EP2258949B1 - Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly - Google Patents

Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly Download PDF

Info

Publication number
EP2258949B1
EP2258949B1 EP09007299.2A EP09007299A EP2258949B1 EP 2258949 B1 EP2258949 B1 EP 2258949B1 EP 09007299 A EP09007299 A EP 09007299A EP 2258949 B1 EP2258949 B1 EP 2258949B1
Authority
EP
European Patent Office
Prior art keywords
pump
parameters
determined
pressure
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09007299.2A
Other languages
German (de)
French (fr)
Other versions
EP2258949A1 (en
Inventor
Carsten Skovmose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL09007299T priority Critical patent/PL2258949T3/en
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP09007299.2A priority patent/EP2258949B1/en
Priority to JP2012513492A priority patent/JP5746155B2/en
Priority to EA201171344A priority patent/EA022673B1/en
Priority to CN201080024716.5A priority patent/CN102459912B/en
Priority to PCT/EP2010/003211 priority patent/WO2010139416A1/en
Priority to US13/375,530 priority patent/US8949045B2/en
Publication of EP2258949A1 publication Critical patent/EP2258949A1/en
Application granted granted Critical
Publication of EP2258949B1 publication Critical patent/EP2258949B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines

Definitions

  • centrifugal pumps are typically used in the form of centrifugal pump units, consisting of the actual pump and a mechanically connected electric drive motor.
  • centrifugal pump unit To operate the centrifugal pump unit on the one hand energetically favorable, on the other hand optimally adapted to the purpose, it already counts today in centrifugal pump units of small design to the state of the art to equip them with a speed controller, typically an electronic frequency converter.
  • a speed controller typically an electronic frequency converter.
  • Such centrifugal pump units with speed controller are used in systems, be it for example in heating systems, in Kaykalienhebeanlagen, in wastewater systems, in plants for the promotion of groundwater from a well, to name just a few typical applications.
  • centrifugal pump units to provide within the pump housing, a pressure sensor, typically a differential pressure sensor which detects the pressure generated by the pump between the suction and discharge side, so the delivery height.
  • electrical quantities of the motor such as the power consumption of the motor and the frequency with which the speed controller feeds the motor, are detected.
  • the method according to the invention serves to determine characteristic values, that is to say of parameters of an electric motor-driven centrifugal pump assembly with speed controller integrated in a system. These characteristic values are determined on the basis of electrical variables of the motor and / or the speed controller on the one hand and the pressure generated by the pump on the other hand. For this purpose, at least two different operating points of the pump are approached one after the other, wherein the flow rates in the approached operating points are determined on the system side and the characteristic values are thus determined.
  • both the hydraulic operating variables of the pump and also further functions can then be detected or controlled only by using electrical variables of the motor or the speed controller and the pressure generated by the pump. It is provided according to the invention that at least two operating points are approached to set the characteristic values at least with an accuracy that allows meaningful conclusions in later operation. It is understood that when starting from only two operating points, the characteristic values can not necessarily be determined unambiguously. Therefore, according to the invention, at least three, four or nine, thirteen or even more operating points are preferably approached to a sufficient number of characteristic values with sufficient accuracy, in order to be able to largely dispense later on the acquisition of flow rates even on the system side. It is understood that with increasing number of operating points, not only the accuracy of the determined characteristic values, in particular parameters, increases, but also the accuracy of the flow rates to be determined on the system side.
  • An electromotive-driven centrifugal pump unit in the sense of the invention is an electric motor with a centrifugal pump driven therefrom, which typically has a common shaft.
  • a speed controller typically a frequency converter, which can vary the electrical energy added to the motor at least in terms of frequency, but typically also in terms of voltage in a wide range.
  • the electrical variables of the motor which are to be detected, inter alia, namely the power consumption and the frequency, can possibly be replaced by corresponding variables of the speed controller. These variables are usually available on the speed controller, so they need not be detected by separate sensors.
  • the pressure generated by the pump can by a differential pressure sensor on the pump, but also by other suitable pressure transducer elsewhere, z. B. be measured at a distance from the pressure outlet of the pump.
  • any involvement of a centrifugal pump unit to understand, for example, a sewage lifting system, a system in which promotes a centrifugal pump unit as a submersible pump from a well, a system in which promotes a centrifugal pump unit in a surge tank, wastewater systems with several centrifugal pump units and the like ,
  • the characteristic values to be determined are parameters which are part of a function following the model laws of motor and / or pump or also functions which are preferably formed in parameter-linear form.
  • the latter makes it possible to determine concrete values on the basis of concrete operating points in a simple manner, without further differential consideration. Since this function or functions follow the model laws of the engine and / or pump, only a few operating points result in a practically usable result when starting up.
  • a function determining the delivery rate which has at least one first term with a hydraulic and / or electrical performance-dependent variable and a second term with a hydraulic and / or electrical performance-dependent variable, which are each multiplicatively linked to one of the parameters.
  • Specifying such a function as a function of the delivery rate is particularly favorable since the delivery rate in the approached operating points is determined on the installation side and can therefore be used directly for determining the characteristic values.
  • a function determining the flow rate of the above-mentioned type is particularly advantageous if the flow rate, for example in wastewater treatment plants, can not be detected accurately but, for example, only averaged over time. For then this comparatively uncertain value stands on one side of the equation.
  • the parameters can then be determined with comparatively high accuracy by repeated starting and also the same operating point, since the accuracy of the applied delivery quantity also increases as the number of approached operating points and detected values increases. This applies in particular on the basis of the parameter-linear equations described below.
  • q is the delivery rate of the pump
  • p is the delivery pressure of the pump, that is, for example, the differential pressure between suction and pressure side
  • ⁇ r the rotational speed of the pump
  • T the drive torque of the pump
  • ⁇ 1 to ⁇ 3 the parameters of the sub-pump model to be determined
  • the sub-pump model according to equation (b), which is q ⁇ 0 1 ⁇ r + ⁇ 1 p ⁇ r + ⁇ 2 T ⁇ r + ⁇ 3 ⁇ r be used, compared to the above-described sub-pump model by the term ⁇ 0 1 ⁇ r is extended.
  • This term is intended to compensate for an affinity error that can arise when the pressure p is determined at a distance from the pump, that is to say that it is measured differently than the pressure actually generated by the pump.
  • p represents the delivery pressure of the pump
  • ⁇ r the rotational speed of the pump
  • T the driving torque of the pump
  • ⁇ 0 to ⁇ 8 represent the parameters of the sub-pump model to be determined.
  • This frequency value ⁇ e is available in the speed controller and therefore does not need to be determined.
  • the same applies to the determination of the drive torque T of the pump. This can be easily determined by determining that from the quotient of the electric power P e received by the motor and the frequency ⁇ e the power supply of the motor or the rotational speed of the pump ⁇ r is formed. T P e ⁇ e
  • the electric power P e picked up by the motor is also available on the speed controller since voltage and current are constantly detected there.
  • the method according to the invention at least estimatedly requires the resulting delivery rate q of the pump.
  • the pump unit when used in a pressure-balanced container, typically a well shaft or the like, it will be determined, at least approximately, by detecting the change over time of the liquid level in the shaft from which the pump is pumping, on the one hand with the pump switched off to detect the inlet, and on the other hand with the pump switched on in the respective operating point.
  • the knowledge of the shaft geometry, ie in particular the size of the shaft cross-section, if necessary, depending on the level height, if the shaft is formed, for example, tapered to assign the height difference of the liquid level corresponding amount of liquid can.
  • the detection of the liquid level can be done in a simple manner by a pressure measurement, so for example by a pressure sensor in the pump, which detects the static pressure when the pump is switched off.
  • the level can also be detected mechanically or the delivery rate of the pump can be detected directly, if this is advantageous.
  • the parameters can be determined by conventional methods, as is well-known in the calculation of the inflow of boreholes per se.
  • the method according to the invention is formed for applications in which the pump unit conveys into an expansion tank by determining the flow rates at the approached operating points on the basis of the change with time of the pressure in the expansion tank of the plant into which the pump is conveying, taking into account the time change of the tank pressure once when turned on and the other time with the pump off, each over a predetermined period of time.
  • the delivery rate can be determined during later operation of the pump, without a flow monitor or a sensor to use for this. It can therefore be advantageous only on the basis of the electrical characteristics such. Power consumption and frequency of the engine and a pressure measurement, the flow rate can be determined. If necessary, other plant sizes can also be determined, for example, the amount of liquid flowing into the well or the system.
  • this can also be used to monitor the function of the pump unit by the characteristic values, in particular the parameters are determined again at a time interval and compared with the previously determined. If these values agree with a given tolerance, it can be assumed that the function of the pump set is unchanged. However, if these deviate significantly or significantly from those determined previously, a functional impairment of the pump is to be determined, for example due to the leakage of a seal, due to the increased friction in the event of a defect in a bearing or the like.
  • the method according to the invention is preferably carried out automatically with the aid of a corresponding control, which can be part of the digital control of a frequency converter, for example, by automatically determining and processing the characteristic values.
  • the pump unit is first operated in an identification mode in which it automatically approaches several hydraulic operating points to determine the characteristic values, in particular parameters and subsequently placed in an operating mode in which the previously determined characteristic values for determining the operating size of the system, in particular the flow rate of the pump unit can be used. If the characteristic values have to be determined again after a certain time to monitor the pump set, the pump set is put back in the identification mode and these values are again determined and then compared with the pre-determined or the originally determined.
  • the pump unit is identified in an identification mode 1, that is, the characteristic sizes of the pump set determined by at least two, but preferably a variety of operating points is approached, in each of the operating points, the electrical power of the engine, the speed of the motor or simplifies the frequency of the supply voltage of the motor and the pump delivered by the delivery pressure is determined.
  • the quantity delivered in each case is determined on the plant side.
  • identification mode 1 the parameters are also determined, then the pump unit runs in the operating mode 2 to return to the identification mode 1 after a predetermined time (eg one hour or one week), where the parameters are determined again.
  • a predetermined time eg one hour or one week
  • a comparison of the now determined parameters with the previously determined parameters allows an assessment in the simplest form of the function of the pump up to the detection of a change in efficiency, as they are based on Fig. 8 is shown. For the latter, the parameter acquisition of equations (a) and (c) or (b) and (c) is required, whereas for pure function monitoring the parameter detection of equations (a) and (b) or (c) is sufficient.
  • a plant is shown, as it is given for example for the promotion of waste water from a shaft.
  • the shaft 3 in Fig. 2 is, as usual in systems of this type, designed as an upwardly open vessel.
  • the liquid level 4 moves in the inlet of liquid q in upward and with the pump switched on according to the flow rate q pump down.
  • the pump delivers at the pressure p, which is the differential pressure between suction and discharge side.
  • the feed into the shaft 3 is not constant, it is averaged over a time interval ⁇ t ( q in ) as quasi-constant.
  • From the change in the liquid level 4 and on the basis of the shaft cross-section 3 then results in an inflow and with decreasing liquid level 4, when the pump is pumping, a flow rate q out . Since even during the time when the pump is pumping, liquid in the shaft 3 runs, q in so quasi constant, resulting from the sum of the discharge amount q out and q in the flow rate of the pump.
  • FIG. 3 shows the level heights in shaft 3 as a function of time t.
  • first measuring interval 6 is multiplied in the time in which the pump is switched off, the liquid level changing detected 6 over time ⁇ t and with the shaft cross-section A (h). This results in an inflow amount q in per unit of time flowing into the shaft 3.
  • the pump is turned on and runs at a first operating point until the liquid level 4 again has the original given at the beginning of the interval 6 level. From this, the flow rate q pump of the pump can then be determined.
  • Fig. 3 clarifies, in the method used there, the inflow into the shaft during the entire time to determine when the pump is turned off.
  • Fig. 4 illustrated method in which the intervals 10 and 11, are divided into partial time sections ⁇ t 1 to ⁇ t 9, wherein the time intervals ⁇ t can be chosen arbitrarily or randomly, so that there is a certain statistical distribution.
  • a system is shown in which the pump unit is designed as a well pump 12, which in a wellbore 13 is arranged.
  • the borehole pump 12 conveys the water collecting in the borehole 13 to the surface.
  • Z w is the current water level in the shaft 3, ie the liquid level.
  • Z g represents the groundwater level, ie the water level which would be reached if not pumped out and Z f the filter inlet pressure, ie the water level required to penetrate the filter typically formed by sand around the well shaft.
  • Fig. 6 The plant shown promotes the pump 14 in an expansion tank 15, ie in a closed container 15 which is at least partially filled with a compressible gas which is more or less compressed depending on the level, ie, that the pressure within the expansion tank 15 is variable. Since the flow rate here is both outflowing (p out ) and inflowing (pin) depending on the pressure within the container 15, to determine the flow rate of the pump, the equation (g) is to be used, which determines the flow rate as a function of the pressure p out in Expansion tank or at the end of the discharge line and the pressure change ⁇ p out and a constant K e of the expansion tank considered. Again, it is appropriate, as based on Fig.
  • the time interval 16 For example, while the pump is turned off, and the time interval 17 while the pump is turned on, to divide into a plurality of time intervals ⁇ t 1 to ⁇ t 9 and to detect the pressure changes ⁇ p out resulting in these time intervals, to thereby to improve the accuracy of the result.
  • the Fig. 8 shows by way of example two curves, which are formed by means of the sub-pump models (b) and (c) and which represent the efficiency of the pump ⁇ above the delivery rate.
  • the curve 18 has been detected at the beginning of the operation, whereas the curve 19 after a considerable period of operation, so after one or several times has been switched to the operating mode, z. After five months.
  • the efficiency of the pump set has fallen almost over the entire pump delivery range. This can be z. B. indicate a leak within the pump, in which a partial flow is shorted.

Description

Die Anwendung von Kreiselpumpen zählt heute auf nahezu allen technischen Gebieten zum Stand der Technik. Typischerweise werden Kreiselpumpen in Form von Kreiselpumpenaggregaten eingesetzt, bestehend aus der eigentlichen Pumpe und einem mechanisch damit verbundenen elektrischen Antriebsmotor.The use of centrifugal pumps is today the state of the art in almost all technical fields. Centrifugal pumps are typically used in the form of centrifugal pump units, consisting of the actual pump and a mechanically connected electric drive motor.

Um das Kreiselpumpenaggregat einerseits energetisch günstig zu betreiben, andererseits möglichst optimal dem Einsatzzweck anzupassen, zählt es heute auch schon bei Kreiselpumpenaggregaten kleiner Bauart zum Stand der Technik, diese mit einem Drehzahlsteller, typischerweise einem elektronischen Frequenzumrichter auszustatten. Derartige Kreiselpumpenaggregate mit Drehzahlsteller werden in Anlagen eingesetzt, sei es beispielsweise in Heizungsanlagen, in Fäkalienhebeanlagen, in Abwasseranlagen, in Anlagen zur Förderung von Grundwasser aus einem Bohrloch, um hier nur einige typische Anwendungen zu nennen.To operate the centrifugal pump unit on the one hand energetically favorable, on the other hand optimally adapted to the purpose, it already counts today in centrifugal pump units of small design to the state of the art to equip them with a speed controller, typically an electronic frequency converter. Such centrifugal pump units with speed controller are used in systems, be it for example in heating systems, in Fäkalienhebeanlagen, in wastewater systems, in plants for the promotion of groundwater from a well, to name just a few typical applications.

Insbesondere in Anlagen, aber nicht nur dort, ist es wichtig, einerseits die Funktion der Anlagenteile und andererseits die Prozessgrößen zu überwachen. So ist es bei Kreiselpumpenaggregaten bekannt, innerhalb des Pumpengehäuses einen Drucksensor, typischerweise einen Differenzdrucksensor vorzusehen, welcher den von der Pumpe erzeugten Druck zwischen Saug- und Druckseite, also die Förderhöhe erfasst.Especially in plants, but not only there, it is important to monitor the function of the plant parts and the process variables on the one hand. Thus, it is known in centrifugal pump units to provide within the pump housing, a pressure sensor, typically a differential pressure sensor which detects the pressure generated by the pump between the suction and discharge side, so the delivery height.

Darüber hinaus werden elektrische Größen des Motors wie beispielsweise die Leistungsaufnahme des Motors und die Frequenz, mit welcher der Drehzahlsteller den Motor speist, erfasst.In addition, electrical quantities of the motor, such as the power consumption of the motor and the frequency with which the speed controller feeds the motor, are detected.

Zur Ermittlung des hydraulischen Betriebspunktes der Pumpe genügt jedoch die Erfassung der vorgenannten Werte in der Regel nicht, da sie keine Aussage über die Fördermenge ermöglichen. Die Anordnung von Strömungswächtern zur Erfassung des Durchflusses innerhalb der Pumpe ist aufwändig und häufig auch störanfällig. Ein Strömungssensor, mit welchem die Strömungsgeschwindigkeit und damit auch die Fördermenge erfasst werden kann, ist noch aufwändiger und kann insbesondere in der Abwassertechnik praktisch nicht eingesetzt werden.In order to determine the hydraulic operating point of the pump, however, the detection of the aforementioned values generally does not suffice since they do not make any statement about the delivery rate. The arrangement of flow monitors for detecting the flow within the pump is complex and often prone to failure. A flow sensor, with which the flow rate and thus the flow rate can be detected, is even more complex and can not be used practically in wastewater technology in particular.

Aus GB 2 221 073 A zählt es zum Stand der Technik, die Fördermenge der Pumpe indirekt zu berechnen, indem typischerweise über eine Druckmessung innerhalb des Schachtes dessen Füllstand, insbesondere die zeitliche Änderung des Füllstandes ermittelt wird. Hierzu wird zunächst bei ausgeschalteter Pumpe die sich durchschnittlich ergebende Zulaufmenge pro Zeiteinheit ermittelt und dann bei eingeschalteter Pumpe ermittelt, um wie viel der Füllstand pro Zeiteinheit abnimmt, um dann unter der Voraussetzung, dass in der Zeit, in welcher die Pumpe läuft, der gleiche Zufluss erfolgt wie in der Zeit, in der die Pumpe nicht läuft, auf die Fördermenge zu schließen. Dieses Verfahren ist aufwändig, da nicht nur eine Zeitmessung zusätzlich erforderlich ist, sondern auch die Veränderung des Füllstandes erfasst werden muss, wenn die Pumpe nicht läuft. Im Übrigen hängt die Genauigkeit der ermittelten Pumpenfördermengen von der Kontinuität des Zulaufs ab.Out GB 2 221 073 A It is part of the state of the art to calculate the delivery rate of the pump indirectly, by typically determining the level, in particular the change over time, of the level via a pressure measurement within the shaft. For this purpose, when the pump is switched off, the average resulting feed rate per unit of time is first determined and then determined with the pump switched on by how much the fill level per unit time decreases, and then under the condition that the same inflow occurs in the time in which the pump is running As in the time when the pump is not running, close to the flow rate. This method is complex, since not only a time measurement is additionally required, but also the change in the level must be detected when the pump is not running. Incidentally, the accuracy of the determined pump flow rates depends on the continuity of the feed.

Aus EP 1 072 795 A1 ist ein Verfahren bekannt, welches bei einer in einer Anlage befindlichen Pumpe ermittelt, ob diese in einem energetisch günstigen Bereich gefahren wird. Hierzu werden einerseits die Parameter des Pumpenaggregats eingegeben, andererseits werden die Istdaten, d. h. Differenzdruck, Durchfluss oder dergleichen ermittelt, um einen Bezug zwischen den eingegebenen theoretischen Solldaten und den tatsächlichen Istdaten herzustellen. Das Verfahren dient im Wesentlichen dazu, festzustellen, ob der Einsatz eines Drehzahlstellers sinnvoll ist oder nicht.Out EP 1 072 795 A1 a method is known which determines when a pump located in a plant, whether it is driven in an energetically favorable range. For this purpose, on the one hand the parameters of the pump set are entered, on the other hand, the actual data, ie differential pressure, flow or the like is determined by a Relationship between the theoretical theoretical data entered and the actual actual data. The method essentially serves to determine whether the use of a speed controller makes sense or not.

Aus DE 39 18 294 A1 zählt zum Stand der Technik, eine Abwasserpumpstation anhand der Pumpenausgangswerte der Abwasserpumpe zu überwachen, indem zu vorgegebenen Zeitpunkten die Werte mit zuvor gemessenen Bezugswerten verglichen werden.Out DE 39 18 294 A1 It is state of the art to monitor a sewage pump station on the basis of the pump output values of the sewage pump by comparing the values with previously measured reference values at predefined times.

Ausgehend vom Stand der Technik nach EP 1 072 795 A1 liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zu schaffen, mit dem die vorgenannten Nachteile nach Möglichkeit vermieden werden können und das mit einfachen technischen Mitteln eine Erfassung auch der hydraulischen Größen der Pumpe im Betrieb erlaubt.Based on the state of the art EP 1 072 795 A1 The invention has for its object to provide a method by which the aforementioned disadvantages can be avoided as far as possible and with simple technical means allows detection of the hydraulic variables of the pump during operation.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung und der Zeichnung. Sowohl die Merkmale der Unteransprüche als auch die der nachfolgenden Beschreibung können, soweit dies zweckmäßig erscheint, auch für sich sowie in anderer als der beschriebenen Kombination eingesetzt werden.This object is achieved by a method having the features specified in claim 1. Advantageous embodiments of the invention will become apparent from the dependent claims and the following description and the drawings. Both the features of the subclaims as well as those of the following description, as far as appropriate, can also be used on their own and in combinations other than those described.

Das erfindungsgemäße Verfahren dient zur Ermittlung von charakteristischen Werten, also von Parametern eines in einer Anlage eingebundenen elektromotorisch angetriebenen Kreiselpumpenaggregates mit Drehzahlsteller. Diese charakteristischen Werte werden anhand elektrischer Größen des Motors und/oder des Drehzahlstellers einerseits sowie des von der Pumpe erzeugten Drucks andererseits ermittelt. Es werden hierzu nacheinander mindestens zwei unterschiedliche Betriebspunkte der Pumpe angefahren, wobei die Fördermengen in den angefahrenen Betriebspunkten anlagenseitig ermittelt und die charakteristischen Werte damit bestimmt werden.The method according to the invention serves to determine characteristic values, that is to say of parameters of an electric motor-driven centrifugal pump assembly with speed controller integrated in a system. These characteristic values are determined on the basis of electrical variables of the motor and / or the speed controller on the one hand and the pressure generated by the pump on the other hand. For this purpose, at least two different operating points of the pump are approached one after the other, wherein the flow rates in the approached operating points are determined on the system side and the characteristic values are thus determined.

Nach Bestimmung der charakteristischen Werte, also der Parameter, können dann im Weiteren nur unter Heranziehung elektrischer Größen des Motors bzw. des Drehzahlstellers und des von der Pumpe erzeugten Drucks sowohl die hydraulischen Betriebsgrößen der Pumpe als auch weitergehende Funktionen erfasst bzw. kontrolliert werden. Dabei ist gemäß der Erfindung vorgesehen, dass mindestens zwei Betriebspunkte angefahren werden, um die charakteristischen Werte zumindest mit einer Genauigkeit festzulegen, die sinnvolle Rückschlüsse im späteren Betrieb ermöglicht. Es versteht sich, dass beim Anfahren von nur zwei Betriebspunkten die charakteristischen Werte nicht notwendigerweise eindeutig ermittelt werden können. Bevorzugt werden daher gemäß der Erfindung mindestens drei, vier oder neun, dreizehn oder gar mehr Betriebspunkte angefahren, um eine ausreichende Anzahl von charakteristischen Werten mit genügender Genauigkeit zu erfassen, um dann später auf die Erfassung von Fördermengen auch anlagenseitig weitgehend verzichten zu können. Es versteht sich, dass mit zunehmender Anzahl der Betriebspunkte nicht nur die Genauigkeit der ermittelten charakteristischen Werte, insbesondere Parameter, zunimmt, sondern darüber hinaus auch die Genauigkeit der anlagenseitig zu bestimmenden Fördermengen.After determination of the characteristic values, that is to say the parameters, both the hydraulic operating variables of the pump and also further functions can then be detected or controlled only by using electrical variables of the motor or the speed controller and the pressure generated by the pump. It is provided according to the invention that at least two operating points are approached to set the characteristic values at least with an accuracy that allows meaningful conclusions in later operation. It is understood that when starting from only two operating points, the characteristic values can not necessarily be determined unambiguously. Therefore, according to the invention, at least three, four or nine, thirteen or even more operating points are preferably approached to a sufficient number of characteristic values with sufficient accuracy, in order to be able to largely dispense later on the acquisition of flow rates even on the system side. It is understood that with increasing number of operating points, not only the accuracy of the determined characteristic values, in particular parameters, increases, but also the accuracy of the flow rates to be determined on the system side.

Unter elektromoforisch angetriebenem Kreiselpumpenaggregat im Sinne der Erfindung ist ein Elektromotor mit davon angetriebener Kreiselpumpe zu verstehen, die typischerweise eine gemeinsame Welle aufweisen. Dem Aggregat zugeordnet ist ein Drehzahlsteller, typischerweise ein Frequenzumrichter, welcher die dem Motor zugefügte elektrische Energie zumindest hinsichtlich der Frequenz, typischerweise jedoch auch hinsichtlich der Spannung in weiten Bereich verändern kann. Die dabei unter anderem zu erfassenden elektrischen Größen des Motors, nämlich die Leistungsaufnahme und die Frequenz können ggf. durch entsprechende Größen des Drehzahlstellers ersetzt werden. Diese Größen stehen drehzahlstellerseitig üblicherweise zur Verfügung, brauchen also nicht durch gesonderte Messaufnehmer erfasst zu werden. Der von der Pumpe erzeugte Druck kann durch einen Differenzdruckaufnehmer an der Pumpe, aber auch durch geeignete andere Druckaufnehmer auch an anderer Stelle, z. B. mit Abstand zum Druckausgang der Pumpe gemessen werden.An electromotive-driven centrifugal pump unit in the sense of the invention is an electric motor with a centrifugal pump driven therefrom, which typically has a common shaft. Associated with the unit is a speed controller, typically a frequency converter, which can vary the electrical energy added to the motor at least in terms of frequency, but typically also in terms of voltage in a wide range. The electrical variables of the motor, which are to be detected, inter alia, namely the power consumption and the frequency, can possibly be replaced by corresponding variables of the speed controller. These variables are usually available on the speed controller, so they need not be detected by separate sensors. The pressure generated by the pump can by a differential pressure sensor on the pump, but also by other suitable pressure transducer elsewhere, z. B. be measured at a distance from the pressure outlet of the pump.

Unter Anlage im Sinne der Erfindung ist jede Einbindung eines Kreiselpumpenaggregates zu verstehen, beispielsweise eine Abwasserhebeanlage, eine Anlage, bei der ein Kreiselpumpenaggregat als Tauchpumpe aus einem Bohrloch fördert, eine Anlage, bei der ein Kreiselpumpenaggregat in einen Ausgleichsbehälter fördert, Abwasseranlagen mit mehreren Kreiselpumpenaggregaten und dergleichen.Under plant within the meaning of the invention, any involvement of a centrifugal pump unit to understand, for example, a sewage lifting system, a system in which promotes a centrifugal pump unit as a submersible pump from a well, a system in which promotes a centrifugal pump unit in a surge tank, wastewater systems with several centrifugal pump units and the like ,

Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens handelt es sich bei den zu ermittelnden charakteristischen Werten um Parameter, die Teil einer den Modellgesetzen von Motor und/oder Pumpe folgenden Funktion oder auch Funktionen sind, die vorzugsweise in parameterlinearer Form gebildet sind. Letzteres ermöglicht es, in einfacher Weise konkrete Werte anhand konkreter Betriebspunkte zu ermitteln, ohne weitere differentiale Betrachtung. Da diese Funktion oder Funktionen den Modellgesetzen von Motor und/oder Pumpe folgen, ergibt sich schon beim Anfahren nur weniger Betriebspunkte ein praxisverwertbares Ergebnis.According to an advantageous development of the method according to the invention, the characteristic values to be determined are parameters which are part of a function following the model laws of motor and / or pump or also functions which are preferably formed in parameter-linear form. The latter makes it possible to determine concrete values on the basis of concrete operating points in a simple manner, without further differential consideration. Since this function or functions follow the model laws of the engine and / or pump, only a few operating points result in a practically usable result when starting up.

Vorteilhaft wird dabei eine die Fördermenge bestimmende Funktion benutzt, die mindestens einen ersten Term mit einer hydraulischen und/oder elektrischen leistungsabhängigen Größe und einen zweiten Term mit einer hydraulischen und/oder elektrischen leistungsabhängigen Größe aufweist, die jeweils mit einem der Parameter multiplikativ verknüpft sind. Eine solche Funktion als Funktion der Fördermenge anzugeben, ist besonders günstig, da die Fördermenge in den angefahrenen Betriebspunkten anlagenseitig ermittelt wird und somit direkt zur Ermittlung der charakteristischen Werte eingesetzt werden kann. Eine die Fördermenge bestimmende Funktion der oben genannten Art zur verwenden ist insbesondere dann von Vorteil, wenn die Fördermenge, wie beispielsweise in Abwasseranlagen, nicht exakt, sondern beispielsweise nur zeitlich gemittelt erfasst werden kann. Dann nämlich steht dieser vergleichsweise unsichere Wert auf einer Seite der Gleichung. Es können dann gegebenenfalls durch mehrfaches Anfahren auch desselben Betriebspunktes die Parameter mit vergleichsweise hoher Genauigkeit bestimmt werden, da mit zunehmender Zahl der angefahrenen Betriebspunkte und erfassten Werte auch die Genauigkeit der angesetzten Fördermenge zunimmt. Dies gilt insbesondere unter Zugrundelegung der im Folgenden noch beschriebenen parameterlinearen Gleichungen.Advantageously, a function determining the delivery rate is used, which has at least one first term with a hydraulic and / or electrical performance-dependent variable and a second term with a hydraulic and / or electrical performance-dependent variable, which are each multiplicatively linked to one of the parameters. Specifying such a function as a function of the delivery rate is particularly favorable since the delivery rate in the approached operating points is determined on the installation side and can therefore be used directly for determining the characteristic values. A function determining the flow rate of the above-mentioned type is particularly advantageous if the flow rate, for example in wastewater treatment plants, can not be detected accurately but, for example, only averaged over time. For then this comparatively uncertain value stands on one side of the equation. If necessary, the parameters can then be determined with comparatively high accuracy by repeated starting and also the same operating point, since the accuracy of the applied delivery quantity also increases as the number of approached operating points and detected values increases. This applies in particular on the basis of the parameter-linear equations described below.

Besonders vorteilhaft wird gemäß einer Weiterbildung der Erfindung eine Funktion verwendet, bei welcher die Parameter Teil mindestens eines Teils eines Pumpenmodells bilden und wie folgt verknüpft sind: q = γ 1 p ω r + γ 2 T ω r + γ 3 ω r

Figure imgb0001
According to a development of the invention, a function is particularly advantageously used in which the parameters form part of at least part of a pump model and are linked as follows: q = γ 1 p ω r + γ 2 T ω r + γ 3 ω r
Figure imgb0001

In dieser Gleichung sind q die Fördermenge der Pumpe, p der Förderdruck der Pumpe, also beispielsweise der Differenzdruck zwischen Saug- und Druckseite, ωr die Drehgeschwindigkeit der Pumpe, T das Antriebsdrehmoment der Pumpe und γ1 bis γ3 die zu ermittelnden Parameter des Teilpumpenmodells. Zur Ermittlung dieser Parameter γ1 bis γ3 sind mindestens zwei Betriebspunkte anzufahren, um diese zumindest näherungsweise zu bestimmen. Es versteht sich, dass dann noch keine eindeutige Lösung gegeben ist, jedoch aufgrund dessen, dass die Gleichung (a) einen Teil eines Pumpenmodells darstellt, schon für einige Anwendungen hinreichend aussagekräftig sein kann.In this equation, q is the delivery rate of the pump, p is the delivery pressure of the pump, that is, for example, the differential pressure between suction and pressure side, ω r the rotational speed of the pump, T the drive torque of the pump and γ 1 to γ 3, the parameters of the sub-pump model to be determined , To determine these parameters γ 1 to γ 3 , at least two operating points are to be approached in order to determine them at least approximately. It is understood that then there is still no clear solution, but due to the fact that the equation (a) represents a part of a pump model, even for some applications can be sufficiently meaningful.

Alternativ zu dem vorgenannten Teilpumpenmodell gemäß Gleichung (a) kann das Teilpumpenmodell gemäß Gleichung (b), die lautet q = γ 0 1 ω r + γ 1 p ω r + γ 2 T ω r + γ 3 ω r

Figure imgb0002
verwendet werden, das gegenüber dem vorbeschriebenen Teilpumpenmodell um den Term γ 0 1 ω r
Figure imgb0003
erweitert ist. Dieser Term ist zur Kompensation eines Affinitätsfehlers bestimmt, der entstehen kann, wenn der Druck p mit Abstand zur Pumpe ermittelt wird, also gegenüber dem tatsächlich von der Pumpe erzeugten Druck abweichend gemessen wird.As an alternative to the aforementioned sub-pump model according to equation (a), the sub-pump model according to equation (b), which is q = γ 0 1 ω r + γ 1 p ω r + γ 2 T ω r + γ 3 ω r
Figure imgb0002
be used, compared to the above-described sub-pump model by the term γ 0 1 ω r
Figure imgb0003
is extended. This term is intended to compensate for an affinity error that can arise when the pressure p is determined at a distance from the pump, that is to say that it is measured differently than the pressure actually generated by the pump.

Alternativ oder zusätzlich kann gemäß einer vorteilhaften Weiterbildung der Erfindung ein Teilpumpenmodell eingesetzt werden, bei dem die Parameter wie folgt verknüpft sind: p 2 = θ 0 + θ 1 p + θ 2 T + θ 3 pT + θ 4 T 2 + θ 5 ω r 2 + θ 6 p ω r 2 + θ 7 T ω r 2 + θ 8 ω r 4

Figure imgb0004
wobei p den Förderdruck der Pumpe, ωr die Drehgeschwindigkeit der Pumpe, T das Antriebsdrehmoment der Pumpe und θ0 bis θ8 die zu ermittelnden Parameter des Teilpumpenmodells darstellen. Die Gleichungen (a), (b) und (c) stellen jeweils Teile eines Pumpenmodells dar, bilden also zusammen ((a) und (c) bzw. (b) und (c)) ein vollständiges Pumpenmodell, weshalb es besonders vorteilhaft ist, die Parameter beider Gleichungen zu bestimmen, da dann eine vollständige hydraulische Leistungskurve der Pumpe mit hoher Genauigkeit nachgebildet werden kann. Es versteht sich, dass dann eine entsprechend Vielzahl von unterschiedlichen Betriebspunkten anzufahren ist, um die Vielzahl der zu ermittelnden Parameter bestimmen zu können.Alternatively or additionally, according to an advantageous development of the invention, a partial pump model can be used in which the parameters are linked as follows: p 2 = θ 0 + θ 1 p + θ 2 T + θ 3 pT + θ 4 T 2 + θ 5 ω r 2 + θ 6 p ω r 2 + θ 7 T ω r 2 + θ 8th ω r 4
Figure imgb0004
where p represents the delivery pressure of the pump, ω r the rotational speed of the pump, T the driving torque of the pump and θ 0 to θ 8 represent the parameters of the sub-pump model to be determined. The equations (a), (b) and (c) each represent parts of a pump model, so together form (a) and (c) or (b) and (c) a complete pump model, which is why it is particularly advantageous To determine the parameters of both equations, since then a complete hydraulic power curve of the pump can be replicated with high accuracy. It goes without saying that then a corresponding multiplicity of different operating points must be approached in order to be able to determine the multiplicity of parameters to be determined.

Eine vorteilhafte Weiterbildung, insbesondere Vereinfachung des erfindungsgemäßen Verfahrens ergibt sich dadurch, dass auf die Ermittlung der Drehgeschwindigkeit der Pumpe ωr verzichtet wird und diese vereinfacht der Frequenz ωe der Spannungsversorgung des Motors gleichgesetzt wird. ω r = ω e

Figure imgb0005
An advantageous development, in particular simplification of the method according to the invention results from the fact that the determination of the rotational speed of the pump ω r is omitted and this is simplified equated to the frequency ω e of the power supply of the motor. ω r = ω e
Figure imgb0005

Dieser Frequenzwert ωe steht im Drehzahlsteller zur Verfügung und braucht daher nicht ermittelt zu werden. Entsprechendes gilt für die Ermittlung des Antriebsdrehmoments T der Pumpe. Dies kann vereinfacht dadurch ermittelt werden, dass dieses aus dem Quotient der vom Motor aufgenommenen elektrischen Leistung Pe und der Frequenz ωe der Spannungsversorgung des Motors bzw. der Drehgeschwindigkeit der Pumpe ωr gebildet wird. T = P e ω e

Figure imgb0006
This frequency value ω e is available in the speed controller and therefore does not need to be determined. The same applies to the determination of the drive torque T of the pump. This can be easily determined by determining that from the quotient of the electric power P e received by the motor and the frequency ω e the power supply of the motor or the rotational speed of the pump ω r is formed. T = P e ω e
Figure imgb0006

Auch die vom Motor aufgenommene elektrische Leistung Pe steht drehzahlstellerseitig zur Verfügung, da Spannung und Strom dort ständig erfasst werden.The electric power P e picked up by the motor is also available on the speed controller since voltage and current are constantly detected there.

Das erfindungsgemäße Verfahren benötigt zur Ermittlung der charakteristischen Werte in den angefahrenen Betriebspunkten zumindest abschätzungsweise die sich ergebende Fördermenge q der Pumpe. Gemäß der Erfindung wird diese beim Einsatz des Pumpenaggregats in einem druckausgeglichenen Behältnis, typischerweise einem Brunnenschacht oder dergleichen, zumindest in Näherung dadurch ermittelt werden, dass die zeitliche Änderung des Flüssigkeitsstandes im Schacht erfasst wird, aus dem die Pumpe fördert, und zwar einerseits bei ausgeschalteter Pumpe, um den Zulauf zu erfassen, und andererseits bei eingeschalteter Pumpe in dem jeweiligen Betriebspunkt. Weiter erforderlich ist die Kenntnis der Schachtgeometrie, d. h. insbesondere die Größe des Schachtquerschnitts, ggf. in Abhängigkeit der Füllstandshöhe, wenn der Schacht beispielsweise konisch zulaufend ausgebildet ist, um die der Höhendifferenz des Flüssigkeitsstandes entsprechende Flüssigkeitsmenge zuordnen zu können. Die Erfassung des Flüssigkeitsstandes kann in einfacher Weise durch eine Druckmessung erfolgen, also zum Beispiel durch einen Drucksensor in der Pumpe, welcher bei abgeschalteter Pumpe den statischen Druck erfasst. Alternativ kann der Füllstand auch mechanisch erfasst oder die Fördermenge der Pumpe unmittelbar erfasst werden, wenn dies vorteilhaft ist.In order to determine the characteristic values in the approached operating points, the method according to the invention at least estimatedly requires the resulting delivery rate q of the pump. According to the invention, when the pump unit is used in a pressure-balanced container, typically a well shaft or the like, it will be determined, at least approximately, by detecting the change over time of the liquid level in the shaft from which the pump is pumping, on the one hand with the pump switched off to detect the inlet, and on the other hand with the pump switched on in the respective operating point. Next, the knowledge of the shaft geometry, ie in particular the size of the shaft cross-section, if necessary, depending on the level height, if the shaft is formed, for example, tapered to assign the height difference of the liquid level corresponding amount of liquid can. The detection of the liquid level can be done in a simple manner by a pressure measurement, so for example by a pressure sensor in the pump, which detects the static pressure when the pump is switched off. Alternatively, the level can also be detected mechanically or the delivery rate of the pump can be detected directly, if this is advantageous.

Wenn die Anlage durch ein Bohrloch mit einer darin befindlichen Bohrlochpumpe gebildet ist, kann gemäß einer Weiterbildung der Erfindung die Fördermenge in dem jeweils angefahrenen Betriebspunkt anhand der zeitlichen Änderung des Flüssigkeitsstandes im Bohrloch ermittelt werden. Dabei ist die Flüssigkeitsstandsänderung, die sich bei abgeschalteter Pumpe einerseits und bei eingeschalteter Pumpe in einem Betriebspunkt andererseits über einen vorbestimmten Zeitabschnitt ergibt, zu vergleichen, um die Fördermenge der Pumpe zu ermitteln. Da bei derartigen Bohrlöchern der Zulauf typischerweise nicht linear erfolgt, ist es vorteilhaft, die Zulaufmenge zum Bohrloch unter Anwendung der folgenden Gleichungen zu bestimmen: Δ z m Δ t = η 0 + η 1 z m + η 2 z m 2 + + η k z m k

Figure imgb0007
q in = A w η 0 + η 1 z m + η 2 z m 2 + + η k z m k
Figure imgb0008
in denen

Zm
der Flüssigkeitsstand im Bohrloch,
Δ t
ein Zeitabschnitt,
ΔZ m
die Flüssigkeitsstandsänderung während eines Zeitabschnitts Δt,
qin
der berechnete Zufluss in das Bohrloch und
Aw
der Querschnitt des Bohrlochs sowie
η o , ..., ηk
die Parameter eines den Zulauf in das Bohrloch nachbildenden mathematischen Modells sind.
If the system is formed by a borehole with a borehole pump located therein, according to an embodiment of the invention, the flow rate in the respectively approached operating point can be determined on the basis of the temporal change of the liquid level in the borehole. In this case, the liquid level change, which results when the pump is switched off, on the one hand, and with the pump switched on, on the other hand, over a predetermined period of time on the other hand, in order to determine the delivery rate of the pump. Since such boreholes are typically non-linear in inflow, it is advantageous to determine the inflow rate to the borehole using the following equations: Δ z m Δ t = η 0 + η 1 z m + η 2 z m 2 + ... + η k z m k
Figure imgb0007
q in = A w η 0 + η 1 z m + η 2 z m 2 + ... + η k z m k
Figure imgb0008
in which
Z m
the fluid level in the borehole,
Δ t
a period of time,
ΔZ m
the liquid level change during a time interval Δt,
q in
the calculated inflow into the well and
A w
the cross section of the borehole as well
η o , ..., η k
are the parameters of a mathematical model that replicates the feed into the borehole.

Da diese Gleichungen ebenfalls in parameterlinearer Form vorliegen, können die Parameter mit üblichen Verfahren ermittelt werden, wie dies bei Berechnung des Zulaufs von Bohrlöchern an sich hinlänglich bekannt ist.Since these equations are also in parameter-linear form, the parameters can be determined by conventional methods, as is well-known in the calculation of the inflow of boreholes per se.

Das erfindungsgemäße Verfahren wird für Anwendungen, bei welchen das Pumpenaggregat in einen Expansionsbehälter fördert, dadurch gebildet, dass die Fördermengen in den angefahrenen Betriebspunkten anhand der zeitlichen Änderung des Drucks in dem Expansionsbehälter der Anlage bestimmt werden, in den die Pumpe fördert, und zwar unter Berücksichtigung der zeitlichen Änderung des Behälterdrucks einmal bei eingeschalteter und das andere Mal bei ausgeschalteter Pumpe, jeweils über einen vorbestimmten Zeitabschnitt.The method according to the invention is formed for applications in which the pump unit conveys into an expansion tank by determining the flow rates at the approached operating points on the basis of the change with time of the pressure in the expansion tank of the plant into which the pump is conveying, taking into account the time change of the tank pressure once when turned on and the other time with the pump off, each over a predetermined period of time.

Dabei wird gemäß einer vorteilhaften Weiterbildung des Verfahrens die Fördermenge der Pumpe unter Anwendung der folgenden Gleichung bestimmt: q out q pump = K e p out 2 p out t K e p out 2 Δ p out Δ t

Figure imgb0009
in der

qout
der aus der Anlage austretende Förderstrom,
qpump
die Fördermenge der Pumpe,
pout
der Druck im Expansionsbehälter,
Δt
ein Zeitabschnitt,
Δpout
die Druckänderung im Expansionsbehälter während des Zeitabschnitts Δt und
Ke
eine Konstante des Expansionsbehälters sind.
In this case, according to an advantageous embodiment of the method, the delivery rate of the pump is determined using the following equation: q out - q pump = - K e p out 2 p out t - K e p out 2 Δ p out Δ t
Figure imgb0009
in the
q out
the flow leaving the system,
q pump
the flow rate of the pump,
p out
the pressure in the expansion tank,
.delta.t
a period of time,
Δp out
the pressure change in the expansion tank during the period .DELTA.t and
K e
are a constant of the expansion tank.

Dabei ist der Differentialquotient dp out dt

Figure imgb0010
vereinfacht durch den Differenzenquotient Δ p out Δ t
Figure imgb0011
ersetzt worden, was jedoch beim Anfahren einer ausreichenden Menge von Betriebspunkten in der Regel unproblematisch ist.Here is the differential quotient dp out dt
Figure imgb0010
simplified by the difference quotient Δ p out Δ t
Figure imgb0011
has been replaced, but this is not a problem when starting a sufficient amount of operating points in the rule.

Vorteilhaft kann mit dem erfindungsgemäßen Verfahren insbesondere unter Zugrundelegung eines Teilpumpenmodells, wie es in Anspruch 4 bzw. Anspruch 5 gemäß den Gleichungen (a) oder (b) angegeben ist, im späteren Betrieb der Pumpe die Fördermenge ermittelt werden, ohne einen Strömungswächter oder einen Sensor hierfür einzusetzen. Es kann also vorteilhaft einzig anhand der elektrischen Kenngrößen wie z.B. Leistungsaufnahme und Frequenz des Motors sowie einer Druckmessung die Fördermenge bestimmt werden. Dabei können gegebenenfalls auch weitere Anlagengrößen ermittelt werden, beispielsweise die in den Brunnen oder das System zufließende Flüssigkeitsmenge.Advantageously, with the method according to the invention, in particular on the basis of a partial pump model, as indicated in claims 4 and 5 according to equations (a) or (b), the delivery rate can be determined during later operation of the pump, without a flow monitor or a sensor to use for this. It can therefore be advantageous only on the basis of the electrical characteristics such. Power consumption and frequency of the engine and a pressure measurement, the flow rate can be determined. If necessary, other plant sizes can also be determined, for example, the amount of liquid flowing into the well or the system.

Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens kann dieses auch zur Überwachung der Funktion des Pumpenaggregats herangezogen werden, indem die charakteristischen Werte, insbesondere die Parameter in zeitlichem Abstand erneut ermittelt werden und mit den zuvor ermittelten verglichen werden. Wenn diese Werte in einem vorgegebenen Toleranzmaß übereinstimmen, ist davon auszugehen, dass die Funktion des Pumpenaggregats unverändert gegeben ist. Weichen diese jedoch von den zuvor ermittelten deutlich oder erheblich ab, so ist eine Funktionsbeeinträchtigung der Pumpe festzustellen, beispielsweise durch die Undichtigkeit einer Dichtung, durch die erhöhte Reibung beim Defekt eines Lagers oder dergleichen.According to one embodiment of the method according to the invention, this can also be used to monitor the function of the pump unit by the characteristic values, in particular the parameters are determined again at a time interval and compared with the previously determined. If these values agree with a given tolerance, it can be assumed that the function of the pump set is unchanged. However, if these deviate significantly or significantly from those determined previously, a functional impairment of the pump is to be determined, for example due to the leakage of a seal, due to the increased friction in the event of a defect in a bearing or the like.

Wenn, was gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens vorgesehen ist, nicht nur die charakteristischen Werte, insbesondere Parameter eines Teilpumpenmodells, sondern die eines vollständigen Pumpenmodells in zeitlichem Abstand ermittelt und verglichen werden, typischerweise ein solches, wie es in den Ansprüchen 4 oder 5 und 6 angegeben ist, dann ist es sogar möglich, den Wirkungsgrad des Pumpenaggregats, also dessen Effektivität zu überwachen. Dabei wird durch das Pumpenmodell z.B. die Kurve des Wirkungsgrades in Abhängigkeit der Förderung der Pumpe nachgebildet, so dass bei Vergleich der Kurven ein Leistungsabfall auch nur in Teilbereichen sichtbar wird.If what is provided according to a development of the method according to the invention, not only the characteristic values, in particular parameters of a sub-pump model, but those of a complete pump model at a time interval are determined and compared, typically such, as in claims 4 or 5 and 6 is specified, then it is even possible to monitor the efficiency of the pump unit, so its effectiveness. In this case, for example, the curve of the efficiency as a function of the promotion of the pump is modeled by the pump model, so that when comparing the curves a power loss is visible only in some areas.

Das erfindungsgemäße Verfahren wird vorzugsweise selbsttätig mit Hilfe einer entsprechenden Steuerung, die beispielsweise Teil der digitalen Steuerung eines Frequenzumrichters sein kann, durchgeführt, indem die charakteristischen Werte selbsttätig ermittelt und verarbeitet werden. Dazu wird das Pumpenaggregat zunächst in einem Identifizierungsmodus betrieben, in dem es mehrere hydraulische Betriebspunkte selbsttätig anfährt, um die charakteristischen Werte, insbesondere Parameter zu bestimmen und nachfolgend in einen Betriebsmodus versetzt, in dem die zuvor ermittelten charakteristischen Werte zur Ermittlung von Betriebsgröße der Anlage, insbesondere der Fördermenge des Pumpenaggregats eingesetzt werden. Wenn zur Überwachung des Pumpenaggregats nach einer gewissen Zeit die charakteristischen Werte erneut ermittelt werden müssen, wird das Pumpenaggregat wieder in den Identifizierungsmodus gesetzt und werden diese Werte erneut ermittelt und sodann mit den vorermittelten oder den ursprünglich ermittelten verglichen.The method according to the invention is preferably carried out automatically with the aid of a corresponding control, which can be part of the digital control of a frequency converter, for example, by automatically determining and processing the characteristic values. For this purpose, the pump unit is first operated in an identification mode in which it automatically approaches several hydraulic operating points to determine the characteristic values, in particular parameters and subsequently placed in an operating mode in which the previously determined characteristic values for determining the operating size of the system, in particular the flow rate of the pump unit can be used. If the characteristic values have to be determined again after a certain time to monitor the pump set, the pump set is put back in the identification mode and these values are again determined and then compared with the pre-determined or the originally determined.

Die Erfindung ist nachfolgend anhand der Figuren noch näher erläutert. Es zeigen

Fig. 1
ein Diagramm betreffend die möglichen Anwendungen des erfindungsgemäßen Verfahrens,
Fig. 2
in stark vereinfachter schematischer Darstellung eine Anlage zum Einsatz eines Pumpenaggregates in der Abwassertechnik,
Fig. 3
die zeitliche Flüssigkeitsstandsänderung in der Anlage gemäß Fig. 2 und der daraus ableitbare Förderstrom der Pumpe.
Fig. 4
in Diagrammdarstellung gemäß Fig. 3 eine Erfassung des Förderstroms der Pumpe unter Zugrundelegung von Zeitabschnitten, die kleiner als das jeweilige Förderintervall sind,
Fig. 5
in schematischer Darstellung eine Anlage mit Bohrloch und Pumpenaggregat,
Fig. 6
in schematischer Darstellung eine Anlage, bei der das Pumpenaggregat in einen Ausgleichsbehälter fördert,
Fig. 7
ein Diagramm, welches die Ermittlung der zeitlichen Druckänderungen und deren Auswertung verdeutlicht und
Fig. 8
eine Kurve, welche den Wirkungsgrad in Abhängigkeit der Fördermenge darstellt.
The invention is explained in more detail with reference to the figures. Show it
Fig. 1
a diagram concerning the possible applications of the method according to the invention,
Fig. 2
in a highly simplified schematic representation of a plant for the use of a pump unit in wastewater technology,
Fig. 3
the temporal fluid level change in the system according to Fig. 2 and the derivable from this flow of the pump.
Fig. 4
in diagram representation according to Fig. 3 a detection of the flow rate of the pump on the basis of time periods that are smaller than the respective delivery interval,
Fig. 5
a schematic representation of a system with a borehole and pump unit,
Fig. 6
a schematic representation of a system in which promotes the pump unit in a surge tank,
Fig. 7
a diagram illustrating the determination of the temporal pressure changes and their evaluation and
Fig. 8
a curve showing the efficiency as a function of the flow rate.

Wie das Diagram gemäß Fig. 1 verdeutlicht, wird in einem Identifizierungsmodus 1 das Pumpenaggregat identifiziert, d. h. es werden die charakteristischen Größen des Pumpenaggregats ermittelt, indem mindestens zwei, bevorzugt jedoch eine Vielzahl von Betriebspunkten angefahren wird, in jedem der Betriebspunkte die elektrische Leistung des Motors, die Drehzahl des Motors bzw. vereinfacht die Frequenz der Versorgungsspannung des Motors sowie der von der Pumpe geleistete Förderdruck ermittelt wird. Die dabei jeweils geförderte Menge wird anlagenseitig ermittelt. Wenn dieser Identifizierungsmodus 1 abgeschlossen ist, dann kann, nachdem die Parameter γ1 bis γ3 der Gleichung (a) oder die Parameter γ0 bis γ3 der Gleichung (b) bestimmt sind, mithilfe dieser Gleichungen (a) bzw. (b) im späteren Betriebsmodus 2 die Fördermenge der Pumpe ermittelt werden.Like the diagram according to Fig. 1 illustrates, the pump unit is identified in an identification mode 1, that is, the characteristic sizes of the pump set determined by at least two, but preferably a variety of operating points is approached, in each of the operating points, the electrical power of the engine, the speed of the motor or simplifies the frequency of the supply voltage of the motor and the pump delivered by the delivery pressure is determined. The quantity delivered in each case is determined on the plant side. When this identification mode 1 is completed, after the parameters γ 1 to γ 3 of the equation (a) or the parameters γ 0 to γ 3 of the equation (b) are determined, by using these equations (a) and (b), respectively in the later operating mode 2, the delivery rate of the pump can be determined.

Soll hingegen die Funktion oder die Leistung des Pumpenaggregats überwacht werden, so ist ein ständiger Wechsel zwischen Identifikationsmodus 1 und Betriebsmodus 2 erforderlich, wie dies im linken Teil der Fig. 1 dargestellt ist. Im Identifikationsmodus 1 werden ebenfalls die Parameter ermittelt, sodann läuft das Pumpenaggregat im Betriebsmodus 2, um nach einer vorbestimmten Zeit (z.B. einer Stunde oder einer Woche) wieder in den Identifizierungsmodus 1 zurückzukehren, wo die Parameter nochmals ermittelt werden. Ein Vergleich der nunmehr ermittelten Parameter mit den zuvor ermittelten Parametern ermöglicht eine Beurteilung in einfachster Form der Funktion der Pumpe bis hin zur Erfassung einer Wirkungsgradveränderung, wie sie anhand von Fig. 8 dargestellt ist. Zur letzteren ist die Parametererfassung der Gleichungen (a) und (c) oder (b) und (c) erforderlich, wohingegen für die reine Funktionsüberwachung die Parametererfassung der Gleichungen (a) bzw. (b) oder (c) ausreicht.If, on the other hand, the function or the power of the pump set is to be monitored, a constant change between identification mode 1 and operating mode 2 is necessary, as is the case in the left part of FIG Fig. 1 is shown. In the identification mode 1, the parameters are also determined, then the pump unit runs in the operating mode 2 to return to the identification mode 1 after a predetermined time (eg one hour or one week), where the parameters are determined again. A comparison of the now determined parameters with the previously determined parameters allows an assessment in the simplest form of the function of the pump up to the detection of a change in efficiency, as they are based on Fig. 8 is shown. For the latter, the parameter acquisition of equations (a) and (c) or (b) and (c) is required, whereas for pure function monitoring the parameter detection of equations (a) and (b) or (c) is sufficient.

In Fig. 2 ist eine Anlage dargestellt, wie sie beispielsweise zur Förderung von Abwasser aus einem Schacht gegeben ist. Der Schacht 3 in Fig. 2 ist, wie bei Anlagen dieser Art üblich, wie ein nach oben offenes Gefäß ausgebildet. Der Flüssigkeitsstand 4 wandert beim Zulauf von Flüssigkeit qin nach oben und bei eingeschalteter Pumpe entsprechend der Fördermenge qpump nach unten. Die Pumpe fördert mit dem Druck p, welches der Differenzdruck zwischen Saug- und Druckseite ist. Dabei ist der Zulauf in den Schacht 3 zwar nicht konstant, er wird jedoch über ein Zeitintervall Δt gemittelt (q in) als quasi konstant angenommen. Aus der Veränderung des Flüssigkeitsstands 4 und unter Zugrundelegung des Schachtquerschnitts 3 ergibt sich dann eine Zulaufmenge und bei absinkendem Flüssigkeitsstand 4, wenn die Pumpe pumpt, eine Ablaufmenge qout. Da auch während der Zeit, wenn die Pumpe pumpt, Flüssigkeit in den Schacht 3 läuft, qin also quasi konstant bleibt, ergibt sich aus der Summe von der Ablaufmenge qout und qin die Fördermenge der Pumpe.In Fig. 2 a plant is shown, as it is given for example for the promotion of waste water from a shaft. The shaft 3 in Fig. 2 is, as usual in systems of this type, designed as an upwardly open vessel. The liquid level 4 moves in the inlet of liquid q in upward and with the pump switched on according to the flow rate q pump down. The pump delivers at the pressure p, which is the differential pressure between suction and discharge side. Although the feed into the shaft 3 is not constant, it is averaged over a time interval Δ t ( q in ) as quasi-constant. From the change in the liquid level 4 and on the basis of the shaft cross-section 3 then results in an inflow and with decreasing liquid level 4, when the pump is pumping, a flow rate q out . Since even during the time when the pump is pumping, liquid in the shaft 3 runs, q in so quasi constant, resulting from the sum of the discharge amount q out and q in the flow rate of the pump.

Wie dies im Einzelnen ermittelt werden kann, ist anhand von Fig. 3 dargestellt. Das Diagramm zeigt die Füllstandshöhen im Schacht 3 in Abhängigkeit der Zeit t. In dem in Fig. 3 ersten Messintervall 6 wird in der Zeit, in der die Pumpe abgeschaltet ist, die sich ändernde Füllstandshöhe 6 über der Zeit Δt erfasst und mit dem Schachtquerschnitt A (h) multipliziert. Daraus ergibt sich eine in den Schacht 3 einfließende Zulaufmenge qin pro Zeiteinheit. Im nachfolgenden Intervall 7 wird die Pumpe eingeschaltet und fährt auf einem ersten Betriebspunkt, bis der Flüssigkeitsstand 4 wieder das ursprüngliche zu Beginn des Intervalls 6 gegebene Niveau hat. Daraus lässt sich dann die Fördermenge qpump der Pumpe ermitteln. Dies kann in einem nachfolgenden Intervall 8, 9 in analoger Weise erfolgen, wobei diesmal die Zulaufmenge qin größer ist und somit die Pumpe im Intervall 9 länger benötigt, um wieder das ursprüngliche Niveau zu erhalten. Damit sind zwei Betriebspunkte angefahren, mit denen unter Zuhilfenahme der Gleichung (a), welche ein Teilpumpenmodell darstellt, die Parameter dieser Gleichung zumindest so weit bestimmbar sind, dass das Verfahren sinnvoll anwendbar ist. Zweckmäßigerweise wird man hier jedoch weitere Betriebspunkte anfahren, was nicht notwendigerweise aufeinanderfolgend, sondern auch in zeitlichen Abständen im Identifizierungsmodus 1 erfolgen kann.How this can be determined in detail is based on Fig. 3 shown. The diagram shows the level heights in shaft 3 as a function of time t. In the in Fig. 3 first measuring interval 6 is multiplied in the time in which the pump is switched off, the liquid level changing detected 6 over time Δ t and with the shaft cross-section A (h). This results in an inflow amount q in per unit of time flowing into the shaft 3. In the subsequent interval 7, the pump is turned on and runs at a first operating point until the liquid level 4 again has the original given at the beginning of the interval 6 level. From this, the flow rate q pump of the pump can then be determined. This can in a subsequent interval 8, 9 carried out in an analogous manner, except that the feed quantity q in is greater and thus requires the pump in the interval 9 longer to get back to the original level. Thus, two operating points are approached with which, with the aid of equation (a), which represents a partial pump model, the parameters of this equation are at least so far determinable that the method is usefully applicable. Expediently, however, one will approach further operating points here, which may not necessarily occur consecutively but also at intervals in the identification mode 1.

Wie Fig. 3 verdeutlicht, ist bei der dort angewendeten Methode der Zufluss in den Schacht während der ganzen Zeit zu ermitteln, wenn die Pumpe ausgeschaltet ist. Insoweit günstiger ist das anhand von Fig. 4 dargestellte Verfahren, bei dem die Intervalle 10 und 11, in Teilzeitabschnitte Δt1 bis Δt9 unterteilt sind, wobei die Zeitabschnitte Δt willkürlich oder zufällig gewählt werden können, so dass sich eine gewisse statistische Verteilung ergibt.As Fig. 3 clarifies, in the method used there, the inflow into the shaft during the entire time to determine when the pump is turned off. In that regard, that is cheaper on the basis of Fig. 4 illustrated method in which the intervals 10 and 11, are divided into partial time sections Δ t 1 to Δ t 9, wherein the time intervals Δ t can be chosen arbitrarily or randomly, so that there is a certain statistical distribution.

Anhand von Fig. 5 ist eine Anlage dargestellt, bei welcher das Pumpenaggregat als Bohrlochpumpe 12 ausgebildet ist, die in einem Bohrloch 13 angeordnet ist. Die Bohrlochpumpe 12 fördert das sich im Bohrloch 13 sammelnde Wasser an die Oberfläche. In Fig. 5 ist mit Zw der aktuelle Wasserstand im Schacht 3, d. h. der Flüssigkeitsstand gekennzeichnet. Zg stellt den Grundwasserstand dar, d. h. den Wasserstand, der sich einstellen würde, wenn nicht abgepumpt würde und Zf den Filtereingangsdruck, d. h. den Wasserstand, der umliegend benötigt wird, um den typischerweise durch Sand um den Brunnenschacht umliegend gebildeten Filter zu durchdringen. Das anhand des Schachtes 3 vorbeschriebene Prinzip zur Ermittlung der Förderflüssigkeit der Pumpe führt bei dieser Anlage nur bedingt, d. h. mit größerer Ungenauigkeit zum Ergebnis, da anders als beim Schacht 3 der Zulauf in das Bohrloch 13 eine Funktion des Flüssigkeitsstandes Zw ist, d. h. je höher der Flüssigkeitsstand Zw im Bohrloch ist, desto geringer ist der Zulauf. Um dies zu berücksichtigen, sind bei dieser Anlage die Gleichungen (f) und (g) anzuwenden, um qin, d. h. die zulaufende Flüssigkeit pro Zeiteinheit zu ermitteln. Diese linear parameterisierten Gleichungen (f) und (g) können in üblicher Weise durch Parameteridentifikation gelöst werden, wie dies an sich bei derartigen Anlagen bekannt und hier daher auch nicht im Einzelnen beschrieben ist.Based on Fig. 5 a system is shown in which the pump unit is designed as a well pump 12, which in a wellbore 13 is arranged. The borehole pump 12 conveys the water collecting in the borehole 13 to the surface. In Fig. 5 Z w is the current water level in the shaft 3, ie the liquid level. Z g represents the groundwater level, ie the water level which would be reached if not pumped out and Z f the filter inlet pressure, ie the water level required to penetrate the filter typically formed by sand around the well shaft. The above-described principle of the shaft 3 for determining the pumped liquid of the pump leads only conditionally, ie with greater inaccuracy to the result in this system, since unlike the shaft 3, the feed into the borehole 13 is a function of the liquid level Z w , ie the higher the liquid level Z w in the borehole, the lower the inlet. In order to take this into account, equations (f) and (g) have to be used in this appendix to determine q in , ie the incoming liquid per unit of time. These linear parameterized equations (f) and (g) can be solved in the usual way by parameter identification, as known per se in such systems and therefore not described here in detail.

Bei der anhand von Fig. 6 dargestellten Anlage fördert die Pumpe 14 in einen Expansionsbehälter 15, d. h. in einen geschlossenen Behälter 15, der zumindest teilweise mit einem komprimierbaren Gas gefüllt ist, das je nach Füllstand mehr oder weniger komprimiert ist, d. h., dass der Druck innerhalb des Expansionsbehälters 15 veränderlich ist. Da die Fördermenge hier sowohl ausfließend (pout) als auch einfließend (pin) abhängig vom Druck innerhalb des Behälters 15 ist, ist zur Ermittlung der Fördermenge der Pumpe die Gleichung (g) zu verwenden, welche die Fördermenge in Abhängigkeit des Drucks pout im Expansionsbehälter bzw. am Ende der Abfuhrleitung sowie die Druckänderung Δp out und eine Konstante Ke des Expansionsbehälters berücksichtigt. Auch hier ist es zweckmäßig, wie anhand von Fig. 4 dargestellt, das Zeitintervall 16, während die Pumpe ausgeschaltet ist, sowie das Zeitintervall 17, während die Pumpe eingeschaltet ist, in eine Vielzahl von Zeitintervallen Δt1 bis Δt9 beispielsweise zu unterteilen und die sich in diesen Zeitintervallen ergebenden Druckänderungen Δp out zu erfassen, um auf diese Weise die Genauigkeit des Ergebnisses zu verbessern.In the case of Fig. 6 The plant shown promotes the pump 14 in an expansion tank 15, ie in a closed container 15 which is at least partially filled with a compressible gas which is more or less compressed depending on the level, ie, that the pressure within the expansion tank 15 is variable. Since the flow rate here is both outflowing (p out ) and inflowing (pin) depending on the pressure within the container 15, to determine the flow rate of the pump, the equation (g) is to be used, which determines the flow rate as a function of the pressure p out in Expansion tank or at the end of the discharge line and the pressure change Δ p out and a constant K e of the expansion tank considered. Again, it is appropriate, as based on Fig. 4 shown, the time interval 16, For example, while the pump is turned off, and the time interval 17 while the pump is turned on, to divide into a plurality of time intervals Δ t 1 to Δ t 9 and to detect the pressure changes Δ p out resulting in these time intervals, to thereby to improve the accuracy of the result.

Es versteht sich, dass bei allen Messungen, wie sie anhand der Figuren 3, 4 und 7 beispielhaft dargestellt worden sind, diese entsprechend zu wiederholen sind, um unterschiedliche Betriebspunkte zu erfassen und damit die Parameter der durch die Gleichungen (a) bzw. (b) sowie (c) gebildeten Teilpumpenmodelle zu ermitteln. Je mehr Betriebspunkte angefahren werden, umso genauer ist die spätere Ermittlung der Fördermenge der Pumpe im Betrieb, also im Betriebsmodus. Wesentlicher ist dies jedoch für die Überwachung der Pumpenfunktion, insbesondere der Effizienz der Pumpe.It is understood that in all measurements, as determined by the FIGS. 3, 4 and 7 have been exemplified, these are to be repeated accordingly to detect different operating points and thus to determine the parameters of the sub-pump models formed by the equations (a) and (b) and (c). The more operating points are approached, the more accurate is the subsequent determination of the delivery rate of the pump during operation, ie in the operating mode. However, this is more important for the monitoring of the pump function, in particular the efficiency of the pump.

Die Fig. 8 zeigt beispielhaft zwei Kurven, welche mittels der Teilpumpenmodellen (b) und (c) gebildet sind und welche den Wirkungsgrad der Pumpe η über der Fördermenge darstellen. Die Kurve 18 ist zu Beginn des Betriebs erfasst worden, wohingegen die Kurve 19 nach einer beträchtlichen Betriebszeit, also nachdem ein- oder mehrfach in den Betriebsmodus umgeschaltet worden ist, z. B. nach fünf Monaten, erfasst worden. Wie die Kurven verdeutlichen, ist die Effizienz des Pumpenaggregats nahezu über den gesamten Förderbereich der Pumpe zurückgegangen. Dies kann z. B. auf eine Undichtigkeit innerhalb der Pumpe hindeuten, bei der ein Teilförderstrom kurzgeschlossen wird.The Fig. 8 shows by way of example two curves, which are formed by means of the sub-pump models (b) and (c) and which represent the efficiency of the pump η above the delivery rate. The curve 18 has been detected at the beginning of the operation, whereas the curve 19 after a considerable period of operation, so after one or several times has been switched to the operating mode, z. After five months. As the curves illustrate, the efficiency of the pump set has fallen almost over the entire pump delivery range. This can be z. B. indicate a leak within the pump, in which a partial flow is shorted.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
- Identifikationsmodus- identification mode
22
- Betriebsmodus- Operation mode
33
- Schacht- shaft
44
- Flüssigkeitsstand- Liquid level
6, 7, 8, 96, 7, 8, 9
- intervalle in Fig. 3 - intervals in Fig. 3
10, 1110, 11
- Intervalle in Fig. 4 - Intervals in Fig. 4
1212
- Bohrlochpumpe- Borehole pump
1313
- Bohrloch- borehole
1414
- Pumpe- pump
1515
Expansionsbehälterexpansion tank
16, 1716, 17
- Intervalle in Fig. 7 - Intervals in Fig. 7
18, 1918, 19
- Kurven in Fig. 8 - curves in Fig. 8
Zg Z g
GrundwasserstandGroundwater level
Zf Z f
FiltereingangsdruckFilter input pressure
Zw Z w
Wasserstand im BrunnenWater level in the well

Claims (13)

  1. A method for determining parameters of an electromotorically driven centrifugal pump assembly with a speed controller, said assembly being integrated in an installation, said characteristic values being determined by way of electrical variables of the motor and/or the speed controller and of the pressure produced by the pump (14), with which one successively runs to at least two different operating points of the pump (14), wherein the delivery rates are determined on the installation-side at the run-to operating points, and the parameters are determined with this, characterised in that
    - the delivery rates in the run-to operating points are evaluated by way of the temporal change of the fluid level in at least one bore hole (13), which forms part of the installation and from which the pump (14) delivers, by way of comparison of the fluid level change and the feed quantity or discharge quantity resulting therefrom, with the pump (14) switched off and with the pump (14) switched on, or
    - that the delivery rates in the run-to operating points are determined byway of the temporal change of the fluid level (14) in a shaft (3) of the installation, out of which the pump (14) delivers, and specifically whilst taking into account the temporal change of the fluid level, with the pump (14) switched off and with the pump (14) switched on, as well as the shaft geometry, or
    - that the delivery rates in the run-to operating points are determined by way of the temporal change of the pressure in an expansion container (15) of the installation, into which container the pump (14) delivers, and specifically whilst taking into account the temporal change of the container pressure, with the pump (14) switched off and with the pump (14) switched on.
  2. A method according to claim 1, characterised in that the parameters are part of a function following the model laws of the motor and/or pump, preferably of a parameter-linear form.
  3. A method according to claim 1 or 2, characterised in that a function determining the delivery rate comprises at least one term with a hydraulic and/or electrical power-dependent variable, and a second term with a hydraulic and/or electrical power-dependent variable, which are in each case are linked to one of the parameters in a multiplicative manner.
  4. A method according to one of the preceding claims, characterised in that the parameters form part of at least one part of a pump model and are linked as follows: q = γ 1 p ω r + γ 2 T ω r + γ 3 ω r
    Figure imgb0020
    wherein
    q is the delivery rate of the pump,
    p the delivery pressure of the pump,
    ωr the rotational speed of the pump,
    T the drive torque of the pump, and
    γ1 to γ3 the parameters of the part pump model.
  5. A method according to one of the preceding claims, characterised in that the parameters form part of at least one part of a pump model and are linked as follows: q = γ 0 1 ω r + γ 1 p ω r + γ 2 T ω r + γ 3 ω r
    Figure imgb0021
    wherein
    q is the delivery rate of the pump,
    p the delivery pressure of the pump,
    ωr the rotational speed of the pump,
    T the drive torque of the pump, and
    γ0 to γ3 the parameters of the part pump model.
  6. A method according to one of the preceding claims, characterised in that the parameters form part of at least one further part of a pump model and are linked as follows: p 2 = θ 0 + θ 1 p + θ 2 T + θ 3 pT + θ 4 T 2 + θ 5 ω r 2 + θ 6 p ω r 2 + θ 7 T ω r 2 + θ 8 ω r 4
    Figure imgb0022
    wherein
    p is the delivery pressure of the pump,
    ωr the rotation speed of the pump,
    T the drive torque of the pump, and
    θ0 to θ8 the parameters of the part pump model.
  7. A method according to claim 4, 5 or 6, characterised in that ω r = ω e
    Figure imgb0023
    and T = P e ω e
    Figure imgb0024
    are substituted,
    wherein ωe is the frequency of the voltage supply of the motor and Pe is the electrical power taken up by the motor.
  8. A method according to one of the preceding claims, characterised in that the feed quantity to the bore hole is determined whilst using the following equations: Δ z m Δ t = η 0 + η 1 z m + η 2 z m 2 + + η k z m k
    Figure imgb0025
    q in = A w η 0 + η 1 z m + η 2 z m 2 + + η k z m k
    Figure imgb0026
    in which
    Zm is the fluid level in the bore hole,
    Δt a time interval,
    Δzm the fluid level change during a time interval Δt,
    qin the computed feed into the bore hole,
    Aw the cross section of the bore hole, and
    η0, ..., ηk the parameters of a mathematic model imitating the feed into the bore hole.
  9. A method according to one of the preceding claims, characterised in that the delivery rate of the pump is determined whilst using the following equation q out q pump = K e p out 2 p out t K e p out 2 Δ p out Δ t
    Figure imgb0027
    in which
    qout is the delivery flow exiting from the installation,
    qpump the delivery rate of the pump,
    pout the pressure in the expansion container,
    Δt a time interval,
    Δpout the pressure change in the expansion container during the time interval Δt, and
    Ke a constant of the expansion container.
  10. A method according to one of the preceding claims, characterised in that the part of the pump model according to claim 4 or 5 is used for determining the delivery rate of the pump during the operation.
  11. A method according to one of the preceding claims, characterised in that the parameters are determined afresh at a temporal interval and are compared to the previously determined ones for monitoring the function of the pump assembly.
  12. A method according to one of the preceding claims, characterised in that the hydraulic power of the pump is determined with the pump model according to claim 4 or 5 and claim 6, and with which this is determined afresh at a temporal interval and this is compared to the previously determined ones for monitoring the power performance of the pump.
  13. A method according to one of the preceding claims, characterised in that the characteristic values are preferably detected automatically in an identification mode, and subsequently, the previously determined characteristic values are applied for determining the operating variables of the installation, in particular of the pump assembly, in an operating mode.
EP09007299.2A 2009-06-02 2009-06-02 Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly Active EP2258949B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09007299.2A EP2258949B1 (en) 2009-06-02 2009-06-02 Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly
PL09007299T PL2258949T3 (en) 2009-06-02 2009-06-02 Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly
EA201171344A EA022673B1 (en) 2009-06-02 2010-05-26 Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system
CN201080024716.5A CN102459912B (en) 2009-06-02 2010-05-26 Determine the method for the eigenvalue of motor-driven centrifugal pump group, particularly parameter in equipment
JP2012513492A JP5746155B2 (en) 2009-06-02 2010-05-26 Method for determining characteristic values, in particular parameters, of an electric motor driven centrifugal pump device incorporated in equipment
PCT/EP2010/003211 WO2010139416A1 (en) 2009-06-02 2010-05-26 Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system
US13/375,530 US8949045B2 (en) 2009-06-02 2010-05-26 Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09007299.2A EP2258949B1 (en) 2009-06-02 2009-06-02 Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly

Publications (2)

Publication Number Publication Date
EP2258949A1 EP2258949A1 (en) 2010-12-08
EP2258949B1 true EP2258949B1 (en) 2017-01-18

Family

ID=41136932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09007299.2A Active EP2258949B1 (en) 2009-06-02 2009-06-02 Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly

Country Status (7)

Country Link
US (1) US8949045B2 (en)
EP (1) EP2258949B1 (en)
JP (1) JP5746155B2 (en)
CN (1) CN102459912B (en)
EA (1) EA022673B1 (en)
PL (1) PL2258949T3 (en)
WO (1) WO2010139416A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537872C2 (en) 2011-12-22 2015-11-03 Xylem Ip Holdings Llc Method for controlling a pump arrangement
JP2014202144A (en) * 2013-04-05 2014-10-27 新日本造機株式会社 Diagnostic method for centrifugal pump
CN103575339B (en) * 2013-10-31 2016-08-17 无锡溥汇机械科技有限公司 Flow-measuring method and flow control methods
DE102014004336A1 (en) * 2014-03-26 2015-10-01 Wilo Se Method for determining the hydraulic operating point of a pump unit
DK3187735T3 (en) * 2015-12-29 2020-02-10 Grundfos Holding As Pump system as well as a method for determining the flow of a pump system
CA3054979A1 (en) * 2017-03-03 2018-09-07 Technologies Maid Labs Inc. Volumetric real time flow engine
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
USD880670S1 (en) 2018-02-28 2020-04-07 S. C. Johnson & Son, Inc. Overcap
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
CN111551848B (en) * 2019-12-30 2022-09-02 瑞声科技(新加坡)有限公司 Motor experience distortion index testing method, electronic equipment and storage medium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484861A (en) * 1982-02-22 1984-11-27 Conoco Inc. Method and apparatus for process control of vertical movement of slurried particulates
JPS59178320A (en) * 1983-03-29 1984-10-09 Toshiba Corp Apparatus for measuring water level of nuclear reactor
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
FI80933C (en) 1988-06-08 1990-08-10 Sarlin Ab Oy E Monitoring procedure for sewage pumping station and monitoring device for implementation of the procedure
GB9011084D0 (en) * 1990-05-17 1990-07-04 Ag Patents Ltd Volume measurement
JPH0449679U (en) * 1990-08-30 1992-04-27
US5497664A (en) * 1994-11-14 1996-03-12 Jorritsma; Johannes N. Method and apparatus for calculating flow rates through a pumping station
DE19507698A1 (en) * 1995-03-04 1996-09-05 Klein Schanzlin & Becker Ag Determining amount removed from container filled by non-pressure supply amount
JP2003090288A (en) 1998-04-03 2003-03-28 Ebara Corp Diagnosing system for fluid machine
EP1072795A4 (en) * 1998-04-03 2006-10-18 Ebara Corp Diagnosing system for fluid machinery
US6648606B2 (en) * 2002-01-17 2003-11-18 Itt Manufacturing Enterprises, Inc. Centrifugal pump performance degradation detection
US7112037B2 (en) * 2002-12-20 2006-09-26 Itt Manufacturing Enterprises, Inc. Centrifugal pump performance degradation detection
JP2005351221A (en) * 2004-06-11 2005-12-22 Aimu Denki Kogyo Kk Control system for delivery of pump
JP4938304B2 (en) * 2005-12-22 2012-05-23 株式会社荏原製作所 Pump control method and water supply device
JP5137359B2 (en) * 2006-09-05 2013-02-06 株式会社鶴見製作所 Drainage pump abnormality diagnosis method and apparatus
JP4961276B2 (en) * 2007-06-19 2012-06-27 株式会社クボタ Drainage pump device and drainage pump operating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102459912B (en) 2016-06-29
EP2258949A1 (en) 2010-12-08
EA022673B1 (en) 2016-02-29
EA201171344A1 (en) 2012-05-30
JP5746155B2 (en) 2015-07-08
US8949045B2 (en) 2015-02-03
US20120136590A1 (en) 2012-05-31
WO2010139416A1 (en) 2010-12-09
CN102459912A (en) 2012-05-16
JP2012528973A (en) 2012-11-15
PL2258949T3 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
EP2258949B1 (en) Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly
EP1564411B1 (en) Method for detecting operation errors of a pump aggregate
EP2944821B1 (en) Method for the energy-optimized regulation of the speed of a pump unit
EP2039939B1 (en) Method for monitoring an energy conversion device
EP3123033B1 (en) Method for determining the hydraulic operating point of a pump assembly
EP2696175B1 (en) Method for detecting the flow rate of a centrifugal pump
EP2796724B1 (en) Optimised operation of a variable speed pump in a waste water pumping station
DE10355651A1 (en) Method for optimizing the efficiency of a motor operated under load
EP2122177B1 (en) Pump unit
DE102017004097A1 (en) Method for detecting an abnormal operating state of a pump set
DE102011050017A1 (en) Control means for driving a frequency converter and driving method
EP2831345B1 (en) Method of driving a pump device
DE102007010768A1 (en) Regulator for regulating operation of e.g. centrifugal pump, has module to determine flow acquisition data based on different pump- and motor parameters such as number of revolutions, torque and efficiency, from calibrated flow curves
EP3242035B1 (en) Method for operating at least one pump unit of a plurality of pump units
EP3215744B1 (en) Method for producing a set of characteristic curves of a fluid pump, use of a limited valve, use of a staging valve, and control device for a fluid conveying system
DE10157143A1 (en) Pump maintenance device for monitoring component wear and optimizing maintenance and replacement of parts, has a control unit that uses sensor signals relating to operating parameters to schedule future maintenance and repair
DE102004004401B4 (en) Method for installation and / or operation of a wastewater collection shaft
DE102014221865B3 (en) Method for calibrating a fluid pump arrangement
DE102022116603B4 (en) Method for operating a concrete pump and concrete pump
DE102006041482B3 (en) Scouring method for a high-pressure pipeline (HPP) scours the HPP at intervals of time while detecting physical dimensions and proportions of sewage/waste water carried through the HPP
DE102022001315A1 (en) Device and method for determining a condition, in particular a wear condition, of a displacer unit
DE102022119147A1 (en) Method for determining or monitoring the flow rate of an eccentric screw pump
DE102011109032A1 (en) Method for determination of volumetric flow of medium in medium-flow plant e.g. process exhaust air system, involves determining driving power of fluid-flow machine and determining volumetric flow from current determined driving power
WO2016173989A1 (en) Method for regulating a fuel delivery system
DD227596A3 (en) ARRANGEMENT FOR CONTROLLING GROUNDWATER TREATMENT PROPERTIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110608

17Q First examination report despatched

Effective date: 20150227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160608

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20161213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 863079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013574

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013574

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

26N No opposition filed

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 863079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013574

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 15

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 15

Ref country code: PL

Payment date: 20230525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 15

Ref country code: GB

Payment date: 20230620

Year of fee payment: 15