EP2092368B1 - Method and device for detecting precipitation using radar - Google Patents

Method and device for detecting precipitation using radar Download PDF

Info

Publication number
EP2092368B1
EP2092368B1 EP07803522A EP07803522A EP2092368B1 EP 2092368 B1 EP2092368 B1 EP 2092368B1 EP 07803522 A EP07803522 A EP 07803522A EP 07803522 A EP07803522 A EP 07803522A EP 2092368 B1 EP2092368 B1 EP 2092368B1
Authority
EP
European Patent Office
Prior art keywords
radar
precipitation
mean
power spectral
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07803522A
Other languages
German (de)
French (fr)
Other versions
EP2092368A1 (en
Inventor
Alebel Arage Hassen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2092368A1 publication Critical patent/EP2092368A1/en
Application granted granted Critical
Publication of EP2092368B1 publication Critical patent/EP2092368B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/956Radar or analogous systems specially adapted for specific applications for meteorological use mounted on ship or other platform
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to a method for detecting precipitation in a radar-detected area according to claim 1, an apparatus for carrying out this method, a computer program and a computer program product.
  • Precipitation such as rain, hail, fog or snowfall
  • the precipitation intensity can be determined by means of radar, in that a directional antenna radiates pulse-shaped electromagnetic radiation in the microwave range.
  • a radar system can be used that emits radar beams with a wavelength of about 3 to 10 cm. If the radiation in the atmosphere hits a particle whose diameter is greater than about 0.2 mm, the radiation is reflected by it. The wavelength of the radiation does not change. Part of this radiation is picked up by a receiver of the radar and the reflectivity is measured. From the reflectivity, the precipitation intensity can be calculated if certain assumptions are made about the particle or droplet size distribution of the precipitate. A conversion then takes place with a so-called Z-R relationship, where Z stands for reflectivity and R for the precipitation intensity.
  • the WO 1993002370 A1 describes a method for detecting rain. Several radar signals are emitted. Backscattered signals are received, to create a Doppler spectrum. A reduced amplitude in the Doppler spectrum, especially in the peripheral regions of the spectrum, indicates rainfall.
  • the EP 1229348 A1 describes a system for detecting rain or hail by means of a weather radar. Different standard deviation and return radiation intensity maps are combined with each other.
  • the JP 07248830 A describes a device for correcting a calculated rainfall intensity in the context of a radar.
  • the JP 10048333 A describes a radar with which snowfall or rain can be detected by receiving a reflected signal and measuring its level.
  • a method for detecting precipitation by means of two radar beams for aircraft is known from US 5,028,929 known.
  • at least two radar signals are transmitted, wherein the sizes of backscattered radar signals are determined.
  • a determination of the presence of precipitation is made by comparing the thus determined attenuation characteristics of the two backscattered radar signals.
  • the present invention proposes a method for detecting precipitation in a region covered by radar beams, furthermore a device which uses this method, and finally a corresponding computer program and a computer program product according to the independent patent claims.
  • Advantageous embodiments emerge from the respective subclaims and the following description.
  • a first average power of a first backscattered radar signal and a second average power of a second backscattered radar signal are determined.
  • a presence of precipitate is determined by a comparison of the mean powers with each other
  • a determination of the correspondence of the average powers takes place according to the invention taking into account at least one weighting factor, wherein the at least one weighting factor is designed to compensate for different radar antenna characteristics.
  • the average powers can be compared even if the underlying radar signals originate from differently designed radar transmitters. This increases the flexibility of the method according to the invention.
  • a correspondence of the mean powers is determined by means of correlation of the respectively determined average powers.
  • a determination of a further average power of a further backscattered radar signal takes place.
  • the evaluation of more than two backscattered radar signals increases the accuracy of the detection of precipitation.
  • the backscattered radar signals may be reflections of radar signals emitted by adjacent radar transmitters.
  • the mean powers are determined in each case for an object-free section of the detected area.
  • a spectral power density for each backscattered radar signal is detected and superimposed on the object-free section.
  • the object-free section can be determined by an analysis of the spectral power densities of the backscattered radar signals.
  • the object-free section corresponds to a common subarea of the spectral power densities in which none of the spectral power densities has a peak that protrudes above a noise floor of the respective spectral power density.
  • a density of the precipitate or a radar signal attenuation can be determined. This can be done by evaluating an increase in the noise floor of at least one of the spectral power densities.
  • the precipitation can be, for example, rain, snow, fog or hail.
  • a main direction of movement of the precipitate may be orthogonal to the Be radar beams.
  • the precipitate according to the inventive approach can be recognized without evaluation of a Doppler effect.
  • a long range radar FMCW radar transmitter is used to generate partially overlapping or adjacent radar beams.
  • the backscattered radar signals can each be assigned to a radiation cone.
  • Called FMCW radar (engl. F requency M odulated C ontinuous W ave), also modulated continuous wave radar, a radar signal with constantly changing frequency. The frequency either increases linearly to drop abruptly to the initial value at a certain frequency (sawtooth pattern), or it can alternately rise and fall at a constant rate of change.
  • By such a linear change of the frequency and a simultaneous continuous transmission it is possible to determine apart from the differential speed between the transmitter and the object at the same time their absolute distance from each other.
  • a device according to the invention performs all the steps of the method according to the invention.
  • the computer program with program code means according to the invention is designed to perform all the steps of the method according to the invention when this computer program is carried out on a computer or a corresponding computing unit, in particular a device according to the invention.
  • the computer program product according to the invention with program code means, which are stored on a computer-readable data carrier, is provided for carrying out the method according to the invention when this computer program is carried out on a computer or a corresponding computing unit, in particular a device according to the invention.
  • the present invention is based on the recognition that radar sensors are degraded differently by the occurrence of precipitation in the signal transmission medium, depending on the operating frequency.
  • the precipitation can be, for example, rain or snowfall.
  • the effect of degradation occurs especially at higher frequencies, such as those used in automotive radar sensors and may cause different Degrationsgrade the radar signal depending on the precipitation intensity.
  • Long Range Radar uses more than two radiation beams or antenna beams to locate objects in a traffic scenario. Provided receivers or sensors will receive the same intensity 1 in road traffic only if the radiated radar signal is backscattered by a radar cell homogeneously or uniformly filling object, such as rain.
  • the radar cell corresponds to the field of view or fietd-of-view of the radar.
  • the approach of the invention can be used for a variety of applications.
  • the present invention enables detection of precipitation occurrence in the radar signal transmission medium. Furthermore, an intensity of the precipitate can be determined and a radar transmitter performance loss can be estimated.
  • the present invention can be used to switch the system, e.g. a modulation system to which the current signal transmission medium is used. That is, it is conceivable, for example, to vary the power of the transmitted signals as a function of a determined precipitation.
  • a further advantage of the approach according to the invention is that the method according to the invention can be applied in part without modification to existing automotive radar transmitters which produce at least two radiation cones. Future radar transmitters or systems may be optimized to take advantage of the benefits of the present invention.
  • the approach according to the invention is suitable as a signal source for safety-relevant systems in vehicles.
  • Fig.1 shows an application of a multi-beam automotive radar system in traffic.
  • a vehicle 1 also called a radar vehicle, is equipped with a long range radar system (LRR).
  • the radar system includes at least one transmitter, at least one receiver, and processing means, such as a microprocessor for evaluating returned radiation received by the receiver.
  • Transmitter and receiver are expediently implemented as an antenna, transmitting and receiving functions.
  • the vehicle 1 moves on a road which may be delimited by boundaries, for example in the form of a guard rail. On the road move further vehicles 3, which can be detected by the radar of the vehicle 1.
  • the radar of the vehicle 1 emits a plurality of radar cones or antenna beams 4.
  • An area detected by the antenna beams 4 is interspersed with precipitation, in this case Rain 5.
  • the main direction of movement of the precipitate is orthogonal to the radar beams.
  • the radar beams are emitted in the horizontal direction.
  • the rain falls in a vertical direction.
  • Fig. 2 shows a schematic representation of raindrops in a monostatic radar cell.
  • the radar cell may be an area that is one of those in Fig. 1 shown radiation cone 4 is detected.
  • the monostatic radar cell is based on a radar located at the pointed end of the radiation cone.
  • the angles ⁇ and ⁇ indicate a horizontal or vertical antenna opening angle.
  • the radar cell can be divided into two sections.
  • a first section V 1 starts from the radar and is limited by the radius R min .
  • the second section V RZ adjoins the first section, has a length of d R and is thus bounded by the radius R min + d R.
  • the second section V RZ of the radar cell is interspersed with rain 5 and thus represents a rain cell.
  • Within the rain cell apart from precipitation in the form of rain 5, there are no inhomogeneous objects, such as vehicles 3.
  • a radar wave is emitted by a transmitter located on the vehicle 1, reflected on the object, for example a vehicle 3, and picked up again by a receiver assigned to the transmitter.
  • the transit times and Doppler shifts that occur are used in radar sensors to determine the distance and relative speed of the object.
  • several radiation cones 4 are used to localize objects to be detected in the traffic scenario.
  • an object for example for an FMCW radar system, results in a peak in the spectrum, which is detected simultaneously by two neighboring radiation cones.
  • the angle to the object can be determined.
  • Figure 3 shows a signal spectrum using the example of the FMCW radar.
  • the frequency f is plotted on the horizontal axis and the amplitude spectrum A of a backscattered signal (echo) on the vertical axis.
  • a first spectrum 31 shows an application in which a radar signal is reflected by a fixed object.
  • the object may be, for example, one of the in Fig. 1 shown vehicles 3 act.
  • the radar signal is not attenuated by precipitation.
  • the first spectrum 31 therefore has a low noise floor 32 and a high peak.
  • the peak in the form of a peak shape, which clearly protrudes from the noise floor 32, will be caused by reflection of the radar signal on the object.
  • a second spectrum 34 shows an application in which the radar signal in turn is reflected by the object.
  • the radar signal is damped by precipitation.
  • the second spectrum 34 therefore has a high background noise 35.
  • the noise floor 35 is significantly higher than that of the first spectrum 31.
  • the second spectrum 34 has a lower peak than the first spectrum 31.
  • the increase of the background noise by precipitation is indicated by the reference numeral 37 and an object peak reduction by the reference numeral 38.
  • Signals reflected by a substance uniformly filling the radar cell, such as precipitate, will not give a peak in the spectrum of the FMCW radar. Instead, results in a broad frequency range distributed signal power, which significantly raises the noise floor 35 of the second spectrum 34.
  • This signal power is used by all who, for example, in Fig. 1 reflected radiation cone 4 back and can be calculated for an object-free section of the radar cell from the measured spectral power density. This is done, for example, according to the principle of multiple scattering of the first order of narrow radiation cones (narrow-beam first order multiple scattering).
  • the region bounded by the frequencies f R_min and f R min + d R therefore indicates an average rain backscatter from the rain cell 5.
  • the average power backscattered by the rain is calculated by integrating the spectral power density measured with LRR in the section f R min + d R to f R min + d R + f dR of the radar cell according to the multiple scattering principle mentioned. From this, the rain intensity can be determined via the backscatter cross section of the rain and thus the radar signal attenuation or the LRR performance loss.
  • FIG. 12 shows a flowchart of a method for detecting precipitation in a radar-detected area according to a preferred embodiment of the present invention.
  • a first step 401 at least two radiation capsules which are not or only partially overlap are emitted by means of at least one corresponding transmitter (antenna).
  • a first average power of a first backscattered radar signal is determined.
  • a second average power of a second backscattered radar signal is determined.
  • a determination and optionally an indication of the presence of precipitation takes place with a correspondence of the average powers of the two backscattered signals.
  • the area covered in FIG Fig. 1 act shown area which is covered by the radiation cone 4.
  • the precipitate may be inhomogeneity of the area detected by radar beams, except for existing solid objects which are inhomogeneity with respect to the detected area, for example in the form of in Fig.1 shown vehicles 3, evenly.
  • radar beams can partially penetrate the precipitation.
  • the method according to the invention can have one or more further steps of determining one or more further average powers.
  • the other average powers are determined from the further backscattered radar signals.
  • the backscattered radar signals may be generated by reflection from radar signals emitted by adjacent radar transmitters (antennas).
  • the radar signals are emitted by radar transmitters or antennas which are arranged adjacent to a front side of the vehicle 1. It is also conceivable to cover the entire area covered by the radiation cone 4 by means of a single antenna, which is embodied correspondingly pivotable between the transmission of individual radiation cones.
  • the average powers can be adapted to each other.
  • a determination of the correspondence of the mean powers I can then take place taking into account at least one weighting factor, wherein the at least one weighting factor is designed to compensate for different radar antenna characteristics.
  • the average powers are each determined for an object-free portion of the detected area.
  • the steps of determining may each comprise a step of detecting a spectral power density of the backscattered radar signal and a step of integrating the spectral power density, respectively over the non-object portion.
  • the non-object portion can be determined by analyzing the spectral power densities of the backscattered radar signals.
  • the object-free section corresponds to a common subarea of the spectral power densities in which none of the spectral power densities has a peak.
  • Such a peak is characterized in that it stands out clearly over a noise of the respective spectral power density and thus indicates a fixed, with respect to its homogeneous environment inhomogeneous object.
  • Such an outstanding peak is in Fig. 3 shown.
  • a match of the average powers can be determined by means of a correlation of the mean powers. If the correlation result indicates a match of the mean powers, then a homogeneous distributed medium such as precipitation was recognized. This can be indicated by a signal, for example.
  • a density of the homogeneously distributed medium that is, for example, a rain intensity
  • the increase can be done, for example, by comparing a current noise floor with a stored Referenzgrundrauschens.
  • the Radar signal attenuation indicates how much a radar signal is attenuated by the precipitate. Values indicating the density of the homogeneously distributed medium as well as the radar signal attenuation can also be displayed by means of signals.
  • Fig. 5 shows an apparatus for detecting precipitation in a radar detected area, according to an embodiment of the present invention.
  • the apparatus is configured to receive a first backscattered radar signal 501 and a second backscattered radar signal 502 and to provide a detection signal 503 indicative of the presence of a homogeneously distributed medium, such as precipitation.
  • the device has two transmitters 550, 552 for transmitting radar radiation or radar signals 560, 562 and two receivers 512, 513 for receiving the backscattered radar signals 501, 502.
  • the receivers 512, 513 are configured to provide the spectra of the backscattered radar signals 501, 502 to detectors 514, 516.
  • the decomposers 514, 516 are designed to calculate the average signal powers from the spectra and to provide them to a comparator 518.
  • the comparison device 518 for example in the form of a correlator, is designed to compare the mean signal powers with one another. If the signal powers agree, it is assumed that a homogeneously distributed medium is located in the area covered by the radar beams. To determine a match, a predetermined tolerance range can be used. The tolerance range can be based on the height of the noise floor.
  • the device may comprise an analyzer 522, which is designed to determine the object-free region from the spectra provided by the receivers 512, 513 and to provide them to the investigators 514, 516.
  • the radar signal is orthogonal to the precipitate. Therefore, no Doppler evaluation is possible, but there is a determination of the rain intensity on the reflectivity and by integration of rain backscatter or the Rauschflooranhebung in the vicinity, for example, an FMC W radar system.
  • the rain detection in the traffic is done by the correlation of the average power from several neighboring antenna arrays.
  • the radar system used may be, for example, a 76.4 GHz automotive radar system that is not stationary due to an arrangement on a vehicle, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A method for detecting precipitation in a region monitored by radar beams includes ascertaining a first average power of a first backscattered radar signal, ascertaining a second average power of a second backscattered radar signal, and detecting an existence of a homogenous medium when the average powers conform.

Description

Die Erfindung betrifft ein Verfahren zum Erkennen von Niederschlag in einem von Radarstrahlen erfassten Bereich gemäß dem Anspruch 1, eine Vorrichtung, um dieses Verfahren durchzuführen, ein Computerprogramm sowie ein Computerprogrammprodukt.The invention relates to a method for detecting precipitation in a radar-detected area according to claim 1, an apparatus for carrying out this method, a computer program and a computer program product.

Stand der TechnikState of the art

Niederschlag, wie beispielsweise Regen, Hagel, Nebel oder Schneefall, lässt sich mittels Radar erkennen. Beispielsweise lässt sich in der Meteorologie die Niederschlagsintensität mittels Radar bestimmen, indem eine gerichtete Antenne impulsförmig elektromagnetische Strahlung im Mikrowellenbereich abstrahlt. Dazu kann ein Radarsystem eingesetzt werden, dass Radarstrahlen mit einer Wellenlänge von etwa 3 bis 10 cm abstrahlt. Trifft die Strahlung in der Atmosphäre auf ein Partikel, dessen Durchmesser größer als etwa 0,2 mm ist, so wird die Strahlung von diesem reflektiert. Dabei ändert sich die Wellenlänge der Strahlung nicht. Ein Teil dieser Strahlung wird von einem Empfangsgerät des Radars aufgenommen und es wird die Reflektivität gemessen. Aus der Reflektivität kann die Niederschlagsintensität berechnet werden, wenn gewisse Annahmen über die Partikel- bzw. Tropfengrößenverteilung des Niederschlags getroffen werden. Eine Umrechnung erfolgt dann mit einer so genannten Z-R-Beziehung, wobei Z für Reflektivität und R für die Niederschlagsintensität steht.Precipitation, such as rain, hail, fog or snowfall, can be detected by radar. For example, in meteorology, the precipitation intensity can be determined by means of radar, in that a directional antenna radiates pulse-shaped electromagnetic radiation in the microwave range. For this purpose, a radar system can be used that emits radar beams with a wavelength of about 3 to 10 cm. If the radiation in the atmosphere hits a particle whose diameter is greater than about 0.2 mm, the radiation is reflected by it. The wavelength of the radiation does not change. Part of this radiation is picked up by a receiver of the radar and the reflectivity is measured. From the reflectivity, the precipitation intensity can be calculated if certain assumptions are made about the particle or droplet size distribution of the precipitate. A conversion then takes place with a so-called Z-R relationship, where Z stands for reflectivity and R for the precipitation intensity.

Die WO 1993002370 A1 beschreibt ein Verfahren zur Erkennung von Regen. Dabei werden mehrere Radarsignale ausgesendet. Rückgestreute Signale werden empfangen, um ein Doppler-Spektrum zu erzeugen. Eine verringerte Amplitude in dem Doppler-Spektrum, insbesondere in den Randbereichen des Spektrums, deutet auf Regen hin.The WO 1993002370 A1 describes a method for detecting rain. Several radar signals are emitted. Backscattered signals are received, to create a Doppler spectrum. A reduced amplitude in the Doppler spectrum, especially in the peripheral regions of the spectrum, indicates rainfall.

Die EP 1229348 A1 beschreibt ein System zur Erkennung von Regen oder Hagel mittels eines Wetterradars. Dazu werden unterschiedliche Standardabweichungs- und Rückstrahltintensitätskarten miteinander kombiniert.The EP 1229348 A1 describes a system for detecting rain or hail by means of a weather radar. Different standard deviation and return radiation intensity maps are combined with each other.

Die JP 07248830 A beschreibt im Zusammenhang mit einem Radar ein Gerät zur Korrektur einer berechneten Regenintensität.The JP 07248830 A describes a device for correcting a calculated rainfall intensity in the context of a radar.

Die JP 10048333 A beschreibt ein Radargerät mit dem sich Schneefall oder Regen erkennen lässt, indem ein reflektiertes Signal empfangen und dessen Pegel gemessen wird.The JP 10048333 A describes a radar with which snowfall or rain can be detected by receiving a reflected signal and measuring its level.

Ein Verfahren zum Erkennen von Niederschlägen mittels zweier Radarstrahlen für Flugzeuge ist aus der US 5,028,929 bekannt. Hierbei werden wenigstens zwei Radarsignale ausgesendet, wobei die Größen zurückgestreuter Radarsignale ermittelt werden. Eine Feststellung eines Vorhandenseins von Niederschlag erfolgt durch Vergleich der so ermittelten Dämpfungscharakteristiken der beiden rückgestreuten Radarsignale.A method for detecting precipitation by means of two radar beams for aircraft is known from US 5,028,929 known. In this case, at least two radar signals are transmitted, wherein the sizes of backscattered radar signals are determined. A determination of the presence of precipitation is made by comparing the thus determined attenuation characteristics of the two backscattered radar signals.

Ein ähnlicher Stand der Technik ist aus dem Dokument SENBOKUYA Y ET AL: "Development of the spaceborne dual frequenca precipitation radar for the global precipitation measurement mission" GEOSCIENCE AND REMOTE SENSING SYMPOSIUM; 2004. IGARSS #04. PROCEEDINGS. 2004 IEEE INTERNATIONAL ANCHORAGE, AK, USA 20-24 SEPT. 2004, PISCATAWAY, NJ, USA, IEEE, Bd. 5,20. September 2004, Seiten 3570-3573, XP010750760, ISBN: 0-7803-8742-2 " bekannt.A similar prior art is from the document SENBOKUYA Y ET AL: "Development of the spaceborne dual frequency precipitation radar for the global precipitation measurement mission" GEOSCIENCE AND REMOTE SENSING SYMPOSIUM; 2004. IGARSS # 04. PROCEEDINGS. 2004 IEEE INTERNATIONAL ANCHORAGE, AK, USA 20-24 SEPT. 2004, PISCATAWAY, NJ, USA, IEEE, Vol. 5,20. September 2004, pages 3570-3573, XP010750760, ISBN: 0-7803-8742-2 " known.

Offenbarung der ErfindungDisclosure of the invention

Vor diesem Hintergrund wird mit der vorliegenden Erfindung ein Verfahren zum Erkennen von Niederschlag in einem von Radarstrahlen erfassten Bereich, weiterhin eine Vorrichtung, die dieses Verfahren verwendet, sowie schließlich ein entsprechendes Computerprogramm und ein Computerprogrammprodukt gemäß den unabhängigen Patentansprüchen vorgestellt. Vorteilhafte Ausgestaltungen ergeben sich aus den jeweiligen Unteransprüchen und der nachfolgenden Beschreibung.Against this background, the present invention proposes a method for detecting precipitation in a region covered by radar beams, furthermore a device which uses this method, and finally a corresponding computer program and a computer program product according to the independent patent claims. Advantageous embodiments emerge from the respective subclaims and the following description.

Bei dem erfindungsgemäßen Verfahren zum Erkennen von Niederschlag in einem von Radarstrahlen erfassten Bereich wird eine erste mittlere Leistung eines ersten rückgestreuten Radarsignals und eine zweite mittlere Leistung eines zweiten rückgestreuten Radarsignals ermittelt. Erfindungsgemäß wird ein Vorhandensein von Niederschlag durch einen Vergleich der mittleren Leistungen miteinander bestimmtIn the method according to the invention for detecting precipitation in a region detected by radar beams, a first average power of a first backscattered radar signal and a second average power of a second backscattered radar signal are determined. According to the invention, a presence of precipitate is determined by a comparison of the mean powers with each other

Eine Bestimmung der Übereinstimmung der mittleren Leistungen erfolgt erfindungsgemäß unter Berücksichtigung von mindestens einem Gewichtungsfaktor, wobei der mindestens eine Gewichtungsfaktor ausgebildet ist, um unterschiedliche Radarantennencharakteristika auszugleichen. Durch die Verwendung von Gewichtungsfaktoren lassen sich die mittleren Leistungen auch dann vergleichen, wenn die zu Grunde liegenden Radarsignale von unterschiedlich ausgebildeten Radarsendern stammen. Dies erhöht die Flexibilität des erfindungsgemäßen Verfahrens.A determination of the correspondence of the average powers takes place according to the invention taking into account at least one weighting factor, wherein the at least one weighting factor is designed to compensate for different radar antenna characteristics. By using weighting factors, the average powers can be compared even if the underlying radar signals originate from differently designed radar transmitters. This increases the flexibility of the method according to the invention.

In einer bevorzugten Ausfiihrungsform wird eine Übereinstimmung der mittleren Leistungen mittels Korrelation der jeweils ermittelten mittleren Leistungen ermittelt.In a preferred embodiment, a correspondence of the mean powers is determined by means of correlation of the respectively determined average powers.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt ein Ermitteln einer weiteren mittleren Leistung eines weiteren rückgestreuten Radarsignals.In an advantageous embodiment of the method according to the invention, a determination of a further average power of a further backscattered radar signal takes place.

Die Auswertung von mehr als zwei rückgestreuten Radarsignalen erhöht die Genauigkeit der Erkennung von Niederschlag. Bei den rückgestreuten Radarsignalen kann es sich um Reflektionen von Radarsignalen handeln, die von benachbart angeordneten Radarsendern ausgesendet werden.The evaluation of more than two backscattered radar signals increases the accuracy of the detection of precipitation. The backscattered radar signals may be reflections of radar signals emitted by adjacent radar transmitters.

Gemäß einer bevorzugten Ausfiihrungsform werden die mittleren Leistungen jeweils für einen objektfreien Abschnitt des erfassten Bereichs ermittelt.According to a preferred embodiment, the mean powers are determined in each case for an object-free section of the detected area.

Nach einer Ausführungsform wird zum Ermitteln der mittleren Leistungen, jeweils eine spektrale Leistungsdichte für jedes rückgestreute Radarsignal erfasst und über den objektfreien Abschnitt aufintgegriert.According to one embodiment, in order to determine the average powers, in each case a spectral power density for each backscattered radar signal is detected and superimposed on the object-free section.

Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens, kann der objektfreie Abschnitt durch eine Analyse der spektralen Leistungsdichten der rückgestreuten Radarsignale bestimmt werden. Dabei entspricht der objektfreie Abschnitt einem gemeinsamen Teilbereich der spektralen Leistungsdichten, in dem keine der spektralen Leistungsdichten einen Peak aufweist, der über ein Grundrauschen der jeweiligen spektralen Leistungsdichte herausragt.According to a preferred embodiment of the method according to the invention, the object-free section can be determined by an analysis of the spectral power densities of the backscattered radar signals. In this case, the object-free section corresponds to a common subarea of the spectral power densities in which none of the spectral power densities has a peak that protrudes above a noise floor of the respective spectral power density.

Gemäß einer weiteren bevorzugten Ausfiihrungsform kann eine Dichte des Niederschlags oder eine Radarsignaldämpfung bestimmt werden. Dies kann durch ein Auswerten eines Anstiegs des Grundrauschens mindestens einer der spektralen Leistungsdichten erfolgen.According to a further preferred embodiment, a density of the precipitate or a radar signal attenuation can be determined. This can be done by evaluating an increase in the noise floor of at least one of the spectral power densities.

Bei dem Niederschlag kann es sich beispielsweise um Regen, Schneefall, Nebel oder Hagel handeln. Eine Hauptbewegungsrichtung des Niederschlags kann orthogonal zu den Radarstrahlen sein. Vorteilhafterweise lässt sich der Niederschlag gemäß dem erfindungsgemäßen Ansatz ohne Auswertung eines Dopplereffektes erkennen.The precipitation can be, for example, rain, snow, fog or hail. A main direction of movement of the precipitate may be orthogonal to the Be radar beams. Advantageously, the precipitate according to the inventive approach can be recognized without evaluation of a Doppler effect.

Gemäß einer bevorzugten Ausfiihrungsform wird ein Long Range Radar-FMCW-Radarsender verwendet, um teilweise überlappende oder benachbarte Radarstrahlungskegel zu erzeugen. Die rückgestreuten Radarsignale können dabei jeweils einem Strahlungskegel zugeordnet sein. FMCW-Radar (engl. Frequency Modulated Continuous Wave), auch moduliertes Dauerstrichradar genannt, ist ein Radarsignal mit sich ständig ändernder Frequenz. Die Frequenz steigt entweder linear an, um bei einer bestimmten Frequenz abrupt auf den Anfangswert wieder abzufallen (Sägezahnmuster), oder sie kann abwechselnd mit konstanter Änderungsgeschwindigkeit steigen und fallen. Durch eine derartige lineare Änderung der Frequenz und ein gleichzeitiges stetiges Senden ist es möglich, neben der Differenzgeschwindigkeit zwischen Sender und Objekt auch gleichzeitig deren absolute Entfernung voneinander zu ermitteln.In accordance with a preferred embodiment, a long range radar FMCW radar transmitter is used to generate partially overlapping or adjacent radar beams. The backscattered radar signals can each be assigned to a radiation cone. Called FMCW radar (engl. F requency M odulated C ontinuous W ave), also modulated continuous wave radar, a radar signal with constantly changing frequency. The frequency either increases linearly to drop abruptly to the initial value at a certain frequency (sawtooth pattern), or it can alternately rise and fall at a constant rate of change. By such a linear change of the frequency and a simultaneous continuous transmission, it is possible to determine apart from the differential speed between the transmitter and the object at the same time their absolute distance from each other.

Eine erfindungsgemäße Vorrichtung führt alle Schritte des erfindungsgemäßen Verfahrens durch.A device according to the invention performs all the steps of the method according to the invention.

Das erfindungsgemäße Computerprogramm mit Programmcodemitteln ist dazu ausgelegt alle Schritte des erfindungsgemäßen Verfahrens durchzuführen, wenn dieses Computerprogramm auf einem Computer oder einer entsprechenden Recheneinheit, insbesondere einer erfindungsgemäßen Vorrichtung, durchgeführt wird.The computer program with program code means according to the invention is designed to perform all the steps of the method according to the invention when this computer program is carried out on a computer or a corresponding computing unit, in particular a device according to the invention.

Das erfindungsgemäße Computerprogrammprodukt mit Programmcodemitteln, die auf einem computerlesbaren Datenträger gespeichert sind, ist zur Durchführung des erfindungsgemäßen Verfahrens vorgesehen, wenn dieses Computerprogramm auf einem Computer oder einer entsprechenden Recheneinheit, insbesondere einer erfindungsgemäßen Vorrichtung, durchgeführt wird.The computer program product according to the invention with program code means, which are stored on a computer-readable data carrier, is provided for carrying out the method according to the invention when this computer program is carried out on a computer or a corresponding computing unit, in particular a device according to the invention.

Der vorliegenden Erfindung liegt die Erkenntnis zu Grunde, dass Radarsensoren durch Auftritt von Niederschlag im Signalübertragungsmedium, je nach Betriebsfrequenz, unterschiedlich degradiert werden. Bei dem Niederschlag kann es sich beispielsweise um Regen bzw. Schneefall handeln. Der Effekt der Degradierung tritt besonders bei höheren Frequenzen auf, wie sie beispielsweise bei Automotivradarsensoren verwendet werden und kann je nach Niederschlagsstärke unterschiedliche Degrationsgrade des Radarsignals hervorrufen. Beim Long Range Radar bzw. Fernbereichsradar werden mehr als zwei Strahlungskegel bzw. Antennenbeams zur Lokalisierung von Objekten im Verkehrsszenario benutzt. Vorgesehene Empfänger bzw. Sensoren werden im Straßenverkehr die gleiche Intensität 1 nur dann empfangen, wenn das ausgestrahlte Radarsignal von einem eine Radarzelle homogen bzw. gleichmässig ausfüllenden Objekt, wie etwa Regen, rückgestreut wird. Die Radarzelle entspricht hierbei dem Sichtfeld bzw. Fietd-of-View des Radars.The present invention is based on the recognition that radar sensors are degraded differently by the occurrence of precipitation in the signal transmission medium, depending on the operating frequency. The precipitation can be, for example, rain or snowfall. The effect of degradation occurs especially at higher frequencies, such as those used in automotive radar sensors and may cause different Degrationsgrade the radar signal depending on the precipitation intensity. Long Range Radar uses more than two radiation beams or antenna beams to locate objects in a traffic scenario. Provided receivers or sensors will receive the same intensity 1 in road traffic only if the radiated radar signal is backscattered by a radar cell homogeneously or uniformly filling object, such as rain. The radar cell corresponds to the field of view or fietd-of-view of the radar.

Der erfindungsgemäße Ansatz kann für eine Vielzahl von Anwendungen eingesetzt werden. In erster Linie ermöglicht die vorliegende Erfindung eine Erkennung eines Niederschlagauftrittes in dem Radarsignalübertragungsmedium. Ferner kann eine Intensität des Niederschlags bestimmt werden und ein Radarsenderperformanceverlust abgeschätzt werden. Um eine eingeschränkte Funktionalität des Radarssenders bei schlechten Wetterbedingungen aufrechtzuerhalten, kann die vorliegende Erfindung zur Umschaltung bzw. Anpassung des Systems, z.B. eines Modulationssystems, an das aktuelle Signalübertragungsmedium eingesetzt werden. D.h., es ist beispielsweise denkbar, die Leistung der gesendeten Signale in Abhängigkeit von einem ermittelten Niederschlag zu variieren. Ein weiterer Vorteil des erfindungsgemäßen Ansatzes besteht darin, dass sich das erfindungsgemäße Verfahren zum Teil ohne Modifikation auf bestehende Automotive Radarsendern, die mindestens zwei Strahlungskegel erzeugen bestehen, anwenden lässt. Zukünftige Radarsender bzw. -systeme können so optimiert werden, dass sie die Vorteile der vorliegenden Erfindung ausnützen können. Zudem eignet sich der erfindungsgemäße Ansatz als Signalquelle für sicherheitsrelevante Systeme in Fahrzeugen.The approach of the invention can be used for a variety of applications. In the first place, the present invention enables detection of precipitation occurrence in the radar signal transmission medium. Furthermore, an intensity of the precipitate can be determined and a radar transmitter performance loss can be estimated. In order to maintain limited functionality of the radar transmitter in bad weather conditions, the present invention can be used to switch the system, e.g. a modulation system to which the current signal transmission medium is used. That is, it is conceivable, for example, to vary the power of the transmitted signals as a function of a determined precipitation. A further advantage of the approach according to the invention is that the method according to the invention can be applied in part without modification to existing automotive radar transmitters which produce at least two radiation cones. Future radar transmitters or systems may be optimized to take advantage of the benefits of the present invention. In addition, the approach according to the invention is suitable as a signal source for safety-relevant systems in vehicles.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.Further advantages and embodiments of the invention will become apparent from the description and the accompanying drawings.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Die Erfindung ist anhand von Ausführungsbeispielen in den Zeichnungen schematisch dargestellt und wird im folgenden unter Bezugnahme auf die Zeichnungen ausführlich beschrieben.The invention is illustrated schematically by means of embodiments in the drawings and will be described in detail below with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

  • Figur 1 zeigt eine schematische Darstellung einer Verwendung eines Radarsystems im Straßenverkehr, gemäß einer Ausführungsform der vorliegenden Erfindung; FIG. 1 shows a schematic representation of a use of a radar system in traffic, according to an embodiment of the present invention;
  • Figur 2 zeigt eine schematische Darstellung eines homogenen Mediums in einem von Radarstrahlen erfassten Bereich gemäß einer Ausfiihrungsfonn der vorliegenden Erfindung; FIG. 2 shows a schematic representation of a homogeneous medium in a radar detected area according to an embodiment of the present invention;
  • Figur 3 zeigt ein Radarsignalspektrum gemäß einer Ausführungsform der vorliegenden Erfindung; FIG. 3 shows a radar signal spectrum according to an embodiment of the present invention;
  • Figur 4 zeigt ein Flussdiagramm einer bevorzugten Ausfiihrungsform des erfindungsgemäßen Verfahrens; und FIG. 4 shows a flowchart of a preferred embodiment of the method according to the invention; and
  • Figur 5 zeigt ein Blockschaltbild einer bevorzugten Ausfiihrungsform der erfindungsgemäßen Vorrichtung. FIG. 5 shows a block diagram of a preferred embodiment of the device according to the invention.
Ausführungsformen der ErfindungEmbodiments of the invention

Fig.1 zeigt eine Anwendung eines Multi-Beam Automotive Radarsystems im Straßenverkehr. Ein Fahrzeug 1, auch Radar Vehicle genannt, ist mit einem Fernbereichsradarsystem bzw. Long Range Radar (LRR) ausgestattet. Das Radarsystem umfasst wenigstens einen Sender bzw. eine Antenne, wenigstens einen Empfänger bzw. Sensor, und Verarbeitungsmittel, wie etwa einen Microprozessor zur Auswertung von vom Empfänger erhaltener zurückgesteuerter Strahlung. Sender und Empfänger sind zweckmäßigerweise als eine Antenne, Sende- und Empfängerfunktionen erfüllt, ausgebildet. Fig.1 shows an application of a multi-beam automotive radar system in traffic. A vehicle 1, also called a radar vehicle, is equipped with a long range radar system (LRR). The radar system includes at least one transmitter, at least one receiver, and processing means, such as a microprocessor for evaluating returned radiation received by the receiver. Transmitter and receiver are expediently implemented as an antenna, transmitting and receiving functions.

Das Fahrzeug 1 bewegt sich auf einer Straße, die durch Abgrenzungen, beispielsweise in Form einer Schutzschiene bzw. Guard Rail, begrenzt sein kann. Auf der Straße bewegen sich weitere Fahrzeuge 3, die von dem Radar des Fahrzeugs 1 erfasst werden können. Zur Erfassung der Fahrzeuge 3 strahlt das Radar des Fahrzeugs 1 mehrere Radarkegel bzw. Antennenbeams 4 ab. Ein von den Antennenbeams 4 erfasster Bereich ist von Niederschlag, in diesem Fall von Regen 5, durchsetzt.The vehicle 1 moves on a road which may be delimited by boundaries, for example in the form of a guard rail. On the road move further vehicles 3, which can be detected by the radar of the vehicle 1. For detecting the vehicles 3, the radar of the vehicle 1 emits a plurality of radar cones or antenna beams 4. An area detected by the antenna beams 4 is interspersed with precipitation, in this case Rain 5.

Die Hauptbewegungsrichtung des Niederschlags ist orthogonal zu den Radarstrahlen. In dem in Fig. 1 gezeigten Ausfiihrungsbeispiel werden die Radarstrahlen in horizontaler Richtung ausgestrahlt. Der Regen fällt in vertikaler Richtung.The main direction of movement of the precipitate is orthogonal to the radar beams. In the in Fig. 1 In the embodiment shown, the radar beams are emitted in the horizontal direction. The rain falls in a vertical direction.

Fig. 2 zeigt eine schematische Darstellung von Regentropfen in einer Monostatik-Radarzelle. Bei der Radarzelle kann es sich um einen Bereich handeln, der von einem der in Fig. 1 gezeigten Strahlungskegel 4 erfasst wird. Die Monostatik-Radarzelle geht von einem sich am spitzen Ende des Strahlungskegels befindlichen Radar aus. Die Winkel θ und Φgeben dabei einen horizontalen bzw. vertikalen Antennenöffnungswinkel an. Die Radarzelle ist in zwei Abschnitte unterteilbar. Ein erster Abschnitt V1 geht vom Radar aus und ist durch den Radius Rmin begrenzt. Der zweite Abschnitt VRZ grenzt an den ersten Abschnitt an, weist eine Länge von dR auf und ist somit durch den Radius Rmin+dR begrenzt. Der zweite Abschnitt VRZ der Radarzelle ist von Regen 5 durchsetzt und stellt somit eine Regenzelle dar. Innerhalb der Regenzelle befinden sich außer dem Niederschlag in Form des Regens 5 keine inhomogenen Objekte, wie beispielsweise Fahrzeuge 3. Fig. 2 shows a schematic representation of raindrops in a monostatic radar cell. The radar cell may be an area that is one of those in Fig. 1 shown radiation cone 4 is detected. The monostatic radar cell is based on a radar located at the pointed end of the radiation cone. The angles θ and Φ indicate a horizontal or vertical antenna opening angle. The radar cell can be divided into two sections. A first section V 1 starts from the radar and is limited by the radius R min . The second section V RZ adjoins the first section, has a length of d R and is thus bounded by the radius R min + d R. The second section V RZ of the radar cell is interspersed with rain 5 and thus represents a rain cell. Within the rain cell, apart from precipitation in the form of rain 5, there are no inhomogeneous objects, such as vehicles 3.

Bei der Messung mit dem Long Range Radar wird eine Radarwelle von einen sich am Fahrzeug 1 befindlichen Sender ausgestrahlt, am Objekt, beispielsweise einem Fahrzeug 3, reflektiert und von einem dem Sender zugeordneten Empfänger wieder aufgefangen. Die Laufzeiten und Dopplerverschiebungen, die dabei auftreten, werden bei Radarsensoren zur Bestimmung von Abstand und Relativgeschwindigkeit des Objektes benutzt. Beim Long Range Radar werden je nach Anforderung an die Radarsichtbreite mehrere Strahlungskegel 4 zur Lokalisierung von zu detektierenden Objekten im Verkehrsszenario benutzt. Dabei ergibt ein Objekt, z.B. für ein FMCW- Radarsystem, einen Peak im Spektrum, welcher von zwei benachbarten Strahlungskegeln gleichzeitig detektiert wird. Durch Analyse des Amplituden- und Phasenverhältnisses dieser benachbarten Kegel im so genannten "Monopulsverfahren" kann der Winkel zu dem Objekt festgestellt werden.In the measurement with the long-range radar, a radar wave is emitted by a transmitter located on the vehicle 1, reflected on the object, for example a vehicle 3, and picked up again by a receiver assigned to the transmitter. The transit times and Doppler shifts that occur are used in radar sensors to determine the distance and relative speed of the object. In the long range radar, depending on the requirements of the radar visibility, several radiation cones 4 are used to localize objects to be detected in the traffic scenario. In this case, an object, for example for an FMCW radar system, results in a peak in the spectrum, which is detected simultaneously by two neighboring radiation cones. By analyzing the amplitude and phase ratio of these neighboring cone in the so-called "monopulse method", the angle to the object can be determined.

Fig.3 zeigt ein Signalspektrum am Beispiel des FMCW-Radar. Auf der horizontalen Achse ist die Frequenz f und auf der vertikalen Achse das Amplitudenspektrum A eines rückgestreuten Signals (Echo) aufgetragen. Figure 3 shows a signal spectrum using the example of the FMCW radar. The frequency f is plotted on the horizontal axis and the amplitude spectrum A of a backscattered signal (echo) on the vertical axis.

Ein erstes Spektrum 31 zeigt einen Anwendungsfall, bei dem ein Radarsignal von einem festen Objekt reflektiert wird. Bei dem Objekt kann es sich beispielsweise um eines der in Fig. 1 gezeigten Fahrzeuge 3 handeln. Das Radarsignal wird nicht durch Niederschlag gedämpft. Das erste Spektrum 31 weist daher ein niedriges Grundrauschen 32 und einen hohen Peak auf. Der Peak, in Form einer Spitzenform, die deutlich aus dem Grundrauschen 32 herausragt, wird durch Reflektion des Radarsignals an dem Objekt hervorrufen.A first spectrum 31 shows an application in which a radar signal is reflected by a fixed object. The object may be, for example, one of the in Fig. 1 shown vehicles 3 act. The radar signal is not attenuated by precipitation. The first spectrum 31 therefore has a low noise floor 32 and a high peak. The peak, in the form of a peak shape, which clearly protrudes from the noise floor 32, will be caused by reflection of the radar signal on the object.

Ein zweites Spektrum 34 zeigt einen Anwendungsfall, bei dem das Radarsignal wiederum von dem Objekt reflektiert wird. Zudem wird das Radarsignal durch Niederschlag gedämpft. Das zweite Spektrum 34 weist daher ein hohes Grundrauschen 35 auf. Das Grundrauschen 35 liegt deutlich über demjenigen des ersten Spektrums 31. Ferner weist das zweite Spektrum 34 einen niedrigereren Peak als das erste Spektrum 31 auf. Die Anhebung des Grundrauschens durch Niederschlag ist durch das Bezugszeichen 37 und eine Objekt-Peakreduzierung durch das Bezugszeichen 38 gekennzeichnet.A second spectrum 34 shows an application in which the radar signal in turn is reflected by the object. In addition, the radar signal is damped by precipitation. The second spectrum 34 therefore has a high background noise 35. The noise floor 35 is significantly higher than that of the first spectrum 31. Further, the second spectrum 34 has a lower peak than the first spectrum 31. The increase of the background noise by precipitation is indicated by the reference numeral 37 and an object peak reduction by the reference numeral 38.

Signale, die von einem die Radarzelle homogen bzw. gleichmäßig ausfüllenden Stoff, wie etwa Niederschlag, reflektiert werden, ergeben keinen Peak im Spektrum des FMCW-Radars. Statt dessen ergibt sich eine im breiten Frequenzbereich verteilte Signalleistung, die das Grundrauschen 35 des zweiten Spektrums 34 deutlich anhebt. Diese Signalleistung wird von sämtlichen, der beispielsweise in Fig. 1 gezeigten Strahlungskegel 4 zurückreflektiert und lässt sich für einen objektfreien Abschnitt der Radarzelle aus der gemessenen Spektralleistungsdichte berechnen. Dies erfolgt beispielsweise nach dem Prinzip der Vielfach-Streuung erster Ordnung von schmalen Strahlungskegeln (engl. "Narrow-Beam First Order Multiple Scattering").Signals reflected by a substance uniformly filling the radar cell, such as precipitate, will not give a peak in the spectrum of the FMCW radar. Instead, results in a broad frequency range distributed signal power, which significantly raises the noise floor 35 of the second spectrum 34. This signal power is used by all who, for example, in Fig. 1 reflected radiation cone 4 back and can be calculated for an object-free section of the radar cell from the measured spectral power density. This is done, for example, according to the principle of multiple scattering of the first order of narrow radiation cones (narrow-beam first order multiple scattering).

Die Lage des in Fig. 2 gezeigten, objektfreien Bereichs VRZ der Länge dR ist in Fig. 3 als der Spektralbereich gekennzeichnet, der sich zwischen den Frequenzen fR min und fR min+dR befindet. Der durch die Frequenzen fR_min und fR min+ dR begrenzte Bereich gibt daher eine mittlere Regenrückstreuung aus der Regenzelle 5 an. Die vom Regen zurückgestreute mittlere Leistung wird durch Integration der mit LRR gemessenen Spektralleistungsdichte in dem Abschnitt fR min+dR bis fR min+dR + fdR der Radarzelle nach dem erwähnten Vielfach-Streuungsprinzip berechnet. Daraus lässt sich die Regenintensität über den Rückstreuungsquerschnitt des Regens und damit die Radarsignaldämpfung bzw. der LRR-Performanceverlust bestimmen.The location of in Fig. 2 shown, object-free area V RZ of length d R is in Fig. 3 is characterized as the spectral range located between the frequencies f R min and f R min + d R. The region bounded by the frequencies f R_min and f R min + d R therefore indicates an average rain backscatter from the rain cell 5. The average power backscattered by the rain is calculated by integrating the spectral power density measured with LRR in the section f R min + d R to f R min + d R + f dR of the radar cell according to the multiple scattering principle mentioned. From this, the rain intensity can be determined via the backscatter cross section of the rain and thus the radar signal attenuation or the LRR performance loss.

Fig. 4 zeigt ein Flussdiagramm eines Verfahrens zum Erkennen von Niederschlag in einem von Radarstrahlen erfassten Bereich gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung. In einem ersten Schritt 401 erfolgt ein Aussenden wenigstens zweier sich nicht oder nur teilweise überlappender Strahlungskegel mittels wenigstens eines entsprechenden Senders (Antenne). In einem weiteren Schritt 402 erfolgt ein Ermitteln einer ersten mittleren Leistung eines ersten rückgestreuten Radarsignals. In einem weiteren Schritt 404 erfolgt ein Ermitteln einer zweiten mittleren Leistung eines zweiten rückgestreuten Radarsignals. In einem dritten Schritt 406 erfolgt eine Feststellung sowie gegebenenfalls eine Anzeige eines Vorhandenseins von Niederschlag bei einer Übereinstimmung der mittleren Leistungen der beiden rückgestreuten Signale. Fig. 4 FIG. 12 shows a flowchart of a method for detecting precipitation in a radar-detected area according to a preferred embodiment of the present invention. In a first step 401, at least two radiation capsules which are not or only partially overlap are emitted by means of at least one corresponding transmitter (antenna). In a further step 402, a first average power of a first backscattered radar signal is determined. In a further step 404, a second average power of a second backscattered radar signal is determined. In a third step 406, a determination and optionally an indication of the presence of precipitation takes place with a correspondence of the average powers of the two backscattered signals.

Bei dem von den Strahlungskegeln bzw. Radarstrahlen erfassten Bereich kann sich beispielsweise um den in Fig. 1 gezeigten Bereich handeln, der von den Strahlungskegeln 4 abgedeckt wird. Der Niederschlag kann den von Radarstrahlen erfassten Bereich, mit Ausnahme von vorhandenen festen Objekten, die bezüglich des erfassten Bereiches eine Inhomogenität darstellen, beispielsweise in Form der in Fig.1 gezeigten Fahrzeuge 3, gleichmäßig ausfallen. Im Gegensatz zu festen Objekten, die für Radarstrahlen undurchlässig sind, können Radarstrahlen in den Niederschlag teilweise eindringen.In the area covered by the radiation cones or radar beams, for example, the area covered in FIG Fig. 1 act shown area which is covered by the radiation cone 4. The precipitate may be inhomogeneity of the area detected by radar beams, except for existing solid objects which are inhomogeneity with respect to the detected area, for example in the form of in Fig.1 shown vehicles 3, evenly. In contrast to fixed objects, which are impermeable to radar beams, radar beams can partially penetrate the precipitation.

Wie in Fig.1 gezeigt, können bei der Umsetzung des erfindungsgemäßen Verfahrens mehrere Strahlenkegel 4 eingesetzt werden. In dem in Fig. 1 gezeigten Ausführungsbeispiel werden vier Strahlenkegel eingesetzt. Demnach können für das erfindungsgemäße Verfahren weitere rückgestreute Radarsignale zum Erkennen von Niederschlag verwendet werden. In diesem Fall kann das erfindungsgemäße Verfahren eine oder mehrere weitere Schritte des Ermittelns einer oder mehrerer weiterer mittleren Leistungen aufweisen. Die weiteren mittleren Leistungen werden dabei aus den weiteren rückgestreuten Radarsignalen ermittelt. Die rückgestreuten Radarsignale können durch Reflektion von Radarsignalen erzeugt werden, die von benachbart angeordneten Radarsendern (Antennen) ausgesendet werden. In Fig.1 werden die Radarsignale von Radarsendern bzw. Antennen ausgesendet, die benachbart an einer Vorderseite des Fahrzeugs 1 angeordnet sind. Es ist ebenfalls denkbar, den gesamten durch die Strahlungskegel 4 abgedeckten Bereich mittels einer einzigen Antenne abzudecken, die zwischen dem Senden einzelner Strahlungskegel entsprechend verschwenkbar ausgebildet ist.As in Fig.1 shown, can be used in the implementation of the method according to the invention multiple beam cone 4. In the in Fig. 1 shown embodiment, four beam cones are used. Accordingly, for the inventive method further backscattered radar signals for detecting Precipitation be used. In this case, the method according to the invention can have one or more further steps of determining one or more further average powers. The other average powers are determined from the further backscattered radar signals. The backscattered radar signals may be generated by reflection from radar signals emitted by adjacent radar transmitters (antennas). In Fig.1 For example, the radar signals are emitted by radar transmitters or antennas which are arranged adjacent to a front side of the vehicle 1. It is also conceivable to cover the entire area covered by the radiation cone 4 by means of a single antenna, which is embodied correspondingly pivotable between the transmission of individual radiation cones.

Haben alle der zur Erzeugung der rückgestreuten Radarsignale verwendeten Strahlungskegel 4 die gleichen Antennecharakteristika, so werden die zugehörigen Radarsensoren bzw. Empfänger die gleiche rückgestreute mittlere Intensität I wie folgt nachweisen: I b 1 = I b 2 = I b 3 = I b 4 = = I bn

Figure imgb0001
If all the radiation cones 4 used to generate the backscattered radar signals have the same antenna characteristics, the associated radar sensors or receivers will detect the same backscattered mean intensity I as follows: I b 1 = I b 2 = I b 3 = I b 4 = ... = I bn
Figure imgb0001

Ibi (i=1-n) steht dabei für die mittlere Intensität eines rückgestreuten Radarsignals des i-ten Strahlungskegels.I bi (i = 1-n) stands for the average intensity of a backscattered radar signal of the i-th radiation cone.

Weisen die Strahlungskegel unterschiedliche Antennecharakteristika auf, so können die mittleren Leistungen aneinander angepasst werden. Eine Bestimmung der Übereinstimmung der mittleren Leistungen I kann dann unter Berücksichtigung von mindestens einem Gewichtungsfaktor erfolgen, wobei der mindestens eine Gewichtungsfaktor ausgebildet ist, um unterschiedliche Radarantennencharakteristika auszugleichen.If the radiation cones have different antenna characteristics, then the average powers can be adapted to each other. A determination of the correspondence of the mean powers I can then take place taking into account at least one weighting factor, wherein the at least one weighting factor is designed to compensate for different radar antenna characteristics.

Gemäß diesem Ausfiihrungsbeispiel lässt sich die mittlere Intensität mit Berücksichtigung der unterschiedlichen Antennencharakteristika folgendermaßen berechnen: α b 1 I b 1 = α b 2 I b 2 = α b 3 I b 3 = α b 4 I b 4 = = α bn I bn

Figure imgb0002
According to this embodiment, the average intensity can be calculated taking into account the different antenna characteristics as follows: α b 1 I b 1 = α b 2 I b 2 = α b 3 I b 3 = α b 4 I b 4 = ... = α bn I bn
Figure imgb0002

Dabei stellen αbi (i=I-n) die Gewichtungsfaktoren bzw. das Leistungsverhälmisse zwischen einem Strahlungskegel i und einem als Referenz ausgewählten Strahlungskegel, z.B dem Strahlungskegel mit der maximalen Leistung dar. Dieser Ansatz kann zur automatischen Erkennung von Niederschlag bei Verwendung aller Radararten eingesetzt werden.Here, α bi (i = In) represent the weighting factors or Leistungsverhälmisse between a radiation cone i and a reference selected radiation cone, eg the radiation cone with the maximum power. This approach can be used for the automatic detection of precipitation when using all radar types.

Gemäß diesem Ausführungsbeispiel werden die mittleren Leistungen jeweils für einen objektfreien Abschnitt des erfassten Bereichs ermittelt. Dazu können die Schritte des Ermittelns jeweils einen Schritt des Erfassens einer spektralen Leistungsdichte des rückgestreuten Radarsignals und einen Schritt des Integrierens der spektralen Leistungsdichte, jeweils über den objektfreien Abschnitt, umfassen. Bezogen auf Fig. 3 bedeutet dies, dass beispielsweise eine Integration der zweiten Kennlinie 34 über den Abschnitt fR min, fR min+dR erfolgt.According to this embodiment, the average powers are each determined for an object-free portion of the detected area. To this end, the steps of determining may each comprise a step of detecting a spectral power density of the backscattered radar signal and a step of integrating the spectral power density, respectively over the non-object portion. Related to Fig. 3 this means that, for example, an integration of the second characteristic curve 34 takes place via the section f R min , f R min + dR .

Der objektfreie Abschnitt kann durch Analysieren der spektralen Leistungsdichten der rückgestreuten Radarsignale bestimmt werden. Dabei entspricht der objektfreie Abschnitt einem gemeinsamen Teilbereich der spektralen Leistungsdichten, in dem keine der spektralen Leistungsdichten einen Peak aufweist. Ein solcher Peak ist dadurch gekennzeichnet, dass er sich deutlich über ein Rauschen der jeweiligen spektralen Leistungsdichte abhebt und somit ein festes, bezogen auf seine homogene Umgebung inhomogenes Objekt anzeigt. Ein solcher herausragender Peak ist in Fig. 3 gezeigt.The non-object portion can be determined by analyzing the spectral power densities of the backscattered radar signals. In this case, the object-free section corresponds to a common subarea of the spectral power densities in which none of the spectral power densities has a peak. Such a peak is characterized in that it stands out clearly over a noise of the respective spectral power density and thus indicates a fixed, with respect to its homogeneous environment inhomogeneous object. Such an outstanding peak is in Fig. 3 shown.

Gemäß dem dargestellten Ausführungsbeispiel kann eine Übereinstimmung der mittleren Leistungen mittels einer Korrelation der mittleren Leistungen ermittelt werden. Zeigt das Korrelationsergebnis eine Übereinstimmung der mittleren Leistungen an, so wurde ein homogenes verteiltes Medium wie etwa Niederschlag, erkannt. Dies kann beispielsweise durch ein Signal angezeigt werden.According to the illustrated embodiment, a match of the average powers can be determined by means of a correlation of the mean powers. If the correlation result indicates a match of the mean powers, then a homogeneous distributed medium such as precipitation was recognized. This can be indicated by a signal, for example.

Wie in Fig. 3 gezeigt, bewirkt Niederschlag in dem von Radarstrahlen erfassten Bereich, eine Anhebung des Grundrauschens. Durch Auswerten der Anhebung mindestens einer der spektralen Leistungsdichten kann eine Dichte des homogen verteilten Mediums, also beispielsweise eine Regenintensität, mittels einer Radarsignaldämpfung bestimmt werden. Die Anhebung kann beispielsweise durch Vergleich eines aktuellen Grundrauschens mit einem gespeicherten Referenzgrundrauschens erfolgen. Die Radarsignaldämpfung gibt an, wie stark ein Radarsignal durch den Niederschlag gedämpft wird. Werte, die die Dichte des homogen verteilten Mediums als auch die Radarsignaldämpfung angeben, können ebenfalls mittels Signalen angezeigt werden.As in Fig. 3 As shown, precipitation in the area covered by radar beams causes an increase in the noise floor. By evaluating the increase in at least one of the spectral power densities, a density of the homogeneously distributed medium, that is, for example, a rain intensity, can be determined by means of a radar signal attenuation. The increase can be done, for example, by comparing a current noise floor with a stored Referenzgrundrauschens. The Radar signal attenuation indicates how much a radar signal is attenuated by the precipitate. Values indicating the density of the homogeneously distributed medium as well as the radar signal attenuation can also be displayed by means of signals.

Fig. 5 zeigt eine Vorrichtung zum Erkennen von Niederschlag in einem von Radarstrahlen erfassten Bereich, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Vorrichtung ist ausgebildet, um ein erstes rückgestreutes Radarsignal 501 und ein zweites rückgestreutes Radarsignal 502 zu empfangen und ein Feststellungs- bzw. Anzeigesignal 503 bereitzustellen, das ein Vorhandensein eines homogen verteilten Mediums wie etwa Niederschlag, anzeigt. Dazu weist die Vorrichtung zwei Sender 550, 552 zum Senden von Radarstrahlung bzw. Radarsignalen 560, 562 sowie zwei Empfänger 512, 513 zum Empfangen der rückgestreuten Radarsignale 501, 502 auf. Die Empfänger 512, 513 sind ausgebildet, um die Spektren der rückgestreuten Radarsignale 501, 502 an Ermittler 514, 516 bereitzustellen. Die Ennittler 514, 516 sind ausgebildet, um aus den Spektren die mittleren Signalleistungen zu berechnen und an eine Vergleichseinrichtung 518 bereitzustellen. Die Vergleichseinrichtung 518, beispielsweise in Form eines Korrelators, ist ausgebildet, um die mittleren Signalleistungen miteinander zu vergleichen. Bei einer Übereinstimmung der Signalleistungen wird davon ausgegangen, dass sich ein homogen verteiltes Medium in dem von den Radarstrahlen erfassten Bereich befindet. Zur Feststellung einer Übereinstimmung kann ein vorgegebener Toleranzbereich verwendet werden. Der Toleranzbereich kann sich an der Höhe des Grundrauschens orientieren. Fig. 5 shows an apparatus for detecting precipitation in a radar detected area, according to an embodiment of the present invention. The apparatus is configured to receive a first backscattered radar signal 501 and a second backscattered radar signal 502 and to provide a detection signal 503 indicative of the presence of a homogeneously distributed medium, such as precipitation. For this purpose, the device has two transmitters 550, 552 for transmitting radar radiation or radar signals 560, 562 and two receivers 512, 513 for receiving the backscattered radar signals 501, 502. The receivers 512, 513 are configured to provide the spectra of the backscattered radar signals 501, 502 to detectors 514, 516. The decomposers 514, 516 are designed to calculate the average signal powers from the spectra and to provide them to a comparator 518. The comparison device 518, for example in the form of a correlator, is designed to compare the mean signal powers with one another. If the signal powers agree, it is assumed that a homogeneously distributed medium is located in the area covered by the radar beams. To determine a match, a predetermined tolerance range can be used. The tolerance range can be based on the height of the noise floor.

Um den objektfreien Bereich zu ermitteln, kann die Vorrichtung einen Analysator 522 aufweisen, der ausgebildet ist, um aus den von den Empfängern 512, 513 bereitgestellten Spektren den objektfreien Bereich zu ermitteln und an die Ermittler 514, 516 bereitzustellen.In order to determine the object-free region, the device may comprise an analyzer 522, which is designed to determine the object-free region from the spectra provided by the receivers 512, 513 and to provide them to the investigators 514, 516.

Gemäß dem erfindungsgemäßen Ansatz ist das Radarsignal orthogonal zum Niederschlag. Daher ist keine Dopplerauswertung möglich, sondern es erfolgt eine Ermittlung der Regenintensität über die Reflektivität und durch Integration der Regenrückstreuung bzw. der Rauschflooranhebung im Nahbereich, beispielsweise eines FMC W-Radarsystems.According to the approach of the invention, the radar signal is orthogonal to the precipitate. Therefore, no Doppler evaluation is possible, but there is a determination of the rain intensity on the reflectivity and by integration of rain backscatter or the Rauschflooranhebung in the vicinity, for example, an FMC W radar system.

Die Regen-Erkennung im Straßenverkehr erfolgt durch die Korrelation der mittleren Leistungen aus mehreren benachbarten Antennenarrays. Bei dem verwendeten Radarsystem kann es sich beispielsweise um ein 76.4 GHz Automotive Radarsystem handeln, das aufgrund einer Anordnung beispielsweise an einem Fahrzeug nicht ortsfest ist.The rain detection in the traffic is done by the correlation of the average power from several neighboring antenna arrays. The radar system used may be, for example, a 76.4 GHz automotive radar system that is not stationary due to an arrangement on a vehicle, for example.

Claims (12)

  1. Method for identification of precipitation (5) in an area which is covered by radar beams (4), with the method being characterized by the following steps:
    transmission (401) of at least two radar signals with radiation lobes which do not overlap, or overlap only partially;
    determination (402) of a first mean power of a first back-scattered radar signal (501);
    determination (404) of a second mean power of a second back-scattered radar signal (502);
    detection (406) of the presence of precipitation by comparison of the determined mean powers with one another,
    characterized in that the mean powers are compared taking account of at least one weighting factor, with the at least one weighting factor being designed to compensate for different radar antenna characteristics.
  2. Method according to Claim 1, characterized by a further step of determination of a further mean power of a further back-scattered radar signal, in which case the back-scattered radar signals can be produced by reflection of radar signals (4; 560, 562) which are transmitted by radar antennas and transmitters (550, 552) which are arranged adjacent.
  3. Method according to one of the preceding claims, characterized in that the mean powers are each determined for a section (VRZ) of the covered area in which there are no objects.
  4. Method according to Claim 3, characterized in that the determination steps have the following steps:
    detection of in each case one power spectral density for each back-scattered radar signal (501, 502);
    integration of the power spectral densities (31, 34), in each case over the section (VRZ) in which there are no objects, in order to obtain the mean powers.
  5. Method according to Claim 4, characterized in that the section in which there are no objects is determined by analysis of the power spectral densities (31, 34) of the back-scattered radar signals (501, 502), with the section (VRZ) in which there are no objects corresponding to a common subarea of the power spectral densities in which none of the power spectral densities have a peak which projects above the background noise (32, 35) of the respective power spectral densities.
  6. Method according to one of the preceding claims, characterized in that the comparison of the mean powers comprises detection of a match between the mean powers, in particular by means of correlation.
  7. Method according to one of Claims 4 to 6, with the method furthermore being characterized by a step of evaluation of a peak (37) in the background noise of at least one of the power spectral densities (31, 34), in order to determine a density of precipitation (5) or radar signal attenuation.
  8. Method according to one of the preceding claims, characterized in that the precipitation is rain, hail or snowfall, whose main moving direction is at right angles to the radar beams (4).
  9. Method according to one of the preceding claims, characterized in that a long-range radar FMCW radar transmitter is used, in order to produce radiation lobes which partially overlap one another or are located alongside one another, in which case the back-scattered radar signals can each be associated with one radiation lobe.
  10. Apparatus for carrying out all the steps of a method according to one of Claims 1 to 9.
  11. Computer program having program code means for carrying out all the steps of a method according to one of Claims 1 to 9 when the computer program is run on a computer or a corresponding computer unit.
  12. Computer program product having program code means which are stored in a computer-legible data storage medium, in order to carry out all the steps of a method according to one of Claims 1 to 9 when the computer program product is run on a computer or a corresponding computer unit.
EP07803522A 2006-11-17 2007-09-17 Method and device for detecting precipitation using radar Not-in-force EP2092368B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054320A DE102006054320A1 (en) 2006-11-17 2006-11-17 Method and device for detecting precipitation by means of radar
PCT/EP2007/059761 WO2008058786A1 (en) 2006-11-17 2007-09-17 Method and device for detecting precipitation using radar

Publications (2)

Publication Number Publication Date
EP2092368A1 EP2092368A1 (en) 2009-08-26
EP2092368B1 true EP2092368B1 (en) 2011-11-09

Family

ID=38779854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803522A Not-in-force EP2092368B1 (en) 2006-11-17 2007-09-17 Method and device for detecting precipitation using radar

Country Status (6)

Country Link
US (1) US8558730B2 (en)
EP (1) EP2092368B1 (en)
CN (1) CN101535834B (en)
AT (1) ATE533067T1 (en)
DE (1) DE102006054320A1 (en)
WO (1) WO2008058786A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000472A1 (en) 2009-01-29 2010-08-05 Robert Bosch Gmbh Method for detecting precipitation with a radar tracking device for motor vehicles
DE102009000469A1 (en) 2009-01-29 2010-08-19 Robert Bosch Gmbh Method for detecting precipitation with a radar tracking device for motor vehicles
DE102009001239A1 (en) 2009-02-27 2010-09-02 Robert Bosch Gmbh Method for detecting sensitivity losses of an FMCW radar detector by diffuse loss sources
DE102010029699A1 (en) 2010-06-04 2011-12-22 Robert Bosch Gmbh Radar sensor and method for detecting precipitation with a radar sensor
KR101408997B1 (en) * 2013-08-30 2014-06-18 한국건설기술연구원 Meteorological observation system using vihicle
KR101892306B1 (en) * 2013-12-18 2018-08-27 주식회사 만도 Method and apparatus for detecting road environment based on frequency modulated continuous wave radar
GB2586183B (en) * 2014-04-16 2021-06-23 Fisher & Paykel Healthcare Ltd Methods and systems for delivering gas to a patient
DE102014209723A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Determination of an indicator of blindness of a radar sensor
JP6413457B2 (en) 2014-08-08 2018-10-31 株式会社デンソー Precipitation determination device
CN104820222B (en) * 2014-12-25 2017-08-29 邓勇 The real-time dynamic attenuation of rainfall radar is corrected and precipitation computational methods
JP6624601B2 (en) * 2016-03-16 2019-12-25 パナソニック株式会社 Radar apparatus and target object detection method
US10551492B2 (en) * 2016-04-27 2020-02-04 Ms Sedco, Inc. Detecting rain intensity with traffice radar
US10183677B2 (en) * 2016-09-20 2019-01-22 Ford Global Technologies, Llc Ice and snow detection systems and methods
CN106324580B (en) * 2016-11-02 2018-11-06 中国人民解放军理工大学 A kind of radar return decaying correction method based on microwave links road network
KR102483646B1 (en) * 2017-12-22 2023-01-02 삼성전자주식회사 Method and device to detect object
CN108549075A (en) * 2018-03-02 2018-09-18 东南大学 A kind of method of determining Ground Penetrating Radar optimum detection height
CN108594235B (en) * 2018-04-16 2020-10-23 青海大学 Method and system for improving reflectivity coefficient resolution of azimuth radar
DE102019111679A1 (en) * 2019-05-06 2020-11-12 S.M.S Smart Microwave Sensors Gmbh Procedure for recording road users
CN111650572B (en) * 2020-07-23 2023-02-24 浪潮云信息技术股份公司 Method and system for reducing short-time precipitation estimation deviation
CN112965146B (en) * 2021-04-14 2021-09-21 中国水利水电科学研究院 Quantitative precipitation estimation method combining meteorological radar and rainfall barrel observation data
US20220349996A1 (en) * 2021-05-03 2022-11-03 Waymo Llc Methods and Systems for Detecting Adverse Road Conditions using Radar

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646555A (en) * 1969-05-02 1972-02-29 David Atlas Method and apparatus for radar turbulence detection
US3715748A (en) * 1971-04-30 1973-02-06 Us Navy Method and apparatus for measuring the intensity of atmospheric turbulence
US3881154A (en) * 1973-07-13 1975-04-29 Us Air Force High resolution, very short pulse, ionosounder
AU523180B2 (en) * 1978-08-22 1982-07-15 University Of Melbourne, The Acoustic detection of wind speed and direction at various altitudes
US4217585A (en) * 1978-11-09 1980-08-12 The United States Of America As Represented By The Secretary Of The Army Dual frequency Doppler radar
USRE33152E (en) * 1985-11-08 1990-01-23 Radar detection of hazardous small scale weather disturbances
US4649388A (en) * 1985-11-08 1987-03-10 David Atlas Radar detection of hazardous small scale weather disturbances
US5028929A (en) 1990-04-30 1991-07-02 University Corporation For Atmospheric Research Icing hazard detection for aircraft
US5311183A (en) * 1991-06-13 1994-05-10 Westinghouse Electric Corp. Windshear radar system with upper and lower elevation radar scans
JPH07504970A (en) 1991-07-18 1995-06-01 オーストラリア国 Rainfall detection
NO921193D0 (en) * 1992-03-26 1992-03-26 Susar As SYSTEM FOR DETECTION, MEASUREMENT AND CLASSIFICATION OF AIR PHENOMES
US5583972A (en) * 1993-08-02 1996-12-10 Miller; Richard L. 3-D weather display and weathercast system
US5410314A (en) * 1993-11-30 1995-04-25 University Corporation For Atmospheric Research Bistatic multiple-doppler radar network
US5623267A (en) * 1993-11-30 1997-04-22 Wurman; Joshua M. A. R. Wide-angle multiple-doppler radar network
JPH07248830A (en) 1994-03-08 1995-09-26 Matsushita Electric Ind Co Ltd Peltier element driving circuit
JPH07248380A (en) 1994-03-14 1995-09-26 Toshiba Corp Radar rainfall correcting device
US5500646A (en) * 1994-07-29 1996-03-19 The United States Of America As Represented By The Department Of Commerce Simultaneous differential polymetric measurements and co-polar correlation coefficient measurement
US5742297A (en) * 1994-11-04 1998-04-21 Lockheed Martin Corporation Apparatus and method for constructing a mosaic of data
FR2742876B1 (en) * 1995-12-26 1998-02-06 Thomson Csf METHOD FOR DETERMINING THE PRECIPITATION RATE BY DUAL POLARIZATION RADAR AND METEOROLOGICAL RADAR USING THE SAME
JPH1048333A (en) 1996-07-31 1998-02-20 Hino Motors Ltd Radar equipment for vehicle
JP3269441B2 (en) * 1997-12-22 2002-03-25 三菱電機株式会社 Weather radar equipment
US6377204B1 (en) * 1999-12-13 2002-04-23 University Corporation For Atmospheric Research Radar system having multiple simultaneously transmitted beams operating in a scanning mode to identify scatterers
US6462699B2 (en) * 1999-12-13 2002-10-08 University Corporation For Atomspheric Research Bistatic radar system for centralized, near-real-time synchronized, processing of data to identify scatterers
FR2820215A1 (en) 2001-01-30 2002-08-02 Meteo France Weather radar processing system uses hail detection threshold improves detection
US7427943B1 (en) * 2003-07-22 2008-09-23 Rockwell Collins, Inc. Method of generating three-dimensional weather information from airborne weather radar imagery
FR2861180B1 (en) * 2003-10-21 2006-03-24 Centre Nat Rech Scient METHOD FOR ESTIMATING THE CHARACTERISTICS OF PRECIPITATION
US7242343B1 (en) * 2004-09-15 2007-07-10 Rockwell Collins, Inc. Directed sequential hazard assessment weather radar
US7417578B1 (en) * 2005-03-08 2008-08-26 Rockwell Collins, Inc. Removal of spurious aircraft detections on weather radar
US7336222B2 (en) * 2005-06-23 2008-02-26 Enerlab, Inc. System and method for measuring characteristics of a continuous medium and/or localized targets using multiple sensors
US7365674B2 (en) * 2005-09-26 2008-04-29 The Boeing Company Airborne weather profiler network
US7518544B2 (en) * 2006-07-13 2009-04-14 Colorado State University Research Foundation Retrieval of parameters in networked radar environments
US7365696B1 (en) * 2006-10-04 2008-04-29 Weather Detection Systems, Inc. Multitransmitter RF rotary joint free weather radar system

Also Published As

Publication number Publication date
CN101535834B (en) 2012-11-14
CN101535834A (en) 2009-09-16
WO2008058786A1 (en) 2008-05-22
ATE533067T1 (en) 2011-11-15
US8558730B2 (en) 2013-10-15
US20100309041A1 (en) 2010-12-09
EP2092368A1 (en) 2009-08-26
DE102006054320A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
EP2092368B1 (en) Method and device for detecting precipitation using radar
EP2936196B1 (en) Method for setting a detection threshold for a received signal of a frequency-modulated continuous wave radar sensor of a motor vehicle on the basis of the noise level, radar sensor and motor vehicle
DE102008014786B4 (en) Method for determining the level of background noise and radar for use of the method and an interference detection device
DE60031592T2 (en) radar
DE60035314T2 (en) Vehicle radar device
EP2507649B1 (en) Method for unambiguously determining a range and/or a relative speed of an object, driver assistance device and motor vehicle
EP1864155B1 (en) Method and device for measuring distance and relative speed of a plurality of objects
EP2392944B1 (en) Radar sensor and method for detecting precipitation with a radar sensor
DE102018123383A1 (en) Radar detection with interference suppression
DE102018132745B4 (en) FMCW RADAR WITH INTERFERENCE REJECTION IN THE TIME DOMAIN
DE102006049879B4 (en) Radar system for automobiles
EP2401633B1 (en) Fmcw radar locating apparatus having a device for detecting a radome coating
EP2401632B1 (en) Method for detecting loss of sensitivity of a fmcw radar locating device by diffuse sources of loss
EP2401630B1 (en) Method for detecting icing at an angle-resolving radar sensor in a driver assistance system for motor vehicles
DE102017209628A1 (en) FMCW radar sensor for motor vehicles
DE102012025064A1 (en) A method for maintaining a warning signal in a motor vehicle due to the presence of a target object in a warning area, in particular a blind spot area, corresponding driver assistance system and motor vehicle
DE102009032124A1 (en) Method for detecting blocked state of radar device in e.g. dead angle monitoring system, of car, involves analyzing portion of reception signal, and detecting blocked state of radar devices based on analysis
EP2824427A1 (en) Determining a distance and a flow speed of a medium
DE102013209736A1 (en) Method for evaluating obstacles in a driver assistance system for motor vehicles
DE102009016480A1 (en) Radar system for use in driver assistance system in motor vehicle for detecting surroundings, has transmitting units for radiating transmission signals and receiving units for receiving transmission signals reflected on objects
DE102009000472A1 (en) Method for detecting precipitation with a radar tracking device for motor vehicles
DE102016108756A1 (en) Radar sensor device for a motor vehicle, driver assistance system, motor vehicle and method for detecting an object
DE102016225494B4 (en) METHOD AND DEVICE FOR DETECTING A TARGET OBJECT
DE102009000469A1 (en) Method for detecting precipitation with a radar tracking device for motor vehicles
EP2549289A2 (en) Detection of a mal-adjustment of a radar sensor of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091029

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008644

Country of ref document: DE

Effective date: 20120202

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111109

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008644

Country of ref document: DE

Effective date: 20120810

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 533067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130923

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160922

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170917

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007008644

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008644

Country of ref document: DE