker wall adjustment cylinders 41 are provided for the bunker 36 . A cooling device K is assigned to the internal combustion engine M, for example with a multi-field cooler and a fan which is driven, for example, proportionally to the speed of the internal combustion engine M.

Die vorerwähnten Funktions- und Arbeitskomponenten der Maschine F werden zum Verarbeiten des Einbaumaterials mittels hydrostatischer Antriebseinheiten oder Zylinder betrieben. Hierfür ist wenigstens ein Hydraulikkreis H (Fig. 2, 3) und sind Hydraulikpumpen und Ventilanordnungen vorgesehen. Die verschiedenen Pumpen werden beispielsweise über ein Pumpenverteilergetriebe vom Verbrennungsmotor angetrieben. Ferner wird für elektrische Verbraucher, z.B. Heizeinrichtungen im Bereich der Längsfördervorrichtung 37, für die Tamper 44, die Pressleisten 45 und nicht näher hervorgehobene Glättbleche der Einbaubohle 34 vom Verbrennungsmotor M ein Generator angetrieben, der elektrische Leistung zur Verfügung stellt. Für den oder die Hydraulikkreise (einschließlich Verbindungsleitungen und Verbindungsschläuche) ist ferner ein Reservoir für ein Hydraulikmedium (Hydrauliköl) vorgesehen, das ein Fassungsvermögen von mehreren 100 Litern haben kann. Die Kühlvorrichtung K ist so ausgebildet, dass die Kühlflüssigkeit des Verbrennungsmotors, gegebenenfalls dessen Ansaugluft oder Ladeluft, und auch das Hydraulikmedium gekühlt werden, wobei ein Kühlregelsystem vorgesehen ist, das primär die Kühlflüssigkeit des Verbrennungsmotors M so behandelt, dass der Verbrennungsmotor im Normalbetrieb (beispielsweise Nenndrehzahl etwa 2000 U/min bei einer Nennleistung von rund 160 kW) stets optimale Betriebstemperatur hat.The aforementioned functional and working components of the machine F are operated for processing the paving material by means of hydrostatic drive units or cylinders. At least one hydraulic circuit H ( Figures 2, 3 ) and hydraulic pumps and valve assemblies are provided. The various pumps are driven by the internal combustion engine, for example via a pump transfer case. Furthermore, for electrical loads, eg heating devices in the area of the longitudinal conveyor device 37, for the tamper 44, the pressure strips 45 and screed plates of the screed 34 not highlighted in detail, a generator is driven by the internal combustion engine M, which makes electrical power available. A reservoir for a hydraulic medium (hydraulic oil), which can have a capacity of several 100 liters, is also provided for the hydraulic circuit or circuits (including connecting lines and connecting hoses). The cooling device K is designed in such a way that the cooling liquid of the internal combustion engine, if necessary its intake air or charge air, and also the hydraulic medium are cooled, with a cooling control system being provided which primarily treats the cooling liquid of the internal combustion engine M in such a way that the internal combustion engine during normal operation (e.g. nominal speed around 2000 rpm with a nominal output of around 160 kW) always has the optimum operating temperature.

Damit das Hydraulikmedium möglichst rasch eine Betriebstemperatur von mindestens etwa 60°C, vorzugsweise zwischen etwa 75°C und 80°C oder geringfügig mehr, erreicht, und ein Hydraulikmedium-Betriebstemperaturbereich von beispielsweise 75°C bis 80°C im Normalbetrieb und unabhängig von Umgebungsklimakonditionen eingehalten werden, ist gemäß Fig. 2 in der Maschine F eine Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung R vorgesehen, die, vorzugsweise, unabhängig von dem Kühlregelsystem S für die Kühlflüssigkeit des Verbrennungsmotors M die Betriebstemperatur des Hydraulikmediums regelt.So that the hydraulic medium reaches an operating temperature of at least about 60° C., preferably between about 75° C. and 80° C. or slightly more, and a hydraulic medium operating temperature range of, for example, 75° C. to 80° C. in normal operation and independently of ambient climatic conditions are complied with is in accordance with 2 in the Machine F is provided with a hydraulic medium operating temperature adjustment and control device R, which preferably controls the operating temperature of the hydraulic medium independently of the cooling control system S for the coolant of the internal combustion engine M.

In Fig. 2 ist dem Verbrennungsmotor M, beispielsweise einem Dieselmotor, ein Mehrfeldkühler oder ein Kühlersatz 1 aus mehreren Kühlern zugeordnet, der in der gezeigten, nicht erfindungsgemäßen Ausführungsform einen Kühlbereich 1a für die Ansaugluft oder Ladeluft; einen Kühlbereich 1 b für die Kühlflüssigkeit des Verbrennungsmotors M, und einen Kühlbereich 1c für das Hydraulikmedium umfasst, und dem ein gemeinsames Gebläse 2 mit einem Antriebsmotor 3 zugeordnet ist, der vom Kühlregelsystem S im Hinblick auf der optimale Betriebstemperatur des Verbrennungsmotors M gesteuert wird. Mit 4 ist die Energiezufuhr zum Antriebsmotor 3 angedeutet. Der Antriebsmotor 3 kann beispielsweise aus dem Hydrauliksystem gespeist werden, oder elektrisch über den vom Verbrennungsmotor M getriebenen Generator G, oder direkt oder indirekt über die Kurbelwelle des Verbrennungsmotors M.In 2 is assigned to the internal combustion engine M, for example a diesel engine, a multi-section cooler or a set of coolers 1 consisting of several coolers, which in the embodiment shown, not according to the invention, has a cooling area 1a for the intake air or charge air; a cooling area 1b for the cooling liquid of the internal combustion engine M, and a cooling area 1c for the hydraulic medium, and which is assigned a common fan 2 with a drive motor 3, which is controlled by the cooling control system S with regard to the optimal operating temperature of the internal combustion engine M. With 4 the energy supply to the drive motor 3 is indicated. The drive motor 3 can be fed, for example, from the hydraulic system, or electrically via the generator G driven by the internal combustion engine M, or directly or indirectly via the crankshaft of the internal combustion engine M.

An den Verbrennungsmotor M ist in Fig. 2 ein Pumpenverteilergetriebe 5 angeflanscht, an dessen Ausgängen mehrere Hydraulikpumpen 6 montiert sind, die über Verbindungsleitungen oder Druckschläuche hydraulisch mit verschiedenen hydrostatischen Antriebseinheiten 7, 8, 9, 10 für die anhand Fig. 1 erläuterten Arbeits- und Funktionskomponenten der Maschine verbunden sind. Beispielsweise erstreckt sich von den hydrostatischen Antriebseinheiten 7 bis 10 eine gemeinsame Rücklaufleitung 11 zu einem Hydraulikmedium-Reservoir 12, üblicherweise einem großvolumigen Metallbehälter, an dem beispielsweise Ventilkomponenten 13 angebracht sein können. Das Reservoir 12 kann über eine Leitung 14 mit dem Kühlbereich 1c verbunden sein. Die Rücklaufleitung 11 kann ebenfalls an den Kühlbereich 1c angeschlossen sein. Zwischen dem Reservoir 12 bzw. der Ventilanordnung 13 und der Rücklaufleitung 11 kann ein Bypass 15 vorgesehen sein, in dem ein von der Regelvorrichtung R steuerbares Ventil 16 für den Hydraulikmediumstrom enthalten sein kann.To the internal combustion engine M is in 2 flanged a pump transfer case 5, at the outputs of which several hydraulic pumps 6 are mounted, which are hydraulically connected via connecting lines or pressure hoses to various hydrostatic drive units 7, 8, 9, 10 for the basis 1 explained working and functional components of the machine are connected. For example, a common return line 11 extends from the hydrostatic drive units 7 to 10 to a hydraulic medium reservoir 12, usually a large-volume metal container, to which valve components 13, for example, can be attached. The reservoir 12 can be connected to the cooling area 1c via a line 14 . The return line 11 can also be connected to the cooling area 1c. A bypass 15 can be provided between the reservoir 12 or the valve arrangement 13 and the return line 11, in which a valve 16, which can be controlled by the control device R, can be contained for the hydraulic medium flow.

Der Verbrennungsmotor M ist auf einer Motorkonsole 17 angebracht, die über Motorlager 18 auf Widerlagern 19 des Chassis 32 der Maschine F schwingungsisoliert gelagert ist. Der Generator G, der beispielsweise (nicht gezeigt) vom Pumpenverteilergetriebe 5 aus angetrieben wird, kann auf der Motorkonsole 17 gelagert sein.The internal combustion engine M is mounted on an engine bracket 17 which is mounted on abutments 19 of the chassis 32 of the machine F via engine mounts 18 in a vibration-insulated manner. The generator G, which is driven, for example (not shown), by the pump transfer case 5, can be mounted on the engine bracket 17.

In Fig. 2 kann optional wenigstens eine Heizeinrichtung 20 für den Hydraulikkreis oder alle Hydraulikkreise H des Hydrauliksystems vorgesehen sein, beispielsweise in der Rücklaufleitung 11, oder im oder am Reservoir 12, oder an einer anderen, geeigneten Stelle in der Maschine F. Die Heizeinrichtung 20 wird in Fig. 2 z.B. über eine von der Regelvorrichtung R ansteuerbare Steuerung 21 vom Generator G elektrisch betrieben. Alternativ oder additiv könnte die Heizeinrichtung 20 das Kühlwasser und oder Abwärme zumindest des Verbrennungsmotors M nutzen.In 2 optionally at least one heating device 20 can be provided for the hydraulic circuit or all hydraulic circuits H of the hydraulic system, for example in the return line 11, or in or on the reservoir 12, or at another suitable location in the machine F. The heating device 20 is 2 eg via a controllable by the control device R Control 21 from the generator G electrically operated. Alternatively or additionally, the heating device 20 could use the cooling water and/or waste heat from at least the internal combustion engine M.

An zumindest einer ausgewählten, oder an mehreren oder allen hydrostatischen Antriebseinheiten 7 bis 10 (bzw. den Pumpen 6) oder an anderen geeigneten Stellen des Hydraulikkreises H ist ein Temperatursensor 22 für die Betriebstemperatur des Hydraulikmediums (oder ein Sensor für den hydraulischen Belastungszustand) angeordnet und mit der Regelvorrichtung R verbunden. Ein solcher Temperatursensor 22 kann sich auch am oder im Reservoir 12 befinden, oder im oder beim Kühlbereich 1 c. Ferner ist wenigstens ein Informationsgeber 23, z.B. ein Temperatur- und/oder Feuchtigkeitssensor, vorgesehen und an die Regelvorrichtung R angeschlossen, der das Umgebungsklima detektiert. Eine vorzugsweise computerisierte Hauptsteuerung CU der Maschine F kann ebenfalls an die Regelvorrichtung R angeschlossen (oder mit dieser vereinigt) sein und z.B. in Echtzeit oder vorbereitend Informationen i7 z.B. zum hydraulischen Belastungszustand der ausgewählten hydrostatischen Antriebseinheit 7 bereitstellen.A temperature sensor 22 for the operating temperature of the hydraulic medium (or a sensor for the hydraulic load condition) is arranged at least on one selected, or at several or all, hydrostatic drive units 7 to 10 (or the pumps 6) or at other suitable points of the hydraulic circuit H connected to the control device R. Such a temperature sensor 22 can also be located on or in the reservoir 12, or in or near the cooling area 1c. Furthermore, at least one information transmitter 23, e.g. a temperature and/or humidity sensor, is provided and connected to the control device R, which detects the ambient climate. A preferably computerized main control CU of the machine F can also be connected to (or combined with) the control device R and provide information i7, e.g. in real time or in preparation, e.g.

Die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung R weist eine Programmier- und/oder Setzsektion P auf, an der beispielsweise die gewünschte Betriebstemperatur des Hydraulikmediums eingestellt und überwacht werden kann, und, zweckmäßig, eine Auswahlvorrichtung W, an der eine Hydraulikmedium-Betriebstemperatur von mindestens etwa 60°C, vorzugsweise sogar etwa 75°C, einstellbar ist, auf die das Hydraulikmedium nach Betriebsaufnahme möglichst schnell gebracht werden soll, und ein Betriebstemperaturbereich im Normalbetrieb von mindestens etwa 60°C, vorzugsweise etwa 75°C bis 80°C, oder vorzugsweise sogar bis knapp 90°C, eingestellt werden kann, innerhalb dessen die Betriebstemperatur des Hydraulikmediums im Normalbetrieb der Maschine beim Verarbeiten des Einbaumaterials gehalten werden soll, unabhängig davon, wie das Kühlregelsystem S die Kühlung zumindest der Kühlflüssigkeit für den Verbrennungsmotor M regelt.The hydraulic medium operating temperature setting and control device R has a programming and/or setting section P, on which, for example, the desired operating temperature of the hydraulic medium can be set and monitored, and, expediently, a selection device W, on which a hydraulic medium operating temperature of at least about 60°C, preferably even about 75°C, to which the hydraulic medium should be brought as quickly as possible after starting operation, and an operating temperature range in normal operation of at least about 60°C, preferably about 75°C to 80°C , or preferably even up to almost 90°C, within which the operating temperature of the hydraulic medium should be maintained during normal operation of the machine when processing the paving material, regardless of how the cooling control system S controls the cooling of at least the cooling liquid for the internal combustion engine M.

In einem Kurzschlusskreis 28, beispielsweise zwischen dem Kühlbereich 1c und dem Reservoir 12 oder dem Hydraulikkreis H kann eine Zirkulationspumpe 29 eingesetzt sein.In a short circuit 28, for example between the cooling area 1c and the reservoir 12 or the hydraulic circuit H, a circulation pump 29 can be used.

Wegen des den Kühlbereichen 1a, 1b, 1c gemeinsam zugeordneten Gebläses 2 in Fig. 2 ist zweckmäßig im Luftströmungsweg vom Gebläse 2 zum Kühlbereich 1 c für das Hydraulikmedium wenigstens eine Abschirm- oder Umlenkeinrichtung 30 vorgesehen, mit der sich die durch das Gebläse 2 generierte Kühlleistung individuell für den Kühlbereich 1c regulieren lässt, beispielsweise über einen Aktuator 31, der von der Regelvorrichtung R betätigbar ist, oder auch, nicht gezeigt, durch wenigstens einen Thermostaten oder anderen Temperatursensor im Hydraulikkreis. Die Abschirm- oder Umlenkeinrichtung 30 könnte beispielsweise Klappen, Lamellen oder andere, den Luftstrom steuernde Elemente umfassen.Because of the fan 2 in 2 At least one shielding or deflection device 30 is expediently provided for the hydraulic medium in the air flow path from the fan 2 to the cooling area 1c, with which the cooling capacity generated by the fan 2 can be regulated individually for the cooling area 1c, for example via an actuator 31, which is controlled by the Control device R can be actuated, or not shown, by at least one thermostat or other temperature sensor in the hydraulic circuit. The shielding or deflection device 30 could, for example, include flaps, slats or other elements that control the air flow.

Im Betrieb der Maschine F und bei laufendem Verbrennungsmotor M wird die Betriebstemperatur des Hydraulikmediums im Hydraulikkreis H unabhängig vom Regeleingriff des Kühlregelsystems S zumindest für die Kühlflüssigkeit des Verbrennungsmotors M abhängig von hydraulischen Belastungssituationen im Hydraulikkreis, speziell an den Hydraulikpumpen 6 und/oder den hydrostatischen Antriebseinheiten 7 bis 10, vorzugsweise an einer ausgewählten Pumpe oder Antriebseinheit, von der z.B. die größte Antriebsleistung verbraucht werden oder bei der die stärksten Variationen auftreten, auf eine hinsichtlich der Viskosität des Hydraulikmediums optimale Betriebstemperatur von mindestens etwa 60°C gebracht, und dann in einem hinsichtlich der Viskosität optimalen Betriebstemperaturbereich von oberhalb etwa 60°C gehalten, um ein rasches Ansprechen der Hydraulikpumpen 6 und/oder hydrostatischen Antriebseinheiten 7 bis 10 zu gewährleisten, und Pumpverluste im Hydraulikkreis H zu minimieren, die der Verbrennungsmotor M mit zusätzlichem Brennstoffverbrauch kompensieren muss.During operation of the machine F and with the internal combustion engine M running, the operating temperature of the hydraulic medium in the hydraulic circuit H is independent of the control intervention of the cooling control system S, at least for the cooling liquid of the internal combustion engine M depending on hydraulic load situations in the hydraulic circuit, especially on the hydraulic pumps 6 and/or the hydrostatic drive units 7 to 10, preferably on a selected pump or drive unit from which e.g. the greatest drive power is consumed or where the strongest variations occur, brought to an optimal operating temperature of at least about 60°C with regard to the viscosity of the hydraulic medium, and then in a Viscosity optimal operating temperature range of above about 60 ° C maintained to ensure rapid response of the hydraulic pumps 6 and / or hydrostatic drive units 7 to 10, and to minimize pumping losses in the hydraulic circuit H, the combustion smotor M has to compensate with additional fuel consumption.

Fig. 3 verdeutlicht eine erfindungsgemäße Ausführungsform, bei der der Kühlbereich 1c für das Hydraulikmedium baulich separiert ist von den Kühlbereichen 1a und 1 b der Kühlvorrichtung 1. Der Kühlbereich 1c wird durch einen eigenständigen Hydraulikmedium-Kühler 24 gebildet, der beispielsweise an die Rücklaufleitung 11 und die Verbindungsleitung 14 zum Reservoir 12 angeschlossen ist, und dem ein eigenständiges Gebläse 2a mit einem eigenen Antriebsmotor 3a und einer eigenen Antriebsleistungsversorgung 4a zugeordnet ist. Das Gebläse 2a wird über die Regelvorrichtung R betrieben wie gezeigt. Der Antriebsmotor 3a kann entweder ein Hydromotor oder ein Elektromotor sein oder wird (nicht gezeigt) von der Kurbelwelle des Verbrennungsmotors z.B. über eine schaltbare Kupplung angetrieben. Der Kühler 24 kann in der Kühlvorrichtung K platziert sein, oder an einer geeigneten Position in der Maschine F. 3 illustrates an embodiment according to the invention, in which the cooling area 1c for the hydraulic medium is structurally separated from the cooling areas 1a and 1b of the cooling device 1. The cooling area 1c is formed by an independent hydraulic medium cooler 24, which is connected, for example, to the return line 11 and the connecting line 14 connected to the reservoir 12, and to which an independent blower 2a with its own drive motor 3a and its own drive power supply 4a is assigned. The fan 2a is operated via the controller R as shown. The drive motor 3a can either be a hydraulic motor or an electric motor or (not shown) is driven by the crankshaft of the internal combustion engine, for example via a switchable clutch. The cooler 24 can be placed in the cooling device K, or at a suitable position in the machine F.

Als weitere Detailvariante ist in Fig. 3 angedeutet, dass an dem Reservoir 12 Kühlrippen 25 vorgesehen und ein weiteres Gebläse 26 mit einem Antriebsmotor 27 vorgesehen sein kann, der ebenfalls beispielsweise von der Regelvorrichtung R gesteuert wird, um das Hydraulikmedium im Reservoir 12 bei Bedarf zusätzlich zu kühlen. Erfindungsgemäß ist (Fig. 3) auch die Heizeinrichtung 20 am oder im Reservoir 12 angeordnet, um bei Bedarf, beispielsweise um die gewünschte Betriebstemperatur von mindestens etwa 60°C oder mehr möglichst schnell zu erreichen, oder den gewünschten Betriebstemperatur-Bereich von oberhalb 60°C zuverlässig zu halten, das Hydraulikmedium zusätzlich zu beheizen.As a further detail variant is in 3 indicated that cooling fins 25 are provided on the reservoir 12 and another fan 26 can be provided with a drive motor 27, which is also controlled, for example, by the control device R, in order to additionally cool the hydraulic medium in the reservoir 12 if necessary. According to the invention ( 3 ) the heating device 20 is also arranged on or in the reservoir 12 in order, if required, for example to reach the desired operating temperature of at least about 60°C or more as quickly as possible, or to reliably maintain the desired operating temperature range of above 60°C, the Additional heating of the hydraulic medium.

Das Schaubild in Fig. 4 zeigt für ein übliches Hydraulikmedium (Hydrauliköl der Spezifikation HLP 46 nach DIN 51524, Teil 2) das Verhalten der auf der vertikalen Achse aufgetragenen kinematischen Viskosität KV über der Betriebstemperatur T. Die kinematische Viskosität beträgt bei einer Betriebstemperatur von etwa 60°C nur die Hälfte der kinematischen Viskosität bei einer Betriebstemperatur von etwa 40°C und wesentlich weniger als ein Zehntel der Viskosität bei etwa 0°C. In einem Betriebstemperatur-Bereich zwischen 75°C und etwa 80°C beträgt die Viskosität nur etwa die Hälfte der Viskosität bei 60°C. Dieses Viskositätsverhalten des spezifizierten Hydraulikmediums (andere, übliche Hydraulikmedien für Maschinen zum Verarbeiten von Einbaumaterial zeigen ein ähnliches Verhalten der kinematischen Viskosität über der Betriebstemperatur) wird in der Maschine F der Figuren 1 bis 3, und auch der Maschine F in Fig. 5, dazu benutzt, durch Einstellen der relativ hohen Betriebstemperatur von mindestens etwa 60°C und Einhalten eines Betriebstemperaturbereiches von oberhalb etwa 60°C die Energieeffizienz des Verbrennungsmotors zu verbessern und Treibstoff einzusparen, in dem das Hydraulikmedium unabhängig von der Motorkühlung individuell gekühlt und/oder beheizt wird.The graph in 4 shows for a common hydraulic medium (hydraulic oil specification HLP 46 according to DIN 51524, part 2) the behavior of the kinematic viscosity KV plotted on the vertical axis over the operating temperature T. At an operating temperature of around 60°C, the kinematic viscosity is only half of the kinematic viscosity at an operating temperature of about 40°C and substantially less than one tenth of the viscosity at about 0°C. In an operating temperature range between 75°C and about 80°C, the viscosity is only about half of the viscosity at 60°C. This viscosity behavior of the specified hydraulic medium (other, common hydraulic media for machines for processing paving material show a similar behavior of the kinematic viscosity over the operating temperature) is in the machine F of Figures 1 to 3 , and also the machine F in figure 5 , used to improve the energy efficiency of the internal combustion engine and save fuel by setting the relatively high operating temperature of at least about 60°C and maintaining an operating temperature range of above about 60°C, in which the hydraulic medium is individually cooled and/or heated independently of the engine cooling will.

Fig. 5 verdeutlicht als Einbaumaterial verarbeitende Maschine F einen Beschicker, der zum Beschicken beispielsweise des Straßenfertigers von Fig. 1 mit Einbaumaterial vor dem Straßenfertiger auf dem Planum fährt, intermittierend aus Lastkraftwagen oder kontinuierlich über eine Fördervorrichtung mit dem Einbaumaterial versorgt wird, und dem Straßenfertiger stets genug Einbaumaterial in den Bunker 36 einfüllt, damit der Straßenfertiger kontinuierlich eine Deckenschicht herstellen kann. figure 5 illustrates as paving material processing machine F a feeder for feeding, for example, the road finisher from 1 drives with paving material in front of the road finisher on the subgrade, is supplied with the paving material intermittently from trucks or continuously via a conveyor device, and the road finisher always fills enough paving material into the bunker 36 so that the road finisher can continuously produce a surface layer.

Der in Fig. 5 gezeigte Beschicker weist an seinem Chassis 32 das Fahrwerk 33, z.B. ein Raupenfahrwerk, mit wenigstens einem Antrieb 43, und einen sehr großen Bunker 36 auf. Der Beschicker ist selbstfahrend und enthält als Primärantriebsquelle den flüssigkeitsgekühlten Verbrennungsmotor M, z.B. einen Dieselmotor, mit der Kühlvorrichtung K zumindest für die Kühlflüssigkeit. Im Bunker 36 kann eine hydraulisch betriebene Querfördervorrichtung 48 angeordnet sein, von der sich eine aufsteigende hydraulisch betriebene Längsfördervorrichtung 49 nach hinten oben erstreckt, die ein hydraulisch verstellbares Abgabeende 52 aufweist. Die Fördervorrichtung 49 kann eine weitere hydraulische Einrichtung 50 aufweisen. Der Beschicker als die das Einbaumaterial verarbeitende Maschine F enthält beispielsweise hydrostatische Antriebseinheiten für die Fahrantriebe 43, die Querfördervorrichtung 48, nicht gezeigte Bunkerverstellwandzylinder, die Einrichtung 50 und das Abgabeende 51, für die der Verbrennungsmotor M entsprechende hydraulische Pumpen in wenigstens einem Hydraulikkreis antreibt. Die Kühlvorrichtung K kann gemäß Fig. 3 ausgelegt sein, um das Hydraulikmedium im Hydraulikkreis unabhängig von der Kühlung der Kühlflüssigkeit des Verbrennungsmotors M abhängig von hydraulischen Belastungssituationen und dem Umgebungsklima auf eine Hydraulikmedium-Betriebstemperatur von mindestens etwa 60°C einstellen und in einem Hydraulikmedium-Betriebstemperaturbereich von oberhalb etwa 60°C, vorzugsweise zwischen 75°C und 80°C, zu halten, um so das Ansprechverhalten im Hydraulikkreis zu optimieren, die Viskosität des Hydraulikmediums zu reduzieren, und den Brennstoffverbrauch des Verbrennungsmotors zu reduzieren, der so den Beschicker effizienter fahren und die hydraulischen Arbeits- und Funktionskomponenten effizienter betätigen kann.the inside figure 5 The feeder shown has on its chassis 32 the running gear 33, for example a caterpillar running gear, with at least one drive 43 and a very large bunker 36. The feeder is self-propelled and contains the liquid-cooled internal combustion engine M, for example a diesel engine, with the cooling device K at least for the cooling liquid as the primary drive source. A hydraulically operated transverse conveying device 48 can be arranged in the bunker 36, from which an ascending hydraulically operated longitudinal conveying device 49 which has a hydraulically adjustable discharge end 52 extends to the rear and upwards. The conveyor device 49 can have a further hydraulic device 50 . The feeder as the machine F processing the paving material contains, for example, hydrostatic drive units for the travel drives 43, the transverse conveyor device 48, bunker adjustment wall cylinders (not shown), the device 50 and the discharge end 51, for which the internal combustion engine M drives corresponding hydraulic pumps in at least one hydraulic circuit. The cooling device K can according to 3 be designed to keep the hydraulic medium in the hydraulic circuit independent of the cooling set the coolant of the internal combustion engine M to a hydraulic medium operating temperature of at least about 60°C, depending on hydraulic load situations and the ambient climate, and keep it in a hydraulic medium operating temperature range of above about 60°C, preferably between 75°C and 80°C, so as to optimize the responsiveness in the hydraulic circuit, reduce the viscosity of the hydraulic medium, and reduce the fuel consumption of the internal combustion engine, which can thus drive the feeder more efficiently and actuate the hydraulic working and functional components more efficiently.

Claims (3)

  1. Road paver or road paver feeding vehicle as self-propelling machine (F) for processing bituminous or concrete paving material, comprising a liquid cooled combustion engine (M) as a primary driving source and at least one hydraulic circuit (H) containing hydraulic pumps (6), hydromotors or hydrostatic units (7-10) for function components and working components of at least the machine (F) and at least one hydraulic medium reservoir (12), further comprising a fan supported cooling device (K) having cooling regions (1b, 1c) at least for the cooling liquid of the combustion engine (M) and for the hydraulic medium in the hydraulic circuit (H), and a cooling regulating system (S) at least for the cooling region (1b) of the cooling device (K), wherein the hydraulic medium cooling region (1c) is at least one hydraulic medium cooler (24) having a fan (2a, 3a, 4a) and is structurally separated from the cooling liquid cooling region (1b), characterised in that a hydraulic medium operation temperature setting and regulating device (R) is provided for the hydraulic medium cooling region (1c) and is configured to bring the operation temperature of the hydraulic medium depending on the hydraulic load situation in the hydraulic circuit (H) and on the surrounding ambient climate to an operation temperature (T) above at least about 60°C and to maintain the operation temperature of the hydraulic medium in an operation temperature range at least about above 60°C, that the speed of the fan (2a, 3a, 4a) is regulated and/or which is switched on and switched off, that the fan (2a, 3a, 4a) of the hydraulic medium cooler (24) is connected with the hydraulic medium operation temperature setting and regulating device (R), and that a valve (16) controlled by the hydraulic medium operation temperature setting and regulating device (R) is arranged in the hydraulic circuit (H) within a bypass (15) deviating the hydraulic medium cooling region (1c), wherein at least one hydraulic medium heating device (20) is provided in the hydraulic circuit (H) and is connected with the hydraulic medium operation temperature setting and regulating device (R), and wherein the hydraulic medium heating device (20) is arranged at or within the reservoir.
  2. Road paver or road paver feeding vehicle according to claim 1, characterised in that a circulation pump (29) is functionally associated to the hydraulic medium cooling region (1c) which circulation pump (29) is controlled by the hydraulic medium operation temperature setting and regulating device (R), the circulation pump (29), preferably, being located within a shortcut circuit (28) of the hydraulic circuit (H), the shortcut circuit (28) extending between the reservoir (12) and the hydraulic medium cooling region (1c).
  3. Road paver or road paver feeding vehicle according to at least one of the preceding claims, characterised in that at least one signal transmitter (22) for the actual hydraulic medium temperature and/or for hydraulic and/or thermal load conditions is functionally associated to at least one selected hydraulic pump (6) and/or a selected hydromotor or a selected hydrostatic drive unit (7-10), and that the signal transmitter (22) constitutes a regulation command variable transmitter being connected with the hydraulic medium operation temperature setting and regulating device (R).
EP09008470.8A 2009-06-29 2009-06-29 Self-propelled machine Active EP2282029B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT09008470T ATE503092T1 (en) 2009-06-29 2009-06-29 SELF-PROPELLED MACHINE
DE502009000490T DE502009000490D1 (en) 2009-06-29 2009-06-29 Self-propelled machine
EP09008470.8A EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine
US12/821,925 US20100326067A1 (en) 2009-06-29 2010-06-23 Self-propelled machine
CN2010102202512A CN101936211B (en) 2009-06-29 2010-06-29 Self-propelled machine
CN2010202491912U CN201794654U (en) 2009-06-29 2010-06-29 Self-driving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09008470.8A EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine

Publications (3)

Publication Number Publication Date
EP2282029A1 EP2282029A1 (en) 2011-02-09
EP2282029B1 EP2282029B1 (en) 2011-03-23
EP2282029B2 true EP2282029B2 (en) 2022-04-20

Family

ID=41697972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09008470.8A Active EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine

Country Status (5)

Country Link
US (1) US20100326067A1 (en)
EP (1) EP2282029B2 (en)
CN (2) CN101936211B (en)
AT (1) ATE503092T1 (en)
DE (1) DE502009000490D1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282029B2 (en) * 2009-06-29 2022-04-20 Joseph Vögele AG Self-propelled machine
PL2530273T3 (en) 2011-06-01 2020-11-16 Joseph Vögele AG Construction machine with automatic ventilator rotation speed regulator
PL2578888T3 (en) 2011-10-07 2019-05-31 Voegele Ag J Construction machine with automatic ventilator rotation speed regulator
CN103233947A (en) * 2012-01-08 2013-08-07 钱荣华 Method for cooling hydraulic oil of underground coal mine loader digger and other equipment
PL2672008T3 (en) * 2012-06-05 2018-07-31 Joseph Vögele AG Road finisher and method for incorporating mixed goods with a road finisher
JP6009480B2 (en) * 2014-03-06 2016-10-19 日立建機株式会社 Cooling fan control device for construction machinery
US9382675B2 (en) 2014-06-16 2016-07-05 Caterpillar Paving Products Inc. Electric powered systems for paving machines
WO2016056603A1 (en) * 2014-10-10 2016-04-14 住友建機株式会社 Asphalt finisher
CN104500716A (en) * 2014-12-30 2015-04-08 戴纳派克(中国)压实摊铺设备有限公司 Gear oil cooling system and pavement construction machine with same
PL3075909T3 (en) * 2015-03-30 2018-02-28 Joseph Vögele AG Road construction machine with network for data transmission and use of a portion of a power line
PL3091125T3 (en) * 2015-05-06 2017-12-29 Joseph Vögele AG Construction machine with a lifting device for a feeding process and method of adjusting a tailgate
WO2016189653A1 (en) * 2015-05-26 2016-12-01 日立建機株式会社 Construction machine provided with preheating unit and method for preheating said machine
CN110725741A (en) * 2019-10-15 2020-01-24 吉林大学 Vehicle dual-cycle cooling system combined in parallel
DE102022111963A1 (en) 2022-05-12 2023-11-16 Dynapac Gmbh Road construction machine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1425834A1 (en) 1961-04-21 1969-03-20 Richier Sa Cooling device for automatic temperature control of the medium in a hydraulic system
DE2150710A1 (en) 1971-10-12 1973-04-19 Gewerk Eisenhuette Westfalia DEVICE FOR HEATING THE PRESSURE FLUID, IN PARTICULAR FLAME RESISTANT HYDRAULIC FLUIDS, FOR HYDRAULIC OPERATING SYSTEMS ETC.
GB1396778A (en) 1972-03-28 1975-06-04 Af Hydraulics Fluid supply systems
DE2502792A1 (en) 1975-01-24 1976-07-29 Bosch Gmbh Robert PROCEDURE FOR CONTROLLING A PUMP AND EQUIPMENT FOR CARRYING OUT THIS PROCEDURE
DE19634503A1 (en) 1996-08-26 1998-03-05 Voegele Ag J Road finisher
US6195989B1 (en) 1999-05-04 2001-03-06 Caterpillar Inc. Power control system for a machine
US20010029907A1 (en) 1999-12-17 2001-10-18 Algrain Marcelo C. Twin fan control system and method
US6354089B1 (en) 2000-03-08 2002-03-12 Case Corporation Apparatus and method for cooling multiple fluids on a work vehicle
US6378951B1 (en) 1997-07-23 2002-04-30 Hydroacoustics, Inc. Vibratory pavement breaker
DE69921618T2 (en) 1998-02-27 2005-11-03 Volvo Wheel Loaders Ab COOLING AND HEATING SYSTEMS FOR MACHINERY
DE102004038896A1 (en) 2004-08-11 2006-02-23 Keller Grundbau Gmbh Base plate pre-arrangement method, involves passing base plate through drill hole having smaller diameter, where deep floor plastering with larger diameter takes place under base plate
US7134518B2 (en) 2003-03-07 2006-11-14 Kobelco Construction Machinery Co., Ltd. Construction machine
DE202007005860U1 (en) 2007-04-21 2008-08-21 Liebherr-Werk Bischofshofen Ges.M.B.H. cooler system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2306379A (en) * 1930-03-12 1942-12-29 Oscar Christianson Hydraulic power system
GB988177A (en) * 1962-03-09 1965-04-07 Council Scient Ind Res Improvements in hydraulic power transmission systems
US4811561A (en) * 1986-04-08 1989-03-14 Vickers, Incorporated Power transmission
US4785915A (en) 1987-06-19 1988-11-22 Westinghouse Electric Corp. Elevator system monitoring cold oil
DE4439454C2 (en) 1994-11-04 1997-09-04 Man Takraf Foerdertechnik Gmbh Circuit arrangement for preheating hydraulic circuits
US6076488A (en) 1997-03-17 2000-06-20 Shin Caterpillar Mitsubishi Ltd. Cooling device for a construction machine
US6314950B1 (en) * 2000-12-01 2001-11-13 Caterpillar Inc. Intake air temperature control system
AU2002234067A1 (en) * 2001-01-05 2002-07-16 Ingersoll-Rand Company Hydraulic valve system
US6772714B2 (en) * 2001-08-16 2004-08-10 Deere & Company Electronic fan control
CA2501917A1 (en) * 2004-03-23 2005-09-23 Hydra-Fab Fluid Power Inc. Electro-hydraulic fan drive cooling and steering system for vehicle
SE527674C2 (en) * 2004-10-27 2006-05-09 Atlas Copco Rock Drills Ab Drilling unit and method for controlling a fan in the same
CN100567713C (en) 2005-04-07 2009-12-09 日立建机株式会社 The cooling unit of engineering machinery
JP2007016659A (en) * 2005-07-06 2007-01-25 Kobelco Contstruction Machinery Ltd Control device for cooling fan
JP4741606B2 (en) * 2005-12-27 2011-08-03 日立建機株式会社 Pump control device for hydraulic working machine, pump control method, and construction machine
EP2282029B2 (en) * 2009-06-29 2022-04-20 Joseph Vögele AG Self-propelled machine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1425834A1 (en) 1961-04-21 1969-03-20 Richier Sa Cooling device for automatic temperature control of the medium in a hydraulic system
DE2150710A1 (en) 1971-10-12 1973-04-19 Gewerk Eisenhuette Westfalia DEVICE FOR HEATING THE PRESSURE FLUID, IN PARTICULAR FLAME RESISTANT HYDRAULIC FLUIDS, FOR HYDRAULIC OPERATING SYSTEMS ETC.
GB1396778A (en) 1972-03-28 1975-06-04 Af Hydraulics Fluid supply systems
DE2502792A1 (en) 1975-01-24 1976-07-29 Bosch Gmbh Robert PROCEDURE FOR CONTROLLING A PUMP AND EQUIPMENT FOR CARRYING OUT THIS PROCEDURE
DE19634503A1 (en) 1996-08-26 1998-03-05 Voegele Ag J Road finisher
US6378951B1 (en) 1997-07-23 2002-04-30 Hydroacoustics, Inc. Vibratory pavement breaker
DE69921618T2 (en) 1998-02-27 2005-11-03 Volvo Wheel Loaders Ab COOLING AND HEATING SYSTEMS FOR MACHINERY
US6195989B1 (en) 1999-05-04 2001-03-06 Caterpillar Inc. Power control system for a machine
US20010029907A1 (en) 1999-12-17 2001-10-18 Algrain Marcelo C. Twin fan control system and method
US6354089B1 (en) 2000-03-08 2002-03-12 Case Corporation Apparatus and method for cooling multiple fluids on a work vehicle
US7134518B2 (en) 2003-03-07 2006-11-14 Kobelco Construction Machinery Co., Ltd. Construction machine
DE102004038896A1 (en) 2004-08-11 2006-02-23 Keller Grundbau Gmbh Base plate pre-arrangement method, involves passing base plate through drill hole having smaller diameter, where deep floor plastering with larger diameter takes place under base plate
DE202007005860U1 (en) 2007-04-21 2008-08-21 Liebherr-Werk Bischofshofen Ges.M.B.H. cooler system

Also Published As

Publication number Publication date
CN101936211A (en) 2011-01-05
CN201794654U (en) 2011-04-13
CN101936211B (en) 2013-03-13
EP2282029B1 (en) 2011-03-23
DE502009000490D1 (en) 2011-05-05
EP2282029A1 (en) 2011-02-09
US20100326067A1 (en) 2010-12-30
ATE503092T1 (en) 2011-04-15

Similar Documents

Publication Publication Date Title
EP2282029B2 (en) Self-propelled machine
EP2333157B1 (en) Method for regulating the output of a road finisher or feeder and road finisher or feeder
EP2256248B2 (en) Road finisher
EP2420621B1 (en) Paver and method for operating a paver
EP3049270B1 (en) Self-propelled working machine and method for braking a working machine of this type
DE60025722T2 (en) CONSTRUCTION MACHINE
EP0489969B2 (en) Finisher
DE102014008749A1 (en) BOTTOM MILLING MACHINE WITH COOLING SYSTEM, COOLING SYSTEM AND METHOD FOR COOLING A FLOOR MILLING MACHINE
DE112015003533T5 (en) Cold milling machine with independently controlled conveyors
DE202013007524U1 (en) Auto-adaptive engine idle speed control
WO2010006759A1 (en) Method for operating a road paver
EP3569764B1 (en) Method for predictive control of a road paver
EP2565334B1 (en) Construction machine with oil-cooled generator
EP2428669A2 (en) Agricultural machine
EP2821551B1 (en) Construction machine with heatable bearing structures
EP2333158B2 (en) Road finisher
EP1391639B1 (en) Oil volume compensation in a hydraulic circuit of a hydrostatic drive in an automotive working machine
EP2774789A1 (en) Heating device for a mobile working machine
DE102016015674A1 (en) Paver. Control unit and method for operating a road paver
DE102018002743A1 (en) Method for operating a road construction machine
EP4177498B1 (en) Working machine with a hydro-mechanical drive unit
DE102022111963A1 (en) Road construction machine
DE102022210736A1 (en) METHOD FOR BRAKING A COMPACTION MACHINE AND COMPACTION MACHINE
DE102022127661A1 (en) Road construction machine
EP4263254A1 (en) Powertrain for a work machine, method for operating the powertrain, and work machine

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JOSEPH VOEGELE AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502009000490

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000490

Country of ref document: DE

Effective date: 20110505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009000490

Country of ref document: DE

Owner name: JOSEPH VOEGELE AG, DE

Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE

Effective date: 20110329

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JOSEPH VOEGELE AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110723

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

BERE Be: lapsed

Owner name: JOSEPH VOGELE A.G.

Effective date: 20110630

26 Opposition filed

Opponent name: BOMAC GMBH

Effective date: 20111219

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

R26 Opposition filed (corrected)

Opponent name: BOMAG GMBH

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009000490

Country of ref document: DE

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 503092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140629

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOMAG GMBH

Effective date: 20111219

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220420

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502009000490

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 15

Ref country code: DE

Payment date: 20230629

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230629

Year of fee payment: 15

Ref country code: GB

Payment date: 20230619

Year of fee payment: 15