EP1963135A2 - Rear-view mirror for a motor vehicle - Google Patents

Rear-view mirror for a motor vehicle

Info

Publication number
EP1963135A2
EP1963135A2 EP06842123A EP06842123A EP1963135A2 EP 1963135 A2 EP1963135 A2 EP 1963135A2 EP 06842123 A EP06842123 A EP 06842123A EP 06842123 A EP06842123 A EP 06842123A EP 1963135 A2 EP1963135 A2 EP 1963135A2
Authority
EP
European Patent Office
Prior art keywords
mirror
lens
line
vertical
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06842123A
Other languages
German (de)
French (fr)
Inventor
Daniel Goraguer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holophane SAS
Original Assignee
Holophane SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holophane SAS filed Critical Holophane SAS
Publication of EP1963135A2 publication Critical patent/EP1963135A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/10Front-view mirror arrangements; Periscope arrangements, i.e. optical devices using combinations of mirrors, lenses, prisms or the like ; Other mirror arrangements giving a view from above or under the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/001Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles integrated in the windows, e.g. Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements

Definitions

  • the present invention relates to a motor vehicle rear view mirror for producing an image located outside and behind the vehicle.
  • motor vehicle is meant any type of vehicle comprising its own drive or propulsion means, such as passenger cars, utility vehicles (vans, trucks, tractor, etc.), motorcycles.
  • the present invention is not limited purely to vehicles traveling on land routes, but can also be applied to other flying or navigating vehicles.
  • the present invention therefore applies very particularly to the field of motor vehicle equipment intended to assist the driver to facilitate or widen his field of vision, in particular towards the rear.
  • the mirror increases the lateral dimensions of the vehicle and thus constitutes not only a projecting element which can collide with another vehicle, a passer-by or any other structure, but also decreases the coefficient of penetration into the air of the vehicle.
  • it is already known to equip conventional mirrors with a system for folding the mirror along the vehicle.
  • folding mechanisms electric or purely mechanical, generates an increase in the number of parts of the mirror as a whole. And this increase in the number of parts generates of course an increase in the overall cost of the mirror.
  • mirror systems are already known using lenses in combination with one or more reflecting mirror (s). This is for example the case of US Pat. No. 6,882,146.
  • the rear view mirror comprises an objective lens situated outside the vehicle, a plane reflecting mirror and a field lens situated inside the vehicle. This mirror therefore uses two different lenses and a flat mirror.
  • the present invention aims to improve such a mirror and lens mirror so that it is easier to manufacture, easier to assemble, with a reduced number of parts and a reduced cost.
  • the present invention provides a motor vehicle rear view mirror for producing an image of an object located outside the rear of the vehicle, comprising a lens and a mirror, characterized in that the lens is a divergent concave lens. having an optical axis and an optical focus and the mirror is a substantially concave mirror, the light beams passing through the lens diverging in the direction of the mirror which returns the rays convergently substantially without optical distortion in a direction which corresponds to the axis of vision of the conductor towards the mirror, characterized in that the mirror defines a concave reflecting surface which roughly corresponds to a segment of a cylinder.
  • the rear view mirror includes only one lens and only one mirror.
  • the concavity of the mirror defines a relatively simple geometric surface which is particularly easy to produce industrially. Indeed, it is easy and known to produce cylindrical surfaces from plates or flat sheets so that the surface obtained meets the definition of a cylinder.
  • a flat plate or sheet By deforming a flat plate or sheet, in one direction it defines a curvature, and in the other perpendicular direction it defines a straight line.
  • This perfectly meets the definition of a cylinder which results from the projection along a generatrix of a directing curve which can have any trajectory.
  • a circular cylinder in fact results from the projection of a circle along a generatrix which passes through the center of the circle, and which advantageously extends perpendicular to the plane in which the circle is defined.
  • the concave reflecting surface has a cylindrical configuration and can be produced from a section, a piece, a cut, or more generally a segment of a cylinder.
  • the cylinder is parabolic and has a plane of symmetry and a focal line located in this plane.
  • a parabola is a curve in two dimensions which is characterized by a directrix, a focus and an axis of symmetry. When such a curve is projected along a generatrix perpendicular to both the director and the axis of symmetry, we obtain a cylinder whose section defines a parabola.
  • the concave reflection surface is produced from a section, of a piece or segment of such a parabolic section cylinder.
  • the axis of the parabola is projected according to the generatrix so as to form a plane of symmetry and the point focus of the parabola is also projected according to the generatrix so as to form a rectilinear focal line which is situated in the plane of symmetry of the parabolic cylinder.
  • the plane of symmetry is substantially parallel to the axis of vision of the driver in the direction of the mirror.
  • the parabolic curvature of the concave reflecting surface extends in a substantially horizontal plane.
  • the reflection surface of the mirror defines a horizontal center line and a vertical center line which intersect substantially in the center of the mirror, the horizontal line having a substantially parabolic curvature, the vertical line being substantially straight, all vertical lines also being straight and all horizontal lines having the same parabolic curvature as the horizontal center line.
  • This definition corresponds to that of a surface formed from a section of cylinder whose directing curve is a parabola.
  • the optical focus of the lens defines a focal line.
  • the focal line is arranged substantially vertically relative to the mirror.
  • This focal line can be perfectly straight, substantially straight or even curved.
  • the fact that the lens defines a focal line and not a focal point means that the lens is not of revolution, such as for example a spherical or aspherical lens.
  • the optical focus of the lens is punctual and is in the form of a point located on the focal axis which is a line.
  • the optical axis is in the form of an optical plane and the focal line is located in this optical plane.
  • the respective focal lines of the cylinder and of the lens are substantially parallel, but distinct, that is to say not confused.
  • the focal line of the cylinder is located near the optical axis of the lens.
  • the optical axis of the lens is an optical plane.
  • the lens comprises a concave front face and a substantially planar rear face oriented towards the mirror, the front face defining an optical surface having a substantially cylindrical configuration.
  • both the mirror and the lens have a substantially cylindrical configuration.
  • the generators of the two cylinders are advantageously parallel and arranged vertically.
  • the optical surface defines a horizontal center line and a vertical center line which intersect substantially at the center of the optical surface, the horizontal center line having a curvature in a plane perpendicular to the vertical center line, all the horizontal lines having substantially the same curvature as the horizontal center line in respective planes perpendicular to the vertical center line.
  • the curvature of the horizontal lines is circular so as to define an arc of a circle having a determined radius.
  • the vertical center line is straight, as are all the other vertical lines.
  • the optical surface of the lens then responds exactly or substantially to the definition of a cylinder, the guide curve of which is advantageously circular.
  • a cylindrical lens is particularly easy to produce, since it can be produced by extrusion because its cross section is constant.
  • the vertical center line is curved, so that the optical surface has an overall toric configuration.
  • the vertical curvature can advantageously be circular so as to respond to an arc of a circle having a determined radius.
  • the curvature can have any other trajectory whatsoever.
  • the vertical curvature further accentuates the concavity of the optical surface.
  • This vertical concavity has the optical result of tightening the vertical field lines so that the subjects visible at the mirror have a "normal" appearance with regard to the horizontal and vertical proportions.
  • the horizontal curvature of the lens has the effect of tightening the image at the level of the mirror so that the subjects visible on the mirror are particularly fine, while keeping a normal height.
  • the optical surface By also bending the optical surface in the vertical direction, this defect in the proportion of subjects at the level of the mirror is corrected.
  • the optical surface then has a configuration which is that of a segment of curved tube, which can generally be described as a torus.
  • This geometric configuration is characterized by the fact that the transverse or horizontal curvature in a plane perpendicular to the vertical or longitudinal curvature is constant, and for example circular.
  • the vertical center line has a lower region at the level of which its curvature is greater.
  • the curvature of the horizontal lines (which is not necessarily in the horizontal plane) can be kept constant if we consider the lines of curvature in planes which are always perpendicular to the curvature of the vertical line.
  • the increase in the curvature at the level of the lower zone of the optical surface makes it possible to deviate very strongly the beams downwards, that is to say towards the roadway or the pavement, which allows the driver to have a view, certainly distorted, in the area located at the sidewalk.
  • This field of vision on the sidewalk makes it possible in particular to facilitate or improve the parking of the motor vehicle as close as possible to the sidewalk, or at least parallel to the sidewalk.
  • the vertical center line can thus have a substantially constant curvature over most of its height and a greatly increased curvature at its lower zone.
  • the lens has a prismatic configuration capable of deflecting the light beams towards the interior of the automobile.
  • This prismatic configuration of the lens corresponds to the combination or association of a lens and a prism making it possible to deflect the beams towards the interior of the vehicle, so that the mirror can be installed more inside the vehicle than would be the case if it did't for this prismatic configuration. Therefore, the prism incorporated into the lens allows the mirror to be shifted towards the interior of the vehicle, which further reduces the size of the mirror outside the vehicle.
  • the optical axis of the lens makes an angle ⁇ of the order of 10 degrees relative to the beam passing through the center of the lens and the center of the mirror.
  • the lens has been slightly rotated so that its optical axis is no longer coincident with the beam passing through its center and the center of the mirror.
  • This rotation of the lens optimally covers the blind spot and consequently reduces the field of vision on the vehicle body, which is not necessary. As a result, the field of vision is more oriented towards the side of the vehicle and no longer along the vehicle.
  • the beam passing through the center of the lens and the center of the mirror makes an angle ⁇ of the order of 10 degrees relative to a longitudinal axis of the vehicle.
  • the optical axis of the lens makes an angle of the order of 15 to 25 degrees relative to the longitudinal axis of the vehicle, which is that of the window of the vehicle door.
  • the lens can be a lens defining a linear focal point which can advantageously be combined with a cylindrical mirror which is preferably parabolic.
  • the lens due to its linear local focus generates optical distortions only in the horizontal plane and not at all in the vertical plane.
  • the mirror only needs to correct the horizontal optical distortions, and a particularly advantageous embodiment is that of a cylindrical mirror whose guiding curve is advantageously parabolic.
  • the mirror of the invention fulfills a double function, namely that of classic reflection and that of classic month of correction in the manner of a lens.
  • the mirror according to the invention incorporates both a conventional mirror and a lens which makes it possible to correct the optical distortion generated by the divergent concave lens.
  • the linear focal lens can be used with any mirror which is not necessarily cylindrical, or parabolic cylindrical. So symmetrical, the mirror of the invention which is cylindrical, and preferably cylindrical parabolic, can be used with any lens which is not necessarily with linear focus. In other words, both the lens and the mirror can be protected separately from each other.
  • FIG. 1 is a schematic perspective view of a lens and a mirror according to a first nonlimiting embodiment of a motor vehicle rear view mirror according to the invention
  • FIG. 2 is a schematic optical representation of the mirror of FIG. 1,
  • FIG. 3 is a view similar to that of FIG. 1 showing a rear view mirror using a lens according to a second embodiment of the invention
  • Figures 4a and 4b are schematic perspective representations showing the difference in images between the first and the second embodiment of Figures 1 and 3
  • Figures 5 and 6 are representations similar to Figures 1 and 3 for a third and a fourth embodiment of a mirror according to the invention, respectively, and
  • FIGS. 7a, 7b and 7c are views of the mirror revealing the field lines corresponding respectively to the mirror of FIGS. 1, 3 and 5.
  • the two essential components of the mirror are respectively a lens 1 and a mirror 2.
  • the lens and the mirror can be mounted on a common support 3 which can have any suitable shape.
  • this support 3 has been schematically represented by a rod or a bar connecting the lens 1 to the mirror 2.
  • This support 3 is an optional element so that the lens 1 and the mirror 2 can be mounted on independent or dissociated supports.
  • the rear view mirror may include a fourth element visible in FIG. 2: it is a shell 4 which envelops the lens 1 and the mirror 2, and optionally the support 3.
  • This shell 4 makes it possible to define an internal housing with the bodywork or the window of the vehicle to accommodate the lens 1 and the mirror 2.
  • the shell 4 is also an optional element.
  • the lens 1 is a divergent concave lens having a concave front face 10 and a flat rear face 15.
  • the front face 10 defines a concave optical surface 11 which is here substantially or perfectly cylindrical.
  • this optical surface 11 can be defined as having horizontal lines 12 and vertical lines 13 (of which only the vertical center line has been shown). Since the optical surface 11 is cylindrical, the vertical lines 13 are straight lines which are all parallel to each other.
  • the horizontal lines 12 are curves, which are however also parallel to each other.
  • the curvature of the horizontal lines 12 is circular so as to form an arc of a circle having a determined constant radius.
  • the optical surface 11 can be defined as a section or segment of a circular cylinder.
  • This lens 1 of general or overall cylindrical or elongated shape defines an optical axis, or more precisely an optical plane A1 which passes through the vertical center line 13.
  • This cylindrical lens therefore defines a focal point F1 which is an optical focal line which s 'extends in the optical plane A1 at a distance from the lens which corresponds to the focal length of the lens. This is visible in Figure 1.
  • This focal distance can be of the order of 8 to 10 centimeters.
  • the linear focal point F1 is of course located on the side of the concave optical surface 11. Since the optical surface 11 is cylindrical, the focal line F1 is a straight line which extends vertically parallel to the vertical center line 13, and therefore perpendicular to the planes in which the horizontal lines 12 are inscribed.
  • the lens 1 defines a fixing edge 14 which allows for example to grip the lens to fix it on any support.
  • the mirror 2 comprises a reflecting surface 21 which is here of substantially rectangular shape lying down, that is to say with the long sides extending horizontally and the short sides extending vertically.
  • the mirror can define a reflection surface 21 having another configuration, for example oval, elliptical, oblong, polygonal, or of complex geometric shape.
  • the reflection surface 21 has a complex concave configuration.
  • the concavity of the reflection surface can be globally or roughly or substantially be related to a segment, section, part or portion of a vertical cylinder.
  • the reflection surface 21 defines a horizontal central line 22 and a vertical central line 23 which intersect substantially at the center Cm of the mirror. Since the cylinder is vertical or upright, the vertical line 23 is a straight line like all other parallel vertical lines.
  • the horizontal line 22 is of substantially or perfectly parabolic shape as well as all the other horizontal lines parallel to the line 22. More precisely, the reflection surface 21 is a segment of a cylinder whose directing curve is parabolic . In other words, the cross section of the cylinder is parabolic in shape. The horizontal line 22 as well as all the other horizontal lines are of parabolic shape and will therefore pass through the central line Cp of the parabolic center of the cylinder. Indeed, any parabola is defined by an axis of parabola or axis of symmetry of parabola as well as by a focal point of parabola. A parabola is further defined by a parabola director (not shown).
  • the lens 1 and the mirror 2 are positioned mutually with respect to each other so that the rear plane face 15 of the lens is turned towards the reflection surface 21 of the mirror.
  • the support 3 defines a support axis
  • neither the lens 1 nor the mirror 2 is arranged perpendicular to this support axis.
  • the lens 1 is slightly turned and the mirror 2 is proficient turned so that the central beam Fc passing through the center Cl of the lens and the center Cm of the mirror 2 is reflected and redirected towards the eye O of the driver.
  • the angle ⁇ between the incident central beam and the reflected central beam is of the order of 20 to 50 degrees.
  • the angle ⁇ between the optical axis Al of the lens and the central beam Fc passing through the center of the lens and the center of the mirror is of the order from 5 to 15 degrees, for example 10 degrees.
  • the central beam Fc is oriented relative to the longitudinal axis of the vehicle by making an angle ⁇ which can also be of the order of 5 to 15 degrees, for example 10 degrees.
  • the axis Av can also be considered as the axis of the driver's door or the window of the driver's door.
  • the mirror according to the invention must be installed on the vehicle so that the central beam makes an angle of ⁇ relative to the door.
  • the lens 1 is located outside the vehicle, while the mirror 2 is located partially inside the vehicle and partially outside the vehicle.
  • the mirror 2 can be located in a space which communicates with the interior of the vehicle and which is separated from the exterior of the vehicle by this shell 4.
  • the lens 1 then serves as a shutter of the internal space formed by the shell 4 and of light entering inside this shell where the mirror 2 is arranged.
  • the viewing angle ⁇ provided by the lens 1 can be of the order of 35 degrees, while with a conventional mirror, the viewing angle is limited to only about 25 degrees.
  • the internal lateral beam Fsi intersects the longitudinal axis Av so as to give a vision of part of the body.
  • the exterior side beam Fse allows you to widen your vision at the conventional blind spot of a conventional rear view mirror.
  • the beams passing through the lens 1 are directed divergently towards the concave mirror 2 which reflects the beams in a convergent manner substantially without optical distortion towards the eye.
  • the respective generatrices of the cylinder forming the mirror and of the cylinder forming the lens are arranged in parallel. More concretely, the vertical center line 23 of the mirror is arranged substantially parallel to the vertical center line 13 of the optical surface 11 of the lens 1. Likewise, the horizontal central line 22 of the mirror 2 is located in the same plane as the line horizontal median 12 of the lens 1. Regarding the distance between the lens
  • the linear focus Fp of the parabolic cylinder of the mirror is located near the linear focus Fl of the lens. This is visible both in Figure 1 and in Figure 2. It can also be noted that the linear focus of the parabolic cylinder Fp is located on the beam Fc passing through the center Cl of the lens and the center Cm of the mirror.
  • the linear foci Fp and Fl preferably extend parallel to one another but are not confused; there is therefore a distance between them. This distinction of the two linear focal points makes it possible to converge the beams reflected by the mirror 2 and directed towards the driver's eye.
  • lens 1 and the mirror 2 are both cylindrical in configuration and extend along generatrices which are parallel, the view in horizontal cross section of Figure 2 is entirely representative of Figure 1 and can be located at any height of the lens or mirror.
  • the fact of forming the lens with an optical surface 11 of substantially or perfectly cylindrical configuration is particularly advantageous, both from the optical point of view and from the manufacturing point of view. Indeed, from the optical point of view, there is no optical distortion on the vertical, the beams passing without diffraction or distortion through the lens at the level of the vertical center line 13. Diffraction takes place only in the horizontal plane. As for its manufacture, it is simplified due to the cylindrical shape of the optical surface, which is a relatively simple geometric shape to produce.
  • the parabolic cylindrical mirror is also advantageous in combination with the cylindrical lens or with any other lens. Indeed, this cylindrical mirror is also easy to produce just like the cylindrical lens, because of the ease with which a cylindrical surface can be produced.
  • the combination of the parabolic cylindrical mirror and the cylindrical lens is however advantageous since the parabolic cylindrical mirror 2 does not need to correct any optical distortion coming from the lens, since the latter does not diffract in the vertical plane .
  • the optical distortion therefore takes place only in the horizontal plane, and this distortion is easily corrected by the mirror 2, thanks to its parabolic cylindrical shape. This gives an image tightened in the horizontal plane and without distortion in the vertical plane. This is shown in Figure 7a which shows the vision of a driver when looking at the mirror.
  • the various points visible on the mirror represent or give an indication of the density of the field lines both horizontal and vertical.
  • the cross on the right of the mirror represents the axis of the roadway at the horizon. It can be seen that the density of the points of the median horizontal field line is high, in particular at the edges, while the density of the points of the vertical field lines is constant.
  • This mirror gives a very tight image horizontally, but real vertically. The proportion of objects is therefore not preserved. Referring to Figure 3, we will now explain how it is possible to correct this lack of proportion.
  • the mirror can be identical to the mirror of the first embodiment.
  • the lens 1a differs from the lens 1 of the first embodiment in that the vertical center line 13 ′ here has a curvature, which advantageously corresponds to an arc of a circle.
  • the center line 13 is substantially or perfectly straight and extends parallel to the vertical center line 23 of the mirror 2.
  • the curved vertical center line 13 ' extends in a plane which also includes the vertical center line 23 of the mirror.
  • the horizontal lines 12 ′ of the lens are curved, as in the first embodiment, and their curvature preferably corresponds to an arc of a circle.
  • the different horizontal lines 12 ' are substantially parallel to each other, or more precisely, the different curves 12' extend in the respective planes which are perpendicular to the vertical line 13 '.
  • the plane in which a horizontal curve 12 'extends is perpendicular to the tangent of the vertical line 13' at the level where this plane intersects the line 13 '. Because the curvature of the vertical line 13 'is small, as can be seen in Figure 3, the horizontal curves 12' extend substantially parallel.
  • the rear optical surface 11 ′ of the lens 1 thus defines a torus segment whose cross section is defined by the horizontal lines 12 ′ and whose curved longitudinal extent is defined by the vertical lines 13 ′.
  • a torus can be defined as a tube of circular section which has a defined curvature.
  • this curvature is advantageously circular, just like the curvature of the lines 12 ′.
  • Such a lens also defines a focal line F1 '.
  • the vertical line 13 ' is curved, and no longer straight, the rays passing through the middle line 13' are also diffracted, except at the center Cl. Optically, this has the effect of shrinking the image at mirror level.
  • Figures 4a and 4b We see in Figure 4a that an object O, here of rectangular geometric shape for the sake of simplicity, goes to through the lens 1 of the first embodiment to give a substantially square image I at the level of the mirror 2. As a result, the conductor will have a substantially square image Ir.
  • an object O ′ has been taken which has a size greater than the object O in FIG. 4a.
  • the object O ' is higher than the object O: the long sides of the rectangle of the object O' are greater than the long sides of the object O.
  • an image F is obtained at the level of the mirror 2 which is of substantially square shape, like the image I in FIG. 4a.
  • the conductor will have an image Ir 'which is substantially identical to the image Ir of FIG. 4a. It has thus been possible to see that objects O, O 'of vertically different sizes give a reflected image Ir, Ir' which is substantially identical. This is due to the fact that the vertical line 13 ′ of the lens is slightly curved, while the vertical line 13 is perfectly straight.
  • the curvature of the line 13 ′ has the effect of reducing the size of the image F, which corresponds to a narrowing of the optical field lines. Symmetrically, it can be said that an object of identical size will have Ir images of different sizes, the image Ir 'being more vertically tightened than the image Ir.
  • FIG. 7b is a view similar to that of Figure 7a, with a mirror according to Figure 3, that is to say with a lens l 'whose vertical line 13' is slightly curved.
  • vertical field lines represented by the lines of vertical points, are spaced apart by intervals which are identical to those in FIG. 7a.
  • the horizontal field lines are tighter, since we see three horizontal field lines in Figure 7b while we only see the median horizontal field line in Figure 7a .
  • lenses 1 and 1 An essential characteristic which is common to lenses 1 and 1 is that they both define an optical focus which extends along a line.
  • the optical linear focus F1 of the lens 1 is perfectly rectilinear
  • the linear optical focus of the lens 1 ' is curved, in correspondence with the curvature of the vertical center line 13'.
  • the mirror 2 can be identical to that of the first and second embodiments of Figures 1 and 3.
  • the lens 1 " it differs from the lens in that that the curvature of the vertical line 13 "is greatly increased at its lower zone.
  • the curvature of the main zone 131 can be identical to the curvature of the line 13 ′ of the second embodiment of FIG. 3.
  • the curvature of the zone 131 can advantageously be circular so as to define an arc of a circle.
  • the lower zone 132 has an accentuated curvature, which can also correspond to an arc of a circle.
  • the increase in the curvature in the zone 132 achieves a thickening of the lens, as can be seen in FIG. the "horizontal" lines 12 "have a curvature, which can advantageously be identical, and correspond to an arc of a circle.
  • the different curvatures 12 extendend in planes which are perpendicular to the line 13", as in the second embodiment.
  • the curvatures 12 "at the level of the lower zone 132 extend in planes which are more and more vertical, since the curvature of the vertical line 13" at the level of the zone 132 is very strong.
  • the density of the horizontal lines is substantially identical to that of FIG. 7b, since the curvatures of the horizontal lines 12 "are substantially identical.
  • the density of the vertical lines is greatly increased at the level of the lower part of the mirror corresponding to the lower zone 132 of the lens. In fact, it can be seen that the density of the vertical lines is substantially constant over most of the height of the mirror corresponding to the main zone 131. An increase in the density of the lines can, however, be observed. vertical with respect to FIG. 7b. This is due to a slightly greater curvature of the line 13 "compared to the line 13 '.
  • the density of the vertical lines in the lower part of the mirror is very high, which makes it possible to have a vision on the lower part of the roadway directly next to the vehicle.
  • the driver can have a vision of the sidewalk along which he wants to park. He can then park his car with great precision parallel to the sidewalk and as close as possible to the sidewalk.
  • the main function of the lower zone 132 is to give a vision to the driver of the roadway directly next to his vehicle.
  • the images at the lower part of the mirror are very strongly distorted, while the distortion is limited or zero at the level of the major part of the mirror.
  • the rear view mirror in FIG. 5 therefore gives a practically ideal and particularly extended vision.
  • the objects retain their proportionality both horizontally and vertically, the blind spot is particularly well covered, and moreover the driver has a vision at the level of the sidewalk along which he wants to park.
  • the lens 1 also defines a linear optical focus F1" which is slightly curved corresponding to the line 13 ".
  • the lens is located outside the vehicle shown diagrammatically by the line Av, while the mirror 2 straddles this line.
  • the mirror is for a part located outside the vehicle and for another part located inside the vehicle.
  • the prism has the well-known function of deflecting the light beams without diffraction or optical distortion.
  • the prism 16 is here incorporated into the lens of so as to constitute a one-piece optical part, the optical surface 11 ′ may be identical to that of the lens in FIG. 3.
  • the prism 16 has the effect of increasing the thickness of the lens on the right side and of reducing the thickness of the lens on the left side, when looking at FIG. 6.
  • This change of orientation of the front face has the effect of giving the lens a prismatic function capable of deflecting the light beams at the exit of the lens without distortion or diffraction. As a result, the light beams are shifted to the right, so that the mirror 2 can be shifted to the right, that is to say inside the passenger compartment of the vehicle.
  • the mirror 2 can be shifted more correspondingly inside the passenger compartment of the vehicle.
  • a prismatic function can be implemented in the other embodiments of FIGS. 1, 3 and 5. It is the same with the lower zone 132 of FIG. 5 which can be implemented in the other embodiments of the FIGS. Figures 1, 3 and 6.
  • An ideal rear view mirror can be seen in the combination of the embodiments of FIGS. 5 and 6, giving an image corresponding to FIG. 7c with a mirror located inside the passenger compartment of the vehicle.
  • the mirror can be identical and advantageously formed by a segment of a cylinder having a parabolic directing curve. This is because all the lenses of the various embodiments define an optical focus in the form of a line, not a point.
  • the various lenses 1, l ', 1 "and l” can be used independently of the parabolic cylindrical mirror, and even of any mirror. In other words, these lenses can be used in optical devices other than a rear view mirror. Each lens can thus be protected independently.
  • the parabolic cylindrical shape mirror it can also be used independently of the lenses 1 to ". Indeed, its parabolic cylindrical shape is particularly advantageous for design and manufacturing reasons, so that this mirror can be implemented in other applications, other than a rear-view mirror, so independent protection of this mirror is also possible.
  • the lenses 1, l ', 1 "and l" all have an overall rectangular configuration.
  • the lens can have any other global configuration, for example round, oblong, elliptical, square, etc., while retaining an overall, substantially or perfectly cylindrical optical surface.
  • the mirror of the present invention responds to a linear geometry so that the mirror, but also the lens, has a generally, substantially or perfectly cylindrical configuration with guiding geometry curves relatively simple, like a circle or a parabola.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Lenses (AREA)

Abstract

The invention relates to a rear-view mirror for a motor vehicle for displaying the image of an object located rearwardly outside of the vehicle comprising a lens (1; 1'; 1"; 1'") and a mirror (2), wherein said lens is embodied in the form of a concave divergent lens provided with an optical axis (A1) and a focal spot (F1; F1'; F1"), the mirror is substantially concave, light beams (Fse, Fc, Fsi) pass through the divergent lens in the direction to the mirror, which convergently reflects the beams substantially devoid of optical distortion in a direction corresponding to a driver's axis of view to the mirror (2) defining a concave reflecting surface (21) substantially corresponding to a segment of cylinder.

Description

Rétroviseur de véhicule automobile  Motor vehicle rear view mirror
La présente invention concerne un rétroviseur de véhicule automobile pour produire une image située à l'extérieur et en arrière du véhicule. Par véhicule automobile, on entend tout type de véhicule comprenant des moyens d'entraînement ou de propulsion propres, tels que des voitures particulières, des véhicules utilitaires (camionnettes, camions, tracteur, etc.), des motocyclettes. Toutefois, la présente invention ne se limite pas purement aux véhicules circulant sur des voies terrestres, mais peut également s'appliquer à d'autres véhicules volants ou navigants. La présente invention s'applique donc tout particulièrement au domaine de l'équipement de véhicules automobiles destiné à assister le conducteur pour faciliter ou élargir son champ de vision, notamment vers l'arrière. The present invention relates to a motor vehicle rear view mirror for producing an image located outside and behind the vehicle. By motor vehicle is meant any type of vehicle comprising its own drive or propulsion means, such as passenger cars, utility vehicles (vans, trucks, tractor, etc.), motorcycles. However, the present invention is not limited purely to vehicles traveling on land routes, but can also be applied to other flying or navigating vehicles. The present invention therefore applies very particularly to the field of motor vehicle equipment intended to assist the driver to facilitate or widen his field of vision, in particular towards the rear.
La presque totalité des véhicules automobiles sont équipés d'un ou de deux rétroviseurs latéraux extérieurs permettant au conducteur d'avoir une image ou un champ de vision sur des zones situées latéralement sur le côté du véhicule. Généralement, les véhicules sont en outre équipés d'un rétroviseur intérieur permettant d'avoir un champ de vision directement en arrière du véhicule. La présente invention s'appliquera tout particulièrement aux rétroviseurs latéraux extérieurs, sans toutefois exclure le rétroviseur intérieur. Ces rétroviseurs latéraux comprennent conventionnellement un miroir plan ou légèrement convexe pour augmenter le champ de vision au niveau de l'angle mort, c'est-à-dire la zone située à côté du véhicule, mais en éloignement de celui- ci. Cet angle mort est notamment dangereux avec les rétroviseurs conventionnels lors du dépassement par un autre véhicule. En effet, il arrive parfois que l'on n'aperçoive pas le véhicule qui s'est engagé à côté pour effectuer le dépassement. Ceci peut occasionner des accidents parfois graves. Pour diminuer cet angle mort, les rétroviseurs conventionnels sont fréquemment configurés de manière convexe au niveau de leur partie la plus externe afin d'étendre le champ de vision dans cet angle mort. D'autre part, ces rétroviseurs conventionnels présentent plusieurs désavantages supplémentaires à celui de ne pas couvrir de manière satisfaisante l'angle mort. Premièrement, le rétroviseur augmente l'encombrement latéral du véhicule et constitue ainsi non seulement un élément saillant qui peut entrer en collision avec un autre véhicule, un passant ou tout autre structure, mais diminue également le coefficient de pénétration dans l'air du véhicule. Pour pallier cet encombrement au stationnement, il est déjà connu d'équiper les rétroviseurs conventionnels d'un système permettant de rabattre le rétroviseur le long du véhicule. Toutefois, l'incorporation de mécanismes de rabattement, électriques ou purement mécaniques, engendre une augmentation du nombre de pièces du rétroviseur dans sa globalité. Et cette augmentation du nombre de pièces engendre bien sûr une augmentation du coût global du rétroviseur. Almost all motor vehicles are equipped with one or two exterior side mirrors allowing the driver to have an image or a field of vision on areas located laterally on the side of the vehicle. Generally, vehicles are also equipped with an interior rearview mirror allowing a field of vision directly behind the vehicle. The present invention will apply very particularly to exterior side mirrors, without however excluding the interior mirror. These side mirrors conventionally include a flat or slightly convex mirror to increase the field of vision at the blind spot, that is to say the area located next to the vehicle, but away from it. This blind spot is particularly dangerous with conventional mirrors when overtaking by another vehicle. Indeed, it sometimes happens that one does not see the vehicle which has entered alongside to carry out the overtaking. This can cause accidents which are sometimes serious. To reduce this blind spot, conventional mirrors are frequently configured convexly at their outermost part in order to extend the field of vision in this blind spot. On the other hand, these conventional mirrors have several disadvantages additional to that of not satisfactorily covering the blind spot. Firstly, the mirror increases the lateral dimensions of the vehicle and thus constitutes not only a projecting element which can collide with another vehicle, a passer-by or any other structure, but also decreases the coefficient of penetration into the air of the vehicle. To overcome this space requirement in parking, it is already known to equip conventional mirrors with a system for folding the mirror along the vehicle. However, the incorporation of folding mechanisms, electric or purely mechanical, generates an increase in the number of parts of the mirror as a whole. And this increase in the number of parts generates of course an increase in the overall cost of the mirror.
D'autre part, on connaît déjà des systèmes de rétroviseur utilisant des lentilles en combinaison avec un ou plusieurs miroir(s) réfléchissant(s). Ceci est par exemple le cas du brevet US 6 882 146. Dans ce document, le rétroviseur comprend une lentille d'objectif située à l'extérieur du véhicule, un miroir plan réfléchissant et une lentille de champ située à l'intérieur du véhicule. Ce rétroviseur utilise donc deux lentilles différentes et un miroir plan.  On the other hand, mirror systems are already known using lenses in combination with one or more reflecting mirror (s). This is for example the case of US Pat. No. 6,882,146. In this document, the rear view mirror comprises an objective lens situated outside the vehicle, a plane reflecting mirror and a field lens situated inside the vehicle. This mirror therefore uses two different lenses and a flat mirror.
La présente invention a pour but d'améliorer un tel rétroviseur à lentille et miroir de sorte qu'il soit plus facile à fabriquer, plus facile à monter, avec un nombre de pièces réduit et un coût diminué.  The present invention aims to improve such a mirror and lens mirror so that it is easier to manufacture, easier to assemble, with a reduced number of parts and a reduced cost.
Pour atteindre ces buts, la présente invention propose un rétroviseur de véhicule automobile pour produire une image d'un objet situé à l'extérieur en arrière du véhicule, comprenant une lentille et un miroir, caractérisé en ce que la lentille est une lentille concave divergente ayant un axe optique et un foyer optique et le miroir est un miroir sensiblement concave, les faisceaux lumineux traversant la lentille divergeant en direction du miroir qui renvoie les rayons de manière convergente sensiblement sans distorsion optique selon une direction qui correspond à l'axe de vision du conducteur en direction du miroir, caractérisé en ce que le miroir définit une surface de réflexion concave qui correspond sensiblement à un segment d'un cylindre. Avantageusement, le rétroviseur ne comprend qu'une seule lentille et qu'un seul miroir. To achieve these goals, the present invention provides a motor vehicle rear view mirror for producing an image of an object located outside the rear of the vehicle, comprising a lens and a mirror, characterized in that the lens is a divergent concave lens. having an optical axis and an optical focus and the mirror is a substantially concave mirror, the light beams passing through the lens diverging in the direction of the mirror which returns the rays convergently substantially without optical distortion in a direction which corresponds to the axis of vision of the conductor towards the mirror, characterized in that the mirror defines a concave reflecting surface which roughly corresponds to a segment of a cylinder. Advantageously, the rear view mirror includes only one lens and only one mirror.
Ainsi, la concavité du miroir définit une surface géométrique relativement simple et particulièrement facile à produire industriellement. En effet, il est facile et connu de réaliser des surfaces cylindriques à partir de plaques ou de feuilles planes de sorte que la surface obtenue réponde à la définition d'un cylindre. En déformant une plaque ou une feuille plane, dans une direction elle définit une courbure, et dans l'autre direction perpendiculaire elle définit une droite. Ceci répond parfaitement à la définition d'un cylindre qui résulte de la projection le long d'une génératrice d'une courbe directrice pouvant avoir une trajectoire quelconque. Un cylindre circulaire résulte en effet de la projection d'un cercle le long d'une génératrice qui passe au centre du cercle, et qui s'étend avantageusement perpendiculairement au plan dans lequel est défini le cercle. Sur ce même principe géométrique, on peut définir des cylindres ayant des sections transversales les plus diverses : cette section transversale correspondant à la courbe directrice du cylindre. En pratique, les surfaces cylindriques sont particulièrement faciles à produire, notamment par extrusion ou filage. En faisant passer un matériau fluable à travers une filière d'extrusion, on obtient à la sortie une sorte de profilé dont la section correspond exactement à la forme du trou pratiqué au niveau de la filière. Un tel profilé extradé ou filé peut être qualifié de cylindre. Ainsi, dans la présente invention, la surface de réflexion concave présente une configuration cylindrique et peut être réalisée à partir d'un tronçon, d'un morceau, d'une découpe, ou plus généralement un segment d'un cylindre.  Thus, the concavity of the mirror defines a relatively simple geometric surface which is particularly easy to produce industrially. Indeed, it is easy and known to produce cylindrical surfaces from plates or flat sheets so that the surface obtained meets the definition of a cylinder. By deforming a flat plate or sheet, in one direction it defines a curvature, and in the other perpendicular direction it defines a straight line. This perfectly meets the definition of a cylinder which results from the projection along a generatrix of a directing curve which can have any trajectory. A circular cylinder in fact results from the projection of a circle along a generatrix which passes through the center of the circle, and which advantageously extends perpendicular to the plane in which the circle is defined. On the same geometrical principle, one can define cylinders having the most diverse cross sections: this cross section corresponding to the guiding curve of the cylinder. In practice, cylindrical surfaces are particularly easy to produce, in particular by extrusion or spinning. By passing a flowable material through an extrusion die, we obtain at the outlet a kind of profile whose cross section corresponds exactly to the shape of the hole made at the die. Such an extruded or extruded profile can be qualified as a cylinder. Thus, in the present invention, the concave reflecting surface has a cylindrical configuration and can be produced from a section, a piece, a cut, or more generally a segment of a cylinder.
Selon un autre aspect intéressant de l'invention, le cylindre est parabolique et présente un plan de symétrie et une ligne focale située dans ce plan. Une parabole est une courbe en deux dimensions qui se caractérise par une directrice, un foyer et un axe de symétrie. Lorsqu'une telle courbe est projetée le long d'une génératrice perpendiculaire à la fois à la directrice et à l'axe de symétrie, on obtient un cylindre dont la section définit une parabole. Selon l'invention, la surface de réflexion concave est réalisée à partir d'un tronçon, d'un morceau ou d'un segment d'un tel cylindre de section parabolique. Bien entendu, lorsque la parabole est projetée le long de la génératrice pour former le cylindre, l'axe de la parabole est projetée selon la génératrice de manière à former un plan de symétrie et le foyer ponctuel de la parabole est également projeté selon la génératrice de manière à former une ligne focale rectiligne qui est située dans le plan de symétrie du cylindre parabolique. Selon une caractéristique avantageuse de l'invention, le plan de symétrie est sensiblement parallèle à l'axe de vision du conducteur en direction du miroir. En d'autres termes, la courbure parabolique de la surface de réflexion concave s'étend dans un plan sensiblement horizontal. According to another interesting aspect of the invention, the cylinder is parabolic and has a plane of symmetry and a focal line located in this plane. A parabola is a curve in two dimensions which is characterized by a directrix, a focus and an axis of symmetry. When such a curve is projected along a generatrix perpendicular to both the director and the axis of symmetry, we obtain a cylinder whose section defines a parabola. According to the invention, the concave reflection surface is produced from a section, of a piece or segment of such a parabolic section cylinder. Of course, when the parabola is projected along the generatrix to form the cylinder, the axis of the parabola is projected according to the generatrix so as to form a plane of symmetry and the point focus of the parabola is also projected according to the generatrix so as to form a rectilinear focal line which is situated in the plane of symmetry of the parabolic cylinder. According to an advantageous characteristic of the invention, the plane of symmetry is substantially parallel to the axis of vision of the driver in the direction of the mirror. In other words, the parabolic curvature of the concave reflecting surface extends in a substantially horizontal plane.
Selon un autre aspect de l'invention, la surface de réflexion du miroir définit une ligne médiane horizontale et une ligne médiane verticale qui se coupent sensiblement au centre du miroir, la ligne horizontale ayant une courbure sensiblement parabolique, la ligne verticale étant sensiblement droite, toutes les lignes verticales étant également droites et toutes les lignes horizontales ayant la même courbure parabolique que la ligne médiane horizontale. Cette définition correspond à celle d'une surface formée à partir d'un tronçon de cylindre dont la courbe directrice est une parabole.  According to another aspect of the invention, the reflection surface of the mirror defines a horizontal center line and a vertical center line which intersect substantially in the center of the mirror, the horizontal line having a substantially parabolic curvature, the vertical line being substantially straight, all vertical lines also being straight and all horizontal lines having the same parabolic curvature as the horizontal center line. This definition corresponds to that of a surface formed from a section of cylinder whose directing curve is a parabola.
Selon une autre caractéristique intéressante de l'invention, le foyer optique de la lentille définit une ligne focale. Avantageusement, la ligne focale est disposée sensiblement verticalement par rapport au miroir. Cette ligne focale peut être parfaitement rectiligne, sensiblement rectiligne ou encore courbe. Le fait que la lentille définisse une ligne focale et non pas un point focal signifie que la lentille n'est pas de révolution, comme par exemple une lentille sphérique ou asphérique. En effet, dans le cas d'une lentille de révolution, le foyer optique de la lentille est ponctuel et se présente sous la forme d'un point situé sur l'axe focal qui est une ligne. Dans le cas d'un foyer optique linéaire à deux dimensions, l'axe optique se présente sous la forme d'un plan optique et la ligne focale est située dans ce plan optique.  According to another advantageous characteristic of the invention, the optical focus of the lens defines a focal line. Advantageously, the focal line is arranged substantially vertically relative to the mirror. This focal line can be perfectly straight, substantially straight or even curved. The fact that the lens defines a focal line and not a focal point means that the lens is not of revolution, such as for example a spherical or aspherical lens. Indeed, in the case of a lens of revolution, the optical focus of the lens is punctual and is in the form of a point located on the focal axis which is a line. In the case of a two-dimensional linear optical focus, the optical axis is in the form of an optical plane and the focal line is located in this optical plane.
Selon un autre aspect de l'invention, les lignes focales respectives du cylindre et de la lentille sont sensiblement parallèles, mais distinctes, c'est-à-dire pas confondues. Selon un autre aspect intéressant, la ligne focale du cylindre est située à proximité de l'axe optique de la lentille. Dans notre cas, l'axe optique de la lentille est un plan optique. According to another aspect of the invention, the respective focal lines of the cylinder and of the lens are substantially parallel, but distinct, that is to say not confused. According to another interesting aspect, the focal line of the cylinder is located near the optical axis of the lens. In our case, the optical axis of the lens is an optical plane.
Selon un autre aspect particulièrement intéressant de l'invention, la lentille comprend une face avant concave et une face arrière sensiblement plane orientée vers le miroir, la face avant définissant une surface optique ayant une configuration sensiblement cylindrique. Ainsi, à la fois le miroir et la lentille présente une configuration sensiblement cylindrique. Les génératrices des deux cylindres sont avantageusement parallèles et disposées verticalement. Selon une première forme de réalisation avantageuse, la surface optique définit une ligne médiane horizontale et une ligne médiane verticale qui se coupent sensiblement au centre de la surface optique, la ligne médiane horizontale présentant une courbure dans un plan perpendiculaire à la ligne médiane verticale, toutes les lignes horizontales ayant sensiblement la même courbure que la ligne médiane horizontale dans des plans respectifs perpendiculaires à la ligne médiane verticale. Avantageusement, la courbure des lignes horizontales est circulaire de manière à définir un arc de cercle ayant un rayon déterminé.  According to another particularly interesting aspect of the invention, the lens comprises a concave front face and a substantially planar rear face oriented towards the mirror, the front face defining an optical surface having a substantially cylindrical configuration. Thus, both the mirror and the lens have a substantially cylindrical configuration. The generators of the two cylinders are advantageously parallel and arranged vertically. According to a first advantageous embodiment, the optical surface defines a horizontal center line and a vertical center line which intersect substantially at the center of the optical surface, the horizontal center line having a curvature in a plane perpendicular to the vertical center line, all the horizontal lines having substantially the same curvature as the horizontal center line in respective planes perpendicular to the vertical center line. Advantageously, the curvature of the horizontal lines is circular so as to define an arc of a circle having a determined radius.
Selon une forme de réalisation simple, la ligne médiane verticale est droite, ainsi que toutes les autres lignes verticales. La surface optique de la lentille répond alors exactement ou sensiblement à la définition d'un cylindre dont la courbe directrice est avantageusement circulaire. Une telle lentille cylindrique est particulièrement facile à réaliser, étant donné qu'elle peut être réalisée par extrusion du fait que sa section transversale est constante.  According to a simple embodiment, the vertical center line is straight, as are all the other vertical lines. The optical surface of the lens then responds exactly or substantially to the definition of a cylinder, the guide curve of which is advantageously circular. Such a cylindrical lens is particularly easy to produce, since it can be produced by extrusion because its cross section is constant.
Selon une forme de réalisation pratique plus élaborée, la ligne médiane verticale est courbe, de sorte que la surface optique présente une configuration globale torique. La courbure verticale peut avantageusement être circulaire de manière à répondre à un arc de cercle ayant un rayon déterminé. Toutefois, la courbure peut présenter toute autre trajectoire quelconque. La courbure verticale accentue encore davantage la concavité de la surface optique. Cette concavité verticale à pour résultat optique de resserrer les lignes de champ verticales de sorte que les sujets visibles au niveau du miroir présentent un aspect « normal » en ce qui concerne les proportions horizontales et verticales. En effet, la courbure horizontale de la lentille a pour effet de resserrer l'image au niveau du miroir de sorte que les sujets visibles sur le miroir sont particulièrement fins, tout en gardant une hauteur normale. En courbant également la surface optique dans le sens vertical, on corrige ce défaut de proportion des sujets au niveau du miroir. La surface optique présente alors une configuration qui est celle d'un segment de tube courbé, que l'on peut qualifier généralement de tore. Cette configuration géométrique se caractérise par le fait que la courbure transversale ou horizontale dans un plan perpendiculaire à la courbure verticale ou longitudinale est constante, et par exemple circulaire. According to a more elaborate practical embodiment, the vertical center line is curved, so that the optical surface has an overall toric configuration. The vertical curvature can advantageously be circular so as to respond to an arc of a circle having a determined radius. However, the curvature can have any other trajectory whatsoever. The vertical curvature further accentuates the concavity of the optical surface. This vertical concavity has the optical result of tightening the vertical field lines so that the subjects visible at the mirror have a "normal" appearance with regard to the horizontal and vertical proportions. Indeed, the horizontal curvature of the lens has the effect of tightening the image at the level of the mirror so that the subjects visible on the mirror are particularly fine, while keeping a normal height. By also bending the optical surface in the vertical direction, this defect in the proportion of subjects at the level of the mirror is corrected. The optical surface then has a configuration which is that of a segment of curved tube, which can generally be described as a torus. This geometric configuration is characterized by the fact that the transverse or horizontal curvature in a plane perpendicular to the vertical or longitudinal curvature is constant, and for example circular.
Selon un autre aspect intéressant de l'invention, la ligne médiane verticale présente une zone inférieure au niveau de laquelle sa courbure est plus forte. La courbure des lignes horizontales (qui ne s'inscrit pas forcément dans le plan horizontal) peut être maintenue constante si l'on considère les lignes de courbure dans des plans qui sont toujours perpendiculaires à la courbure de la ligne verticale. L'augmentation de la courbure au niveau de la zone inférieure de la surface optique permet de dévier très fortement les faisceaux vers le bas, c'est-à- dire vers la chaussée ou le trottoir, ce qui permet au conducteur d'avoir une vue, certes déformée, dans la zone située au niveau du trottoir. Ce champ de vision sur le trottoir permet notamment de faciliter ou d'améliorer le stationnement du véhicule automobile le plus près possible du trottoir, ou au moins parallèlement au trottoir. La ligne médiane verticale peut ainsi présenter une courbure sensiblement constante sur la majeure partie de sa hauteur et une courbure fortement accrue au niveau de sa zone inférieure.  According to another interesting aspect of the invention, the vertical center line has a lower region at the level of which its curvature is greater. The curvature of the horizontal lines (which is not necessarily in the horizontal plane) can be kept constant if we consider the lines of curvature in planes which are always perpendicular to the curvature of the vertical line. The increase in the curvature at the level of the lower zone of the optical surface makes it possible to deviate very strongly the beams downwards, that is to say towards the roadway or the pavement, which allows the driver to have a view, certainly distorted, in the area located at the sidewalk. This field of vision on the sidewalk makes it possible in particular to facilitate or improve the parking of the motor vehicle as close as possible to the sidewalk, or at least parallel to the sidewalk. The vertical center line can thus have a substantially constant curvature over most of its height and a greatly increased curvature at its lower zone.
Selon encore un autre aspect intéressant de l'invention, la lentille présente une configuration prismatique apte à dévier les faisceaux lumineux vers l'intérieur de l'automobile. Cette configuration prismatique de la lentille correspond à la combinaison ou à l'association d'une lentille et d'un prisme permettant de dévier les faisceaux vers l'intérieur du véhicule, de sorte que le miroir peut être installé plus à l'intérieur du véhicule que cela ne serait le cas s'il n'y avait pas cette configuration prismatique. Par conséquent, le prisme incorporé à la lentille permet de décaler le miroir vers l'intérieur du véhicule, ce qui réduit encore davantage l'encombrement du rétroviseur en dehors du véhicule. According to yet another interesting aspect of the invention, the lens has a prismatic configuration capable of deflecting the light beams towards the interior of the automobile. This prismatic configuration of the lens corresponds to the combination or association of a lens and a prism making it possible to deflect the beams towards the interior of the vehicle, so that the mirror can be installed more inside the vehicle than would be the case if it weren't for this prismatic configuration. Therefore, the prism incorporated into the lens allows the mirror to be shifted towards the interior of the vehicle, which further reduces the size of the mirror outside the vehicle.
Selon un autre aspect, l'axe optique de la lentille fait un angle α de l'ordre de 10 degrés par rapport au faisceau passant par le centre de la lentille et le centre du miroir. La lentille a légèrement été tournée de sorte que son axe optique n'est plus confondu avec le faisceau passant par son centre et le centre du miroir. Cette rotation de la lentille permet de couvrir de manière optimale l'angle mort et de diminuer en conséquence le champ de vision sur la carrosserie du véhicule, qui n'est pas nécessaire. De ce fait, le champ de vision est davantage orienté sur le côté du véhicule et non plus le long du véhicule.  According to another aspect, the optical axis of the lens makes an angle α of the order of 10 degrees relative to the beam passing through the center of the lens and the center of the mirror. The lens has been slightly rotated so that its optical axis is no longer coincident with the beam passing through its center and the center of the mirror. This rotation of the lens optimally covers the blind spot and consequently reduces the field of vision on the vehicle body, which is not necessary. As a result, the field of vision is more oriented towards the side of the vehicle and no longer along the vehicle.
D'autre part, le faisceau passant par le centre de la lentille et le centre du miroir fait un angle β de l'ordre de 10 degrés par rapport à un axe longitudinal du véhicule. Ainsi, l'axe optique de la lentille fait un angle de l'ordre de 15 à 25 degrés par rapport à l'axe longitudinal du véhicule, qui est celui de la vitre de la portière du véhicule.  On the other hand, the beam passing through the center of the lens and the center of the mirror makes an angle β of the order of 10 degrees relative to a longitudinal axis of the vehicle. Thus, the optical axis of the lens makes an angle of the order of 15 to 25 degrees relative to the longitudinal axis of the vehicle, which is that of the window of the vehicle door.
Grâce à l'invention, il est possible de réaliser un rétroviseur ne comprenant qu'une seule lentille et qu'un seul miroir. La lentille peut être une lentille définissant un foyer linéaire qui peut avantageusement être combiné à un miroir cylindrique qui est de préférence parabolique. La lentille du fait de son foyer local linéaire ne génère des distorsions optiques que dans le plan horizontal et pas du tout dans le plan vertical. Ainsi le miroir n'a besoin de corriger que les distorsions optiques horizontales et une forme de réalisation particulièrement avantageuse est celle d'un miroir cylindrique dont la courbe directrice est avantageusement parabolique. Le miroir de l'invention remplit de toute façon une double fonction, à savoir celle classique de réflexion et celle mois classique de correction à la manière d'une lentille. On peut ainsi considérer que le miroir selon l'invention incorpore à la fois un miroir classique et une lentille qui permet de corriger la distorsion optique générée par la lentille concave divergente. Il est à noter que la lentille à foyer linéaire peut être utilisée avec un miroir quelconque qui n'est pas forcément cylindrique, ou cylindrique parabolique. De manière symétrique, le miroir de l'invention qui est cylindrique, et de préférence cylindrique parabolique, peut être utilisé avec n'importe quelle lentille qui n'est pas forcément à foyer linéaire. En d'autres termes, aussi bien la lentille que le miroir peuvent être protégés séparément l'un de l'autre. Thanks to the invention, it is possible to produce a rearview mirror comprising only one lens and only one mirror. The lens can be a lens defining a linear focal point which can advantageously be combined with a cylindrical mirror which is preferably parabolic. The lens due to its linear local focus generates optical distortions only in the horizontal plane and not at all in the vertical plane. Thus, the mirror only needs to correct the horizontal optical distortions, and a particularly advantageous embodiment is that of a cylindrical mirror whose guiding curve is advantageously parabolic. In any case, the mirror of the invention fulfills a double function, namely that of classic reflection and that of classic month of correction in the manner of a lens. It can thus be considered that the mirror according to the invention incorporates both a conventional mirror and a lens which makes it possible to correct the optical distortion generated by the divergent concave lens. It should be noted that the linear focal lens can be used with any mirror which is not necessarily cylindrical, or parabolic cylindrical. So symmetrical, the mirror of the invention which is cylindrical, and preferably cylindrical parabolic, can be used with any lens which is not necessarily with linear focus. In other words, both the lens and the mirror can be protected separately from each other.
L'invention sera maintenant plus amplement décrite en référence aux dessins joints donnant à titre d'exemple non limitatif un mode de réalisation de l'invention.  The invention will now be described more fully with reference to the accompanying drawings which give an embodiment of the invention by way of non-limiting example.
Sur les figures :  In the figures:
la figure 1 est une vue schématique en perspective d'une lentille et d'un miroir selon un premier mode de réalisation non limitatif de rétroviseur de véhicule automobile selon l'invention,  FIG. 1 is a schematic perspective view of a lens and a mirror according to a first nonlimiting embodiment of a motor vehicle rear view mirror according to the invention,
la figure 2 est une représentation schématique optique du rétroviseur de la figure 1,  FIG. 2 is a schematic optical representation of the mirror of FIG. 1,
la figure 3 est une vue similaire à celle de la figure 1 représentant un rétroviseur utilisant une lentille selon un second mode de réalisation de l'invention,  FIG. 3 is a view similar to that of FIG. 1 showing a rear view mirror using a lens according to a second embodiment of the invention,
les figures 4a et 4b sont des représentations schématiques en perspective montrant la différence au niveau des images entre le premier et le second mode de réalisation des figures 1 et 3, les figures 5 et 6 sont des représentations similaires aux figures 1 et 3 pour un troisième et un quatrième mode de réalisation d'un rétroviseur selon l'invention, respectivement, et  Figures 4a and 4b are schematic perspective representations showing the difference in images between the first and the second embodiment of Figures 1 and 3, Figures 5 and 6 are representations similar to Figures 1 and 3 for a third and a fourth embodiment of a mirror according to the invention, respectively, and
les figures 7a, 7b et 7c sont des vues du miroir laissant apparaître les lignes de champ correspondant respectivement au rétroviseur des figures 1, 3 et 5.  FIGS. 7a, 7b and 7c are views of the mirror revealing the field lines corresponding respectively to the mirror of FIGS. 1, 3 and 5.
En se référant tout d'abord aux figures 1 et 2, on voit de manière très schématique en perspective les deux éléments constitutifs essentiels du rétroviseur selon la première forme de réalisation de la présente invention. Ces deux éléments sont respectivement une lentille 1 et un miroir 2. La lentille et le miroir peuvent être montés sur un support commun 3 qui peut présenter toute forme appropriée. Sur la figure 1, ce support 3 a été schématiquement représenté par une tige ou une barre reliant la lentille 1 au miroir 2. Ce support 3 est un élément optionnel de sorte que la lentille 1 et le miroir 2 peuvent être montés sur des supports indépendants ou dissociés. En plus de ces trois éléments, le rétroviseur peut comporter un quatrième élément visible sur la figure 2 : il s'agit d'une coque 4 qui enveloppe la lentille 1 et le miroir 2, et optionnellement le support 3. Cette coque 4 permet de définir un logement interne avec la carrosserie ou la vitre du véhicule pour y loger la lentille 1 et le miroir 2. La coque 4 est également un élément optionnel. Referring first to Figures 1 and 2, we can see very schematically in perspective the two essential components of the mirror according to the first embodiment of the present invention. These two elements are respectively a lens 1 and a mirror 2. The lens and the mirror can be mounted on a common support 3 which can have any suitable shape. In FIG. 1, this support 3 has been schematically represented by a rod or a bar connecting the lens 1 to the mirror 2. This support 3 is an optional element so that the lens 1 and the mirror 2 can be mounted on independent or dissociated supports. In addition to these three elements, the rear view mirror may include a fourth element visible in FIG. 2: it is a shell 4 which envelops the lens 1 and the mirror 2, and optionally the support 3. This shell 4 makes it possible to define an internal housing with the bodywork or the window of the vehicle to accommodate the lens 1 and the mirror 2. The shell 4 is also an optional element.
La lentille 1 est une lentille concave divergente présentant une face avant concave 10 et une face arrière plane 15. Ainsi, les faisceaux lumineux traversant la lentille à partir de sa face concave 10 sont diffractés de manière divergente à la sortie de la face plane 15. La face avant 10 définit une surface optique concave 11 qui est ici sensiblement ou parfaitement cylindrique. En effet, on peut définir cette surface optique 11 comme ayant des lignes horizontales 12 et des lignes verticales 13 (dont seule la ligne médiane verticale a été représentée). Etant donné que la surface optique 11 est cylindrique, les lignes verticales 13 sont des droites qui sont toutes parallèles les unes aux autres. En revanche, les lignes horizontales 12 sont des courbes, qui sont cependant également parallèles les unes aux autres. Avantageusement, la courbure des lignes horizontales 12 est circulaire de manière à former un arc de cercle ayant un rayon constant déterminé. Ainsi, la surface optique 11 peut être définie comme un tronçon ou segment de cylindre circulaire.  The lens 1 is a divergent concave lens having a concave front face 10 and a flat rear face 15. Thus, the light beams passing through the lens from its concave face 10 are diffracted in a divergent manner at the exit from the planar face 15. The front face 10 defines a concave optical surface 11 which is here substantially or perfectly cylindrical. Indeed, this optical surface 11 can be defined as having horizontal lines 12 and vertical lines 13 (of which only the vertical center line has been shown). Since the optical surface 11 is cylindrical, the vertical lines 13 are straight lines which are all parallel to each other. On the other hand, the horizontal lines 12 are curves, which are however also parallel to each other. Advantageously, the curvature of the horizontal lines 12 is circular so as to form an arc of a circle having a determined constant radius. Thus, the optical surface 11 can be defined as a section or segment of a circular cylinder.
Cette lentille 1 de forme générale ou globale cylindrique ou allongée définit un axe optique, ou plus précisément un plan optique Al qui passe par la ligne médiane verticale 13. Cette lentille cylindrique définit de ce fait un foyer Fl qui est une ligne focale optique qui s'étend dans le plan optique Al à une distance de la lentille qui correspond à la longueur focale de la lentille. Ceci est visible sur la figure 1. Cette distance focale peut être de l'ordre de 8 à 10 centimètres. Le foyer linéaire Fl est bien entendu situé du côté de la surface optique concave 11. Etant donné que la surface optique 11 est cylindrique, la ligne focale Fl est une droite qui s'étend verticalement parallèlement à la ligne médiane verticale 13, et de ce fait perpendiculairement aux plans dans lesquels sont inscrites les lignes horizontales 12. This lens 1 of general or overall cylindrical or elongated shape defines an optical axis, or more precisely an optical plane A1 which passes through the vertical center line 13. This cylindrical lens therefore defines a focal point F1 which is an optical focal line which s 'extends in the optical plane A1 at a distance from the lens which corresponds to the focal length of the lens. This is visible in Figure 1. This focal distance can be of the order of 8 to 10 centimeters. The linear focal point F1 is of course located on the side of the concave optical surface 11. Since the optical surface 11 is cylindrical, the focal line F1 is a straight line which extends vertically parallel to the vertical center line 13, and therefore perpendicular to the planes in which the horizontal lines 12 are inscribed.
D'autre part, la lentille 1 définit un bord de fixation 14 qui permet par exemple de saisir la lentille pour la fixer sur un support quelconque.  On the other hand, the lens 1 defines a fixing edge 14 which allows for example to grip the lens to fix it on any support.
Le miroir 2 comprend une surface de réflexion 21 qui est ici de forme sensiblement rectangulaire couchée, c'est-à-dire avec les grands côtés s'étendant horizontalement et les petits côtés s'étendant verticalement. Toutefois, le miroir peut définir une surface de réflexion 21 ayant une autre configuration, par exemple ovale, elliptique, oblongue, polygonale, ou de forme géométrique complexe. Selon l'invention, la surface de réflexion 21 présente une configuration concave complexe. Toutefois, la concavité de la surface de réflexion peut globalement ou grossièrement ou sensiblement être apparentée à un segment, tronçon, partie ou portion d'un cylindre vertical. La surface de réflexion 21 définit une ligne centrale horizontale 22 et une ligne centrale verticale 23 qui se coupent sensiblement au centre Cm du miroir. Etant donné que le cylindre est vertical ou debout, la ligne verticale 23 est une droite comme toutes les autres lignes verticales parallèles. D'autre part, la ligne horizontale 22 est de forme sensiblement ou parfaitement parabolique ainsi que toutes les autres lignes horizontales parallèles à la ligne 22. Plus précisément, la surface de réflexion 21 est un segment d'un cylindre dont la courbe directrice est parabolique. En d'autres termes, la section transversale du cylindre est de forme parabolique. La ligne horizontale 22 ainsi que toutes les autres lignes horizontales sont de forme parabolique et vont donc passer par la ligne centrale Cp du centre parabolique du cylindre. En effet, toute parabole est définie par un axe de parabole ou axe de symétrie de parabole ainsi que par un foyer de parabole. Une parabole est en outre définie par une directrice de parabole (non représentée). Lorsque le centre de la parabole est projeté le long de la génératrice du cylindre (qui est ici verticale), ce centre ponctuel est transformé en une ligne de centre qui correspond à Cp sur la figure 1. De même, lorsque l'axe de symétrie de la parabole est projeté le long de la génératrice du cylindre, cet axe est transformé en un plan de symétrie référencé Ap sur la figure 1. Ce plan Ap est ici disposé verticalement, étant donné que le miroir 2 est disposé avec sa ligne verticale médiane 23 orientée verticalement. De même, le foyer de la parabole (qui est un point) est transformé en une ligne focale de parabole après projection le long de la génératrice verticale du cylindre. Cette ligne focale de parabole est désignée par la référence Fp sur la figure 1. Cette ligne focale Fp est parallèle à la ligne centrale Cp qui est également parallèle à la ligne médiane verticale 23 du miroir 2. La ligne centrale de parabole Cp ainsi que la ligne focale de parabole Fp sont également visibles sur la figure 2. The mirror 2 comprises a reflecting surface 21 which is here of substantially rectangular shape lying down, that is to say with the long sides extending horizontally and the short sides extending vertically. However, the mirror can define a reflection surface 21 having another configuration, for example oval, elliptical, oblong, polygonal, or of complex geometric shape. According to the invention, the reflection surface 21 has a complex concave configuration. However, the concavity of the reflection surface can be globally or roughly or substantially be related to a segment, section, part or portion of a vertical cylinder. The reflection surface 21 defines a horizontal central line 22 and a vertical central line 23 which intersect substantially at the center Cm of the mirror. Since the cylinder is vertical or upright, the vertical line 23 is a straight line like all other parallel vertical lines. On the other hand, the horizontal line 22 is of substantially or perfectly parabolic shape as well as all the other horizontal lines parallel to the line 22. More precisely, the reflection surface 21 is a segment of a cylinder whose directing curve is parabolic . In other words, the cross section of the cylinder is parabolic in shape. The horizontal line 22 as well as all the other horizontal lines are of parabolic shape and will therefore pass through the central line Cp of the parabolic center of the cylinder. Indeed, any parabola is defined by an axis of parabola or axis of symmetry of parabola as well as by a focal point of parabola. A parabola is further defined by a parabola director (not shown). When the center of the parabola is projected along the generatrix of the cylinder (which is here vertical), this point center is transformed into a center line which corresponds to Cp in figure 1. Likewise, when the axis of symmetry of the parabola is projected along the generatrix of the cylinder, this axis is transformed into a plane of symmetry referenced Ap in FIG. 1. This plane Ap is here arranged vertically, since the mirror 2 is arranged with its vertical center line 23 oriented vertically. Likewise, the focal point of the parabola (which is a point) is transformed into a focal line of parabola after projection along the vertical generatrix of the cylinder. This focal line of the parabola is designated by the reference Fp in FIG. 1. This focal line Fp is parallel to the central line Cp which is also parallel to the vertical center line 23 of the mirror 2. The central parabola line Cp and the Fp parabolic focal line are also visible in Figure 2.
La lentille 1 et le miroir 2 sont positionnés mutuellement l'un par rapport à l'autre de telle sorte que la face plane arrière 15 de la lentille est tournée vers la surface de réflexion 21 du miroir. Toutefois, si l'on considère que le support 3 définit un axe de support, ni la lentille 1, ni le miroir 2 n'est disposé perpendiculairement à cet axe de support. En effet, la lentille 1 est légèrement tournée et le miroir 2 est franchement tourné de sorte que le faisceau central Fc passant par le centre Cl de la lentille et le centre Cm du miroir 2 est réfléchi et redirigé vers l'œil O du conducteur. L'angle δ entre le faisceau central incident et le faisceau central réfléchi est de l'ordre de 20 à 50 degrés. D'autre part, étant donné que la lentille 1 est légèrement tournée, l'angle α entre l'axe optique Al de la lentille et le faisceau central Fc passant par le centre de la lentille et le centre du miroir est de l'ordre de 5 à 15 degrés, par exemple 10 degrés.  The lens 1 and the mirror 2 are positioned mutually with respect to each other so that the rear plane face 15 of the lens is turned towards the reflection surface 21 of the mirror. However, if we consider that the support 3 defines a support axis, neither the lens 1 nor the mirror 2 is arranged perpendicular to this support axis. Indeed, the lens 1 is slightly turned and the mirror 2 is frankly turned so that the central beam Fc passing through the center Cl of the lens and the center Cm of the mirror 2 is reflected and redirected towards the eye O of the driver. The angle δ between the incident central beam and the reflected central beam is of the order of 20 to 50 degrees. On the other hand, given that the lens 1 is slightly turned, the angle α between the optical axis Al of the lens and the central beam Fc passing through the center of the lens and the center of the mirror is of the order from 5 to 15 degrees, for example 10 degrees.
En se référant à la figure 2, on identifie clairement les angles α et δ. D'autre part, le faisceau central Fc est orienté par rapport à l'axe longitudinal du véhicule en faisant un angle β qui peut également être de l'ordre de 5 à 15 degrés, par exemple 10 degrés. L'axe Av peut être également considéré comme l'axe de la portière du conducteur ou de la vitre de la portière du conducteur. Ainsi, le rétroviseur selon l'invention doit être installé sur le véhicule de sorte que le faisceau central fasse un angle de β par rapport à la portière. Dans ce cas, la lentille 1 est située à l'extérieur du véhicule, alors que le miroir 2 est situé partiellement à l'intérieur du véhicule et partiellement à l'extérieur du véhicule. Bien entendu, grâce à la coque 4, le miroir 2 peut être situé dans un espace qui communique avec l'intérieur du véhicule et qui est séparé de l'extérieur du véhicule par cette coque 4. La lentille 1 sert alors d'obturateur de l'espace interne formé par la coque 4 et d'entrée de lumière à l'intérieur de cette coque où est disposé le miroir 2. Referring to Figure 2, we clearly identify the angles α and δ. On the other hand, the central beam Fc is oriented relative to the longitudinal axis of the vehicle by making an angle β which can also be of the order of 5 to 15 degrees, for example 10 degrees. The axis Av can also be considered as the axis of the driver's door or the window of the driver's door. Thus, the mirror according to the invention must be installed on the vehicle so that the central beam makes an angle of β relative to the door. In this case, the lens 1 is located outside the vehicle, while the mirror 2 is located partially inside the vehicle and partially outside the vehicle. Of course, thanks to the shell 4, the mirror 2 can be located in a space which communicates with the interior of the vehicle and which is separated from the exterior of the vehicle by this shell 4. The lens 1 then serves as a shutter of the internal space formed by the shell 4 and of light entering inside this shell where the mirror 2 is arranged.
L'angle de vision γ procuré par la lentille 1 peut être de l'ordre de 35 degrés, alors qu'avec un rétroviseur classique, l'angle de vue est limité à environ 25 degrés seulement. Le faisceau latéral interne Fsi coupe l'axe longitudinal Av de manière à donner une vision d'une partie de la carrosserie. A l'opposé, le faisceau latéral extérieur Fse permet d'élargir la vision au niveau de l'angle mort classique d'un rétroviseur conventionnel. Ainsi, les faisceaux traversant la lentille 1 sont dirigés de manière divergente vers le miroir concave 2 qui réfléchit les faisceaux de manière convergente sensiblement sans distorsion optique vers l'œil The viewing angle γ provided by the lens 1 can be of the order of 35 degrees, while with a conventional mirror, the viewing angle is limited to only about 25 degrees. The internal lateral beam Fsi intersects the longitudinal axis Av so as to give a vision of part of the body. In contrast, the exterior side beam Fse allows you to widen your vision at the conventional blind spot of a conventional rear view mirror. Thus, the beams passing through the lens 1 are directed divergently towards the concave mirror 2 which reflects the beams in a convergent manner substantially without optical distortion towards the eye.
0 du conducteur. 0 from the driver.
En ce qui concerne l'orientation mutuelle du miroir et de la lentille, les génératrices respectives du cylindre formant le miroir et du cylindre formant la lentille sont disposées de manière parallèle. Plus concrètement, la ligne médiane verticale 23 du miroir est disposée sensiblement parallèlement à la ligne médiane verticale 13 de la surface optique 11 de la lentille 1. De même, la ligne centrale horizontale 22 du miroir 2 est située dans le même plan que la ligne médiane horizontale 12 de la lentille 1. En ce qui concerne la distance séparant la lentille As regards the mutual orientation of the mirror and the lens, the respective generatrices of the cylinder forming the mirror and of the cylinder forming the lens are arranged in parallel. More concretely, the vertical center line 23 of the mirror is arranged substantially parallel to the vertical center line 13 of the optical surface 11 of the lens 1. Likewise, the horizontal central line 22 of the mirror 2 is located in the same plane as the line horizontal median 12 of the lens 1. Regarding the distance between the lens
1 du miroir 2, on peut dire que le foyer linéaire Fp du cylindre parabolique du miroir est situé à proximité du foyer linéaire Fl de la lentille. Ceci est visible aussi bien sur la figure 1 que sur la figure 2. On peut également remarquer que le foyer linéaire du cylindre parabolique Fp est situé sur le faisceau Fc passant par le centre Cl de la lentille et le centre Cm du miroir. Les foyers linéaires Fp et Fl s'étendent de préférence parallèlement l'un à l'autre mais ne sont pas confondus ; il existe donc une distance les séparant. Cette distinction des deux foyers linéaires permet de faire converger les faisceaux réfléchis par le miroir 2 et dirigés vers l'œil du conducteur. 1 of the mirror 2, it can be said that the linear focus Fp of the parabolic cylinder of the mirror is located near the linear focus Fl of the lens. This is visible both in Figure 1 and in Figure 2. It can also be noted that the linear focus of the parabolic cylinder Fp is located on the beam Fc passing through the center Cl of the lens and the center Cm of the mirror. The linear foci Fp and Fl preferably extend parallel to one another but are not confused; there is therefore a distance between them. This distinction of the two linear focal points makes it possible to converge the beams reflected by the mirror 2 and directed towards the driver's eye.
Etant donné que la lentille 1 et le miroir 2 sont tous deux de configuration cylindrique et s'étendent selon des génératrices qui sont parallèles, la vue en coupe transversale horizontale de la figure 2 est tout à fait représentative de la figure 1 et peut être située à n'importe quelle hauteur de la lentille ou du miroir. Since the lens 1 and the mirror 2 are both cylindrical in configuration and extend along generatrices which are parallel, the view in horizontal cross section of Figure 2 is entirely representative of Figure 1 and can be located at any height of the lens or mirror.
Le fait de former la lentille avec une surface optique 11 de configuration sensiblement ou parfaitement cylindrique est particulièrement avantageux, aussi bien du point de vue optique que du point de vue de la fabrication. En effet, du point de vue optique, il n'y a aucune distorsion optique sur la verticale, les faisceaux passant sans diffraction ni distorsion à travers la lentille au niveau de la ligne médiane verticale 13. La diffraction n'a lieu que dans le plan horizontal. Quant à sa fabrication, elle est simplifiée du fait de la forme cylindrique de la surface optique, qui est une formé géométrique relativement simple à réaliser.  The fact of forming the lens with an optical surface 11 of substantially or perfectly cylindrical configuration is particularly advantageous, both from the optical point of view and from the manufacturing point of view. Indeed, from the optical point of view, there is no optical distortion on the vertical, the beams passing without diffraction or distortion through the lens at the level of the vertical center line 13. Diffraction takes place only in the horizontal plane. As for its manufacture, it is simplified due to the cylindrical shape of the optical surface, which is a relatively simple geometric shape to produce.
Le miroir de forme cylindrique parabolique est également avantageux en combinaison avec la lentille cylindrique ou avec une autre lentille quelconque. En effet, ce miroir cylindrique est également facile à réaliser tout comme la lentille cylindrique, en raison de la facilité avec laquelle on peut réaliser une surface cylindrique. La combinaison du miroir cylindrique parabolique et de la lentille cylindrique est toutefois avantageuse étant donné que le miroir cylindrique parabolique 2 n'a pas besoin de corriger une quelconque distorsion optique provenant de la lentille, étant donné que cette dernière ne diffracte pas dans le plan vertical. La distorsion optique n'a lieu donc que dans le plan horizontal, et cette distorsion est aisément corrigée par le miroir 2, grâce à sa forme cylindrique parabolique. On obtient ainsi une image resserrée dans le plan horizontal et sans distorsion dans le plan vertical. Ceci est représenté sur la figure 7a qui représente la vision d'un conducteur lorsqu'il regarde le miroir. Les divers points visibles sur le miroir représentent ou donnent une indication de la densité des lignes de champ aussi bien horizontales que verticales. La croix située sur la droite du rétroviseur représente l'axe de la chaussée au niveau de l'horizon. On peut voir que la densité des points de la ligne de champ horizontale médiane est forte, en particulier au niveau des bords, alors que la densité des points des lignes de champ verticales est constante. Ce rétroviseur donne une image très resserrée horizontalement, mais réelle verticalement. La proportion des objets n'est donc pas conservée. En se référant à la figure 3, nous allons maintenant expliquer de quelle manière il est possible de corriger ce défaut de proportion. Dans ce second mode de réalisation de la figure 3, le miroir peut être identique au miroir du premier mode de réalisation. En revanche, la lentille l' diffère de la lentille 1 du premier mode de réalisation en ce que la ligne médiane verticale 13' présente ici une courbure, qui correspond avantageusement à un arc de cercle. Dans le premier mode de réalisation, la ligne médiane 13 est sensiblement ou parfaitement rectiligne et s'étend parallèlement à la ligne médiane verticale 23 du miroir 2. Dans ce second mode de réalisation, la ligne médiane verticale courbe 13' s'étend dans un plan qui comprend également la ligne verticale médiane 23 du miroir. Les lignes horizontales 12' de la lentille l' sont courbes, tout comme dans le premier mode de réalisation, et leur courbure correspond de préférence à un arc de cercle. Les différentes lignes horizontales 12' sont sensiblement parallèles les unes aux autres, ou plus précisément, les différentes courbes 12' s'étendent dans les plans respectifs qui sont perpendiculaires à la ligne verticale 13'. On peut également dire que le plan dans lequel s'étend une courbe horizontale 12' est perpendiculaire à la tangente de la ligne verticale 13' au niveau où ce plan coupe la ligne 13'. Du fait que la courbure de la ligne verticale 13' est faible, comme on peut le voir sur la figure 3, les courbes horizontales 12' s'étendent sensiblement parallèlement. La surface optique arrière 11' de la lentille l' définit ainsi un segment de tore dont la section transversale est définie par les lignes horizontales 12' et dont l'étendue longitudinale courbe est définie par la ligne verticales 13'. Un tore peut être défini comme un tube de section circulaire qui présente une courbure définie. Ici, cette courbure est avantageusement circulaire, tout comme la courbure des lignes 12'. The parabolic cylindrical mirror is also advantageous in combination with the cylindrical lens or with any other lens. Indeed, this cylindrical mirror is also easy to produce just like the cylindrical lens, because of the ease with which a cylindrical surface can be produced. The combination of the parabolic cylindrical mirror and the cylindrical lens is however advantageous since the parabolic cylindrical mirror 2 does not need to correct any optical distortion coming from the lens, since the latter does not diffract in the vertical plane . The optical distortion therefore takes place only in the horizontal plane, and this distortion is easily corrected by the mirror 2, thanks to its parabolic cylindrical shape. This gives an image tightened in the horizontal plane and without distortion in the vertical plane. This is shown in Figure 7a which shows the vision of a driver when looking at the mirror. The various points visible on the mirror represent or give an indication of the density of the field lines both horizontal and vertical. The cross on the right of the mirror represents the axis of the roadway at the horizon. It can be seen that the density of the points of the median horizontal field line is high, in particular at the edges, while the density of the points of the vertical field lines is constant. This mirror gives a very tight image horizontally, but real vertically. The proportion of objects is therefore not preserved. Referring to Figure 3, we will now explain how it is possible to correct this lack of proportion. In this second embodiment of FIG. 3, the mirror can be identical to the mirror of the first embodiment. On the other hand, the lens 1a differs from the lens 1 of the first embodiment in that the vertical center line 13 ′ here has a curvature, which advantageously corresponds to an arc of a circle. In the first embodiment, the center line 13 is substantially or perfectly straight and extends parallel to the vertical center line 23 of the mirror 2. In this second embodiment, the curved vertical center line 13 'extends in a plane which also includes the vertical center line 23 of the mirror. The horizontal lines 12 ′ of the lens are curved, as in the first embodiment, and their curvature preferably corresponds to an arc of a circle. The different horizontal lines 12 'are substantially parallel to each other, or more precisely, the different curves 12' extend in the respective planes which are perpendicular to the vertical line 13 '. It can also be said that the plane in which a horizontal curve 12 'extends is perpendicular to the tangent of the vertical line 13' at the level where this plane intersects the line 13 '. Because the curvature of the vertical line 13 'is small, as can be seen in Figure 3, the horizontal curves 12' extend substantially parallel. The rear optical surface 11 ′ of the lens 1 thus defines a torus segment whose cross section is defined by the horizontal lines 12 ′ and whose curved longitudinal extent is defined by the vertical lines 13 ′. A torus can be defined as a tube of circular section which has a defined curvature. Here, this curvature is advantageously circular, just like the curvature of the lines 12 ′.
Une telle lentille l' définit également une ligne focale Fl'. Cependant, du fait que la ligne verticale 13' est courbe, et non plus droite, les rayons passant par la ligne médiane 13' sont également diffractés, hormis au niveau du centre Cl. Optiquement, ceci a pour effet de rétrécir l'image au niveau du miroir. C'est ce qui est représenté sur les figures 4a et 4b. On voit sur la figure 4a qu'un objet O, ici de forme géométrique rectangulaire pour une question de simplicité, passe à travers la lentille 1 du premier mode de réalisation pour donner une image I sensiblement carrée au niveau du miroir 2. Au résultat, le conducteur aura une image Ir sensiblement carrée. Sur la figure 4b, on a pris un objet O' qui présente une taille supérieure à l'objet O de la figure 4a. En l'occurrence, l'objet O' est plus haut que l'objet O : les grands côtés du rectangle de l'objet O' sont supérieurs aux grands côtés de l'objet O. En passant à travers la lentille l', on obtient une image F au niveau du miroir 2 qui est de forme sensiblement carrée, comme l'image I de la figure 4a. Au résultat, le conducteur aura une image Ir' qui est sensiblement identique à l'image Ir de la figure 4a. On a ainsi pu voir que des objets O, O' de tailles différentes verticalement donnent une image réfléchie Ir, Ir' qui est sensiblement identique. Ceci provient du fait que la ligne verticale 13' de la lentille l' est légèrement courbe, alors que la ligne verticale 13 est parfaitement rectiligne. La courbure de la ligne 13' a pour effet de diminuer la taille de l'image F, ce qui correspond à un resserrement des lignes de champ optique. De manière symétrique, on peut dire qu'un objet de taille identique aura des images Ir de tailles différentes, l'image Ir' étant plus resserrée verticalement que l'image Ir. Such a lens also defines a focal line F1 '. However, because the vertical line 13 'is curved, and no longer straight, the rays passing through the middle line 13' are also diffracted, except at the center Cl. Optically, this has the effect of shrinking the image at mirror level. This is what is shown in Figures 4a and 4b. We see in Figure 4a that an object O, here of rectangular geometric shape for the sake of simplicity, goes to through the lens 1 of the first embodiment to give a substantially square image I at the level of the mirror 2. As a result, the conductor will have a substantially square image Ir. In FIG. 4b, an object O ′ has been taken which has a size greater than the object O in FIG. 4a. In this case, the object O 'is higher than the object O: the long sides of the rectangle of the object O' are greater than the long sides of the object O. Passing through the lens l ', an image F is obtained at the level of the mirror 2 which is of substantially square shape, like the image I in FIG. 4a. As a result, the conductor will have an image Ir 'which is substantially identical to the image Ir of FIG. 4a. It has thus been possible to see that objects O, O 'of vertically different sizes give a reflected image Ir, Ir' which is substantially identical. This is due to the fact that the vertical line 13 ′ of the lens is slightly curved, while the vertical line 13 is perfectly straight. The curvature of the line 13 ′ has the effect of reducing the size of the image F, which corresponds to a narrowing of the optical field lines. Symmetrically, it can be said that an object of identical size will have Ir images of different sizes, the image Ir 'being more vertically tightened than the image Ir.
Ainsi, avec la courbure de la ligne verticale 13' du miroir 2', on rétablit grossièrement, sensiblement ou parfaitement la proportion de l'image réfléchie visible par le conducteur. Ceci est représenté sur la figure 7b qui est une vue similaire à celle de la figure 7a, avec un rétroviseur selon la figure 3, c'est-à-dire avec une lentille l' dont la ligne verticale 13' est légèrement courbe. Par rapport à la représentation de la figure 7a, on peut dire que des lignes de champ verticales, représentées par les lignes de points verticaux sont espacées par des intervalles qui sont identiques à ceux de la figure 7a. En revanche, on peut remarquer que les lignes de champ horizontales sont plus resserrées, étant donné que l'on voit trois lignes de champ horizontales sur la figure 7b alors que l'on ne voit que la ligne de champ horizontale médiane sur la figure 7a. On peut aisément comprendre à partir de ces représentations schématiques de l'image visible sur le miroir que la proportion des objets est plus respectée avec le miroir selon la figure 3 : en effet, l'écartement des points horizontaux sur la figure 7b est sensiblement identique à l'écartement des points verticaux. Ceci n'est pas le cas sur la figure 7a, sur laquelle récartement des points verticaux est sensiblement supérieur à l'écartement des points horizontaux. Par conséquent, avec un rétroviseur selon la figure 3, l'objet conserve des proportions environ naturelles. Thus, with the curvature of the vertical line 13 ′ of the mirror 2 ′, the proportion of the reflected image visible to the driver is roughly, substantially or perfectly restored. This is shown in Figure 7b which is a view similar to that of Figure 7a, with a mirror according to Figure 3, that is to say with a lens l 'whose vertical line 13' is slightly curved. With respect to the representation in FIG. 7a, it can be said that vertical field lines, represented by the lines of vertical points, are spaced apart by intervals which are identical to those in FIG. 7a. On the other hand, it can be noted that the horizontal field lines are tighter, since we see three horizontal field lines in Figure 7b while we only see the median horizontal field line in Figure 7a . We can easily understand from these schematic representations of the image visible on the mirror that the proportion of objects is more respected with the mirror according to FIG. 3: in fact, the spacing of the horizontal points in FIG. 7b is substantially identical to the spacing of the vertical points. This is not the case in FIG. 7a, in which the spacing of the vertical points is substantially greater than the spacing of the horizontal points. Consequently, with a rear view mirror according to FIG. 3, the object retains approximately natural proportions.
Une caractéristique essentielle qui est commune aux lentilles 1 et l' est qu'elles définissent toutes deux un foyer optique qui s'étend le long d'une ligne. Cependant, alors que le foyer linéaire optique Fl de la lentille 1 est parfaitement rectiligne, le foyer optique linéaire de la lentille 1 ' est courbe, en correspondance avec la courbure de la ligne médiane verticale 13'.  An essential characteristic which is common to lenses 1 and 1 is that they both define an optical focus which extends along a line. However, while the optical linear focus F1 of the lens 1 is perfectly rectilinear, the linear optical focus of the lens 1 'is curved, in correspondence with the curvature of the vertical center line 13'.
La figure 5 représente une variante du rétroviseur de la figure 3. Le miroir 2 peut être identique à celui des premier et second modes de réalisation des figures 1 et 3. Quant à la lentille 1", elle diffère de la lentille l' en ce que la courbure de la ligne verticale 13" est fortement augmentée au niveau de sa zone inférieure. On peut ainsi diviser la ligne verticale 13" en deux zones, à savoir une zone principale 131 qui s'étend sur la majeure partie de la hauteur de la lentille et une zone inférieure 132 qui est approximativement limitée au quart inférieur de la hauteur de la lentille. La courbure de la zone principale 131 peut être identique à la courbure de la ligne 13' du second mode de réalisation de la figure 3. La courbure de la zone 131 peut avantageusement être circulaire de manière à définir un arc de cercle. Quant à la zone inférieure 132, elle présente une courbure accentuée, qui peut également correspondre à un arc de cercle. L'augmentation de la courbure dans la zone 132 réalise un épaississement de la lentille, comme on peut le voir sur la figure 5. Quant aux lignes « horizontales » 12", elles présentent une courbure, qui peut avantageusement être identique, et correspondre à un arc de cercle. Les différentes courbures 12" s'étendent dans des plans qui sont perpendiculaires à la ligne 13", tout comme dans le second mode de réalisation. Ainsi, les courbures 12" au niveau de la zone inférieure 132 s'étendent dans des plans qui sont de plus en plus verticaux, étant donné que la courbure de la ligne verticale 13" au niveau de la zone 132 est très forte. La désignation des lignes 12" sous le terme de lignes « horizontales » est ici quelque peu erronée, étant donné que les lignes 12" dans la zone 132 s'étendent dans des plans qui s'éloignent considérablement de l'horizontal. Cependant, dans un but de clarté et de compréhension, ces lignes 12" sont tout de même désignées sous le terme de lignes horizontales, étant donné qu'elles s'étendent dans des plans qui sont perpendiculaires à la ligne verticale 13". De manière symétrique, la ligne verticale 13" n'est pas strictement verticale, étant donné qu'elle présente deux courbures distinctes. On peut tout de même dire que la ligne 13" s'étend dans un plan vertical qui contient également la ligne médiane verticale 23 du miroir 2. Tout comme dans les deux premiers modes de réalisation, cette lentille 1" définit un foyer optique sous la forme d'une ligne focale Fl". 5 shows a variant of the mirror of Figure 3. The mirror 2 can be identical to that of the first and second embodiments of Figures 1 and 3. As for the lens 1 ", it differs from the lens in that that the curvature of the vertical line 13 "is greatly increased at its lower zone. One can thus divide the vertical line 13 "into two zones, namely a main zone 131 which extends over most of the height of the lens and a lower zone 132 which is approximately limited to the lower quarter of the height of the The curvature of the main zone 131 can be identical to the curvature of the line 13 ′ of the second embodiment of FIG. 3. The curvature of the zone 131 can advantageously be circular so as to define an arc of a circle. at the lower zone 132, it has an accentuated curvature, which can also correspond to an arc of a circle. The increase in the curvature in the zone 132 achieves a thickening of the lens, as can be seen in FIG. the "horizontal" lines 12 "have a curvature, which can advantageously be identical, and correspond to an arc of a circle. The different curvatures 12 "extend in planes which are perpendicular to the line 13", as in the second embodiment. Thus, the curvatures 12 "at the level of the lower zone 132 extend in planes which are more and more vertical, since the curvature of the vertical line 13" at the level of the zone 132 is very strong. The designation of the 12 "lines under the term of" horizontal "lines is here somewhat erroneous, since the lines 12" in the area 132 extend in shots that deviate considerably from the horizontal. However, for the sake of clarity and understanding, these lines 12 "are still designated by the term horizontal lines, since they extend in planes which are perpendicular to the vertical line 13". Symmetrically, the vertical line 13 "is not strictly vertical, since it has two distinct curvatures. It can still be said that the line 13" extends in a vertical plane which also contains the midline vertical 23 of the mirror 2. As in the first two embodiments, this lens 1 "defines an optical focus in the form of a focal line F1".
En ce qui concerne l'image visible à la sortie du rétroviseur de la figure 5, elle correspond à la représentation de la figure 7c. La densité des lignes horizontales est sensiblement identique à celle de la figure 7b, étant donné que les courbures des lignes horizontales 12" sont sensiblement identiques. En revanche, la densité des lignes verticales est fortement accrue au niveau de la partie basse du rétroviseur correspondant à la zone inférieure 132 de la lentille. En effet, on peut voir que la densité des lignes verticales est sensiblement constante sur la majeure partie de la hauteur du rétroviseur correspondant à la zone principale 131. On peut toutefois remarquer une augmentation de la densité des lignes verticales par rapport à la figure 7b. Ceci provient d'une courbure légèrement plus forte de la ligne 13" par rapport à la ligne 13'. En revanche, la densité des lignes verticales dans la partie basse du rétroviseur est très forte, ce qui permet d'avoir une vision sur la partie basse de la chaussée directement à côté du véhicule. Avec un tel rétroviseur, le conducteur peut avoir une vision du trottoir le long duquel il veut se garer. Il peut alors garer sa voiture avec une grande précision parallèlement au trottoir et le plus proche possible du trottoir. Ainsi, on peut dire que la fonction principale de la zone inférieure 132 est de donner une vision au conducteur de la chaussée directement à côté de son véhicule. Bien entendu, les images au niveau de la partie basse du rétroviseur sont très fortement distordues, alors que la distorsion est limitée ou nulle au niveau de la majeure partie du rétroviseur. Le rétroviseur de la figure 5 donne par conséquent une vision pratiquement idéale et particulièrement étendue. Les objets conservent leur proportionnalité aussi bien horizontale que verticale, l'angle mort est particulièrement bien couvert, et de plus le conducteur a une vision au niveau du trottoir le long duquel il veut se garer. As regards the image visible at the exit of the rear view mirror of FIG. 5, it corresponds to the representation of FIG. 7c. The density of the horizontal lines is substantially identical to that of FIG. 7b, since the curvatures of the horizontal lines 12 "are substantially identical. On the other hand, the density of the vertical lines is greatly increased at the level of the lower part of the mirror corresponding to the lower zone 132 of the lens. In fact, it can be seen that the density of the vertical lines is substantially constant over most of the height of the mirror corresponding to the main zone 131. An increase in the density of the lines can, however, be observed. vertical with respect to FIG. 7b. This is due to a slightly greater curvature of the line 13 "compared to the line 13 '. On the other hand, the density of the vertical lines in the lower part of the mirror is very high, which makes it possible to have a vision on the lower part of the roadway directly next to the vehicle. With such a rear view mirror, the driver can have a vision of the sidewalk along which he wants to park. He can then park his car with great precision parallel to the sidewalk and as close as possible to the sidewalk. Thus, it can be said that the main function of the lower zone 132 is to give a vision to the driver of the roadway directly next to his vehicle. Of course, the images at the lower part of the mirror are very strongly distorted, while the distortion is limited or zero at the level of the major part of the mirror. The rear view mirror in FIG. 5 therefore gives a practically ideal and particularly extended vision. The objects retain their proportionality both horizontally and vertically, the blind spot is particularly well covered, and moreover the driver has a vision at the level of the sidewalk along which he wants to park.
Là encore, la lentille 1" définit également un foyer optique linéaire Fl" qui est légèrement courbe de manière correspondante à la ligne 13".  Again, the lens 1 "also defines a linear optical focus F1" which is slightly curved corresponding to the line 13 ".
En se référant rapidement à nouveau à la figure 2, on peut voir que la lentille est située à l'extérieur du véhicule schématisé par la ligne Av, alors que le miroir 2 est à cheval sur cette ligne. Ceci signifie que le rétroviseur est pour une partie situé à l'extérieur du véhicule et pour une autre partie situé à l'intérieur du véhicule. Pour des raisons d'ordre divers, il peut être préférable de placer le miroir le plus à l'intérieur possible. Ceci est possible grâce au rétroviseur de la figure 6 dans lequel la lentille l'" incorpore un prisme 16. Le prisme a pour fonction bien connue de dévier les faisceaux lumineux sans diffraction ou distorsion optique. Le prisme 16 est ici incorporé à la lentille de manière à constituer une pièce optique monobloc. La surface optique 11' peut être identique à celle de la lentille de la figure 3. Le prisme 16 a pour effet d'augmenter l'épaisseur de la lentille du côté droit et de diminuer l'épaisseur de la lentille du côté gauche, lorsque l'on regarde la figure 6. Ceci signifie que la face avant 15 de la lentille l'" s'étend dans un plan qui est décalé par pivotement autour d'un axe vertical par rapport aux faces avants des lentilles des autres modes de réalisation. Ce changement d'orientation de la face avant a pour effet de conférer à la lentille une fonction prismatique apte à dévier sans distorsion ou diffraction les faisceaux lumineux à la sortie de la lentille. De ce fait, les faisceaux lumineux sont décalés vers la droite, de sorte que l'on peut décaler le miroir 2 vers la droite, c'est-à-dire à l'intérieur de l'habitacle du véhicule. En augmentant encore davantage l'inclinaison de la face avant 15 du prisme 16, on peut décaler davantage de manière correspondante le miroir 2 à l'intérieur de l'habitacle du véhicule. Une telle fonction prismatique peut être mise en œuvre dans les autres modes de réalisation des figures 1, 3 et 5. Il en est de même avec la zone inférieure 132 de la figure 5 qui peut être mise en œuvre dans les autres modes de réalisation des figures 1, 3 et 6. Un rétroviseur idéal peut être vu dans la combinaison des modes de réalisation des figures 5 et 6, donnant une image correspondant à la figure 7c avec un miroir situé à l'intérieur de l'habitacle du véhicule. Referring again quickly to FIG. 2, it can be seen that the lens is located outside the vehicle shown diagrammatically by the line Av, while the mirror 2 straddles this line. This means that the mirror is for a part located outside the vehicle and for another part located inside the vehicle. For various reasons, it may be preferable to place the mirror as inside as possible. This is possible thanks to the rear view mirror of FIG. 6 in which the lens "incorporates a prism 16. The prism has the well-known function of deflecting the light beams without diffraction or optical distortion. The prism 16 is here incorporated into the lens of so as to constitute a one-piece optical part, the optical surface 11 ′ may be identical to that of the lens in FIG. 3. The prism 16 has the effect of increasing the thickness of the lens on the right side and of reducing the thickness of the lens on the left side, when looking at FIG. 6. This means that the front face 15 of the lens 1a "extends in a plane which is pivotally offset around a vertical axis with respect to the faces fronts of the lenses of the other embodiments. This change of orientation of the front face has the effect of giving the lens a prismatic function capable of deflecting the light beams at the exit of the lens without distortion or diffraction. As a result, the light beams are shifted to the right, so that the mirror 2 can be shifted to the right, that is to say inside the passenger compartment of the vehicle. By further increasing the inclination of the front face 15 of the prism 16, the mirror 2 can be shifted more correspondingly inside the passenger compartment of the vehicle. Such a prismatic function can be implemented in the other embodiments of FIGS. 1, 3 and 5. It is the same with the lower zone 132 of FIG. 5 which can be implemented in the other embodiments of the FIGS. Figures 1, 3 and 6. An ideal rear view mirror can be seen in the combination of the embodiments of FIGS. 5 and 6, giving an image corresponding to FIG. 7c with a mirror located inside the passenger compartment of the vehicle.
Il est à noter que dans tous les modes de réalisation, le miroir peut être identique et avantageusement formé par un segment d'un cylindre présentant une courbe directrice parabolique. Ceci provient du fait que toutes les lentilles des divers modes de réalisation définissent un foyer optique sous la forme d'une ligne, et non pas d'un point.  It should be noted that in all the embodiments, the mirror can be identical and advantageously formed by a segment of a cylinder having a parabolic directing curve. This is because all the lenses of the various embodiments define an optical focus in the form of a line, not a point.
Les diverses lentilles 1, l', 1" et l'" peuvent être mises en œuvre indépendamment du miroir cylindrique parabolique, et même d'un miroir quelconque. En d'autres termes, ces lentilles peuvent être mises en œuvre dans des dispositifs optiques autres qu'un rétroviseur. Chaque lentille peut ainsi être protégée indépendamment. Quant au miroir de forme cylindrique parabolique, il peut également être mis en œuvre indépendamment des lentilles 1 à l'". En effet, sa forme cylindrique parabolique est particulièrement avantageuse pour des raisons de conception et de fabrication, de sorte que ce miroir peut être mis en œuvre dans d'autres applications, autres qu'un rétroviseur. Une protection indépendante de ce miroir est donc également envisageable.  The various lenses 1, l ', 1 "and l" can be used independently of the parabolic cylindrical mirror, and even of any mirror. In other words, these lenses can be used in optical devices other than a rear view mirror. Each lens can thus be protected independently. As for the parabolic cylindrical shape mirror, it can also be used independently of the lenses 1 to ". Indeed, its parabolic cylindrical shape is particularly advantageous for design and manufacturing reasons, so that this mirror can be implemented in other applications, other than a rear-view mirror, so independent protection of this mirror is also possible.
Les lentilles 1, l', 1" et l'" présentent toutes une configuration globale rectangulaire. Toutefois, la lentille peut présenter toute autre configuration globale, par exemple ronde, oblongue, elliptique, carrée, etc., tout en conservant une surface optique globalement, sensiblement ou parfaitement cylindrique.  The lenses 1, l ', 1 "and l" all have an overall rectangular configuration. However, the lens can have any other global configuration, for example round, oblong, elliptical, square, etc., while retaining an overall, substantially or perfectly cylindrical optical surface.
Contrairement aux rétroviseurs utilisant des lentilles de révolution à foyer optique ponctuel, le rétroviseur de la présente invention répond à une géométrie linéaire de sorte que le miroir, mais également la lentille, présente une configuration globalement, sensiblement ou parfaitement cylindrique avec des courbes directrices de géométrie relativement simple, comme un cercle ou une parabole.  Unlike mirrors using revolution lenses with a point optical focus, the mirror of the present invention responds to a linear geometry so that the mirror, but also the lens, has a generally, substantially or perfectly cylindrical configuration with guiding geometry curves relatively simple, like a circle or a parabola.

Claims

Revendications Claims
1.- Rétroviseur de véhicule automobile pour produire une image d'un objet situé à l'extérieur en arrière du véhicule, comprenant une lentille (1 ; l' ; 1" ; l'") et un miroir (2), caractérisé en ce que la lentille est une lentille concave divergente ayant un axe optique (Al) et un foyer optique (Fl ; Fl' ;1.- Motor vehicle rear view mirror for producing an image of an object located outside the rear of the vehicle, comprising a lens (1; the; 1 "; the") and a mirror (2), characterized in that the lens is a divergent concave lens having an optical axis (Al) and an optical focus (Fl; Fl ';
5 Fl") et le miroir est un miroir sensiblement concave, les faisceaux lumineux 5 Fl ") and the mirror is a substantially concave mirror, the light beams
(Fse, Fc, Fsi) traversant la lentille divergeant en direction du miroir qui renvoie les rayons de manière convergente sensiblement sans distorsion optique selon une direction qui correspond à l'axe de vision du conducteur en direction du miroir, caractérisé en ce que le miroir (2) définit une surface (Fse, Fc, Fsi) passing through the diverging lens towards the mirror which returns the rays in a convergent manner substantially without optical distortion in a direction which corresponds to the axis of vision of the conductor towards the mirror, characterized in that the mirror (2) defines a surface
10 de réflexion concave (21) qui correspond sensiblement à un segment d'un cylindre. 10 of concave reflection (21) which corresponds substantially to a segment of a cylinder.
2.- Rétroviseur selon la revendication 1, comprenant une seule lentille et un seul miroir. 2. A rearview mirror according to claim 1, comprising a single lens and a single mirror.
15 15
3.- Rétroviseur selon la revendication 1 ou 2, dans lequel le cylindre définit une courbe directrice sensiblement parabolique, de sorte que le cylindre est parabolique et présente un plan de symétrie et une ligne focale située dans ce plan.  3. A mirror according to claim 1 or 2, wherein the cylinder defines a substantially parabolic directing curve, so that the cylinder is parabolic and has a plane of symmetry and a focal line located in this plane.
>0 > 0
4.- Rétroviseur selon la revendication 4, dans lequel le plan de symétrie est sensiblement parallèle à l'axe de vision du conducteur en direction du miroir.  4.- rear view mirror according to claim 4, wherein the plane of symmetry is substantially parallel to the axis of vision of the driver towards the mirror.
»5»5
5.- Rétroviseur selon l'une quelconque des revendications précédentes, dans lequel la surface de réflexion (21) du miroir définit une ligne médiane horizontale (22) et une ligne médiane verticale (23) qui se coupent sensiblement au centre (Cm) du miroir, la ligne horizontale ayant une courbure sensiblement parabolique, la ligne verticale étant5. A rear-view mirror according to any one of the preceding claims, in which the reflecting surface (21) of the mirror defines a horizontal center line (22) and a vertical center line (23) which substantially intersect at the center (Cm) of the mirror, the horizontal line having a substantially parabolic curvature, the vertical line being
SO sensiblement droite, toutes les lignes verticales étant également droites et toutes les lignes horizontales ayant la même courbure parabolique que la ligne médiane horizontale. SW substantially straight, all vertical lines also being straight and all horizontal lines having the same parabolic curvature as the horizontal center line.
6.- Rétroviseur selon l'une quelconque des revendications 5 précédentes, dans lequel le foyer optique de la lentille définit une ligne focale. 6. A mirror according to any one of the preceding claims, in which the optical focus of the lens defines a focal line.
7.- Rétroviseur selon la revendication 6, dans lequel la ligne focale est disposée sensiblement verticalement par rapport au miroir. 7. A rearview mirror according to claim 6, wherein the focal line is arranged substantially vertically relative to the mirror.
10 10
8.- Rétroviseur selon les revendications 3 et 6 ou 7, dans lequel les lignes focales respectives du cylindre et de la lentille sont sensiblement parallèles, mais distinctes.  8. A rear view mirror according to claims 3 and 6 or 7, wherein the respective focal lines of the cylinder and the lens are substantially parallel, but distinct.
15 9.- Rétroviseur selon la revendication 6 ou 7, dans lequel la ligne focale du cylindre est située à proximité de l'axe optique de la lentille. 9. A rearview mirror according to claim 6 or 7, wherein the focal line of the cylinder is located near the optical axis of the lens.
10.- Rétroviseur selon l'une quelconque des revendications précédentes, dans lequel la lentille comprend une face avant concave et une10.- A mirror according to any one of the preceding claims, in which the lens comprises a concave front face and a
»0 face arrière sensiblement plane orientée vers le miroir, la face avant définissant une surface optique (11) ayant une configuration sensiblement cylindrique. 0 substantially planar rear face oriented towards the mirror, the front face defining an optical surface (11) having a substantially cylindrical configuration.
11.- Rétroviseur selon la revendication 10, dans lequel la surface11. A mirror according to claim 10, in which the surface
»5 optique définit une ligne médiane horizontale (12 ; 12' ; 12") et une ligne médiane verticale (13 ; 13' ; 13') qui se coupent sensiblement au centre (Cl) de la surface optique, la ligne médiane horizontale présentant une courbure dans un plan perpendiculaire à la ligne médiane verticale, toutes les lignes horizontales ayant sensiblement la même courbure que la ligne médiane»5 optical defines a horizontal center line (12; 12 '; 12") and a vertical center line (13; 13'; 13 ') which intersect substantially at the center (Cl) of the optical surface, the horizontal center line having a curvature in a plane perpendicular to the vertical center line, all horizontal lines having substantially the same curvature as the center line
SO horizontale dans des plans respectifs perpendiculaires à la ligne médiane. SW horizontal in respective planes perpendicular to the center line.
12.- Rétroviseur selon la revendication 11, dans lequel la ligne médiane verticale (13) est droite, ainsi que toutes les autres lignes verticales. 12. A mirror according to claim 11, in which the vertical center line (13) is straight, as are all the other vertical lines.
5 13.- Rétroviseur selon la revendication 11, dans lequel la ligne médiane verticale (13' ; 13") est courbe, de sorte que la surface optique présente une configuration globale torique. 13. A rearview mirror according to claim 11, wherein the vertical center line (13 '; 13 ") is curved, so that the optical surface has an overall toric configuration.
14.- Rétroviseur selon la revendication 11, 12 ou 13, dans lequel la 10 ligne médiane verticale (13") présente une zone inférieure (132) au niveau de laquelle sa courbure est plus forte. 14. A mirror according to claim 11, 12 or 13, in which the vertical center line (13 ") has a lower zone (132) at which its curvature is greater.
15.- Rétroviseur selon l'une quelconque des revendications précédentes, dans lequel la lentille (1'") présente une configuration 15 prismatique (16) apte à dévier les faisceaux lumineux vers l'intérieur de l'automobile. 15. A mirror according to any one of the preceding claims, in which the lens (1 '") has a prismatic configuration (16) capable of deflecting the light beams towards the interior of the automobile.
16.- Rétroviseur selon l'une quelconque des revendications précédentes, dans lequel l'axe optique (Al) de la lentille fait un angle α de »0 l'ordre de 10 degrés par rapport au faisceau (Fc) passant par le centre (Cl) de la lentille et le centre (Cm) du miroir. 16. A mirror according to any one of the preceding claims, in which the optical axis (Al) of the lens makes an angle α of »0 of the order of 10 degrees relative to the beam (Fc) passing through the center ( Cl) of the lens and the center (Cm) of the mirror.
17.- Rétroviseur selon l'une quelconque des revendications précédentes, dans lequel le faisceau (Fc) passant par le centre (Cl) de la »5 lentille et le centre (Cm) du miroir fait un angle β de l'ordre de 10 degrés par rapport à un axe longitudinal (Av) du véhicule. 17. Mirror according to any one of the preceding claims, in which the beam (Fc) passing through the center (Cl) of the »5 lens and the center (Cm) of the mirror makes an angle β of the order of 10 degrees from a longitudinal axis (Av) of the vehicle.
EP06842123A 2005-12-09 2006-12-08 Rear-view mirror for a motor vehicle Withdrawn EP1963135A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553813A FR2894536B1 (en) 2005-12-09 2005-12-09 MIRROR OF MOTOR VEHICLE
PCT/FR2006/051312 WO2007066050A2 (en) 2005-12-09 2006-12-08 Rear-view mirror for a motor vehicle

Publications (1)

Publication Number Publication Date
EP1963135A2 true EP1963135A2 (en) 2008-09-03

Family

ID=36892641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06842123A Withdrawn EP1963135A2 (en) 2005-12-09 2006-12-08 Rear-view mirror for a motor vehicle

Country Status (7)

Country Link
US (1) US20080285157A1 (en)
EP (1) EP1963135A2 (en)
JP (1) JP2009518228A (en)
KR (1) KR20080082684A (en)
CN (1) CN101336175A (en)
FR (1) FR2894536B1 (en)
WO (1) WO2007066050A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2004697A2 (en) 2006-04-07 2008-12-24 The Procter & Gamble Company Antibodies that bind human protein tyrosine phosphatase beta (hptpbeta) and uses thereof
US20110051269A1 (en) * 2009-09-02 2011-03-03 Richard Hignight True safe mirrors
CN104842878A (en) * 2014-02-14 2015-08-19 鸿富锦精密工业(深圳)有限公司 Rearview mirror device
WO2016032135A1 (en) * 2014-08-29 2016-03-03 연세대학교 산학협력단 Side mirror

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB279893A (en) * 1926-10-29 1928-03-15 Andre Marius Merley Dioptric vision instrument specially applicable for motor road vehicles
US2135262A (en) * 1936-02-10 1938-11-01 Schumacher Elmer Weldon Optical means for increasing rear vision
US2622482A (en) * 1950-01-19 1952-12-23 Balkin Frank Traffic viewing device
DE2914361A1 (en) * 1979-04-09 1980-10-23 Heinz Brenner Commercial vehicle wide angle driving mirror - has refracting element on outer edge to cover blind post angle
WO1996015921A1 (en) * 1994-11-22 1996-05-30 Koo Ko Rearview mirror system for vehicles
JPH08276824A (en) * 1995-04-06 1996-10-22 Murakami Kaimeidou:Kk Outside visible device
FR2879760B1 (en) * 2004-12-17 2007-06-08 Saint Gobain INDIRECT VISION SYSTEM FOR MINIMIZING DEAD ANGLES WITHOUT DISTORTION OF FORMED IMAGE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007066050A2 *

Also Published As

Publication number Publication date
US20080285157A1 (en) 2008-11-20
JP2009518228A (en) 2009-05-07
WO2007066050A2 (en) 2007-06-14
WO2007066050A3 (en) 2008-02-14
FR2894536B1 (en) 2009-10-09
CN101336175A (en) 2008-12-31
FR2894536A1 (en) 2007-06-15
KR20080082684A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
EP3167226B1 (en) Lighting module for a motor vehicle
FR2881509A1 (en) VERTICALIZED PROJECTOR FOR MOTOR VEHICLE
FR2680584A1 (en) WINDSHIELD FOR STEERING COLLIMATOR SYSTEM.
FR2639888A1 (en) MOTOR VEHICLE PROJECTOR HAVING A MODIFIED INTERMEDIATE AREA COMPLEX SURFACE REFLECTOR
EP0290347A2 (en) High output signal light, especially for motor vehicles
EP3470728A1 (en) Light module for a motor vehicle
FR3043168A1 (en) DEVICE FOR PROJECTING THE LIGHT BEAM OF A MOTOR VEHICLE CONFIGURED TO PROJECT A PIXELIZED IMAGE
EP1963135A2 (en) Rear-view mirror for a motor vehicle
EP3526065B1 (en) Windscreen for driving assistance
FR2542422A1 (en) INCLINED ICE AUTOMOTIVE PROJECTOR WITH OPTICAL ELEMENTS RECTIFIERS
EP3999380A1 (en) Lighting device for a motor vehicle
FR3037013A1 (en) PROXIMITY FIRE FOR MOTOR VEHICLE
EP1827907B1 (en) Indirect vision system enabling blind spots to be minimized without distorting the formed image
EP2144781B1 (en) Glass for a vehicle dashboard
EP4058721B1 (en) Lighting module for lateral part of a vehicle
FR3056154B1 (en) FILTERING VISION ELEMENT FORMING WINDSHIELD OR MIRROR FOR ROAD VEHICLE
EP3124856B1 (en) Lighting device for a motor vehicle
FR2934535A1 (en) Rear-view device for motor vehicle e.g. car, has telescopic, foldable and rotative fixation rod to replace rear-view mirror to existing plane mirror, and optional accessory rod arranged below existing plane mirror
FR3049071A1 (en) SELECTIVE REFLECTIVE OPTICAL COMPONENT DISPLAY DEVICE AND OPTICAL DEFLECTION AND FOCUSING ELEMENTS FOR A VEHICLE
EP3453955B1 (en) Light-emitting module for lighting and/or signalling of a motor vehicle
FR2894535A1 (en) Motor vehicle rear view mirror has concave lens that sends convergent light rays towards driver's viewpoint without distortion
FR3009364A1 (en) LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE
FR2837908A1 (en) LIGHTING PROJECTOR EQUIPPED WITH A SWIVEL ELLIPTICAL REFLECTOR AND A FIXED LENS FOR THE REALIZATION OF A TURNING BEAM
EP0891267B1 (en) Motor vehicle rear-view mirror device
FR2670438A1 (en) Windscreen for a collimating driving system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080704

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701