EP2218840B1 - Sanitary fitting with joystick control - Google Patents

Sanitary fitting with joystick control Download PDF

Info

Publication number
EP2218840B1
EP2218840B1 EP09002169A EP09002169A EP2218840B1 EP 2218840 B1 EP2218840 B1 EP 2218840B1 EP 09002169 A EP09002169 A EP 09002169A EP 09002169 A EP09002169 A EP 09002169A EP 2218840 B1 EP2218840 B1 EP 2218840B1
Authority
EP
European Patent Office
Prior art keywords
mixed water
temperature
signal
value
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09002169A
Other languages
German (de)
French (fr)
Other versions
EP2218840A1 (en
Inventor
Christian Gautschi
Daniel Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Franke Technology and Trademark Ltd
Original Assignee
KWC AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KWC AG filed Critical KWC AG
Priority to ES09002169T priority Critical patent/ES2395599T3/en
Priority to EP09002169A priority patent/EP2218840B1/en
Priority to US12/707,166 priority patent/US8534568B2/en
Publication of EP2218840A1 publication Critical patent/EP2218840A1/en
Application granted granted Critical
Publication of EP2218840B1 publication Critical patent/EP2218840B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/05Arrangements of devices on wash-basins, baths, sinks, or the like for remote control of taps
    • E03C1/055Electrical control devices, e.g. with push buttons, control panels or the like
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/0412Constructional or functional features of the faucet handle

Definitions

  • the present invention relates to a sanitary fitting according to the preamble of patent claim 1.
  • valve devices for the outlet of water, especially for the outlet of mixed water mixed with cold water and hot water.
  • valve devices In order to be able to set the outflowing water to a certain mixed water flow rate and a certain mixed water temperature, it is known to provide sanitary fittings with valve devices.
  • These valve devices or valves which are installed in the valve devices, typically have a cold water connection and a hot water connection on one side and a mixed water outlet on the other side.
  • Such valve means may comprise a hydraulic single-lever mixer, such as in WO 2006/098795 disclosed.
  • valves that can be controlled by means of an electrical control to open or close them.
  • a control signal generator for generating an input signal to the controller can be used, wherein the controller controls the valves due to the input signal accordingly.
  • WO 2009/019731 A discloses a device for mixing water and regulating the flow rate of service water in hydraulic systems.
  • the apparatus comprises an electronic board or circuits electrically connected to one or more solenoid valves for regulating the flow rate of hot and cold water, the water being delivered to one or more faucets.
  • the relative displacement of one or more magnets in relation to one or more magnetic linear and / or rotational sensors of the electronic circuit generates a potential difference.
  • the potential difference is correspondingly transmitted to the solenoid valves for full / partial hope of this.
  • the sanitary fitting which in WO 2006/098795 discloses a hydraulic single-lever mixer as a valve device to manually adjust the mixed water flow rate and the mixed water temperature.
  • an electrically controllable valve is installed, which can be operated in two different modes. In one In manual mode, the valve is open and the mixing water flow rate and mixing water temperature are controlled only by the manually operated single lever mixer. In a second mode, the mixed water flow rate and the mixed water temperature are preset by the manually operable single lever mixer, and the electrically controllable valve may be either fully open or fully closed.
  • the controller receives an input signal from a touch or environment sensor when an object (such as a hand) is near the sensor. This input signal causes the controller to send an "on” or “off” flip-flop signal to the valve, which in turn causes the valve to be fully closed or fully opened, and the water flow to be opened or closed accordingly.
  • An object of the present invention is to provide a sanitary fitting with a control signal generator, wherein both mixing water temperature and water flow rate can be adjusted by means of the control signal generator and the control signal generator is only electrically connected via an electrical control with the valve device. This allows a fine and differentiated control of the mixed water temperature and mixed water flow rate with various possible, implementable in the electronic control, additional functions.
  • the sanitary fitting with the control signal generator according to the present invention has a cold water connection, a hot water connection and a mixed water outlet.
  • it is equipped with a valve device. This is connected on the one hand to the hot water connection and the cold water connection and on the other hand to the mixed water outlet.
  • the valve device can merge the cold and the hot water to mixed water, which then flows through the mixed water outlet.
  • the sanitary fitting includes an electrical control for controlling a valve, wherein the control signal generator can generate an input signal to the controller.
  • the valve is an integral part of the valve device and the controller controls, in response to the input signal of the control signal generator, the valve device.
  • the mixed water temperature and the mixed water flow rate can be adjusted.
  • This design allows a very space-saving design of the control signal transmitter, since it has no direct contact with the water connections and no valve is installed.
  • the setting of both the mixed water temperature and the water flow rate by the user is done exclusively by means of the control signal generator.
  • the Control signal generator is connected via an electrical control with the valve device, it is possible to program the controller so that in terms of temperature and quantity finely graduated and differentiated mixed water discharge is possible.
  • various additional functions can be implemented in the controller, which can be triggered by a corresponding actuation of the control signal generator.
  • the input signal includes a water amount plus signal, a water amount minus signal, a temperature plus signal, or a temperature minus signal.
  • the controller sends a signal to increase the mixing water flow rate due to the receipt of the water quantity plus signal to the valve device.
  • the controller sends a signal for reducing the mixed water flow rate, a signal for increasing the mixed water temperature due to the reception of the temperature plus signal, and a signal due to the receipt of the temperature minus signal to reduce the mixed water temperature.
  • This design allows extremely simple operation of the sanitary fitting, which is very intuitive for a user. By this type of signaling and control of the valve device, any mixed water flow rates can be set with any mixing water temperature in a simple manner.
  • a temperature memory for storing a mixed water temperature value adjustable by the control signal generator, a mixed water flow memory for storing a current mixed water flow rate, and a timer for storing a time value are incorporated in the controller.
  • These memories allow the logic of the controller to be extended over the simpler variant described above by means of various additional functions which can be triggered by a certain type of operation of the control signal generator, as described below.
  • the mixed water flow memory and the temperature memory allow the realization of a controller, which allows a proportional control means of pulse-like input signals from the control signal generator.
  • the timer serves to compare the duration of the input signal and the time sequence of the input signals with the specifications implemented in the controller. As a result, it is only possible to distinguish a longer input signal from a pulse-like input signal or to evaluate the temporal sequence of pulse-like input signals.
  • the controller controls the valve device in such a way that, upon receipt of a constant water quantity plus signal, the mixed water flow rate is continuously increased with at least approximately constant temperature according to the mixed water temperature stored in the temperature reservoir. This allows to increase the amount of mixed water slowly and steadily controlled.
  • control signal generator is an electric joystick with an operating lever mounted in a base element.
  • the mounting and technical structure of the joystick is described in more detail in the same applicant's commonly assigned patent application entitled “Plumbing Fitting with a Joint” (Representative Reference A18634EP), which expressly refers to the disclosure of this document.
  • the actuating lever has an actuating lever end region which can be deflected from its neutral, preferably central rest position into at least two planes which are at least approximately at right angles to one another.
  • the base member is provided with at least one sensor to determine the position of the operating lever relative to its neutral rest position and to convert it into the electrical input signal.
  • the base element is preferably equipped with a sensor which cooperates with a sensor end of the actuating lever facing away from the actuating lever end region.
  • the actuating lever is equipped at its sensor end with a permanent magnet, which cooperates with Hall sensors, which are fixedly mounted with respect to the base element of the joystick.
  • a permanent magnet which cooperates with Hall sensors, which are fixedly mounted with respect to the base element of the joystick.
  • the controller may preferably control the valve device according to claim 5 such that when receiving a constant water quantity minus signal, the mixed water flow rate, with at least approximately constant mixed water temperature according to the temperature stored in the mixed water temperature value, is continuously reduced. This allows to reduce the amount of mixed water slowly and steadily controlled.
  • the controller may preferably control the valve device according to claim 6 such that when receiving a pulse-like amount of water plus signal, the mixed water flow rate, if the current mixed water flow rate according to the Stored mixed water flow storage value is less than a lower Mischwasser spell, preferably 30%, is increased to this lower Mischwasser book, rabbitgrenzwert at least approximately constant mixing water temperature is suddenly increased.
  • the controller may preferably control the valve device according to claim 7 such that upon receiving a pulse-like water quantity plus signal, if the current mixed water flow is at the lower Mischigan beflußgrenzwert or between the lower Mischigan notebook, a Mischigan beflußgrenzwert, preferably 80%, the Mischigan bookmolecule is increased to the upper mixing water flow rate at at least approximately constant mixed water temperature. As a result, the mixing water flow can be increased suddenly to a value corresponding to the upper mixing water flow limit value.
  • the controller may preferably control the valve device according to claim 8 such that upon receipt of a pulse-like water quantity minus signal, the valve is closed without delay so that the mixed water flow rate reaches zero. As a result, a faster, jump-like outflow stop of the mixed water outflow can be effected.
  • the controller may preferably control the valve device according to claim 9 such that when receiving a constant temperature plus signal, if the current mixed water flow is zero, the mixed water temperature value is continuously increased in the temperature memory until the end of the temperature plus signal or until Mixed water temperature has reached an upper temperature limit. This allows to select the mixed water temperature slowly and steadily increasing.
  • the controller may preferably control the valve device according to claim 10 such that upon receipt of the constant temperature plus signal, if the current mixed water flow is greater than zero, the mixed water temperature value is continuously increased in the temperature memory until the end of the temperature plus signal or until Mixed water temperature has reached an upper temperature limit. At the same time, the mixed water temperature of the effluent mixed water is adjusted continuously in accordance with the mixed water temperature value, with at least approximately constant mixed water flow rate. This allows the mixing water temperature of the currently flowing mixed water to be increased slowly and steadily in a controlled manner.
  • the controller may preferably control the valve device according to claim 11 such that upon receipt of the pulse-like temperature plus signal, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is set to the upper temperature limit. This allows to increase the preset mixed water temperature by leaps and bounds.
  • the controller can preferably control the valve device according to claim 12 such that when receiving the pulse-like temperature plus signal, if the current mixed water flow rate is greater than zero, set the mixed water temperature value in the temperature storage to an upper temperature limit and at the same time the mixed water temperature corresponding to the mixed water temperature value at least approximately constant mixed water flow rate is adjusted. This allows to increase the mixed water temperature of the currently flowing mixed water leaps and bounds.
  • the controller may preferably control the valve device according to claim 13 such that upon receipt of the constant temperature minus time value, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is continuously reduced until the end of the temperature minus signal or until Mixed water temperature value has reached a lower temperature limit. This makes it possible to select the preset mixed water temperature slowly and continuously decreasing controlled.
  • the controller may preferably control the valve device according to claim 14 such that upon receipt of the constant temperature minus signal, if the current mixed water flow rate is greater than zero, the mixed water temperature value in the temperature storage is continuously reduced until the end of the temperature minus signal or until Mixed water temperature value has reached a lower temperature limit. At the same time, the mixed water temperature of the effluent mixed water is corresponding, at approx constant mixing water flow rate, continuously adjusted. This allows to slowly and steadily reduce the mixed water temperature of the currently flowing mixed water.
  • the controller may preferably control the valve device according to claim 15 such that upon receipt of the pulse-like temperature-minus signal, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is set to a lower temperature limit. This allows to rapidly reduce the preset mixed water temperature.
  • the controller may preferably control the valve device according to claim 16 such that upon receipt of the pulse-like temperature-minus signal, if the current mixed water flow rate is greater than zero, the mixed water temperature value is set to a lower temperature limit. At the same time, the mixed water temperature is adjusted according to the mixed water temperature value with at least approximately constant mixing water flow rate. This allows to suddenly reduce the mixed water temperature of currently flowing mixed water.
  • the increase resp. Reduction of the mixed water temperature when receiving a constant, longer temperature plus input signal or a constant, longer temperature minus input signal continuously along a predetermined first temperature control characteristic preferably a linear temperature control characteristic with a predetermined slope (in the case of increase with a positive, in the case of reduction, preferably with a magnitude same, but negative slope).
  • a predetermined first temperature control characteristic preferably a linear temperature control characteristic with a predetermined slope (in the case of increase with a positive, in the case of reduction, preferably with a magnitude same, but negative slope).
  • the increase resp. Reducing the mixing water flow rate upon receipt of a constant, longer water quantity plus input signal or a constant, longer water quantity minus input signal continuously along a predetermined first water flow control curve preferably a linear water flow control curve with a predetermined slope (in the case of increase with a positive, in the case the reduction preferably with a magnitude same, but negative slope).
  • Other curves, which increase or decrease continuously, however, are also conceivable for the temperature
  • Reduction of the mixed water temperature abruptly, in practice preferably along a second linear temperature control characteristic with a magnitude much greater slope compared with the slope of the first temperature control characteristic.
  • the increase resp. Reducing the amount of mixed water suddenly, in practice, preferably along a second linear water flow control curve with a in terms of amount much greater slope compared to the slope of the first water flow control curve.
  • the water flow rate can be varied linearly between 0% and 100% for a pulse-like signal in 0.3 seconds and for a continuous signal in 3 seconds.
  • the mixed water temperature can be varied linearly between 0% and 100% in 0.5 seconds for a pulse-like signal and 2 seconds in a continuous signal.
  • the lower temperature limit corresponds to the temperature of the cold water, which passes through the cold water connection to the valve device.
  • the upper temperature limit value preferably corresponds to the temperature of the warm water which passes through the hot water connection to the valve device.
  • one input level in a deflection direction is assigned the input signal water quantity plus signal and in the corresponding counter deflection direction the water quantity minus signal.
  • the temperature-plus signal is assigned to the other deflection plane in a deflection direction, and the temperature-minus signal is assigned in the corresponding further counter deflection direction.
  • a first valve of the valve device consists of a first Proportional valve, which is connected on its inlet side with the cold water connection and on its outflow side with the mixed water outlet.
  • a second valve of the valve device consists of a second proportional valve, which is connected on its inlet side with the hot water connection and on its outflow side with the mixed water outlet.
  • the controller controls the first proportional valve with a first electrical control signal and the second proportional valve with a second electrical control signal.
  • the first and the second proportional valve are activated in the same way.
  • the first proportional valve is closed (respectively opened) by a first percentage amount and the second proportional valve is opened (closed) by a second percentage amount so that the mixed water flow rate always remains constant (at least approximately) (ie, the sum of the percentage Openings of the first proportional valve and the second proportional valve must always remain constant).
  • the first and second proportional valves are activated such that both valves are opened either by a first and a second opening value (in the case of increasing the mixing water flow rate) or by a first and a second closing value closed (in the case of a Reducing the mixing water flow rate).
  • the opening ratio of the first to the second proportional valve must always remain constant in order to keep the mixed water temperature at an - approximately constant - temperature value.
  • a light source preferably a light-emitting diode (LED)
  • LED light-emitting diode
  • the light-emitting diode is attached to the control signal generator, which can suggest to the user a direct optical relationship between control signal input and mixed water temperature and thus facilitates the operation of the sanitary fitting.
  • the temperature minus time value, the temperature plus time value, the water amount minus time value, and the water amount plus time value may have different values. In a preferred embodiment, however, these values are all the same, preferably 0.3 seconds.
  • FIG. 1 schematically shows a possible embodiment of a sanitary fitting according to the invention 10.
  • the sanitary fitting 10 has a valve device 12 which is connected on one side with a cold water connection 14 and a hot water connection 16 and on the other side with a mixed water outlet 18.
  • the mixed water outlet 18 is connected to a water outlet pipe 20.
  • the valve device 12 in turn includes at least one valve 22a, 22b as an integral part, wherein in a preferred embodiment in the valve device 12, two proportional valves 24, 26 are integrated.
  • the first proportional valve 24 is connected on one side to the cold water connection 14 and on the other side to the mixed water outlet 18, and the second proportional valve 26 is connected on one side to the hot water connection 16 and on the other side connected to the mixed water outlet 18th
  • the sanitary fitting 10 has an electrical control 28, which controls the valve device 12 in response to an input signal 30.
  • the input signal 30 receives the electric control 28 from a control signal generator 32, preferably from a joystick 34, which includes an operating lever 38 mounted in a base element 36.
  • Warehousing and the technical construction of the joystick 34 as well as the spout with the spout 20 are disclosed in detail in the same applicant's commonly assigned patent application entitled "Jointed Plumbing Fitting" (Representative Reference A18634EP).
  • the actuating lever 38 includes a Betsch Trentshebelend Scheme 40, which is deflected from its neutral, central rest position in two mutually at least approximately at right angles levels.
  • the base element 36 is equipped with at least one sensor 42, which cooperates with a Betreli whyshebelend Scheme 40 remote sensor end 44 of the actuating lever 38 to determine the position of the actuating lever 38 relative to its neutral, central position of rest and convert it into the electrical input signal 30.
  • the actuating lever 38 is provided at its sensor end 44 with a permanent magnet 46 which cooperates with Hall sensors 48 which are fixedly mounted with respect to the base member 36 of the joystick 34.
  • the mixed water temperature and the mixed water flow rate are adjusted.
  • Both the electrical controller 28 and the joystick 34 and the valve device 12 are connected to a power supply 50.
  • the actuating lever 38 of the joystick 34, a light source 52 a, more preferably a light emitting diode 54 a, attached, which stores the stored in a temperature memory of the electrical controller 28 mixed water temperature by a corresponding color indicates.
  • the or a further light source 52b or light-emitting diode 54b may be mounted at an end of the water outlet pipe 20 facing the valve device in order to illuminate the outflowing mixed water with a color corresponding to the mixed water temperature.
  • a light guide 55 from the light source 52b or light emitting diode 54b may be led to a water outlet end of the water outlet tube 20 opposite said end of the water outlet tube 20 within the water outlet tube 20 directing the light to the water outlet end of the water outlet tube 20 conducts and illuminates the mixed water at the exit from the Wasserauslassrohr 20.
  • FIG. 2 shows a schematic detail view of the electrical controller 28 and the components to which the controller 28 is connected.
  • the controller 28 is connected to the power supply 50. It receives input signals 30, which may consist, for example, of a water quantity plus signal 56, a water quantity minus signal 58, a temperature plus signal 60 or a temperature minus signal 62. These input signals 30 originate from the control signal generator 32 or the integrated sensor 42, for example the Hall sensors 48.
  • the controller 28 can supply to the first proportional valve 24 a first electrical control signal 64a and to the second proportional valve 26 a second electrical control signal 64b for increasing or decreasing the water flow send out.
  • controller 28 may send to the light source 52a, 52b or light emitting diode 54a, 54b a light control signal 66 to adjust the color of the light, which the light source 52a, 52b or light emitting diode 54a, 54b emits to determine.
  • the controller 28 includes a programmable microprocessor.
  • a register 67 with multiple register locations 68 is integrated.
  • Various values may be stored therein, such as a value for the mixed water temperature in a temperature storage register, a value for the mixed water flow rate in a mixed water flow storage register, or different time values (for example, a water amount minus time value, a water amount plus time value , a temperature minus time value or a temperature plus time value) in a timer register.
  • These memory modules allow the logic of the controller 28 and the microprocessor can be expanded with various additional functions, which can be triggered by a certain type of operation of the control signal generator 32.
  • FIGS. 3a, 3b and 3c show three different examples of temporal curves of the mixed water temperature in response to different, corresponding input signals 30.
  • the generated by appropriate actuation of the control signal generator 32 input signals 30 are located below the horizontal time axis, while on the vertical axis in each case the mixed water temperature is plotted percentage. 0% corresponds to the temperature of the water in the cold water connection and 100% corresponds to the temperature of the water in the hot water connection.
  • FIG. 3a is initially constant for about one second, ie continuously, the control signal generator 32 is actuated such that a first temperature-plus signal 70 is generated as an input signal 30 to the controller 28.
  • the control signal generator 32 is designed as a joystick 34, for example, in that the actuating lever 38 of the joystick 34 is deflected at its actuating lever end region 40 in one of the at least two deflection planes in a direction which corresponds to the temperature plus direction (the same applies analogously to the examples shown in FIG. 3b and 3c ).
  • a second temperature plus signal 72 is pulse-like generated by the control signal generator 32 for about 0.2 seconds 72 as an input signal 30.
  • a first temperature-minus signal 74 is constantly generated for approximately 0.7 seconds by actuation of the control signal generator 32 as input signal 30 to the controller 28.
  • the control signal generator 32 is designed as a joystick 34, for example in that the actuating lever 38 of the joystick 34 at its Betuschistshebelend Scheme 40 in a direction which corresponds to the temperature-minus direction (and corresponding counter-deflection direction to the deflection, which of the temperature Plus direction corresponds, is) is deflected (the same applies analogously for the examples shown in FIG. 3b and 3c ).
  • a second temperature-minus signal 76 is generated in pulses for approximately 0.1 seconds by actuation of the control signal generator 32.
  • the controller 28 compares each input signal 30 with a predetermined and stored time value, ie, the temperature plus signal with a temperature -Plus time value and the temperature minus signal with a temperature-minus time value.
  • the stored time values are 0.3 seconds. Since the first temperature plus signal 70 of one second duration lasts longer than the stored temperature plus time value of duration, increases starting from the time corresponding to the temperature plus time value of 0.3 seconds and thus for 0.7 seconds, the mixed water temperature value is linearly close to 35%.
  • the pulse-like second temperature plus signal 72 which is shorter than the stored temperature plus time value, causes the mixed water temperature value to rise after about 1.3 seconds without lag and within about 0.3 seconds to 100%.
  • the mixing water flow rate in the period of 0 to 5 seconds is greater than zero, for example, constant. Accordingly, only the mixed water temperature is changed.
  • the changes made in the mixed water temperature value correspond to a mixed water temperature preselection.
  • the mixing water flow rate is not stopped (and a positive flow rate signal 56 has been sent to the controller 28 in advance of the described temperature plus and minus temperature signals)
  • the proportional valves 24, 26 will also be correspondingly changed with each change in the mixed water temperature the valve device 12 is controlled by the controller 28.
  • the first proportional valve 24 and the second proportional valve 26 are actuated in opposite directions, so that the first proportional valve 24 is closed or opened by a first percentage amount, and the second proportional valve 26 is thereby displaced by a second percentage amount opened respectively closed.
  • the mixing water flow rate is always kept at least approximately constant (ie, the sum of the percentage openings of the first proportional valve 24 and the second proportional valve 26 must always remain constant).
  • the mixed water temperature would have the same temperature value as the last mixed water flowed through. However, in this example, since the water flow rate is not increased within 30 seconds, at the time of 35 seconds, the mixed water temperature value is automatically reset to 0%.
  • a fourth temperature plus signal 80 is constantly generated as an input signal 30 to the controller 28 by operation of the control signal generator 32.
  • a fifth temperature plus signal 82 is constantly generated by actuation of the control signal generator 32 for about 1.1 seconds.
  • a third temperature-minus signal 84 is constantly generated by the control signal generator 32 for about 3.1 seconds.
  • the mixing water flow rate is greater than 0 in the period of 0 to 2 seconds.
  • the mixed water flow rate becomes 0, so the water flow stops after about 2 seconds (indicated by the dashed line).
  • the set mixed water temperature value remains stored for a certain time, preferably of the order of 30 seconds.
  • the mixing water flow rate is increased again at the time of about 3 seconds, the effluent mixed water on the previously set and selected mixed water temperature value of 65%.
  • the constant, third temperature-minus signal 84 of approximately 1.6 seconds duration, applied 3.3 seconds after the start, causes the percentage value of the Mixed water temperature with the same slope as in the linear increase, but now with a negative sign, delayed by the temperature-minus time value, decreases linearly and thus at the end - about 4.9 seconds after the start - takes the percentage value 0.
  • FIGS. 4a and 4b show temporal profiles of the mixed water flow rate in response to input signals 30.
  • the input signals 30 are shown below the horizontal time axis, while on the vertical axis in each case the mixed water flow rate is plotted as a percentage.
  • Analogous to the temperature control is to be noted that the input signals 30 have a certain lead time between almost 0 and a maximum of 0.3 seconds, during which the controller 28 decides whether a pulse-shaped or a continuous input signal 30 is present. During this lead time, the controller 28 does not change anything on the output side when a continuous input signal 30 is present, while at the end of a pulse-shaped input signal 30, the corresponding output signal is generated immediately.
  • a first water quantity plus signal 86 is generated at the beginning for about 0.2 seconds by pulsed actuation of the control signal generator 32 to the electric control 28.
  • the control signal generator 32 is designed as a joystick 34, for example, by the actuating lever 38 of the joystick 34 being deflected at its actuating lever end region 40 in a direction in a deflection plane which corresponds to the water quantity plus direction (the same applies analogously for the example shown in FIG. 4b ).
  • a second water quantity plus signal 88 is generated in pulses for about 0.2 seconds.
  • a first water quantity minus signal 90 is generated in pulses for about 0.2 seconds.
  • the control signal generator 32 is designed as a joystick 34, for example, in that the actuating lever 38 of the joystick 34 at its Betchanistshebelend Scheme 40 in a direction which corresponds to the amount of water minus direction (and corresponding Jacobausschides to the deflection, which the Wassermenge- Plus direction corresponds, is) is deflected (the same applies analogously to the example shown in FIG. 4b ).
  • the controller 28 compares each input signal 30 with a predetermined and stored time value, ie, the water quantity plus signal 56 with a Water amount plus time value and water amount minus signal 58 with a water amount minus time value.
  • the stored time values are 0.3 seconds.
  • the pulse-like second water amount plus signal 88 which is also shorter than the stored water amount plus time value, causes the percentage value of the mixed water flow rate, beginning with the end of the water quantity plus signal 88, increases without delay within 0.15 seconds from 30% to an upper mixed water flow limit value of, for example, 80%.
  • the pulse-like 0.2 second first water level minus signal 90 after about 2.3 seconds, which is shorter than the stored water amount minus time value, causes the mixed water flow rate to begin delaying from the end of the water amount minus signal 90 within 0.24 seconds is reduced to 0%.
  • the mixed water flow rate is changed at the same mixed water temperature.
  • the electric controller 28 also controls the proportional valves 24, 26 of the valve device 12.
  • the first proportional valve 24 and the second proportional valve 26 are activated such that both valves are opened either by a first and a second opening value (in the case of increasing the mixing water flow rate) or by a first and closed a second closing value (in case of a reduction of the mixed water flow rate).
  • the percentage opening ratio of the first proportional valve 24 to the second proportional valve 26 is always kept constant in order to keep the mixed water temperature at an approximately constant temperature value.
  • FIG. 4b the same applies analogously to the example in FIG. 4b ,
  • FIG. 4b is initially constant by operation of the control signal generator 32 for approximately 1.2 seconds generates a third water quantity plus signal 92.
  • a fourth water quantity plus signal 94 is pulsed for about 0.1 seconds and after about 1.9 seconds (and an interruption of about 0.27 seconds) for about 0.35 seconds a constant fifth water quantity plus signal 96 generated.
  • a second water quantity minus signal 98 becomes constant for about 1.2 seconds and after 4.2 seconds (after an interruption of about 0.5 seconds) a fifth water quantity minus signal 100 pulses generated for around 0.1 seconds.
  • the percentage value of the mixed water flow rate increases within 0.9 seconds with a delay of the duration of the water amount plus time value linear from 0% to approx. 30%.
  • the fourth pulsed water amount plus signal 94 (whose signal duration is also shorter than the stored water amount plus time value) causes the water flow percentage to be instantaneous with respect to the end of the water amount plus signal 94 and 30% within 0.15 seconds 80%, according to the upper mixed water flow limit, increases.
  • the renewed, fifth water quantity plus signal 96 of about 0.36 seconds duration further increases the mixed water flow rate to about 92%.
  • the input signal 30 is no longer compared to a time value, but directly converted and there is therefore no lead time.
  • the input signal 30 is implemented immediately.
  • the second Water amount minus signal 98 of about 1.2 seconds causes the water flow to decrease linearly to about 62% starting with a delay corresponding to the water amount minus time value.
  • the third, pulse-like water amount minus signal 100 causes the mixing water flow rate with respect to the end of the water amount minus signal 100 to be instantaneously lowered to 0% within 0.19 seconds.
  • the temperature change, with pulse-type input signals 30, takes place at a speed of 100% in 0.5 seconds and, in the case of continuous input signals 30, at a speed of 100% in 2 seconds, and the change in the water quantity in the case of pulse-type input signals 30 at a speed of 100% in 0.3 seconds and, with continuous input signals 30, at a speed of 100% in 3 seconds.
  • speed values can be selected differently by appropriate programming of the controller 28.
  • input signals 30 which are less than or equal to the relevant time value are evaluated as pulse-type signals. However, it is also possible to regard only input signals 30 which are smaller than the relevant time value as pulse-like signals.
  • the controller 28 may be programmed such that, for example, for the above-described mixed water temperature reset value, not the minimum value but any other value is selected. It is also conceivable that several Intermediate stages, both in the temperature setting as well as the mixed water flow rate, can be preset, which can be selected by pulse-like tapping the control signal generator 32 (for example, when increasing the mixing water flow rate not only 30% and 80%, but for example 30%, 50%, 70 % and 80% and for example not only 100% for the mixed water temperature, but for example 20%, 40% 60% 80% and 100%).
  • FIGS. 3a to 3c and 4a and 4b show traces of mixed water temperature and mixing water flow rate as a function of sequential water flow plus, water flow minus, temperature plus or minus temperature input signals. These are generated by the control signal generator 32 or the joystick 34, wherein the actuating lever end region 40 of the joystick 34 can be deflected in two mutually at least approximately perpendicular Auslenkebenen.
  • the four input signals can be combined in any order, so that the temperature can be changed, for example with running water, and then the mixing water flow rate can be changed at the newly set temperature value or vice versa.
  • control signal generator 32 does not consist of a joystick 34, but, for example, four push buttons, each push button each one of the four input signals (water quantity plus, water quantity minus, temperature plus or minus temperature Signal) is assigned.
  • the timer further has the task of detecting the duration of the unaltered mixed water flow by measuring the time during which no more 30 input water flow occurs during a mixed water flow greater than zero. After a certain flow time of a few minutes, the controller 28 automatically sets the flow to zero.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Domestic Plumbing Installations (AREA)

Description

Die vorliegende Erfindung betrifft eine Sanitärarmatur gemäss dem Oberbegriff des Patentanspruchs 1.The present invention relates to a sanitary fitting according to the preamble of patent claim 1.

Sanitärarmaturen zum Auslass von Wasser, insbesondere zum Auslass von aus Kaltwasser und Warmwasser gemischtem Mischwasser, sind allgemein bekannt. Um das ausfliessende Wasser auf eine bestimmte Mischwasserdurchflussmenge und eine bestimmte Mischwassertemperatur einstellen zu können, ist es bekannt, Sanitärarmaturen mit Ventileinrichtungen zu versehen. Diese Ventileinrichtungen respektive Ventile, welche in den Ventileinrichtungen eingebaut sind, weisen typischerweise auf der einen Seite einen Kaltwasseranschluss und einen Warmwasseranschluss und auf der anderen Seite einen Mischwasserauslass auf. Solche Ventileinrichtungen können einen hydraulischen Einhebelmischer aufweisen, wie beispielsweise in WO 2006/098795 offenbart.Sanitary fittings for the outlet of water, especially for the outlet of mixed water mixed with cold water and hot water, are well known. In order to be able to set the outflowing water to a certain mixed water flow rate and a certain mixed water temperature, it is known to provide sanitary fittings with valve devices. These valve devices or valves, which are installed in the valve devices, typically have a cold water connection and a hot water connection on one side and a mixed water outlet on the other side. Such valve means may comprise a hydraulic single-lever mixer, such as in WO 2006/098795 disclosed.

Zudem gibt es Ventile, welche mittels einer elektrischen Steuerung angesteuert werden können, um sie zu öffnen oder zu schliessen. Dabei kann ein Steuersignalgeber zur Generierung eines Inputsignals an die Steuerung verwendet werden, wobei die Steuerung aufgrund des Inputsignals die Ventile entsprechend ansteuert.In addition, there are valves that can be controlled by means of an electrical control to open or close them. In this case, a control signal generator for generating an input signal to the controller can be used, wherein the controller controls the valves due to the input signal accordingly.

Dokument WO 2009/019731 A offenbart eine Vorrichtung zum Mischen von Wasser und zur Regelung der Durchflussmenge von Brauchwasser in hydraulischen Systemen. Die Vorrichtung umfasst eine elektronische Platine oder Schaltkreise, welche elektrisch mit einem oder mehreren Magnetventilen verbunden sind zur Regulierung der Flussgeschwindigkeit von heissem und kaltem Wasser, wobei das Wasser zu einem oder mehreren Wasserhähnen gefördert wird. Die relative Verschiebung von einem oder mehreren Magneten in Beziehung zu einem oder mehreren magnetischen Linear- und/oder Rotationssensoren der elektronischen Schaltung generiert eine Potentialdifferenz. Die Potentialdifferenz wird entsprechend an die Magnetventile übertragen zur vollständigen/teilweisen hoffnung dieser.document WO 2009/019731 A discloses a device for mixing water and regulating the flow rate of service water in hydraulic systems. The apparatus comprises an electronic board or circuits electrically connected to one or more solenoid valves for regulating the flow rate of hot and cold water, the water being delivered to one or more faucets. The relative displacement of one or more magnets in relation to one or more magnetic linear and / or rotational sensors of the electronic circuit generates a potential difference. The potential difference is correspondingly transmitted to the solenoid valves for full / partial hope of this.

Dokument US 2006/186215 A1 offenbart eine Sanitärarmatur mit Bedienfeldern, über die der Wasserauslauf und/oder die Temperatur durch Antippen der Bedienfelder bedienbar sind. Ebenso kann auch ein Joystick zum Einsatz kommen, um durch Antippen des Joysticks den Wasserauslauf und/oder die Temperatur der Sanitärarmatur zu regeln.document US 2006/186215 A1 discloses a sanitary fitting with control panels, via which the water outlet and / or the temperature can be operated by tapping the control panels. Likewise, a joystick can be used to control the water outlet and / or the temperature of the sanitary fitting by tapping the joystick.

Die Sanitärarmatur, welche in WO 2006/098795 offenbart ist, weist einen hydraulischen Einhebelmischer als Ventileinrichtung auf, um die Mischwasserdurchflussmenge und die Mischwassertemperatur manuell einzustellen. Zudem ist ein elektrisch ansteuerbares Ventil eingebaut, welches in zwei verschiedenen Modi betrieben werden kann. In einem manuellen Modus ist das Ventil offen und die Mischwasserdurchflussmenge und die Mischwassertemperatur werden lediglich durch den manuell bedienbare Einhebelmischer gesteuert. In einem zweiten Modus werden die Mischwasserdurchflussmenge und die Mischwassertemperatur durch den manuell bedienbaren Einhebelmischer voreingestellt, und das elektrisch ansteuerbare Ventil kann entweder vollständig offen oder vollständig geschlossen sein. Die Steuerung erhält dabei von einem Tast- oder Umgebungssensor ein Inputsignal, wenn sich ein Objekt (wie beispielsweise eine Hand) in Sensornähe befindet. Dieses Inputsignal bewirkt, dass die Steuerung dem Ventil ein "On" oder ein "Off"-Flip-Flop Signal sendet, welches wiederum bewirkt, dass das Ventil ganz geschlossen oder ganz geöffnet wird und entsprechend der Wasserdurchfluss geöffnet oder geschlossen wird.The sanitary fitting, which in WO 2006/098795 discloses a hydraulic single-lever mixer as a valve device to manually adjust the mixed water flow rate and the mixed water temperature. In addition, an electrically controllable valve is installed, which can be operated in two different modes. In one In manual mode, the valve is open and the mixing water flow rate and mixing water temperature are controlled only by the manually operated single lever mixer. In a second mode, the mixed water flow rate and the mixed water temperature are preset by the manually operable single lever mixer, and the electrically controllable valve may be either fully open or fully closed. The controller receives an input signal from a touch or environment sensor when an object (such as a hand) is near the sensor. This input signal causes the controller to send an "on" or "off" flip-flop signal to the valve, which in turn causes the valve to be fully closed or fully opened, and the water flow to be opened or closed accordingly.

Eine Aufgabe der vorliegenden Erfindung ist, eine Sanitärarmatur mit einem Steuersignalgeber bereitzustellen, wobei sowohl Mischwassertemperatur wie auch Wasserdurchflussmenge mittels des Steuersignalgebers eingestellt werden kann und der Steuersignalgeber über eine elektrische Steuerung mit der Ventileinrichtung lediglich elektrisch verbunden ist. Dies erlaubt eine feine und differenzierte Steuerung der Mischwassertemperatur und Mischwasserdurchflussmenge mit diversen möglichen, in der elektronischen Steuerung implementierbaren, Zusatzfunktionen.An object of the present invention is to provide a sanitary fitting with a control signal generator, wherein both mixing water temperature and water flow rate can be adjusted by means of the control signal generator and the control signal generator is only electrically connected via an electrical control with the valve device. This allows a fine and differentiated control of the mixed water temperature and mixed water flow rate with various possible, implementable in the electronic control, additional functions.

Diese Aufgabe wird mit einer Sanitärarmatur mit einem Steuersignalgeber und einer elektrischen Steuerung gelöst, welche die Merkmale des Patentanspruchs 1 aufweist.This object is achieved with a sanitary fitting with a control signal generator and an electrical control, which has the features of patent claim 1.

Besonders bevorzugte Ausführungsformen sind in den abhängigen Patentansprüchen und in der Beschreibung spezifiziert.Particularly preferred embodiments are specified in the dependent claims and in the description.

Die Sanitärarmatur mit dem Steuersignalgeber gemäss der vorliegenden Erfindung weist einen Kaltwasseranschluss, einen Warmwasseranschluss und einen Mischwasserauslass auf. Zudem ist sie mit einer Ventileinrichtung ausgestattet. Diese ist einerseits mit dem Warmwasseranschluss und dem Kaltwasseranschluss sowie andererseits mit dem Mischwasserauslass verbunden. Die Ventileinrichtung kann das Kalt- und das Warmwasser zu Mischwasser zusammenführen, welches dann durch den Mischwasserauslass ausfliesst. Durch verschiedene Verhältnisse von Kalt- und Warmwasseranteilen im Mischwasser können dabei verschiedene Mischwassertemperaturen und Mischwasserdurchflussmengen eingestellt werden.The sanitary fitting with the control signal generator according to the present invention has a cold water connection, a hot water connection and a mixed water outlet. In addition, it is equipped with a valve device. This is connected on the one hand to the hot water connection and the cold water connection and on the other hand to the mixed water outlet. The valve device can merge the cold and the hot water to mixed water, which then flows through the mixed water outlet. By different ratios of cold and hot water shares in the mixed water different mixed water temperatures and mixed water flow rates can be adjusted.

Weiterhin beinhaltet die Sanitärarmatur eine elektrische Steuerung zur Ansteuerung eines Ventils, wobei der Steuersignalgeber ein Inputsignal an die Steuerung generieren kann. Dabei ist in der vorliegenden Erfindung das Ventil integraler Bestandteil der Ventileinrichtung und die Steuerung steuert, in Abhängigkeit des Inputsignals des Steuersignalgebers, die Ventileinrichtung an. Dadurch kann die Mischwassertemperatur und die Mischwasserdurchflussmenge eingestellt werden. Diese Konstruktion erlaubt eine sehr platzsparende Bauweise des Steuersignalgebers, da er keinen direkten Kontakt mit den Wasseranschlüssen aufweist und kein Ventil mit eingebaut ist. Das Einstellen sowohl der Mischwassertemperatur wie auch der Wasserdurchflussmenge durch den Benutzer erfolgt ausschliesslich mittels des Steuersignalgebers. Da der Steuersignalgeber über eine elektrische Steuerung mit der Ventileinrichtung verbunden ist, ist es möglich die Steuerung so zu programmieren, dass ein hinsichtlich Temperatur und Menge fein abgestufter und differenzierter Mischwasserausfluss ermöglicht wird. Zudem lassen sich in die Steuerung diverse mögliche Zusatzfunktionen implementieren, welche durch eine entsprechende Betätigung des Steuersignalgebers ausgelöst werden können.Furthermore, the sanitary fitting includes an electrical control for controlling a valve, wherein the control signal generator can generate an input signal to the controller. In this case, in the present invention, the valve is an integral part of the valve device and the controller controls, in response to the input signal of the control signal generator, the valve device. Thereby, the mixed water temperature and the mixed water flow rate can be adjusted. This design allows a very space-saving design of the control signal transmitter, since it has no direct contact with the water connections and no valve is installed. The setting of both the mixed water temperature and the water flow rate by the user is done exclusively by means of the control signal generator. Since the Control signal generator is connected via an electrical control with the valve device, it is possible to program the controller so that in terms of temperature and quantity finely graduated and differentiated mixed water discharge is possible. In addition, various additional functions can be implemented in the controller, which can be triggered by a corresponding actuation of the control signal generator.

In dieser Ausführungsform ist das Inputsignal, ein Wassermenge-Plus-Signal, ein Wassermenge-Minus-Signal, ein Temperatur-Plus-Signal oder ein Temperatur-Minus-Signal beinhalten. Dabei sendet die Steuerung aufgrund des Empfangs des Wassermenge-Plus-Signals an die Ventileinrichtung ein Signal zur Erhöhung der Mischwasserdurchflussmenge. Analog sendet die Steuerung aufgrund des Empfangs des Wassermenge-Minus-Signals an die Ventileinrichtung ein Signal zur Verringerung der Mischwasserdurchflussmenge, aufgrund des Empfangs des Temperatur-Plus-Signals ein Signal zur Erhöhung der Mischwassertemperatur und aufgrund des Erhalts des Temperatur-Minus-Signals ein Signal zur Verringerung der Mischwassertemperatur. Diese Konstruktion ermöglicht eine äusserst einfache Bedienung der Sanitärarmatur, welche für einen Benutzer sehr intuitiv ist. Durch diese Art der Signalgebung und Steuerung der Ventileinrichtung lassen sich beliebige Mischwasserdurchflussmengen mit einer beliebigen Mischwassertemperatur auf einfache Art und Weise einstellen.In this embodiment, the input signal includes a water amount plus signal, a water amount minus signal, a temperature plus signal, or a temperature minus signal. In this case, the controller sends a signal to increase the mixing water flow rate due to the receipt of the water quantity plus signal to the valve device. Similarly, due to the receipt of the water amount minus signal to the valve device, the controller sends a signal for reducing the mixed water flow rate, a signal for increasing the mixed water temperature due to the reception of the temperature plus signal, and a signal due to the receipt of the temperature minus signal to reduce the mixed water temperature. This design allows extremely simple operation of the sanitary fitting, which is very intuitive for a user. By this type of signaling and control of the valve device, any mixed water flow rates can be set with any mixing water temperature in a simple manner.

In dieser Ausführungsform ist in der Steuerung ein Temperaturspeicher zum Speichern eines mittels des Steuersignalgebers einstellbaren Mischwassertemperaturwertes, ein Mischwasserdurchflussspeicher zum Speichern einer aktuellen Mischwasserdurchflussmenge und ein Zeitglied zum Speichern eines Zeitwertes eingebaut. Diese Speicher ermöglichen, dass die Logik der Steuerung gegenüber der oben beschriebenen einfacheren Variante mittels diversen Zusatzfunktionen ausgebaut werden kann, welche durch eine bestimmte Art der Betätigung des Steuersignalgebers ausgelöst werden können, wie im folgenden beschrieben.In this embodiment, a temperature memory for storing a mixed water temperature value adjustable by the control signal generator, a mixed water flow memory for storing a current mixed water flow rate, and a timer for storing a time value are incorporated in the controller. These memories allow the logic of the controller to be extended over the simpler variant described above by means of various additional functions which can be triggered by a certain type of operation of the control signal generator, as described below.

In dieser Ausführungsform ermöglichen der Mischwasserdurchflussspeicher sowie der Temperaturspeicher die Realisierung einer Steuerung, welche eine proportionale Regelung mittels impulsartiger Inputsignale vom Steuersignalgeber erlaubt.In this embodiment, the mixed water flow memory and the temperature memory allow the realization of a controller, which allows a proportional control means of pulse-like input signals from the control signal generator.

Das Zeitglied dient dazu, die Dauer des Inputsignals sowie die zeitliche Abfolge der Inputsignale mit den in der Steuerung implementierten Vorgaben zu vergleichen. Dadurch ist es erst möglich, ein längeres Inputsignal von einem impulsartigen Inputsignal zu unterscheiden oder die zeitliche Abfolge von impulsartigen Inputsignalen auszuwerten.The timer serves to compare the duration of the input signal and the time sequence of the input signals with the specifications implemented in the controller. As a result, it is only possible to distinguish a longer input signal from a pulse-like input signal or to evaluate the temporal sequence of pulse-like input signals.

Grundsätzlich können in dieser Ausführungsform sowohl in Bezug auf die Regelung der Mischwassertemperatur als auch -durchflussmenge zwei verschiedene Betätigungsarten des Steuersignalgebers unterschieden werden:

  • Eine erste Betätigungsart ist die impulsartige Betätigung, bei welcher der Steuersignalgeber nur für kurze Zeit, beispielsweise für höchstens 0.3 Sekunden, aus seiner neutralen Ruhestellung ausgelenkt wird. In einer zweiten Betätigungsart wird der Steuersignalgeber für längere Zeit, d.h. beispielsweise länger als 0.3 Sekunden, konstant aus seiner neutralen Ruhestellung ausgelenkt. Dabei entspricht dieser Zeitwert jeweils den im Zeitglied gespeicherten Werten für einen Temperatur-Plus-Zeitwert, einen Temperatur-Minus-Zeitwert, einen Wassermenge-Plus-Zeitwert und einen Wassermenge-Minus-Zeitwert.
In principle, two different types of actuation of the control signal generator can be distinguished in this embodiment, both with regard to the control of the mixed water temperature and the flow rate:
  • A first type of actuation is the pulse-like actuation, in which the control signal transmitter only for a short time, for example, for a maximum of 0.3 seconds, is deflected from its neutral rest position. In a second type of actuation, the control signal generator is deflected constantly out of its neutral rest position for a longer time, ie, for example, for more than 0.3 seconds. In this case, this time value corresponds in each case to the values stored in the timer for a temperature plus time value, a temperature minus time value, a water quantity plus time value and a water quantity minus time value.

Die Steuerung steuert die Ventileinrichtung derart an, dass beim Empfang eines konstanten Wassermenge-Plus-Signals die Mischwasserdurchflussmenge mit wenigstens annähernd gleich bleibender, gemäss der im Temperaturspeicher gespeicherten Mischwassertemperatur, kontinuierlich erhöht wird. Dies erlaubt, die Mischwassermenge langsam und stetig kontrolliert zu erhöhen.The controller controls the valve device in such a way that, upon receipt of a constant water quantity plus signal, the mixed water flow rate is continuously increased with at least approximately constant temperature according to the mixed water temperature stored in the temperature reservoir. This allows to increase the amount of mixed water slowly and steadily controlled.

In einer bevorzugten Ausführungsform ist der Steuersignalgeber ein elektrischer Joystick mit einem in einem Sockelelement gelagerten Betätigungshebel. Die Lagerung und der technische Aufbau des Joysticks ist ausführlicher in der gleichentags eingereichten Patentanmeldung derselben Anmelderin mit dem Titel "Sanitärarmatur mit einem Gelenk" (Vertreterreferenz A18634EP) beschrieben, es wird ausdrücklich auf die Offenbarung dieses Dokumentes hingewiesen.In a preferred embodiment, the control signal generator is an electric joystick with an operating lever mounted in a base element. The mounting and technical structure of the joystick is described in more detail in the same applicant's commonly assigned patent application entitled "Plumbing Fitting with a Joint" (Representative Reference A18634EP), which expressly refers to the disclosure of this document.

In einer bevorzugten Ausführungsform weist der Betätigungshebel einen Betätigungshebelendbereich auf, welcher aus seiner neutralen, vorzugsweise mittigen Ruhestellung in mindestens zwei zueinander wenigstens annähernd rechtwinklig stehende Ebenen auslenkbar ist. Zudem ist das Sockelelement mit mindestens einem Sensor ausgestattet, um die Position des Betätigungshebels relativ zu seiner neutralen Ruhestellung zu bestimmen und in das elektrische Inputsignal umzuwandeln. Vorzugsweise ist dazu das Sockelelement mit einem Sensor ausgestattet, welcher mit einem dem Betätigungshebelendbereich abgewandten Sensorende des Betätigungshebels zusammenwirkt.In a preferred embodiment, the actuating lever has an actuating lever end region which can be deflected from its neutral, preferably central rest position into at least two planes which are at least approximately at right angles to one another. In addition, the base member is provided with at least one sensor to determine the position of the operating lever relative to its neutral rest position and to convert it into the electrical input signal. For this purpose, the base element is preferably equipped with a sensor which cooperates with a sensor end of the actuating lever facing away from the actuating lever end region.

In einer besonders bevorzugten Ausführungsform ist dabei der Betätigungshebel an seinem Sensorende mit einem Permanentmagneten ausgestattet, welcher mit Hallsensoren zusammenwirkt, die bezüglich des Sockelelements des Joysticks fest angebracht sind. Diese Bauweise erlaubt eine lange Lebensdauer des Betätigungshebels respektive der Joystickanordnung, da die Konstruktion nur wenig aneinander bewegliche und reibende Teile aufweist und somit die Abnützung minimiert ist. Zudem wird durch die Verwendung von Hallsensoren und einem Permanentmagneten eine sehr platzsparende Bauweise ermöglicht.In a particularly preferred embodiment, the actuating lever is equipped at its sensor end with a permanent magnet, which cooperates with Hall sensors, which are fixedly mounted with respect to the base element of the joystick. This construction allows a long life of the operating lever or the joystick assembly, since the construction has only slightly moving parts and rubbing parts and thus the wear is minimized. In addition, a very space-saving design is made possible by the use of Hall sensors and a permanent magnet.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 5 derart ansteuern, dass beim Empfang eines konstanten Wassermenge-Minus-Signals die Mischwasserdurchflussmenge, mit wenigstens annähernd gleich bleibender Mischwassertemperatur gemäss dem im Temperaturspeicher gespeicherten Mischwassertemperaturwert, kontinuierlich verringert wird. Dies erlaubt, die Mischwassermenge langsam und stetig kontrolliert zu verringern.The controller may preferably control the valve device according to claim 5 such that when receiving a constant water quantity minus signal, the mixed water flow rate, with at least approximately constant mixed water temperature according to the temperature stored in the mixed water temperature value, is continuously reduced. This allows to reduce the amount of mixed water slowly and steadily controlled.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 6 derart ansteuern, dass beim Empfang eines impulsartigen Wassermenge-Plus-Signals die Mischwasserdurchflussmenge, falls die aktuelle Mischwasserdurchflussmenge gemäss dem im Mischwasserdurchflussspeicher gespeicherten Wert kleiner als ein unterer Mischwasserdurchflussgrenzwert, vorzugsweise 30%, ist, auf diesen unteren Mischwasserdurchflussgrenzwert bei wenigstens annähernd gleich bleibender Mischwassertemperatur sprungartig erhöht wird.The controller may preferably control the valve device according to claim 6 such that when receiving a pulse-like amount of water plus signal, the mixed water flow rate, if the current mixed water flow rate according to the Stored mixed water flow storage value is less than a lower Mischwasserdurchflussgrenzwert, preferably 30%, is increased to this lower Mischwasserdurchflussgrenzwert at least approximately constant mixing water temperature is suddenly increased.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 7 derart ansteuern, dass beim Empfang eines impulsartigen Wassermenge-Plus-Signals, falls der aktuelle Mischwasserdurchfluss bei dem unteren Mischwasserdurchflussgrenzwert beziehungsweise zwischen dem unteren Mischwasserdurchflussgrenzwert und einem oberen Mischwasserdurchflussgrenzwert, von vorzugsweise 80%, liegt, die Mischwasserdurchflussmenge auf den oberen Mischwasserdurchflusswert bei wenigstens annähernd gleich bleibender Mischwassertemperatur erhöht wird. Dadurch kann der Mischwasserdurchfluss sprungartig auf einen dem oberen Mischwasserdurchflussgrenzwert entsprechenden Wert erhöht werden.The controller may preferably control the valve device according to claim 7 such that upon receiving a pulse-like water quantity plus signal, if the current mixed water flow is at the lower Mischwasserdurchflußgrenzwert or between the lower Mischwasserdurchflussgrenzwert and a Mischwasserdurchflußgrenzwert, preferably 80%, the Mischwasserdurchflussmenge is increased to the upper mixing water flow rate at at least approximately constant mixed water temperature. As a result, the mixing water flow can be increased suddenly to a value corresponding to the upper mixing water flow limit value.

Die Kombination des im Anspruch 6 und 7 beschriebenen Vorgehens erlaubt, durch zweimaliges impulsartiges Antippen kurz hintereinander den Mischwasserdurchfluss sprungartig von beispielsweise minimal 0% auf den oberen Mischwasserdurchflussgrenzwert zu erhöhen.The combination of the procedure described in claims 6 and 7 allows to increase the mixing water flow in a jerky manner by, for example, a minimum of 0% to the upper mixing water flow limit value by pulsing briefly twice in succession.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 8 derart ansteuern, dass beim Empfang eines impulsartigen Wassermenge-Minus-Signals das Ventil verzögerungsfrei so geschlossen wird, dass die Mischwasserdurchflussmenge den Wert Null erreicht. Dadurch kann ein schneller, sprungartiger Ausflussstopp des Mischwasserausflusses bewirkt werden.The controller may preferably control the valve device according to claim 8 such that upon receipt of a pulse-like water quantity minus signal, the valve is closed without delay so that the mixed water flow rate reaches zero. As a result, a faster, jump-like outflow stop of the mixed water outflow can be effected.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 9 derart ansteuern, dass beim Empfang eines konstanten Temperatur-Plus-Signals, falls der aktuelle Mischwasserdurchfluss gleich Null ist, der Mischwassertemperaturwert im Temperaturspeicher kontinuierlich erhöht wird bis zum Ende des Temperatur-Plus-Signals oder bis der Mischwassertemperaturwert einen oberen Temperaturgrenzwert erreicht hat. Dies erlaubt, die Mischwassertemperatur langsam und stetig sich erhöhend anzuwählen.The controller may preferably control the valve device according to claim 9 such that when receiving a constant temperature plus signal, if the current mixed water flow is zero, the mixed water temperature value is continuously increased in the temperature memory until the end of the temperature plus signal or until Mixed water temperature has reached an upper temperature limit. This allows to select the mixed water temperature slowly and steadily increasing.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 10 derart ansteuern, dass beim Empfang des konstanten Temperatur-Plus-Signals, falls der aktuelle Mischwasserdurchfluss grösser Null ist, der Mischwassertemperaturwert im Temperaturspeicher kontinuierlich erhöht wird bis zum Ende des Temperatur-Plus-Signals oder bis der Mischwassertemperaturwert einen oberen Temperaturgrenzwert erreicht hat. Gleichzeitig wird die Mischwassertemperatur des ausfliessenden Mischwassers entsprechend des Mischwassertemperaturwertes kontinuierlich, bei wenigstens annähernd gleichbleibender Mischwasserdurchflussmenge, angepasst. Dies erlaubt, die Mischwassertemperatur des aktuell ausfliessenden Mischwassers langsam und stetig kontrolliert zu erhöhen.The controller may preferably control the valve device according to claim 10 such that upon receipt of the constant temperature plus signal, if the current mixed water flow is greater than zero, the mixed water temperature value is continuously increased in the temperature memory until the end of the temperature plus signal or until Mixed water temperature has reached an upper temperature limit. At the same time, the mixed water temperature of the effluent mixed water is adjusted continuously in accordance with the mixed water temperature value, with at least approximately constant mixed water flow rate. This allows the mixing water temperature of the currently flowing mixed water to be increased slowly and steadily in a controlled manner.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 11 derart ansteuern, dass beim Empfang des impulsartigen Temperatur-Plus-Signals, falls die aktuelle Mischwasserdurchflussmenge gleich Null ist, der Mischwassertemperaturwert im Temperaturspeicher auf den oberen Temperaturgrenzwert gesetzt wird. Dies erlaubt, die voreingestellte Mischwassertemperatur sprunghaft zu erhöhen.The controller may preferably control the valve device according to claim 11 such that upon receipt of the pulse-like temperature plus signal, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is set to the upper temperature limit. This allows to increase the preset mixed water temperature by leaps and bounds.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 12 derart ansteuern, dass beim Empfang des impulsartigen Temperatur-Plus-Signals, falls die aktuelle Mischwasserdurchflussmenge grösser Null ist, der Mischwassertemperaturwert im Temperaturspeicher auf einen oberen Temperaturgrenzwert gesetzt und gleichzeitig die Mischwassertemperatur entsprechend des Mischwassertemperaturwertes bei wenigstens annähernd gleichbleibender Mischwasserdurchflussmenge angepasst wird. Dies erlaubt, die Mischwassertemperatur des aktuell ausfliessenden Mischwassers sprunghaft zu erhöhen.The controller can preferably control the valve device according to claim 12 such that when receiving the pulse-like temperature plus signal, if the current mixed water flow rate is greater than zero, set the mixed water temperature value in the temperature storage to an upper temperature limit and at the same time the mixed water temperature corresponding to the mixed water temperature value at least approximately constant mixed water flow rate is adjusted. This allows to increase the mixed water temperature of the currently flowing mixed water leaps and bounds.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 13 derart ansteuern, dass beim Empfang des konstanten Temperatur-Minus-Zeitwerts, falls die aktuelle Mischwasserdurchflussmenge gleich Null ist, der Mischwassertemperaturwert im Temperaturspeicher kontinuierlich verringert wird bis zum Ende des Temperatur-Minus-Signals oder bis der Mischwassertemperaturwert einen unteren Temperaturgrenzwert erreicht hat. Dies erlaubt, die voreingestellte Mischwassertemperatur langsam und sich stetig verringernd kontrolliert anzuwählen.The controller may preferably control the valve device according to claim 13 such that upon receipt of the constant temperature minus time value, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is continuously reduced until the end of the temperature minus signal or until Mixed water temperature value has reached a lower temperature limit. This makes it possible to select the preset mixed water temperature slowly and continuously decreasing controlled.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 14 derart ansteuern, dass beim Empfang des konstanten Temperatur-Minus-Signals, falls die aktuelle Mischwasserdurchflussmenge grösser Null ist, der Mischwassertemperaturwert im Temperaturspeicher kontinuierlich verringert wird bis zum Ende des Temperatur-Minus-Signals oder bis der Mischwassertemperaturwert einen unteren Temperatur-grenzwert erreicht hat. Gleichzeitig wird die Mischwassertemperatur des ausfliessenden Mischwassers entsprechend, bei annähernd gleichbleibender Mischwasserdurchflussmenge, kontinuierlich angepasst. Dies erlaubt, die Mischwassertemperatur des aktuell ausfliessenden Mischwassers langsam und stetig kontrolliert zu verringern.The controller may preferably control the valve device according to claim 14 such that upon receipt of the constant temperature minus signal, if the current mixed water flow rate is greater than zero, the mixed water temperature value in the temperature storage is continuously reduced until the end of the temperature minus signal or until Mixed water temperature value has reached a lower temperature limit. At the same time, the mixed water temperature of the effluent mixed water is corresponding, at approx constant mixing water flow rate, continuously adjusted. This allows to slowly and steadily reduce the mixed water temperature of the currently flowing mixed water.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 15 derart ansteuern, dass beim Empfang des impulsartigen Temperatur-Minus-Signals, falls die aktuelle Mischwasserdurchflussmenge gleich Null ist, der Mischwassertemperaturwert im Temperaturspeicher auf einen unteren Temperaturgrenzwert gesetzt wird. Dies erlaubt, die voreingestellte Mischwassertemperatur sprunghaft zu verringern.The controller may preferably control the valve device according to claim 15 such that upon receipt of the pulse-like temperature-minus signal, if the current mixed water flow rate is zero, the mixed water temperature value in the temperature memory is set to a lower temperature limit. This allows to rapidly reduce the preset mixed water temperature.

Die Steuerung kann die Ventileinrichtung bevorzugterweise gemäss Anspruch 16 derart ansteuern, dass beim Empfang des impulsartigen Temperatur-Minus-Signals, falls die aktuelle Mischwasserdurchflussmenge grösser Null ist, der Mischwassertemperaturwert auf einen unteren Temperaturgrenzwert gesetzt wird. Gleichzeitig wird die Mischwassertemperatur entsprechend des Mischwassertemperaturwertes bei wenigstens annähernd gleichbleibender Mischwasserdurchflussmenge angepasst. Dies erlaubt, die Mischwassertemperatur von aktuell ausfliessendem Mischwasser sprunghaft zu verringern.The controller may preferably control the valve device according to claim 16 such that upon receipt of the pulse-like temperature-minus signal, if the current mixed water flow rate is greater than zero, the mixed water temperature value is set to a lower temperature limit. At the same time, the mixed water temperature is adjusted according to the mixed water temperature value with at least approximately constant mixing water flow rate. This allows to suddenly reduce the mixed water temperature of currently flowing mixed water.

Bevorzugt geschieht die Erhöhung resp. Verringerung der Mischwassertemperatur beim Empfang eines konstanten, längeren Temperatur-Plus-Inputsignals respektive eines konstanten, längeren Temperatur-Minus-Inputsignals kontinuierlich entlang einer vorgegebenen ersten Temperatursteuerkennlinie, vorzugsweise einer linearen Temperatursteuerkennlinie mit einer vorgegebenen Steigung (im Falle der Erhöhung mit einer positiven, im Falle der Verringerung vorzugsweise mit einer betragsmässig gleichen, jedoch negativen Steigung). Entsprechend geschieht die Erhöhung resp. Verringerung der Mischwasserdurchflussmenge beim Empfang eines konstanten, längeren Wassermenge-Plus-Inputsignals respektive eines konstanten, längeren Wassermenge-Minus-Inputsignals kontinuierlich entlang einer vorgegebenen ersten Wassermengenregelkurve, vorzugsweise einer linearen Wassermengenregelkurve mit einer vorgegebenen Steigung (im Falle der Erhöhung mit einer positiven, im Falle der Verringerung vorzugsweise mit einer betragsmässig gleichen, jedoch negativen Steigung). Andere Kurvenverläufe, welche kontinuierlich ansteigen oder abfallen, sind jedoch für die Temperatursteuerkennlinie oder die Wassermengenregelkurve ebenso denkbar.Preferably, the increase resp. Reduction of the mixed water temperature when receiving a constant, longer temperature plus input signal or a constant, longer temperature minus input signal continuously along a predetermined first temperature control characteristic, preferably a linear temperature control characteristic with a predetermined slope (in the case of increase with a positive, in the case of reduction, preferably with a magnitude same, but negative slope). Accordingly, the increase resp. Reducing the mixing water flow rate upon receipt of a constant, longer water quantity plus input signal or a constant, longer water quantity minus input signal continuously along a predetermined first water flow control curve, preferably a linear water flow control curve with a predetermined slope (in the case of increase with a positive, in the case the reduction preferably with a magnitude same, but negative slope). Other curves, which increase or decrease continuously, however, are also conceivable for the temperature control characteristic or the water flow control curve.

Im Gegensatz zum Empfang eines kontinuierlichen Temperatur-Plus- oder Temperatur-Minus-Inputsignals erfolgt beim Empfang eines kurzen, impulsartigen Temperatur-Plus- oder Temperatur-Minus-Inputsignals die Erhöhung resp. Verringerung der Mischwassertemperatur sprungartig, in der Praxis bevorzugterweise entlang einer zweiten linearen Temperatursteuerkennlinie mit einer betragsmässig viel grösseren Steigung verglichen mit der Steigung der ersten Temperatursteuerkennlinie. Entsprechend erfolgt, im Gegensatz zum Empfang eines kontinuierlichen Wassermenge-Plus- oder Wassermenge-Minus-Inputsignals, beim Empfang eines kurzen, impulsartigen Wassermenge-Plus- oder Wassermenge-Minus-Inputsignals die Erhöhung resp. Verringerung der Mischwassermenge sprungartig, in der Praxis bevorzugterweise entlang einer zweiten linearen Wassermengenregelkurve mit einer betragsmässig viel grösseren Steigung verglichen mit der Steigung der ersten Wassermengenregelkurve.In contrast to the receipt of a continuous temperature plus or minus temperature input signal, the increase or responds upon receipt of a short, pulse-like temperature plus or minus temperature input signal. Reduction of the mixed water temperature abruptly, in practice preferably along a second linear temperature control characteristic with a magnitude much greater slope compared with the slope of the first temperature control characteristic. Accordingly, in contrast to receiving a continuous amount of water plus or water minus input signal, upon receiving a short, pulse-like amount of water plus or water quantity minus input signal, the increase resp. Reducing the amount of mixed water suddenly, in practice, preferably along a second linear water flow control curve with a in terms of amount much greater slope compared to the slope of the first water flow control curve.

Die Wasserdurchflussmenge kann beispielsweise bei einem impulsartigen Signal in 0,3 Sekunden und bei einem kontinuierlichen Signal in 3 Sekunden linear zwischen 0% und 100% verändert werden.For example, the water flow rate can be varied linearly between 0% and 100% for a pulse-like signal in 0.3 seconds and for a continuous signal in 3 seconds.

Die Mischwassertemperatur kann beispielsweise bei einem impulsartigen Signal in 0,5 Sekunden und bei einem kontinuierlichen Signal in 2 Sekunden linear zwischen 0% und 100% verändert werden.For example, the mixed water temperature can be varied linearly between 0% and 100% in 0.5 seconds for a pulse-like signal and 2 seconds in a continuous signal.

In einer bevorzugten Ausführungsform entspricht der untere Temperaturgrenzwert der Temperatur des kalten Wassers, welches durch den Kaltwasseranschluss zur Ventileinrichtung gelangt. Entsprechend entspricht bevorzugterweise der obere Temperaturgrenzwert der Temperatur des warmen Wassers, welches durch den Warmwasseranschluss zur Ventileinrichtung gelangt.In a preferred embodiment, the lower temperature limit corresponds to the temperature of the cold water, which passes through the cold water connection to the valve device. Accordingly, the upper temperature limit value preferably corresponds to the temperature of the warm water which passes through the hot water connection to the valve device.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist der einen Auslenkebene in eine Auslenkrichtung das Inputsignal Wassermenge-Plus-Signal und in der entsprechenden Gegenauslenkrichtung das Wassermenge-Minus-Signal zugeordnet. Entsprechend ist der anderen Auslenkebene in eine Auslenkrichtung das Temperatur-Plus-Signal und in der entsprechend weiteren Gegenauslenkrichtung das Temperatur-Minus-Signal zugeordnet. Eine solche Zuordnung ist intuitiv und erlaubt dem Benutzer somit eine einfache Bedienung der Sanitärarmatur.In a further preferred embodiment of the present invention, one input level in a deflection direction is assigned the input signal water quantity plus signal and in the corresponding counter deflection direction the water quantity minus signal. Correspondingly, the temperature-plus signal is assigned to the other deflection plane in a deflection direction, and the temperature-minus signal is assigned in the corresponding further counter deflection direction. Such an assignment is intuitive and thus allows the user a simple operation of the sanitary fitting.

In einer weiteren bevorzugten Ausführungsform besteht ein erstes Ventil der Ventileinrichtung aus einem ersten Proportionalventil, welches auf seiner Zulaufseite mit dem Kaltwasseranschluss und auf seiner Ausflussseite mit dem Mischwasserauslass verbunden ist. Entsprechend besteht ein zweites Ventil der Ventileinrichtung aus einem zweiten Proportionalventil, welches auf seiner Zulaufseite mit dem Warmwasseranschluss und auf seiner Ausflussseite mit dem Mischwasserauslass verbunden ist. Dabei steuert die Steuerung das erste Proportionalventil mit einem ersten elektrischen Steuersignal und das zweite Proportionalventil mit einem zweiten elektrischen Steuersignal an.In a further preferred embodiment, a first valve of the valve device consists of a first Proportional valve, which is connected on its inlet side with the cold water connection and on its outflow side with the mixed water outlet. Accordingly, a second valve of the valve device consists of a second proportional valve, which is connected on its inlet side with the hot water connection and on its outflow side with the mixed water outlet. In this case, the controller controls the first proportional valve with a first electrical control signal and the second proportional valve with a second electrical control signal.

Soll nun beispielsweise bei gleichbleibender Mischwasserdurchflussmenge die Mischwassertemperatur geändert werden, so werden das erste und das zweite Proportionalventil gegengleich angesteuert. Dabei werden das erste Proportionalventil derart um einen ersten prozentualen Betrag geschlossen (respektive geöffnet) und das zweite Proportionalventil derart um einen zweiten prozentualen Betrag geöffnet (respektive geschlossen), so dass die Mischwasserdurchflussmenge stets - wenigstens annähernd - konstant bleibt (d.h., die Summe der prozentualen Öffnungen des ersten Proportionalventils und des zweiten Proportionalventils muss stets konstant bleiben).If, for example, the mixing water temperature is to be changed while the mixing water flow rate remains the same, then the first and the second proportional valve are activated in the same way. In this case, the first proportional valve is closed (respectively opened) by a first percentage amount and the second proportional valve is opened (closed) by a second percentage amount so that the mixed water flow rate always remains constant (at least approximately) (ie, the sum of the percentage Openings of the first proportional valve and the second proportional valve must always remain constant).

Soll nun beispielsweise bei gleichbleibender Mischwassertemperatur die Mischwasserdurchflussmenge geändert werden, so werden das erste und das zweite Proportionalventil derart angesteuert, dass beide Ventile entweder um einen ersten und einen zweiten Öffnungswert geöffnet (im Fall der Erhöhung der Mischwasserdurchflussmenge) oder um einen ersten und einen zweiten Schliesswert geschlossen (im Falle einer Verringerung der Mischwasserdurchflussmenge) werden. Dabei muss jedoch das Öffnungsverhältnis des ersten zum zweiten Proportionalventil stets konstant bleiben, um die Mischwassertemperatur auf einem wenigstens - annähernd konstanten - Temperaturwert zu halten.If, for example, the mixing water flow rate is to be changed while the mixing water temperature remains the same, the first and second proportional valves are activated such that both valves are opened either by a first and a second opening value (in the case of increasing the mixing water flow rate) or by a first and a second closing value closed (in the case of a Reducing the mixing water flow rate). In this case, however, the opening ratio of the first to the second proportional valve must always remain constant in order to keep the mixed water temperature at an - approximately constant - temperature value.

In einer weiteren bevorzugten Ausführungsform ist an der Sanitärarmatur eine Lichtquelle, vorzugsweise eine Leuchtdiode (LED), angebracht. Diese wird von der elektrischen Steuerung derart angesteuert, dass sie in Abhängigkeit des gewählten respektive gespeicherten Mischwassertemperaturwertes ein Licht in unterschiedlicher Farbe aussendet. Dadurch kann der Benutzer der Sanitärarmatur auf einfache und intuitive Art optisch erkennen, welche Mischwassertemperatur eingestellt ist. Somit lassen sich auch Unfälle, wie beispielsweise Verbrennungen, durch zu heiss eingestelltes Mischwasser vermeiden.In a further preferred embodiment, a light source, preferably a light-emitting diode (LED), is attached to the sanitary fitting. This is controlled by the electrical control so that it emits a light in different colors depending on the selected respectively stored mixed water temperature value. This allows the user of the sanitary fitting in a simple and intuitive way visually recognize which mixed water temperature is set. Thus, accidents, such as burns, avoided by too hot set mixed water.

Die Leuchtdiode ist in einer besonders bevorzugten Ausführungsform am Steuersignalgeber angebracht, was dem Benutzer einen direkten optischen Zusammenhang zwischen Steuersignalinput und Mischwassertemperatur suggerieren kann und somit die Bedienung der Sanitärarmatur erleichtert.In a particularly preferred embodiment, the light-emitting diode is attached to the control signal generator, which can suggest to the user a direct optical relationship between control signal input and mixed water temperature and thus facilitates the operation of the sanitary fitting.

Der Temperatur-Minus-Zeitwert, der Temperatur-Plus-Zeitwert, der Wassermenge-Minus-Zeitwert und der Wassermenge-Plus-Zeitwert, können unterschiedliche Werte aufweisen. In einer bevorzugten Ausführungsform aber sind diese Werte alle gleich, vorzugsweise 0.3 Sekunden.The temperature minus time value, the temperature plus time value, the water amount minus time value, and the water amount plus time value may have different values. In a preferred embodiment, however, these values are all the same, preferably 0.3 seconds.

Die Erfindung wird anhand eines in der Zeichnung dargestellten Ausführungsbeispiels erläutert. Es zeigen rein schematisch:

Fig. 1
eine Sanitärarmatur aufweisend einen als Joystick ausgebildeten Steuersignalgeber, eine elektrische Steuerung verbunden mit dem Joystick und einer Ventileinrichtung, welche einen Kaltwasser- und einen Warmwasseranschluss und einen Mischwasserauslass beinhaltet, wobei der Mischwasserauslass mit einem Wasserauslassrohr verbunden ist;
Fig. 2
die elektrische Steuerung beinhaltend eine Stromversorgung, wobei die Steuerung Inputsignale vom Steuersignalgeber empfängt und an die Ventileinrichtung und eine Lichtquelle Signale aussendet;
Fig. 3a
ein erstes Beispiel eines Mischwassertemperaturverlaufs in Abhängigkeit von verschiedenen Inputsignalen;
Fig. 3b
ein zweites Beispiel eines Mischwassertemperaturverlaufs in Abhängigkeit von verschiedenen Inputsignalen;
Fig. 3c
ein drittes Beispiel eines Mischwassertemperaturverlaufs in Abhängigkeit von verschiedenen Inputsignalen;
Fig. 4a
ein erstes Beispiel eines Mischwassermengedurchflussverlaufs in Abhängigkeit von verschiedenen Inputsignalen;
Fig. 4b
ein zweites Beispiel eines Mischwassermengedurchflussverlaufs in Abhängigkeit von verschiedenen Inputsignalen.
The invention will be explained with reference to an embodiment shown in the drawing. It shows purely schematically:
Fig. 1
a sanitary fitting comprising a control signal transmitter designed as a joystick, an electrical controller connected to the joystick and a valve device which includes a cold water and a hot water connection and a mixed water outlet, wherein the mixed water outlet is connected to a water outlet pipe;
Fig. 2
the electrical controller includes a power supply, the controller receiving input signals from the control signal generator and sending signals to the valve means and a light source;
Fig. 3a
a first example of a mixed water temperature curve as a function of different input signals;
Fig. 3b
a second example of a mixed water temperature curve as a function of different input signals;
Fig. 3c
a third example of a mixed water temperature curve as a function of various input signals;
Fig. 4a
a first example of a mixing water flow path in response to various input signals;
Fig. 4b
a second example of a mixing water flow path as a function of various input signals.

Figur 1 zeigt schematisch eine mögliche Ausführung einer erfindungsgemässen Sanitärarmatur 10. Die Sanitärarmatur 10 weist eine Ventileinrichtung 12 auf, welche auf der einen Seite mit einem Kaltwasseranschluss 14 und einem Warmwasseranschluss 16 und auf der anderen Seite mit einem Mischwasserauslass 18 verbunden ist. Dabei ist der Mischwasserauslass 18 mit einem Wasserauslassrohr 20 verbunden. Die Ventileinrichtung 12 wiederum beinhaltet mindestens ein Ventil 22a, 22b als integralen Bestandteil, wobei in einer bevorzugten Ausführungsform in die Ventileinrichtung 12 zwei Proportionalventile 24, 26 integriert sind. Dabei ist das erste Proportionalventil 24 auf der einen Seite verbunden mit dem Kaltwasseranschluss 14 und auf der anderen Seite verbunden mit dem Mischwasserauslass 18, und das zweite Proportionalventil 26 ist auf der einen Seite verbunden mit dem Warmwasseranschluss 16 und auf der anderen Seite verbunden mit dem Mischwasserauslass 18. FIG. 1 schematically shows a possible embodiment of a sanitary fitting according to the invention 10. The sanitary fitting 10 has a valve device 12 which is connected on one side with a cold water connection 14 and a hot water connection 16 and on the other side with a mixed water outlet 18. In this case, the mixed water outlet 18 is connected to a water outlet pipe 20. The valve device 12 in turn includes at least one valve 22a, 22b as an integral part, wherein in a preferred embodiment in the valve device 12, two proportional valves 24, 26 are integrated. In this case, the first proportional valve 24 is connected on one side to the cold water connection 14 and on the other side to the mixed water outlet 18, and the second proportional valve 26 is connected on one side to the hot water connection 16 and on the other side connected to the mixed water outlet 18th

Zudem weist die Sanitärarmatur 10 eine elektrische Steuerung 28 auf, welche die Ventileinrichtung 12 in Abhängigkeit eines Inputsignals 30 ansteuert. Das Inputsignal 30 erhält die elektrische Steuerung 28 von einem Steuersignalgeber 32, bevorzugterweise von einem Joystick 34, welcher einen in einem Sockelelement 36 gelagerten Betätigungshebel 38 beinhaltet. Die Lagerung und der technische Aufbau des Joysticks 34 als auch des Auslaufs mit dem Auslaufrohr 20 sind ausführlich in der gleichentags eingereichten Patentanmeldung derselben Anmelderin mit dem Titel "Sanitärarmatur mit einem Gelenk" (Vertreterreferenz A18634EP) offenbart.In addition, the sanitary fitting 10 has an electrical control 28, which controls the valve device 12 in response to an input signal 30. The input signal 30 receives the electric control 28 from a control signal generator 32, preferably from a joystick 34, which includes an operating lever 38 mounted in a base element 36. Warehousing and the technical construction of the joystick 34 as well as the spout with the spout 20 are disclosed in detail in the same applicant's commonly assigned patent application entitled "Jointed Plumbing Fitting" (Representative Reference A18634EP).

In einer bevorzugten Ausführungsform beinhaltet der Betätigungshebel 38 einen Betätigungshebelendbereich 40, welcher aus seiner neutralen, mittigen Ruhestellung in zwei zueinander wenigstens annähernd rechtwinklig stehende Ebenen auslenkbar ist. Zudem ist das Sockelelement 36 mit mindestens einem Sensor 42 ausgestattet, welcher mit einem dem Betätigungshebelendbereich 40 abgewandten Sensorende 44 des Betätigungshebels 38 zusammenwirkt, um die Position des Betätigungshebels 38 relativ zu seiner neutralen, mittigen Ruhestellung zu bestimmen und in das elektrische Inputsignal 30 umzuwandeln.In a preferred embodiment, the actuating lever 38 includes a Betätigungshebelendbereich 40, which is deflected from its neutral, central rest position in two mutually at least approximately at right angles levels. In addition, the base element 36 is equipped with at least one sensor 42, which cooperates with a Betätigungshebelendbereich 40 remote sensor end 44 of the actuating lever 38 to determine the position of the actuating lever 38 relative to its neutral, central position of rest and convert it into the electrical input signal 30.

Vorzugsweise ist dabei der Betätigungshebel 38 an seinem Sensorende 44 mit einem Permanentmagneten 46 ausgestattet, welcher mit Hallsensoren 48 zusammenwirkt, die bezüglich des Sockelelements 36 des Joysticks 34 fest angebracht sind.Preferably, the actuating lever 38 is provided at its sensor end 44 with a permanent magnet 46 which cooperates with Hall sensors 48 which are fixedly mounted with respect to the base member 36 of the joystick 34.

Durch das Ansteuern der Ventileinrichtung 12 werden die Mischwassertemperatur und die Mischwasserdurchflussmenge eingestellt. Sowohl die elektrische Steuerung 28 als auch der Joystick 34 und die Ventileinrichtung 12 sind an eine Stromversorgung 50 angeschlossen. In einer bevorzugten Ausführungsform ist am Betätigungshebel 38 des Joysticks 34 eine Lichtquelle 52a, besonders bevorzugt eine Leuchtdiode 54a, angebracht, welche die in einem Temperaturspeicher der elektrischen Steuerung 28 gespeicherte Mischwassertemperatur durch eine entsprechende Farbe anzeigt. In einer weiteren Ausführungsform kann die oder eine weitere Lichtquelle 52b beziehungsweise Leuchtdiode 54b bei einem der Ventileinrichtung zugewandten Ende des Wasserauslassrohres 20 angebracht werden, um das ausfliessende Mischwasser mit einer der Mischwassertemperatur entsprechenden Farbe zu beleuchten. Um Streuverluste dieses Lichtes zu minimieren, kann in einer weiteren Ausführungsform ein Lichtleiter 55 von der Lichtquelle 52b respektive Leuchtdiode 54b zu einem dem genannten Ende des Wasserauslassrohres 20 entgegen gesetzten Wasserauslassende des Wasserauslassrohres 20 innerhalb des Wasserausflussrohres 20 geführt werden, welcher das Licht zum Wasserauslassende des Wasserauslassrohres 20 leitet und das Mischwasser beim Austritt aus dem Wasserauslassrohr 20 beleuchtet.By controlling the valve device 12, the mixed water temperature and the mixed water flow rate are adjusted. Both the electrical controller 28 and the joystick 34 and the valve device 12 are connected to a power supply 50. In a preferred embodiment, the actuating lever 38 of the joystick 34, a light source 52 a, more preferably a light emitting diode 54 a, attached, which stores the stored in a temperature memory of the electrical controller 28 mixed water temperature by a corresponding color indicates. In a further embodiment, the or a further light source 52b or light-emitting diode 54b may be mounted at an end of the water outlet pipe 20 facing the valve device in order to illuminate the outflowing mixed water with a color corresponding to the mixed water temperature. In order to minimize leakage of this light, in another embodiment, a light guide 55 from the light source 52b or light emitting diode 54b may be led to a water outlet end of the water outlet tube 20 opposite said end of the water outlet tube 20 within the water outlet tube 20 directing the light to the water outlet end of the water outlet tube 20 conducts and illuminates the mixed water at the exit from the Wasserauslassrohr 20.

Figur 2 zeigt eine schematische Detailansicht der elektrischen Steuerung 28 und der Komponenten, mit welchen die Steuerung 28 verbunden ist. Die Steuerung 28 ist an die Stromversorgung 50 angeschlossen. Sie erhält Inputsignale 30, welche beispielsweise aus einem Wassermenge-Plus-Signal 56, einem Wassermenge-Minus-Signal 58, einem Temperatur-Plus-Signal 60 oder einem Temperatur-Minus-Signal 62 bestehen können. Diese Inputsignale 30 stammen vom Steuersignalgeber 32 respektive dem darin integrierten Sensor 42, beispielsweise den Hallsensoren 48. Die Steuerung 28 kann an das erste Proportionalventil 24 ein erstes elektrisches Steuersignal 64a respektive an das zweite Proportionalventil 26 ein zweites elektrisches Steuersignal 64b zum Erhöhen oder Verringern des Wasserdurchflusses aussenden. Zudem kann die Steuerung 28 an die Lichtquelle 52a, 52b oder Leuchtdiode 54a, 54b ein Lichtsteuer-Signal 66 aussenden, um die Farbe des Lichtes, welches die Lichtquelle 52a, 52b oder Leuchtdiode 54a, 54b aussendet, zu bestimmen. FIG. 2 shows a schematic detail view of the electrical controller 28 and the components to which the controller 28 is connected. The controller 28 is connected to the power supply 50. It receives input signals 30, which may consist, for example, of a water quantity plus signal 56, a water quantity minus signal 58, a temperature plus signal 60 or a temperature minus signal 62. These input signals 30 originate from the control signal generator 32 or the integrated sensor 42, for example the Hall sensors 48. The controller 28 can supply to the first proportional valve 24 a first electrical control signal 64a and to the second proportional valve 26 a second electrical control signal 64b for increasing or decreasing the water flow send out. In addition, the controller 28 may send to the light source 52a, 52b or light emitting diode 54a, 54b a light control signal 66 to adjust the color of the light, which the light source 52a, 52b or light emitting diode 54a, 54b emits to determine.

Die Steuerung 28 weist einen programmierbaren Mikroprozessor auf. In der Steuerung 28 ist ein Register 67 mit mehreren Registerplätzen 68 integriert. Darin können verschiedene Werte abgespeichert werden, wie beispielsweise ein Wert für die Mischwassertemperatur in einem Temperaturspeicher-Register, ein Wert für die Mischwasserdurchflussmenge in einem Mischwasserdurchflussspeicher-Register, oder verschiedene Zeitwerte (zum Beispiel ein Wassermenge-Minus-Zeitwert, ein Wassermenge-Plus-Zeitwert, ein Temperatur-Minus-Zeitwert oder ein Temperatur-Plus-Zeitwert) in einem Zeitglied-Register. Diese Speicherbausteine ermöglichen, dass die Logik der Steuerung 28 respektive des Mikroprozessors mit diversen Zusatzfunktionen ausgebaut werden kann, welche durch eine bestimmte Art der Betätigung des Steuersignalgebers 32 ausgelöst werden können.The controller 28 includes a programmable microprocessor. In the controller 28, a register 67 with multiple register locations 68 is integrated. Various values may be stored therein, such as a value for the mixed water temperature in a temperature storage register, a value for the mixed water flow rate in a mixed water flow storage register, or different time values (for example, a water amount minus time value, a water amount plus time value , a temperature minus time value or a temperature plus time value) in a timer register. These memory modules allow the logic of the controller 28 and the microprocessor can be expanded with various additional functions, which can be triggered by a certain type of operation of the control signal generator 32.

Die Figuren 3a, 3b und 3c zeigen drei verschiedene Beispiele von zeitlichen Verläufen der Mischwassertemperatur in Abhängigkeit von unterschiedlichen, entsprechenden Inputsignalen 30. Die durch entsprechende Betätigung des Steuersignalgebers 32 erzeugten Inputsignale 30 sind unter der horizontalen Zeitachse eingezeichnet, während auf der vertikalen Achse jeweils die Mischwassertemperatur prozentual aufgetragen ist. Dabei entsprechen 0% der Temperatur des Wassers im Kaltwasseranschluss und 100% entsprechen der Temperatur des Wassers im Warmwasseranschluss.The FIGS. 3a, 3b and 3c show three different examples of temporal curves of the mixed water temperature in response to different, corresponding input signals 30. The generated by appropriate actuation of the control signal generator 32 input signals 30 are located below the horizontal time axis, while on the vertical axis in each case the mixed water temperature is plotted percentage. 0% corresponds to the temperature of the water in the cold water connection and 100% corresponds to the temperature of the water in the hot water connection.

In Figur 3a wird am Anfang für ungefähr eine Sekunde konstant, d.h. kontinuierlich, der Steuersignalgeber 32 derart betätigt, dass ein erstes Temperatur-Plus-Signal 70 als Inputsignal 30 an die Steuerung 28 generiert wird. Dies geschieht, falls der Steuersignalgeber 32 als Joystick 34 ausgebildet ist, beispielsweise dadurch, dass der Betätigungshebel 38 des Joysticks 34 an seinem Betätigungshebelendbereich 40 in einer der mindestens zwei Auslenkebenen in eine Richtung, welche der Temperatur-Plus-Richtung entspricht, ausgelenkt wird (dasselbe gilt analog auch für die Beispiele gezeigt in Figur 3b und 3c). Nach rund 1.3 Sekunden, und somit einem Unterbruch von rund 0.3 Sekunden, wird durch den Steuersignalgeber 32 für ca. 0.2 Sekunden impulsartig ein zweites Temperatur-Plus-Signal 72 als Inputsignal 30 generiert. Nach rund 3 Sekunden, und somit einem Unterbruch von rund 1.5 Sekunden, wird für ca. 0.7 Sekunden konstant ein erstes Temperatur-Minus-Signal 74 durch Betätigung des Steuersignalgebers 32 als Inputsignal 30 an die Steuerung 28 generiert. Dies geschieht, falls der Steuersignalgeber 32 als Joystick 34 ausgebildet ist, beispielsweise dadurch, dass der Betätigungshebel 38 des Joysticks 34 an seinem Betätigungshebelendbereich 40 in einer Richtung, welcher der Temperatur-Minus Richtung entspricht (und entsprechend die Gegenauslenkrichtung zur Auslenkrichtung, welcher der Temperatur-Plus Richtung entspricht, ist) ausgelenkt wird (dasselbe gilt analog auch für die Beispiele gezeigt in Figur 3b und 3c). Nach ca. 4 Sekunden, und entsprechend einem Unterbruch von rund 0.3 Sekunden, wird für rund 0.1 Sekunden impulsartig ein zweites Temperatur-Minus-Signal 76 durch Betätigung des Steuersignalgebers 32 generiert.In FIG. 3a is initially constant for about one second, ie continuously, the control signal generator 32 is actuated such that a first temperature-plus signal 70 is generated as an input signal 30 to the controller 28. This occurs if the control signal generator 32 is designed as a joystick 34, for example, in that the actuating lever 38 of the joystick 34 is deflected at its actuating lever end region 40 in one of the at least two deflection planes in a direction which corresponds to the temperature plus direction (the same applies analogously to the examples shown in FIG. 3b and 3c ). After about 1.3 seconds, and thus an interruption of about 0.3 seconds, a second temperature plus signal 72 is pulse-like generated by the control signal generator 32 for about 0.2 seconds 72 as an input signal 30. After approximately 3 seconds, and thus an interruption of approximately 1.5 seconds, a first temperature-minus signal 74 is constantly generated for approximately 0.7 seconds by actuation of the control signal generator 32 as input signal 30 to the controller 28. This occurs if the control signal generator 32 is designed as a joystick 34, for example in that the actuating lever 38 of the joystick 34 at its Betätigungshebelendbereich 40 in a direction which corresponds to the temperature-minus direction (and corresponding counter-deflection direction to the deflection, which of the temperature Plus direction corresponds, is) is deflected (the same applies analogously for the examples shown in FIG. 3b and 3c ). After approximately 4 seconds, and corresponding to an interruption of approximately 0.3 seconds, a second temperature-minus signal 76 is generated in pulses for approximately 0.1 seconds by actuation of the control signal generator 32.

Diese Betätigungen des Steuersignalgebers 32 respektive die dadurch generierten Inputsignale 30 an die elektrische Steuerung 28 haben folgende Reaktionen der Steuerung 28 zur Folge: Die Steuerung 28 vergleicht jedes Inputsignal 30 mit einem vorgegebenen und gespeicherten Zeitwert, d.h., das Temperatur-Plus-Signal mit einem Temperatur-Plus-Zeitwert und das Temperatur-Minus-Signal mit einem Temperatur-Minus Zeitwert. In der gezeigten erfindungsgemässen Ausführung sind die gespeicherten Zeitwerte 0.3 Sekunden. Da nun das erste Temperatur-Plus-Signal 70 von einer Sekunde Dauer länger andauert als der gespeicherte Temperatur-Plus-Zeitwert von Dauer ist, steigt, beginnend ab der dem Temperatur-Plus-Zeitwert entsprechenden Zeit von 0.3 Sekunden und somit während 0.7 Sekunden, der Mischwassertemperaturwert linear knapp auf 35% an. Das impulsartige zweite Temperatur-Plus-Signal 72, welches kürzer als der gespeicherte Temperatur-Plus-Zeitwert ist, bewirkt, dass nach rund 1.3 Sekunden der Mischwassertemperaturwert verzögerungsfrei und innert rund 0.3 Sekunden auf 100% ansteigt. Das konstante erste Temperatur-Minus-Signal 74 nach 3 Sekunden mit einer Dauer etwa 0.7 Sekunden, das länger als der gespeicherte Temperatur-Minus-Zeitwert ist, bewirkt, dass die Mischwassertemperatur, beginnend mit der dem Temperatur-Minus-Zeitwert entsprechend abgelaufenen Zeit, während 0.4 Sekunden auf rund 80% linear abnimmt, solange das Temperatur-Minus-Signal ansteht. Das impulsartige zweite Temperatur-Minus-Signal 76 bei 4 Sekunden, dessen Signalzeitdauer kürzer als der gespeicherte Temperatur-Minus-Zeitwert von 0.3 Sekunden ist, lässt den Mischwassertemperaturwert verzögerungsfrei und innert 0.4 Sekunden, beginnend mit dem Ende des Temperatur-Minus-Signals, auf das Minimum sinken. In diesem Beispiel wird vorausgesetzt, dass die Mischwasserdurchflussmenge im Zeitraum von 0 bis 5 Sekunden grösser als null, beispielsweise konstant, ist. Entsprechend wird nur die Mischwassertemperatur geändert.These actuations of the control signal generator 32 and the thus generated input signals 30 to the electrical controller 28 result in the following reactions of the controller 28: The controller 28 compares each input signal 30 with a predetermined and stored time value, ie, the temperature plus signal with a temperature -Plus time value and the temperature minus signal with a temperature-minus time value. In the illustrated embodiment of the invention, the stored time values are 0.3 seconds. Since the first temperature plus signal 70 of one second duration lasts longer than the stored temperature plus time value of duration, increases starting from the time corresponding to the temperature plus time value of 0.3 seconds and thus for 0.7 seconds, the mixed water temperature value is linearly close to 35%. The pulse-like second temperature plus signal 72, which is shorter than the stored temperature plus time value, causes the mixed water temperature value to rise after about 1.3 seconds without lag and within about 0.3 seconds to 100%. The constant first temperature minus signal 74 after 3 seconds, having a duration of about 0.7 seconds, which is longer than the stored temperature-minus time value, causes the mixed water temperature, starting from the time elapsed according to the temperature-minus time value, decreases 0.4% to around 80% linearly as long as the temperature minus signal is present. The pulse-like second temperature minus signal 76 at 4 seconds, whose signal duration is shorter than the stored temperature-minus time value of 0.3 seconds, releases the mixed water temperature value instantaneously and within 0.4 seconds, starting from the end of the temperature-minus signal the minimum sink. In this example will provided that the mixing water flow rate in the period of 0 to 5 seconds is greater than zero, for example, constant. Accordingly, only the mixed water temperature is changed.

Falls in dieser ganzen Zeit jedoch die Mischwasserdurchflussmenge gestoppt ist und kein Mischwasser ausfliesst, so entsprechen die getätigten Änderungen des Mischwassertemperaturwertes einer Mischwassertemperaturvorwahl. Falls jedoch der Mischwasserdurchflusswert nicht gestoppt ist (und der Steuerung 28 entsprechend vor den beschriebenen Temperatur-Plus und Temperatur-Minus-Signalen ein Wassermenge-Plus-Signal 56 gesendet wurde), so werden bei jeder Änderung der Mischwassertemperatur entsprechend auch die Proportionalventile 24, 26 der Ventileinrichtung 12 durch die Steuerung 28 angesteuert. Dabei wird, wenn bei gleichbleibender Mischwasserdurchflussmenge die Mischwassertemperatur geändert werden soll, das erste Proportionalventil 24 und das zweite Proportionalventil 26 gegengleich angesteuert, so dass das erste Proportionalventil 24 um einen ersten prozentualen Betrag geschlossen respektive geöffnet und das zweite Proportionalventil 26 derart um einen zweiten prozentualen Betrag geöffnet respektive geschlossen wird. Dabei wird jedoch die Mischwasserdurchflussmenge stets wenigstens annähernd konstant gehalten (d.h., die Summe der prozentualen Öffnungen des ersten Proportionalventils 24 und des zweiten Proportionalventils 26 muss stets konstant bleiben). Dasselbe gilt analog für die Beispiele in Figur 3b und 3c.If, however, during this time the mixed water flow rate is stopped and no mixed water flows out, the changes made in the mixed water temperature value correspond to a mixed water temperature preselection. However, if the mixing water flow rate is not stopped (and a positive flow rate signal 56 has been sent to the controller 28 in advance of the described temperature plus and minus temperature signals), the proportional valves 24, 26 will also be correspondingly changed with each change in the mixed water temperature the valve device 12 is controlled by the controller 28. In this case, if the mixed water temperature is to be changed while the mixing water flow rate remains the same, the first proportional valve 24 and the second proportional valve 26 are actuated in opposite directions, so that the first proportional valve 24 is closed or opened by a first percentage amount, and the second proportional valve 26 is thereby displaced by a second percentage amount opened respectively closed. However, the mixing water flow rate is always kept at least approximately constant (ie, the sum of the percentage openings of the first proportional valve 24 and the second proportional valve 26 must always remain constant). The same applies analogously to the examples in FIG. 3b and 3c ,

In Figur 3b wird nach rund einer Sekunde für 0.3 Sekunden impulsartig ein drittes Temperatur-Plus-Signal 78 durch den Steuersignalgeber 32 als Inputsignal 30 an die elektrische Steuerung 28 generiert. Dieses Signal wird mit dem Temperatur-Plus-Zeitwert verglichen. Da es in seiner Dauer dem gespeicherten Temperatur-Plus-Zeitwert entspricht, bewirkt das Inputsignal 30, dass der Mischwassertemperaturwert verzögerungsfrei, beginnend mit dem Ende des Temperatur-Plus-Signals, innerhalb von 0.5 Sekunden von 0% auf 100% ansteigt, analog zum Fall der kürzeren Signaldauer. In diesem Beispiel ist die Mischwasserdurchflussmenge im Zeitraum von 0 bis 5 Sekunden grösser als 0. Nach rund 5 Sekunden jedoch nimmt die Mischwasserdurchflussmenge den Wert 0 an, somit ist der Wasserdurchfluss nach rund 5 Sekunden gestoppt. Der eingestellte Mischwassertemperaturwert bleibt dabei für eine gewisse Zeit, in diesem Beispiel für ca. 30 Sekunden, gespeichert, was durch die gestrichelte Linie angedeutet ist. Wenn in dieser Zeit die Wasserdurchflussmenge erhöht würde, würde die Mischwassertemperatur denselben Temperaturwert wie das letzte durchgeflossene Mischwasser aufweisen. Da in diesem Beispiel jedoch die Wasserdurchflussmenge innerhalb von 30 Sekunden nicht erhöht wird, wird zum Zeitpunkt 35 Sekunden der Mischwassertemperaturwert automatisch auf 0% zurückgesetzt.In FIG. 3b After about one second, a third positive temperature signal 78 pulses through for 0.3 seconds generates the control signal generator 32 as an input signal 30 to the electrical controller 28. This signal is compared with the temperature plus time value. Since it corresponds in duration to the stored temperature plus time value, the input signal 30 causes the mixed water temperature value to rise from 0% to 100% within 0.5 seconds, beginning with the end of the temperature plus signal, analogously to the case the shorter signal duration. In this example, the mixing water flow rate in the period of 0 to 5 seconds is greater than 0. After about 5 seconds, however, the mixed water flow rate takes the value 0, so the water flow is stopped after about 5 seconds. The set mixed water temperature value remains stored for a certain time, in this example for about 30 seconds, which is indicated by the dashed line. If the water flow rate were increased during this time, the mixed water temperature would have the same temperature value as the last mixed water flowed through. However, in this example, since the water flow rate is not increased within 30 seconds, at the time of 35 seconds, the mixed water temperature value is automatically reset to 0%.

In Figur 3c wird am Anfang für ungefähr 0.8 Sekunden konstant durch Betätigung des Steuersignalgebers 32 ein viertes Temperatur-Plus-Signal 80 als Inputsignal 30 für die Steuerung 28 generiert. Nach rund 1.2 Sekunden, und somit nach einem Unterbruch von 0.4 Sekunden, wird für ca. 1.1 Sekunden konstant ein fünftes Temperatur-Plus-Signal 82 durch Betätigung des Steuersignalgebers 32 generiert. Nach ca. 3.3 Sekunden, und somit nach einem Unterbruch von rund einer Sekunde, wird für ca. 3.1 Sekunden konstant ein drittes Temperatur-Minus-Signal 84 durch den Steuersignalgeber 32 generiert.In Figure 3c At the beginning, for about 0.8 seconds, a fourth temperature plus signal 80 is constantly generated as an input signal 30 to the controller 28 by operation of the control signal generator 32. After about 1.2 seconds, and thus after an interruption of 0.4 seconds, a fifth temperature plus signal 82 is constantly generated by actuation of the control signal generator 32 for about 1.1 seconds. After about 3.3 seconds, and thus after an interruption of around one second, a third temperature-minus signal 84 is constantly generated by the control signal generator 32 for about 3.1 seconds.

Während dem konstanten, rund 0.8 Sekunden dauernden vierten Temperatur-Plus-Signal 80 (dessen Signalzeitdauer entsprechend länger als der gespeicherte Temperatur-Plus-Zeitwert ist) steigt, beginnend mit dem Ablaufen der dem Temperatur-Plus-Zeitwert entsprechenden Zeit, der prozentuale Wert der Mischwassertemperatur linear von 0% auf ca. 25% an. Das fünfte konstante Temperatur-Plus-Signal 82, welches aufgrund seiner Dauer von rund 1.1 Sekunden ebenfalls länger als der gespeicherte Temperatur-Plus-Zeitwert ist, bewirkt, dass, beginnend mit der dem Temperatur-Plus-Zeitwert entsprechenden Verzögerung, der Mischwassertemperaturwert von ca. 25% auf ca. 65% ansteigt, solange das Temperatur-Plus-Signal anliegt. In diesem Beispiel ist die Mischwasserdurchflussmenge im Zeitraum von 0 bis 2 Sekunden grösser als 0. Nach rund 2 Sekunden jedoch nimmt die Mischwasserdurchflussmenge den Wert 0 an, somit ist der Wasserdurchfluss nach rund 2 Sekunden gestoppt (angedeutet durch die gestrichelte Linie). Der eingestellte Mischwassertemperaturwert bleibt dabei jedoch für eine gewisse Zeit, vorzugsweise in der Grössenordnung von 30 Sekunden, gespeichert. Da in diesem Beispiel, im Gegensatz zum Beispiel in Figur 3b, bereits zum Zeitpunkt von ca. 3 Sekunden die Mischwasserdurchflussmenge wieder erhöht wird, weist das ausfliessende Mischwasser den vorher eingestellten und ausgewählten Mischwassertemperaturwert von 65% auf.During the constant, approximately 0.8 second, fourth temperature plus signal 80 (whose signal duration is correspondingly longer than the stored temperature plus time value), starting from the expiration of the time corresponding to the temperature plus time value, the percentage value of Mixed water temperature linear from 0% to approx. 25%. The fifth constant temperature plus signal 82, which, due to its duration of about 1.1 seconds, is also longer than the stored temperature plus time value, causes, starting with the delay corresponding to the temperature plus time value, the mixed water temperature value of approx 25% increases to approx. 65% as long as the temperature plus signal is present. In this example, the mixing water flow rate is greater than 0 in the period of 0 to 2 seconds. After about 2 seconds, however, the mixed water flow rate becomes 0, so the water flow stops after about 2 seconds (indicated by the dashed line). However, the set mixed water temperature value remains stored for a certain time, preferably of the order of 30 seconds. As in this example, unlike the example in FIG. 3b , When the mixing water flow rate is increased again at the time of about 3 seconds, the effluent mixed water on the previously set and selected mixed water temperature value of 65%.

Das konstante, dritte Temperatur-Minus-Signal 84 von rund 1.6 Sekunden Dauer, anliegend 3.3 Sekunden nach Beginn, bewirkt, dass der prozentuale Wert der Mischwassertemperatur mit der betragsmässig gleichen Steigung wie beim linearen Anstieg, nun jedoch mit negativem Vorzeichen, beginnend um den Temperatur-Minus-Zeitwert verzögert, linear abnimmt und somit am Ende - rund 4.9 Sekunden nach Beginn - den prozentualen Wert 0 annimmt.The constant, third temperature-minus signal 84 of approximately 1.6 seconds duration, applied 3.3 seconds after the start, causes the percentage value of the Mixed water temperature with the same slope as in the linear increase, but now with a negative sign, delayed by the temperature-minus time value, decreases linearly and thus at the end - about 4.9 seconds after the start - takes the percentage value 0.

Die Figuren 4a und 4b zeigen zeitliche Verläufe der Mischwasserdurchflussmenge in Abhängigkeit von Inputsignalen 30. Die Inputsignale 30 sind unter der horizontalen Zeitachse eingezeichnet, während auf der vertikalen Achse jeweils die Mischwasserdurchflussmenge prozentual aufgetragen ist. Analog zur der Temperaturregelung ist zu beachten, dass die Inputsignale 30 eine gewisse Vorlaufzeit zwischen nahezu 0 und maximal 0.3 Sekunden aufweisen, während welcher die Steuerung 28 entscheidet, ob ein impulsförmiges oder ein kontinuierliches Inputsignal 30 anliegt. Während dieser Vorlaufzeit ändert sich ausgangsseitig der Steuerung 28 bei Anliegen eines kontinuierlichen Inputsignals 30 nichts, während bei Ende eines impulsförmigen Inputsignals 30 sofort das entsprechende Ausgangssignal erzeugt wird.The FIGS. 4a and 4b show temporal profiles of the mixed water flow rate in response to input signals 30. The input signals 30 are shown below the horizontal time axis, while on the vertical axis in each case the mixed water flow rate is plotted as a percentage. Analogous to the temperature control is to be noted that the input signals 30 have a certain lead time between almost 0 and a maximum of 0.3 seconds, during which the controller 28 decides whether a pulse-shaped or a continuous input signal 30 is present. During this lead time, the controller 28 does not change anything on the output side when a continuous input signal 30 is present, while at the end of a pulse-shaped input signal 30, the corresponding output signal is generated immediately.

In Figur 4a wird am Anfang für ungefähr 0.2 Sekunden durch impulsartige Betätigung des Steuersignalgebers 32 ein erstes Wassermenge-Plus-Signal 86 an die elektrische Steuerung 28 generiert. Dies geschieht, falls der Steuersignalgeber 32 als Joystick 34 ausgebildet ist, beispielsweise dadurch, dass der Betätigungshebel 38 des Joysticks 34 an seinem Betätigungshebelendbereich 40 in eine Richtung in einer Auslenkebene, welche der Wassermenge-Plus-Richtung entspricht, ausgelenkt wird (dasselbe gilt analog auch für das Beispiel gezeigt in Figur 4b). Zum Zeitpunkt 1.3 Sekunden, und somit nach einem Unterbruch von rund einer Sekunde, wird für ca. 0.2 Sekunde impulsartig ein zweites Wassermenge-Plus-Signal 88 generiert. Zum Zeitpunkt 2.3 Sekunden, und somit nach einem Unterbruch von rund einer Sekunde, wird für ca. 0.2 Sekunden impulsartig ein erstes Wassermenge-Minus-Signal 90 generiert. Dies geschieht, falls der Steuersignalgeber 32 als Joystick 34 ausgebildet ist, beispielsweise dadurch, dass der Betätigungshebel 38 des Joysticks 34 an seinem Betätigungshebelendbereich 40 in einer Richtung, welcher der Wassermenge-Minus Richtung entspricht (und entsprechend die Gegenauslenkrichtung zur Auslenkrichtung, welcher der Wassermenge-Plus Richtung entspricht, ist) ausgelenkt wird (dasselbe gilt analog auch für das Beispiel gezeigt in Figur 4b).In FIG. 4a At the beginning, a first water quantity plus signal 86 is generated at the beginning for about 0.2 seconds by pulsed actuation of the control signal generator 32 to the electric control 28. This happens if the control signal generator 32 is designed as a joystick 34, for example, by the actuating lever 38 of the joystick 34 being deflected at its actuating lever end region 40 in a direction in a deflection plane which corresponds to the water quantity plus direction (the same applies analogously for the example shown in FIG. 4b ). At the time of 1.3 seconds, and thus after an interruption of about one second, a second water quantity plus signal 88 is generated in pulses for about 0.2 seconds. At the time of 2.3 seconds, and thus after an interruption of about one second, a first water quantity minus signal 90 is generated in pulses for about 0.2 seconds. This occurs if the control signal generator 32 is designed as a joystick 34, for example, in that the actuating lever 38 of the joystick 34 at its Betätigungshebelendbereich 40 in a direction which corresponds to the amount of water minus direction (and corresponding Gegenauslenkrichtung to the deflection, which the Wassermenge- Plus direction corresponds, is) is deflected (the same applies analogously to the example shown in FIG. 4b ).

Diese Betätigungen des Steuersignalgebers 32 respektive die dadurch generierten Inputsignale 30 an die elektrische Steuerung 28 haben folgende Reaktionen der Steuerung 28 zur Folge: Die Steuerung 28 vergleicht jedes Inputsignal 30 mit einem vorgegebenen und gespeicherten Zeitwert, d.h., das Wassermenge-Plus-Signal 56 mit einem Wassermenge-Plus-Zeitwert und das Wassermenge-Minus-Signal 58 mit einem Wassermenge-Minus-Zeitwert. In der gezeigten erfindungsgemässen Ausführung sind die gespeicherten Zeitwerte 0.3 Sekunden. Durch das erste Wassermenge-Plus-Signal 86, welches kürzer als der gespeicherte Wassermenge-Plus-Zeitwert ist, steigt der prozentuale Wert der Mischwasserdurchflussmenge mit dem Ende des Wassermenge-Plus-Signals 86 verzögerungsfrei innert 0.1 Sekunden von 0% auf einen entsprechenden, hier mit zum Beispiel 30% definierten, unteren Mischwasserdurchflussgrenzwert an. Das impulsartige zweite Wassermenge-Plus-Signal 88, welches ebenfalls kürzer als der gespeicherte Wassermenge-Plus-Zeitwert ist, bewirkt, dass der prozentuale Wert der Mischwasserdurchflussmenge, beginnend mit dem Ende des Wassermenge-Plus-Signals 88, verzögerungsfrei innert 0.15 Sekunden von 30% auf einen oberen Mischwasserdurchflussgrenzwert von hier beispielsweise 80% ansteigt. Das impulsartige, 0.2 Sekunden andauernde, erste Wassermenge-Minus-Signal 90 nach rund 2.3 Sekunden, welches kürzer als der gespeicherte Wassermenge-Minus-Zeitwert ist, bewirkt, dass die Mischwasserdurchflussmenge, beginnend mit dem Ende des Wassermenge-Minus-Signals 90, verzögerungsfrei innert 0.24 Sekunden auf 0% reduziert wird.These actuations of the control signal generator 32 and the thus generated input signals 30 to the electrical controller 28 result in the following reactions of the controller 28: The controller 28 compares each input signal 30 with a predetermined and stored time value, ie, the water quantity plus signal 56 with a Water amount plus time value and water amount minus signal 58 with a water amount minus time value. In the illustrated embodiment of the invention, the stored time values are 0.3 seconds. By the first water amount plus signal 86, which is shorter than the stored water amount plus time value, the percentage value of the mixed water flow rate with the end of the water amount plus signal 86 increases without delay within 0.1 seconds from 0% to a corresponding, here with, for example, 30% defined lower mixed water flow limit. The pulse-like second water amount plus signal 88, which is also shorter than the stored water amount plus time value, causes the percentage value of the mixed water flow rate, beginning with the end of the water quantity plus signal 88, increases without delay within 0.15 seconds from 30% to an upper mixed water flow limit value of, for example, 80%. The pulse-like 0.2 second first water level minus signal 90 after about 2.3 seconds, which is shorter than the stored water amount minus time value, causes the mixed water flow rate to begin delaying from the end of the water amount minus signal 90 within 0.24 seconds is reduced to 0%.

In diesem Beispiel wird die Mischwasserdurchflussmenge bei gleichbleibender Mischwassertemperatur geändert. Bei jeder solchen Mischwasserdurchflussänderung steuert die elektrische Steuerung 28 auch die Proportionalventile 24, 26 der Ventileinrichtung 12 an. Dabei wird, wenn bei gleichbleibender Mischwassertemperatur die Mischwasserdurchflussmenge geändert werden soll, das erste Proportionalventil 24 und das zweite Proportionalventil 26 derart angesteuert, dass beide Ventile entweder um einen ersten und einen zweiten Öffnungswert geöffnet (im Fall der Erhöhung der Mischwasserdurchflussmenge) oder um einen ersten und einen zweiten Schliesswert geschlossen (im Falle einer Verringerung der Mischwasserdurchflussmenge) werden. Dabei wird jedoch das prozentuale Öffnungsverhältnis des ersten Proportionalventils 24 zum zweiten Proportionalventil 26 stets konstant gehalten, um die Mischwassertemperatur auf einem wenigstens annähernd konstanten Temperaturwert zu halten. Dasselbe gilt analog für das Beispiel in Figur 4b.In this example, the mixed water flow rate is changed at the same mixed water temperature. At each such mixing water flow rate change, the electric controller 28 also controls the proportional valves 24, 26 of the valve device 12. In this case, if the mixing water flow rate is to be changed while the mixing water temperature remains the same, the first proportional valve 24 and the second proportional valve 26 are activated such that both valves are opened either by a first and a second opening value (in the case of increasing the mixing water flow rate) or by a first and closed a second closing value (in case of a reduction of the mixed water flow rate). In this case, however, the percentage opening ratio of the first proportional valve 24 to the second proportional valve 26 is always kept constant in order to keep the mixed water temperature at an approximately constant temperature value. The same applies analogously to the example in FIG FIG. 4b ,

In Figur 4b wird am Anfang durch Betätigung des Steuersignalgebers 32 für ungefähr 1.2 Sekunden konstant ein drittes Wassermenge-Plus-Signal 92 generiert. Nach rund 1.6 Sekunden, und entsprechend einem Unterbruch von rund 0.4 Sekunden, wird für ca. 0.1 Sekunden impulsartig ein viertes Wassermenge-Plus-Signal 94 und nach knapp 1.9 Sekunden (und einem Unterbruch von rund 0.27 Sekunden) für ca. 0.35 Sekunden ein konstantes fünftes Wassermenge-Plus-Signal 96 generiert. Nach rund 2.8 Sekunden (und einem Unterbruch von rund 0.3 Sekunden) wird ein zweites Wassermenge-Minus-Signal 98 konstant für ca. 1.2 Sekunden und nach 4.2 Sekunden (nach einem Unterbruch von rund 0.5 Sekunden) ein fünftes Wassermenge-Minus-Signal 100 impulsartig für rund 0.1 Sekunden generiert.In FIG. 4b is initially constant by operation of the control signal generator 32 for approximately 1.2 seconds generates a third water quantity plus signal 92. After about 1.6 seconds, and corresponding to an interruption of about 0.4 seconds, a fourth water quantity plus signal 94 is pulsed for about 0.1 seconds and after about 1.9 seconds (and an interruption of about 0.27 seconds) for about 0.35 seconds a constant fifth water quantity plus signal 96 generated. After about 2.8 seconds (and an interruption of about 0.3 seconds), a second water quantity minus signal 98 becomes constant for about 1.2 seconds and after 4.2 seconds (after an interruption of about 0.5 seconds) a fifth water quantity minus signal 100 pulses generated for around 0.1 seconds.

Während dem konstanten, rund 1.2 Sekunden dauernden dritten Wassermenge-Plus-Signal 92, dessen Signalzeitdauer länger als der gespeicherte Wassermenge-Plus-Zeitwert ist, steigt mit einer Verzögerung von der Dauer des Wassermenge-Plus-Zeitwerts der prozentuale Wert der Mischwasserdurchflussmenge innert 0.9 Sekunden linear von 0% auf ca. 30% an. Das vierte impulsartige Wassermenge-Plus-Signal 94 (dessen Signalzeitdauer ebenfalls kürzer als der gespeicherte Wassermenge-Plus-Zeitwert ist) bewirkt, dass der Wasserdurchfluss prozentual, bezüglich dem Ende des Wassermenge-Plus-Signals 94 verzögerungsfrei und innert 0.15 Sekunden von 30% auf 80%, entsprechend dem oberen Mischwasserdurchflussgrenzwert, ansteigt. Das erneute, fünfte Wassermenge-Plus-Signal 96 von ca. 0.36 Sekunden Dauer lässt die Mischwasserdurchflussmenge weiter auf rund 92% ansteigen. Bei einem Durchflusswert von 80% und darüber ist eine Impulsregelung in Richtung 100% hier nicht mehr vorgesehen, es wird das Inputsignal 30 nicht mehr mit einem Zeitwert verglichen, sondern unmittelbar umgesetzt und es existiert deshalb auch keine Vorlaufzeit. Das Inputsignal 30 wird unmittelbar umgesetzt. Das zweite Wassermenge-Minus-Signal 98 von rund 1.2 Sekunden bewirkt, dass der Wasserdurchfluss, beginnend mit einer dem Wassermenge-Minus-Zeitwert entsprechenden Verzögerung, linear auf ungefähr 62% absinkt. Das dritte, impulsartige Wassermenge-Minus-Signal 100 bewirkt, dass die Mischwasserdurchflussmenge bezüglich des Endes des Wassermenge-Minus-Signals 100 verzögerungsfrei und innert 0.19 Sekunden auf 0% gesenkt wird.During the constant, about 1.2 second, third water amount plus signal 92, whose signal duration is longer than the stored water amount plus time value, the percentage value of the mixed water flow rate increases within 0.9 seconds with a delay of the duration of the water amount plus time value linear from 0% to approx. 30%. The fourth pulsed water amount plus signal 94 (whose signal duration is also shorter than the stored water amount plus time value) causes the water flow percentage to be instantaneous with respect to the end of the water amount plus signal 94 and 30% within 0.15 seconds 80%, according to the upper mixed water flow limit, increases. The renewed, fifth water quantity plus signal 96 of about 0.36 seconds duration further increases the mixed water flow rate to about 92%. At a flow rate of 80% and above, a pulse control in the direction of 100% is no longer provided here, the input signal 30 is no longer compared to a time value, but directly converted and there is therefore no lead time. The input signal 30 is implemented immediately. The second Water amount minus signal 98 of about 1.2 seconds causes the water flow to decrease linearly to about 62% starting with a delay corresponding to the water amount minus time value. The third, pulse-like water amount minus signal 100 causes the mixing water flow rate with respect to the end of the water amount minus signal 100 to be instantaneously lowered to 0% within 0.19 seconds.

Bei den in den Figuren 3a bis 4b gezeigten Beispielen erfolgt die Temperaturänderung, bei pulsartigen Inputsignalen 30, mit einer Geschwindigkeit von 100% in 0,5 Sekunden und, bei kontinuierlichen Inputsignalen 30, mit einer Geschwindigkeit von 100% in 2 Sekunden, sowie die Wassermengendurchflussänderung bei impulsartigen Inputsignalen 30 mit einer Geschwindigkeit von 100% in 0.3 Sekunden und, bei kontinuierlichen Inputsignalen 30, mit einer Geschwindigkeit von 100% in 3 Sekunden.In the in the FIGS. 3a to 4b In the examples shown, the temperature change, with pulse-type input signals 30, takes place at a speed of 100% in 0.5 seconds and, in the case of continuous input signals 30, at a speed of 100% in 2 seconds, and the change in the water quantity in the case of pulse-type input signals 30 at a speed of 100% in 0.3 seconds and, with continuous input signals 30, at a speed of 100% in 3 seconds.

Selbstverständlich können die Geschwindigkeitswerte, durch entsprechende Programmierung der Steuerung 28, unterschiedlich gewählt werden.Of course, the speed values can be selected differently by appropriate programming of the controller 28.

Bei den gezeigten Ausführungsbeispielen werden Inputsignale 30, welche kleiner oder gleich dem betreffenden Zeitwert sind, als impulsartige Signale beurteilt. Es ist jedoch auch möglich, nur Inputsignale 30 die kleiner als der betreffende Zeitwert sind, als impulsartige Signale anzusehen.In the embodiments shown, input signals 30 which are less than or equal to the relevant time value are evaluated as pulse-type signals. However, it is also possible to regard only input signals 30 which are smaller than the relevant time value as pulse-like signals.

In anderen Ausführungsformen kann die Steuerung 28 derart programmiert werden, dass beispielsweise für den oben beschriebenen Rücksetz-Wert für die Mischwassertemperatur nicht der Minimalwert, sondern ein beliebig anderer Wert gewählt wird. Zudem ist denkbar, dass mehrere Zwischenstufen, sowohl bei der Temperatureinstellung wie auch bei der Mischwasserdurchflussmenge, voreingestellt werden, welche durch impulsartiges Antippen des Steuersignalgebers 32 angewählt werden können (beispielsweise bei der Erhöhung der Mischwasserdurchflussmenge nicht nur 30% und 80%, sondern zum Beispiel 30%, 50%, 70% und 80% und beispielsweise nicht nur 100% für die Mischwassertemperatur, sondern zum Beispiel 20%, 40% 60% 80% und 100%).In other embodiments, the controller 28 may be programmed such that, for example, for the above-described mixed water temperature reset value, not the minimum value but any other value is selected. It is also conceivable that several Intermediate stages, both in the temperature setting as well as the mixed water flow rate, can be preset, which can be selected by pulse-like tapping the control signal generator 32 (for example, when increasing the mixing water flow rate not only 30% and 80%, but for example 30%, 50%, 70 % and 80% and for example not only 100% for the mixed water temperature, but for example 20%, 40% 60% 80% and 100%).

Die Beispiele gemäss den Figuren 3a bis 3c und 4a und 4b zeigen Verläufe von Mischwassertemperatur und Mischwasserdurchflussmenge in Abhängigkeit von sequentiellen Wassermenge-Plus, Wassermenge-Minus, Temperatur-Plus- oder Temperatur-Minus-Inputsignalen. Diese werden durch den Steuersignalgeber 32 respektive den Joystick 34 generiert, wobei der Betätigungshebelendbereich 40 des Joysticks 34 in zwei zueinander wenigstens annähernd senkrecht stehende Auslenkebenen auslenkbar ist. Die vier Input-Signale sind natürlich in einer beliebigen Reihenfolge kombinierbar, so dass beispielsweise bei fliessendem Wasser die Temperatur geändert werden kann und anschliessend bei dem neu eingestellten Temperaturwert die Mischwasserdurchflussmenge verändert werden kann oder umgekehrt.The examples according to the FIGS. 3a to 3c and 4a and 4b show traces of mixed water temperature and mixing water flow rate as a function of sequential water flow plus, water flow minus, temperature plus or minus temperature input signals. These are generated by the control signal generator 32 or the joystick 34, wherein the actuating lever end region 40 of the joystick 34 can be deflected in two mutually at least approximately perpendicular Auslenkebenen. Of course, the four input signals can be combined in any order, so that the temperature can be changed, for example with running water, and then the mixing water flow rate can be changed at the newly set temperature value or vice versa.

Andere Ausführungsformen, bei welchen der Betätigungshebelendbereich 40 des Joysticks 34 beliebig auslenkbar ist, sind ebenfalls denkbar. Dies bewirkt, dass die Inputsignale 30 Kombinationen aus den vier beschrieben Inputsignalen 30 sind und entsprechend die Mischwassertemperatur und die Mischwasserdurchflussmenge gleichzeitig geändert werden können.Other embodiments in which the Betätigungshebelendbereich 40 of the joystick 34 is arbitrarily deflected, are also conceivable. This causes the input signals 30 to be combinations of the four input signals 30 described and, correspondingly, the mixed water temperature and the mixed water flow rate to be changed simultaneously.

In einer anderen Ausführungsform ist denkbar, dass der Steuersignalgeber 32 nicht aus einem Joystick 34 besteht, sondern beispielsweise aus vier Druckknöpfen, wobei jedem Druckknopf jeweils eines der vier Input-Signale (Wassermenge-Plus, Wassermenge-Minus, Temperatur-Plus oder Temperatur-Minus-Signal) zugeordnet ist.In another embodiment, it is conceivable that the control signal generator 32 does not consist of a joystick 34, but, for example, four push buttons, each push button each one of the four input signals (water quantity plus, water quantity minus, temperature plus or minus temperature Signal) is assigned.

Das Zeitglied hat weiter die Aufgabe, die Dauer des unveränderten Mischwasserdurchflusses zu erfassen, indem es während eines Mischwasserdurchflusses grösser null die Zeit misst, während welcher kein Inputsignal 30 mehr auftritt. Nach einer gewissen Durchflussdauer von wenigen Minuten stellt die Steuerung 28 den Durchfluss automatisch auf null.The timer further has the task of detecting the duration of the unaltered mixed water flow by measuring the time during which no more 30 input water flow occurs during a mixed water flow greater than zero. After a certain flow time of a few minutes, the controller 28 automatically sets the flow to zero.

Dies dient der Sicherheit gegen unbemerkten Betrieb der Sanitärarmatur und in Folge möglicher Überflutungsschäden.This serves as security against unnoticed operation of the sanitary fitting and as a result of possible flooding damage.

Claims (20)

  1. Sanitary fitting having a cold water connection (14), a hot water connection (16), a mixed water outlet (18), a valve device (12), having a valve (22a, 22b) as an integral constituent part for setting a mixed water temperature and a mixed water throughflow rate, which valve device is connected to the cold water connection (14) and the hot water connection (16) at one end and is connected to the mixed water outlet (18) at the other end, an electrical controller (28) for actuating the valve (22a, 22b), and a control signal transmitter (32) for generating an input signal (30) to the controller (28), with the controller (28) actuating the valve device (12) as a function of the input signal (30) of the control signal transmitter (32), and as a result the mixed water temperature and the mixed water throughflow rate being set, the input signal (30) containing a positive water quantity signal (56, 86, 88, 92, 94, 96), a negative water quantity signal (58, 90, 98, 100), a positive temperature signal (60, 70, 72, 78, 80, 82) or a negative temperature signal (62, 74, 76, 84) as a function of the operation of the control signal transmitter (32), and the controller (28) transmitting a signal for increasing the mixed water throughflow rate to the valve device (12) on the basis of the reception of the positive water quantity signal (56, 86, 88, 92, 94, 96), transmitting a signal for reducing the mixed water throughflow rate to the valve device (12) on the basis of the reception of the negative water quantity signal (58, 90, 98, 100), transmitting a signal for increasing the mixed water temperature to the valve device (12) on the basis of the reception of the positive temperature signal (60, 70, 72, 78, 80, 82), and transmitting a signal for reducing the mixed water temperature to the valve device (12) on the basis of the reception of the negative temperature signal (62, 74, 76, 84); the controller (28) containing a temperature memory for storing a mixed water temperature value which can be set by means of the control signal transmitter (32), a mixed water throughflow memory for storing a current mixed water throughflow rate, and a timer; and the controller (28) comparing the signal time duration of the positive water quantity signal (56, 86, 88, 92, 94, 96) with a positive water quantity time value which is stored in the timer when said positive water quantity signal is received, and, if the signal time duration is longer than the stored positive water quantity time value, actuating the valve device (12) in such a way that the mixed water throughflow rate, at an at least approximately constant mixed water temperature in line with the mixed water temperature value stored in the temperature memory, is continuously increased until the end of the positive water quantity signal (56, 92, 96) or at a time at which a maximum permissible, preferably 100%, mixed water throughflow rate is achieved.
  2. Sanitary fitting according to Claim 1, characterized in that, after the mixed water throughflow is continuously increased, the current mixed water throughflow rate is stored in the mixed water throughflow memory.
  3. Sanitary fitting according to Claim 1 or 2, characterized in that the control signal transmitter (32) contains a joystick (34) with an operating lever (38) which is mounted in a base element (36) and can be deflected out of its neutral inoperative position in two planes, which are at least approximately at right angles to one another, using an operating lever end region (40), and the base element (36) is equipped with at least one sensor (42) in order to determine the position of the operating lever (38) relative to its neutral inoperative position and to convert said position into the electrical input signal (30), with the sensor (42) preferably interacting with a sensor end (44), which is averted from the operating lever end region (40), of the operating lever (38).
  4. Sanitary fitting according to Claim 3, characterized in that the operating lever (38) is equipped with a permanent magnet (46) at its sensor end (44), said permanent magnet interacting with Hall sensors (48) of the sensor (42) which are firmly mounted with respect to the base element (36) of the joystick (34).
  5. Sanitary fitting according to one of Claims 1 to 4, characterized in that the controller (28) compares the signal time duration of the negative water quantity signal (58, 90, 98, 100) with a negative water quantity time value which is stored in the timer when said negative water quantity signal is received, and, if the signal time duration is longer than the stored negative water quantity time value, actuates the valve device (12) in such a way that the mixed water throughflow rate, at an at least approximately constant mixed water temperature in line with the mixed water temperature value stored in the temperature memory, is continuously reduced until the end of the negative water quantity signal (58, 98) or at a time at which the mixed water throughflow rate has reached the value zero, and, after the continuous reduction in the mixed water throughflow rate, the current mixed water throughflow rate is preferably stored in the mixed water throughflow memory.
  6. Sanitary fitting according to one of Claims 1 to 5, characterized in that the controller (28) compares the signal time duration of the positive water quantity signal (56, 86, 88, 92, 94, 96) with a or the positive water quantity time value stored in the timer when said positive water quantity signal is received, and, if the signal time duration is shorter than or equal to the stored positive water quantity time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is less than a lower mixed water throughflow limit value, preferably 30%, actuates the valve device (12) in such a way that the mixed water throughflow rate is increased without delay such that the mixed water temperature at least approximately corresponds to the mixed water temperature value stored in the temperature memory, and the mixed water throughflow rate corresponds to the lower mixed water throughflow limit value, and, at the end of the immediate increase in the mixed water throughflow rate, the current mixed water throughflow rate is preferably stored in the mixed water throughflow memory.
  7. Sanitary fitting according to one of Claims 1 to 6, characterized in that the controller (28) compares the signal time duration of the positive water quantity signal (56, 86, 88, 92, 94, 96) with a or the positive water quantity time value stored in the timer when said positive water quantity signal is received, and, if the signal time duration is shorter than or equal to the stored positive water quantity time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is greater than or equal to the lower mixed water throughflow limit value, preferably 30%, and less than an upper mixed water throughflow limit value, preferably 80%, actuates the valve device (12) in such a way that the mixed water throughflow rate is increased without delay such that the mixed water temperature corresponds to the mixed water temperature value stored in the temperature memory and the mixed water throughflow at least approximately corresponds to the upper mixed water throughflow value, and, at the end of the immediate increase in the mixed water throughflow rate, the current mixed water throughflow rate is preferably stored in the mixed water throughflow memory.
  8. Sanitary fitting according to one of Claims 1 to 7, characterized in that the controller (28) compares the signal time duration of the negative water quantity signal (58, 90, 98, 100) with a or the negative water quantity time value stored in the timer when said negative water quantity signal is received, and, if the signal time duration is shorter than or equal to the stored negative water quantity time value, actuates the valve device (12) in such a way that the mixed water throughflow rate is reduced without delay in such a way that the mixed water throughflow rate reaches the value zero and, at the end of the immediate reduction in the mixed water throughflow rate, a value zero for the current mixed water throughflow rate is preferably stored in the mixed water throughflow memory.
  9. Sanitary fitting according to one of Claims 1 to 8, characterized in that the controller (28) compares the signal time duration of the positive temperature signal (60, 70, 72, 78, 80, 82) with a positive temperature time value stored in the timer when said positive temperature signal is received, and, if the signal time duration is longer than the stored time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is zero, continuously increases the mixed water temperature value in the temperature memory until the end of the positive temperature signal (60, 70, 80, 82) or until the mixed water temperature value has reached an upper temperature limit value, and, at the end of the continuous increase in the mixed water temperature value, the current mixed water temperature value is preferably stored in the temperature memory.
  10. Sanitary fitting according to one of Claims 1 to 9, characterized in that the controller (28) compares the signal time duration of the positive temperature signal (60, 70, 72, 78, 80, 82) with a or the positive temperature time value stored in the timer when said positive temperature signal is received, and, if the signal time duration is longer than the stored positive temperature time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is greater than zero, continuously increases the mixed water temperature value in the temperature memory until the end of the positive temperature signal (60, 70, 80, 82) or until the mixed water temperature value has reached the upper temperature limit value, and at the same time actuates the valve unit (12) in such a way that the mixed water temperature is continuously adapted in accordance with the mixed water temperature value with an at least approximately constant mixed water throughflow rate, and, at the end of the continuous increase in the mixed water temperature value, the current mixed water temperature value is preferably stored in the temperature memory.
  11. Sanitary fitting according to one of Claims 1 to 10, characterized in that the controller (28) compares the signal time duration of the positive temperature signal (60, 70, 72, 78, 80, 82) with a or the positive temperature time value stored in the timer when said positive temperature signal is received, and, if the signal time duration is shorter than or equal to the stored time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is zero, sets the mixed water temperature value in the temperature memory to an upper temperature limit value and preferably stores said mixed water temperature value.
  12. Sanitary fitting according to one of Claims 1 to 11, characterized in that the controller (28) compares the signal time duration of the positive temperature signal (60, 70, 72, 78, 80, 82) with a or the positive temperature time value stored in the timer when said positive temperature signal is received, and, if the signal time duration is shorter than or equal to the stored positive temperature time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is greater than zero, sets the mixed water temperature value in the temperature memory to an upper temperature limit value and preferably stores said mixed water temperature value and, at the same time, actuates the valve unit (12) in such a way that the mixed water temperature is adapted in accordance with the mixed water temperature value with an at least approximately constant mixed water throughflow rate.
  13. Sanitary fitting according to one of Claims 1 to 12, characterized in that the controller (28) compares the signal time duration of the negative temperature signal (62, 74, 76, 84) with a negative temperature time value stored in the timer when said negative temperature signal is received, and, if the signal time duration is longer than the stored negative temperature time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is zero, continuously reduces the mixed water temperature value in the temperature memory until the end of the negative temperature signal (62, 74, 84) or until the mixed water temperature value has reached a lower temperature limit value, and, at the end of the continuous reduction in the mixed water temperature value, the current mixed water temperature value is preferably stored in the temperature memory for a defined time.
  14. Sanitary fitting according to one of Claims 1 to 13, characterized in that the controller (28) compares the signal time duration of the negative temperature signal (62, 74, 76, 84) with a or the negative temperature time value stored in the timer when said negative temperature signal is received, and, if the signal time duration is longer than the stored time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is greater than zero, continuously reduces the mixed water temperature value in the temperature memory until the end of the negative temperature signal (62, 74, 84) or until the mixed water temperature value has reached a lower temperature limit value, and, at the same time, actuates the valve unit (12) in such a way that the mixed water temperature is continuously adapted in accordance with the mixed water temperature value with an at least approximately constant mixed water throughflow rate, and, at the end of the continuous reduction in the mixed water temperature value, the current mixed water temperature value is preferably stored in the temperature memory for a defined time.
  15. Sanitary fitting according to one of Claims 1 to 14, characterized in that the controller (28) compares the signal time duration of the negative temperature signal (62, 74, 76, 84) with a or the negative temperature time value stored in the timer when said negative temperature signal is received, and, if the signal time duration is shorter than or equal to the stored negative temperature time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is zero, sets the mixed water temperature value in the temperature memory to a lower temperature limit value and preferably stores said mixed water temperature value.
  16. Sanitary fitting according to one of Claims 1 to 15, characterized in that the controller (28) compares the signal time duration of the negative temperature signal (62, 74, 76, 84) with a or the negative temperature time value stored in the timer when said negative temperature signal is received, and, if the signal time duration is shorter than or equal to the stored negative temperature time value and the current mixed water throughflow rate in line with the value stored in the mixed water throughflow memory is greater than zero, sets the mixed water temperature value in the temperature memory to a lower temperature limit value and preferably stores said mixed water temperature value and, at the same time, actuates the valve unit (12) such that the mixed water temperature is adapted in accordance with the mixed water temperature value with an at least approximately constant mixed water throughflow rate.
  17. Sanitary fitting according to Claim 3, characterized in that the input signal (30), positive water quantity signal (56, 86, 88, 92, 94, 96), is associated with a deflection plane in one deflection direction and the negative water quantity signal (58, 90, 98, 100) is associated with the deflection plane in a corresponding opposite deflection direction, and the positive temperature signal (60, 70, 72, 78, 80, 82) is associated with the other deflection plane in one deflection direction and the negative temperature signal (62, 74, 76, 84) is associated with said other deflection plane in the correspondingly further opposite deflection direction.
  18. Sanitary fitting according to one of Claims 1 to 17, characterized in that a first valve (22a) of the valve device (12) is a first proportional valve (24) which is connected to the cold water connection (14) on its intake side and to the mixed water outlet (18) on its outflow side, and a second valve (22b) of the valve device (12) is a second proportional valve (26) which is connected to the hot water connection (16) on its intake side and to the mixed water outlet (18) on its outflow side, and the controller (28) actuates the first proportional valve (24) with a first electrical control signal (64a), and actuates the second proportional valve (26) with a second electrical control signal (64b).
  19. Sanitary fitting according to one of Claims 1 to 18, characterized in that a light source (52a, 52b) emits light in different colors as a function of the selected mixed water temperature.
  20. Sanitary fitting according to Claim 19, characterized in that the light source (52a, 52b) is mounted on the control signal transmitter (32) or on the water discharge pipe (20) and is a light-emitting diode (LED) (54a, 54b).
EP09002169A 2009-02-17 2009-02-17 Sanitary fitting with joystick control Not-in-force EP2218840B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES09002169T ES2395599T3 (en) 2009-02-17 2009-02-17 Sanitary faucet with control
EP09002169A EP2218840B1 (en) 2009-02-17 2009-02-17 Sanitary fitting with joystick control
US12/707,166 US8534568B2 (en) 2009-02-17 2010-02-17 Sanitary fitting with a joystick controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09002169A EP2218840B1 (en) 2009-02-17 2009-02-17 Sanitary fitting with joystick control

Publications (2)

Publication Number Publication Date
EP2218840A1 EP2218840A1 (en) 2010-08-18
EP2218840B1 true EP2218840B1 (en) 2012-10-10

Family

ID=40836763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09002169A Not-in-force EP2218840B1 (en) 2009-02-17 2009-02-17 Sanitary fitting with joystick control

Country Status (3)

Country Link
US (1) US8534568B2 (en)
EP (1) EP2218840B1 (en)
ES (1) ES2395599T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492809A (en) * 2013-06-03 2016-04-13 奥布拉马提克股份公司 Control cartridge for sanitary fittings
EP3889365A1 (en) * 2020-03-30 2021-10-06 Grohe AG Thermostatic mixing valve and method for operating a thermostatic mixing valve

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543780B8 (en) 2011-07-07 2016-10-12 Franke Water Systems AG Shower module and shower system with electronic control
US11091901B2 (en) 2011-07-13 2021-08-17 Delta Faucet Company Faucet handle with angled interface
US8820705B2 (en) 2011-07-13 2014-09-02 Masco Corporation Of Indiana Faucet handle with angled interface
US20130081713A1 (en) * 2011-10-03 2013-04-04 Ching-Yen Hsu Capacitive hand free automatic mixing faucet and control method
DE112012007147T5 (en) * 2012-11-19 2015-09-10 Flowserve Management Company Control systems for valve actuators, valve actuators and related processes
ITMO20130113A1 (en) * 2013-04-26 2014-10-27 Domo Hydros S R L METHOD AND SYSTEM FOR CENTRALIZED WATER SUPPLY TO ONE OR MORE UTILITIES WITH ELECTRONIC AND INDEPENDENT CONTROL OF TEMPERATURE AND OF THE SUPPLIED FLOW.
US20160208947A1 (en) * 2015-01-19 2016-07-21 Moen Incorporated Electronic plumbing fixture fitting with electronic valves having sequential operation
US20160208948A1 (en) * 2015-01-19 2016-07-21 Moen Incorporated Electronic plumbing fixture fitting with electronic valve having operation modes
CN105805388A (en) * 2015-01-19 2016-07-27 莫恩股份有限公司 Electronic sanitary tool device installed on circuit board
EP3247839A4 (en) * 2015-01-19 2018-11-14 Moen Incorporated Electronic plumbing fixture fitting with electronic valve having low closing force, low seal force, sequential operation, and operation modes
DE102015001208B4 (en) * 2015-02-03 2023-02-02 Oras Oy sanitary fitting
WO2016172037A2 (en) 2015-04-24 2016-10-27 Emerson Electric Co. Control unit for undersink appliances faucet having an undersink faucet base and an above sink faucet head
DE102016100451A1 (en) 2016-01-12 2017-07-13 Franke Water Systems Ag Electronically controlled mixer tap
US10544571B2 (en) * 2016-03-25 2020-01-28 Spectrum Brands, Inc. Electronic faucet with spatial orientation control system
GB201608486D0 (en) * 2016-05-13 2016-06-29 Wallgate Ltd Improved water supply system
JP6828365B2 (en) * 2016-10-13 2021-02-10 Toto株式会社 Faucet device
DE102019210435A1 (en) * 2019-07-15 2021-01-21 Blanco Gmbh + Co Kg Sanitary fitting for dispensing treated liquids
GB2599956A (en) * 2020-10-19 2022-04-20 Kohler Mira Ltd Control system for one or more ablutionary devices

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE383033B (en) 1969-02-27 1976-02-23 Broen Armatur As OUTPUT PIPE FOR WATER faucet
GB2040465B (en) 1979-01-17 1983-04-13 Bideford Electronics Ltd Lever operated control unit
DE3231214A1 (en) 1982-08-21 1984-02-23 Friedrich Grohe Armaturenfabrik Gmbh & Co, 5870 Hemer Sanitary fitting
US4479038A (en) 1983-02-11 1984-10-23 Cal-Tron Corporation Mode conditioned joystick control for video games
DE69022118T2 (en) 1989-05-30 1996-02-15 Ichikoh Industries Ltd Remote control switch for the position adjustment of motor vehicle mirrors.
KR950004212B1 (en) 1993-02-10 1995-04-27 삼성전자주식회사 Joystik
DE29807233U1 (en) 1998-04-21 1998-06-25 H Schulz Hds Hydraulik Gmbh & Anti-kink device for a connection fitting of a flexible hose line
DE19835015A1 (en) 1998-08-03 2000-02-10 Linde Ag Hydrostatic drive system has control valve device operated electrically and actual movement speed transmitter of load is provided, both communicating with electronic control device
DE19834955B4 (en) 1998-08-03 2008-02-07 Linde Material Handling Gmbh Hydrostatic drive system
US5988593A (en) 1998-08-07 1999-11-23 Rice; Hiram Allen Water faucet with spout to control water flow and method therefor
ATE282560T1 (en) 1999-08-12 2004-12-15 Eva Denmark As POURING SPOUT FOR ATTACHING TO A CONTAINER
DE19954497C1 (en) 1999-11-11 2001-04-19 Norbert Lemke Electrical apparatus operating device for use in sterile area uses magnetic field device within sterile device cooperating with magnetic field sensor outside sterile area
EP1300751A1 (en) 2000-02-02 2003-04-09 Next Corporation Lever type operating device
US6367707B1 (en) 2001-02-20 2002-04-09 Tae C. Kang Bi-directional flow spout attachment
DE10304595B3 (en) 2003-02-05 2004-10-07 Integrated Electronic Systems !Sys Consulting Gmbh Switching arrangement for converting control movements into electrical signals has joystick attached to part of actuating unit removably mounted on housing with magnet on lower end, sensor elements
DE10332120A1 (en) 2003-07-15 2005-02-03 Bosch Rexroth Ag Control arrangement and method for controlling at least two hydraulic consumers
DE102004038311A1 (en) 2003-08-08 2005-03-10 Marquardt Gmbh Electronic switch, especially of joystick or cursor switch type, e.g. for motor vehicle use, has an activation element and rotating means including an outer rotor electric motor, which provide haptic feedback to the user
US7150293B2 (en) 2004-01-12 2006-12-19 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US7537023B2 (en) 2004-01-12 2009-05-26 Masco Corporation Of Indiana Valve body assembly with electronic switching
US7997301B2 (en) 2004-01-12 2011-08-16 Masco Corporation Of Indiana Spout assembly for an electronic faucet
DE102004003133A1 (en) 2004-01-14 2005-08-11 Hansgrohe Ag plumbing fixture
DE202004006110U1 (en) 2004-04-17 2005-08-25 Neoperl Gmbh Outlet element for tap has outlet part with water discharge adapted to and containing functional cartridge with jet regulator
DE102004051525A1 (en) * 2004-10-21 2006-04-27 Kristin Kuipers Electronic water control, has illuminants e.g. light emitting diodes, for illuminating discharged water and indicating temperature of water by color of light, where diodes are integrated in control or in water discharge unit
SE528283C2 (en) 2005-02-25 2006-10-10 Kuna Group Ab Faucet device for e.g. cafe, has shut-off mechanism with shut-off valve to open/close when outlet unit moves between positions, and sealing unit arranged so that when valve is closed no fluid is allowed via channel configuration
WO2006098795A2 (en) 2005-03-14 2006-09-21 Masco Corporation Of Indiana Valve body assembly with electronic switching
DE102006017598A1 (en) 2005-04-22 2006-10-26 Marquardt Gmbh Electrical switch e.g. Joystick or cursor switch, for e.g. car radio, has operating body cooperating with rotating and swiveling units over torsional coupler, such that units and their masses are decoupled from one another
US20060186215A1 (en) * 2005-05-17 2006-08-24 Logan James D Personalized control of water faucet functions
DE102006028227A1 (en) 2005-06-24 2006-12-28 Marquardt Gmbh Actuator e.g. electronic gear selection switch, for motor vehicle, has handle and rotating unit working together, where break force acting on handle in rotatable position is produced by magnetic strength
DE102006028228B4 (en) 2005-06-24 2019-09-26 Marquardt Gmbh Actuator for manual control of functions in a motor vehicle and electronic gear selector switch so
US8162236B2 (en) * 2006-04-20 2012-04-24 Masco Corporation Of Indiana Electronic user interface for electronic mixing of water for residential faucets
WO2007129504A1 (en) 2006-05-02 2007-11-15 Asa Electronics Industry Co., Ltd. Lever switch
JP4921854B2 (en) 2006-05-30 2012-04-25 東洋電装株式会社 Joystick type switch device
ITPD20070271A1 (en) * 2007-08-03 2009-02-04 Paolo Andreotti ELECTRONIC MIXING AND REGULATION DEVICE FOR THE WATER FLOW

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492809A (en) * 2013-06-03 2016-04-13 奥布拉马提克股份公司 Control cartridge for sanitary fittings
CN105492809B (en) * 2013-06-03 2018-07-20 奥布拉马提克股份公司 control box for sanitary equipment
EP3889365A1 (en) * 2020-03-30 2021-10-06 Grohe AG Thermostatic mixing valve and method for operating a thermostatic mixing valve

Also Published As

Publication number Publication date
EP2218840A1 (en) 2010-08-18
US8534568B2 (en) 2013-09-17
ES2395599T3 (en) 2013-02-13
US20100206956A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
EP2218840B1 (en) Sanitary fitting with joystick control
EP2946041B1 (en) Sanitary fitting
EP0910712B1 (en) Water run-out fitting
DE19651132C2 (en) Sanitary proximity valve
DE60006928T2 (en) Device for dispensing and mixing water
EP2887170B1 (en) Thermostatic mixer valve
DE19723312A1 (en) Water outlet valve arrangement
DE3430176A1 (en) Device for mixing hot and cold water
EP3192930A1 (en) Fitting with extendible sprinkler
EP1662056A2 (en) Control device for sanitary fitting.
EP3054056A1 (en) Sanitary fitting
DE102012100097B4 (en) Electronic sanitary fitting, in particular for washbasins
DE10303827A1 (en) Cooling deck arrangement for e.g. modern office building, has electric motor to power thermostatic actuator, which in turn mechanically powers control valve to closed state
EP3265618A1 (en) Hybrid fitting with water jet detection
DE19541145B4 (en) Method for controlling a volume flow limiter
EP1662354B1 (en) Actuating mechanism and method for operating a sanitary, in particular electronic measuring instrument
DE4447893C2 (en) Motor operated thermostat mixing valve for water sanitary applications
EP2543780A1 (en) Shower module and shower system with electronic control
EP1520629B1 (en) Shower installation
DE102022126027A1 (en) Water dispensing fitting
DE102007011178A1 (en) Electric control device for sanitary fitting, particularly sanitary vanity fitting, has adjusting unit, with which operating parameter of water fed by control device is adjusted to target value
DE102016010386A1 (en) Hot water supply system for central supply of a consumer network
EP0936413B1 (en) Water heating installation with controller for the water temperature
DE3818342A1 (en) Contactlessly controlled sanitary fitting
EP2386693A1 (en) Washing table fitting with safety temperature limiting element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101004

17Q First examination report despatched

Effective date: 20101110

AKX Designation fees paid

Designated state(s): AT CH DE ES FR IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR IT LI

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 579053

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005004

Country of ref document: DE

Effective date: 20121206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2395599

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005004

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009005004

Country of ref document: DE

Representative=s name: LEMCKE, BROMMER & PARTNER, PATENTANWAELTE PART, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009005004

Country of ref document: DE

Owner name: FRANKE WATER SYSTEMS AG, ZWEIGNIEDERLASSUNG UN, CH

Free format text: FORMER OWNER: KWC AG, UNTERKULM, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160223

Year of fee payment: 8

Ref country code: ES

Payment date: 20160210

Year of fee payment: 8

Ref country code: DE

Payment date: 20160218

Year of fee payment: 8

Ref country code: CH

Payment date: 20160119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160218

Year of fee payment: 8

Ref country code: AT

Payment date: 20160218

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005004

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 579053

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170218