EP1903709B1 - Remodulators for WDM optical communication systems - Google Patents

Remodulators for WDM optical communication systems Download PDF

Info

Publication number
EP1903709B1
EP1903709B1 EP08000267.8A EP08000267A EP1903709B1 EP 1903709 B1 EP1903709 B1 EP 1903709B1 EP 08000267 A EP08000267 A EP 08000267A EP 1903709 B1 EP1903709 B1 EP 1903709B1
Authority
EP
European Patent Office
Prior art keywords
optical
signal
channel selector
channel
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP08000267.8A
Other languages
German (de)
French (fr)
Other versions
EP1903709A3 (en
EP1903709A2 (en
Inventor
Stephen B. Alexander
Roy C. Litz
Steve W. Chaddick
Cecil D. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciena Corp
Original Assignee
Ciena Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciena Corp filed Critical Ciena Corp
Publication of EP1903709A2 publication Critical patent/EP1903709A2/en
Publication of EP1903709A3 publication Critical patent/EP1903709A3/en
Application granted granted Critical
Publication of EP1903709B1 publication Critical patent/EP1903709B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

    FIELD OF THE INVENTION
  • The invention relates to wavelength division multiplexed optical communications generally and, more particularly, to remodulating channel selectors for selecting a particular channel wavelength and placing the information from that channel wavelength onto a newly generated optical channel.
  • BACKGROUND OF THE INVENTION:
  • Optical communication systems are a substantial and fast-growing constituent of communication networks. The expression "optical communication system," as used herein, relates to any system which uses optical signals to convey information across an optical waveguiding medium, Such optical systems include, but are not limited to, telecommunications systems, cable television systems, and local area networks (LANs). Optical systems are described in Gowar, Ed. Optical Communication Systems, (Prentice Hall, NY) c. 1993. Currently, the majority of optical communication systems are configured to carry an optical channel of a single wavelength over one or more optical waveguides. To convey information from plural sources, time-division multiplexing is frequently employed (TDM). In time-division multiplexing, a particular time slot is assigned to each signal source, the complete signal being constructed from the portions of the signals collected from each time slot. While this is a useful technique for carrying plural information sources on a single channel, its capacity is limited by fiber dispersion and the need to generate high peak power pulses.
  • While the need for communication services increases, the current capacity of existing waveguiding media is limited. Although capacity may be expanded e.g., by laying more fiber optic cables, the cost of such expansion is prohibitive. Consequently, there exists a need for a cost-effective way to increase the capacity of existing optical waveguides.
  • Wavelength division multiplexing (WDM) has been explored as an approach for increasing the capacity of existing fiber optic networks. In a WDM system, plural optical signal channels are carried over a single waveguide, each channel being assigned a particular wavelength. Through the use of optical amplifiers, such as doped fiber amplifiers, plural optical channels are directly amplified simultaneously, facilitating the use of WDM systems in long-distance optical networks.
  • To provide compatibility of WDM systems with existing networks, it is desirable to convert a signal from a received transmission wavelength from a customer to a specific channel wavelength within the WDM system. This is particularly true in WDM systems employing many channels, often referred to as "dense" WDM, where channel spacings are on the order of one nanometer or less. Such WDM systems require precise control of the optical signal wavelength for each channel in order to avoid "crosstalk," i.e., interference between adjacent channels. A WDM optical system for converting signals from received transmission wavelengths to specific channel wavelengths using optical remodulators is described in U.S. Patent 5,504,609 . A WDM optical system which uses both remodulators and diverse optical sources (e.g., to accommodate signals which are generated at the proper channel wavelength or optical channels being routed from another optical path) is described in U.S. Patent 5, 726, 784 .
  • While both the described approaches advantageously offer compatibility with existing optical communication systems, particularly those systems using SONET terminal receivers which conform to the SONET "long-haul" standard, i.e., terminals configured to detect low optical signal levels, it would be desirable to provide an output channel signal conforming to SONET "short-reach'' interface standards, i.e., terminals configured to detect higher-level optical signals.
  • Previously, attention has been focused on conversion of a single transmission channel from a wavelength outside the wavelength band amplified by optical amplifiers to a wavelength within the wavelength band amplified by optical amplifiers and then back to the original transmission wavelength for reception by an optical receiver. U.S. Patent No. 5,267,073 describes wavelength conversion in a conventional single channel optical system to enable signal amplification by optical amplifiers. In the patent, an adapter is provided to receive a transmission optical signal having a wavelength which is outside the operating parameters of the optical amplifier. The signal is supplied to an optical-to-electronic converter module. The resultant electrical signal is output to an adjusting means comprising a laser piloting circuit for directly modulating a signal laser. The output of the signal laser is subsequently amplified by an optical amplifier, At the receive end, an adapter is provided to convert the optical signals from the amplifier into electrical signals which are fed to an adjustment module. The adjustment module comprises a laser piloting circuit which controls a laser transmitter. In this manner, the patent purports to avoid problems in which normal optical line receivers have problems with frequency response when they are coupled to optical amplifiers in optical fiber lines.
  • There is a need in the art for WDM channel selectors which can both select a particular channel wavelength from a multiplexed optical signal and place the information from that channel onto a newly-generated optical signal, the optical signal selected to have the desired characteristics which make it compatible with the selected terminal receiver equipment. Such channel selectors would permit the use of less expensive terminal equipment, facilitating the use of wavelength division multiplexing in a greater variety of telecommunications applications.
  • The present invention provides a remodulating channel selector for a wavelength division multiplexed optical communication system as is defined by claim 1 and a corresponding method as is defined by claim 11.
  • The remodulating selector receives a WDM input signal, selects a particular optical channel from the WDM signal, and places the information from the selected signal onto a newly-generated optical output signal. The remodulating selector typically comprises an optical input port configured to receive a wavelength division multiplexed optical communication signal from a wavelength division multiplexed optical communication system. An optical channel selector optically communicates with the optical input port to select a single optical channel from the WDM input signal. An optical-to -electrical converter optically communicates with the optical channel selector to receive the selected channel and output an electrical signal which corresponds to information from the selected optical channel. This information is placed onto an optical signal created by an optical signal emitter such as a laser or light-emitting diode (LED). When used in a WDM optical communication system with remodulators at the transmission input, the remodulating selectors provide complete control over the interfaces with optical transmitters and receivers, enabling a WDM system to interface with a broad range of optical transmitting and receiving equipment.
  • There is disclosed herein an optical device comprising: a photodetector circuit receiving first optical signals and outputting first serial electrical signals in response thereto; a serial-to-parallel conversion circuit coupled to the photodetector and receiving first serial electrical signals, the serial-to-parellel conversion circuit outputting first electrical signals in parallel; a forward error correction encoder circuit coupled to the serial-to-parallel conversion circuit and being configured to receive first electrical signals in parallel, the encoder circuit encoding first electrical signals in accordance with a code to generate parallel second electrical signals: a parallel-to-serial conversion circuit coupled to the forward error correction encoder circuit and receiving parallel second electrical signals, the paraliel-to-serial conversion circuit outputting second electrical signals in a serial fashion; and an optical emitter coupled to the paraitel-to-serial conversion circuit and receiving serial second electrical signals, the optical emitter outputting second optical signals in accordance with the second electrical signals.
  • Preferably, the first optical signals are at a first wavelength and the second optical signals are at a second wavelength.
  • Preferably, the optical device further comprises a clock and data recovery circuit coupled between the photodetector and the serial-to-parallel conversion circuit.
  • Preferably, the code is a Reed-Solomon code.
  • Further preferably, the forward error correction encoder circuit encodes the first electrical signals in a frequency domain.
  • There is also disclosed herein an optical device comprising: a photodetector circuit receiving first optical signals and outputting first electrical signals in response thereto; a serial-to-parallel conversion circuit coupled to the photodetector and receiving first electrical signals, the serial-to-parallel conversion circuit outputting first electrical signals in parallel; a forward error correction decoder circuit coupled to the serial-to-parallel conversion circuit and being configured to receive first electrical signals in parallel, the forward error correction decoder circuit decoding first encoded electrical signals in accordance with a code to generate parallel second electric signals; a parallel-to-serial conversion circuit coupled to the forward error correction decoder circuit and receiving second electrical signals, the parallel-to serial conversion circuit outputting second electrical signals in a serial fashion; and an optical emitter coupled to the parallel-to-serial conversion circuit and receiving serial second electrical signals, the optical emitter outputting second optical signals in accordance with the second electrical signals.
  • Preferably, the first optical signals are at a first wavelength and the second optical signals are at a second wavelength.
  • Preferably, the optical device further comprises a clock and data recovery circuit coupled between the photodetector circuit and the serial-to-parallel conversion circuit.
  • Preferably, the code is a Reed-Solomon code.
  • Further preferably, the forward error correction decoder circuit decodes the first electrical signals in a frequency domain.
  • There is further disclosed herein an optical device comprising: a first photodetector circuit receiving first optical signals and outputting first electrical signals in response thereto; a first serial-to-parallel conversion circuit coupled to the first photodetector and receiving electrical signals, the first serial-to-parallel conversion circuit outputting first electrical signals in parallel; a forward error correction encoder circuit coupled to the first serial-to-parallel conversion circuit and being configured to receive first electrical signals in parallel, the forward error correction encoder circuit encoding first electrical signals in accordance with a code to generate parallel second electrical signals; a first parallel-to-serial conversion circuit coupled to the forward error correction encoder circuit and receiving parallel second electrical signals, the first parallel-to-serial conversion circuit outputting second electrical signals in a serial manner; a first optical emitter coupled to the parallel-to-serial conversion circuit and receiving second electrical signals, the optical emitter configured to supply second optical signals to an optical communication path in accordance with the second electrical signals; a second photodetector circuit configured to be coupled to the optical communication path receiving second optical signals and outputting third electrical signals in response thereto; a second serial-to-parallel conversion circuit coupled to the second photodetector and receiving third optical signals, the second serial-to-parallel conversion circuit outputting third electrical signals in parallel; a forward error correction decoder circuit coupled to the second serial-to-parallel conversion circuit and being configured to receive third electrical signals in parallel, the forward error correction decoder circuit decoding the third electrical signals in accordance with the code to generate parallel fourth electrical signals; a second parallel-to serial conversion circuit coupled to the forward error correction decoder circuit and receiving fourth electrical signals, the parallel-to-serial conversion circuit outputting fourth electrical signals in a serial fashion; and a second optical emitter coupled to the parallel-to-serial conversion circuit and receiving serial fourth electrical signals, the second optical emitter outputting third optical signals in accordance with the serial fourth electrical signals.
  • Preferably, the first optical signals and the second optical signals are at different wavelengths.
  • Preferably, the second optical signals and the third optical signals are at different wavelengths.
  • Preferably, the optical device further comprises a first clock and data recovery circuit coupled between the first photodetector circuit and the first serial-to-parallel conversion circuit, and a second clock and data recovery circuit coupled between the second photodetector circuit and the second serial-to-parallel conversion circuit.
  • Preferably, the code is a Reed-Solomon code.
  • Further preferably, the forward error correction encoder circuit encodes the first electrical signals and the forward error correction decoder decodes the third electrical signals in a frequency domain.
  • There is further disclosed herein an optical communication device comprising: a plurality of encoder circuits each receiving respective electrical data signals and outputting encoded electrical signals in accordance with a Reed-Solomon code; a plurality of optical emitters, each emitting light at a respective wavelength and each coupled to a respective one of the plurality of encoder circuits, each of the optical emitters outputting optical signals in accordance with the encoded electrical signals; and an optical multiplexer coupled to each of the plurality of optical emitters, the optical multiplexer being configured to receive the optical signals from the plurality of optical emitters and supply the optical signals on an optical communication path.
  • According to another arrangement there is provided an optical communication device comprising: an optical demultiplexer having an input configured to be coupled to an optical communication path, the optical communication path carrying a plurality of optical channels, each at a respective wavelength, the optical demultiplexer further having a plurality of outputs, each supplying a respective one of the optical channels; a plurality of photodetectors, each respectively coupled to one of the plu rality of outputs of the optical demultiplexers, each of the plurality of photodetectors generating first electrical signals in response to a respective one of the plurality of optical channels; and a plurality of forward error correction decoders, each respectively coupled to one of the plurality of photodetectors, each of the plurality of forward error correction decoders decoding first electrical signals in accordance with a Reed-Solomon code to geocrate second electrical signals.
  • According to a further arrangement there is provided an optical communication device comprising: a plurality of encoder circuits each receiving respective first electrical signals and outputting encoded second electrical signals in accordance with a Reed-Solomon code; a plurality of optical emitters, each emitting a respective one of a plurality of optical channels, each of the optical channels being at a respective wavelength, and each of the plurality of optical emitters outputting a plurality of optical channels in accordance with the encoded electrical signals; an optical multiplexer coupled to each of the plurality of optical emitters, the optical multiplexer being configured to receive optical signals from the plurality of optical emitters and supply the optical signals to an optical communication path, an optical demultiplexer having an input configured to be coupled to the optical communication path, the optical demultiplexer further having a plurality of outputs, each supplying a respective one of the optical channels; a plurality of photodetectors, each respectively coupled to one of the plurality of outputs of the optical demultiplexers, each of the plurality of photodetectors generating third electrical signals in response to the respective one of said plurality of optical channels; and a plurality of forward error correction decoders, each respectively coupled to one of the plurality of photodetectors, each of the plurality of forward error correction decoders decoding the third electrical signals in accordance with a Reed-Solomon code to generate fourth electrical signals.
  • BRIEF DESCRIPTION OF THE DRAWINGS;
    • FIG. 1 schematically depicts an optical communication system employing remodulating channel selectors according to the present invention.
    • FIG. 2 schematically depicts a remodulator used in the optical communication system of FIG. 1.
    • FIG. 3 illustrates a block diagram of a forward error correction encoder.
    • FIG. 4 schematically depicts a remodulating channel selector used in the optical communication system of FIG. 1.
    • FIG. 5 illustrates a block diagram of a forward error correction decoder.
    DETAILED DESCRIPTION:
  • Turning to the drawings in detail in which like reference numerals indicate the same or similar elements in each of the several views, FIG. 1 depicts an optical communication system 10. Optical communication system 10 operates to take optical transmission signals from diverse optical transmitters and other optical signal sources and map the signal sources onto a wavelength division optical communication system, i.e., a communication system in which individual optical signals correspond to optical channels within a wavelength division multiplexed optical signal carried on an optical waveguide. Optical communication system 10 includes a fust set of one or more optical transmitters 22, 24, each optical transmitter emitting an information-bearing optical signal at a first transmission wavelength.
  • Optical transmitters 22 and 24 generally include a laser, such as a DFB semiconductor laser, and a modulator for creation of an information-bearing optical transmission signal. In an exemplary embodiment, optical transmitters 22 and 24 are SONET OC-48 transmitters. When plural optical transmitters are provided, the transmission wavelength of each transmitter can be the same or different. Because transmitters 22 and 24 may form part of an existing optical system, a wide variety of transmitters emitting in a broad range of wavelengths can be accommodated in the optical communication system, thus ensuring compatibility with currently-deployed transmission equipment. Typical transmission elements emit wavelengths ranging from about 1300 to 1600 nm. Transmission elements in current optical communication systems and various optical modulation techniques employed therein are described in Gowar, Optical Communication Systems. In the depicted exemplary embodiment, optical transmitter 22 is a 1310 nm optical transmitter and optical transmitter 24 is a 1550 optical transmitter, commercially available from NEC, Fujitsu, Alcatel, and Nortel.
  • Optical communication system 10 includes a plurality of remodulators 30 for receiving the transmitted information-bearing optical signal at transmission wavelength from the first set of optical transmitters and transmitting an information-bearing optical signal at a WDM optical system channel wavelength. The expression "information - bearing optical signal," as used herein, refers to an optical signal which has been coded with information, including, but not limited to, audio signals, video signals, and computer data, generally through modulation. Similarly, the expression "non-information-bearing optical signal," as used herein, relates to a CW optical signal which has not been coded with information, e.g., an optical carrier which has not been modulated Typically, the wavelengths emitted by the remodulators are selected to be within the 1500 nanometer range, the range in which the minimum signal attenuation occurs for silica-based fibers. More particularly, the wavelengths emitted by the remodulators are selected to be in the range from 1530 to 1560 nanometers. However, other wavelength bands may be selected according to overall system requirements.
  • For a 16-channel wavelength division multiplexed optical communication system, an exemplary channel plan is set forth in Table 1 below. The optical channel plan dictates both the wavelengths of the optical remodulators and the corresponding wavelengths selected by the wavelength selectors in the optical receiving systems. Table 1
    Channel Number Wavelength (nm)
    1 1557.36
    2 1556.56
    3 1555.75
    4 1554.94
    5 1554.13
    6 1553.33
    7 1552.52
    8 1551.72
    9 1550.92
    10 1550.12
    11 1549.32
    12 1548.51
    13 1547.72
    14 1546.92
    15 1546.12
    16 1545.32
  • Wavelength division multiplexed topical communication system 10 optionally includes a second set of one or more optical transmitters 25 which directly output an optical signal having a wavelength which corresponds to an optical channel within the channel plan of the communication system. Consequently, optical transmitters 25 optically communicate with optical multiplexer or combiner 50 without the need for remodulation by remodulators 30. Optical transmitters 25 are commercially available from a variety of suppliers, including the OCT-204 series of optical transmitters from Alcatel, the HT2H-LR1H optical transmitters from Fujitsu, and the ITS-2400 optical transmitters from NEC.
  • Wavelength division multiplexed optical communication system 10 further optionally comprises additional sources of optical signals, e.g., optical signals from add/drop multiplexers or demultiplexers from other optical systems: Examples of various configurations of WDM optical systems with diverse signal sources are described in the parent application, incorporated by reference above.
  • An exemplary remodulator 30 for use in optical communication system 10 is schematically depicted in FIG. 2. In remodulator 30, the transmitted optical signal is converted by electro-optical converter 31, typically a photodiode, to an electrical signal. The electrical signal is amplified by transimpedance amplifier 32, passed through filter 33 to limit the noise bandwidth and waveshape the signal, and further amplified by limiting amplifier 34. Optionally, remodulator 30 can include clock and data recovery circuit 40 for use with high data rate signals. Switch 41 automatically selects high data rate signals and passes them through clock/data recovery element 43. The selected signals are retimed, advantageously reducing jitter. The retimed signal exits clock and data recovery circuit through switch 42.
  • The resultant electrical signal is used to drive external modulator 36 through modulator driver 37. As used herein, the expression "external modulator" includes any modulator which acts on an optical carrier emitted from a continuous wave (CW) optical source, such as a laser. Such external modulators can be packaged with the optical source or packaged separately from the optical source,
  • Remodulator 30 also includes a optical source, such as laser 37, for delivering a non-information-bearing optical carrier signal to laser output waveguide 39. In an exemplary embodiment, laser 37 is a DFB semiconductor diode laser, generally comprising one or more III-V semiconductor materials, commercially available from a wide variety of suppliers such as Fujitsu, GEC Marconi, Alcatel, and Hewlett-Packard. The laser outputs an optical carrier signal at a particular channel wavelength, the wavelength corresponding to a channel selector wavelength included in the remodulating channel selector. Laser control 38 provides the required laser bias current as well as thermal control of the laser. Using thermal control, the precise operating wavelength of the laser is maintained, typically to within a one angstrom bandwidth.
  • External modulator 36 acts on the optical carrier signal output from laser 37, as opposed to acting on the laser itself or on a laser driver, as occurs in direct modulation systems. An exemplary external modulator employs a waveguiding medium whose refractive index changes according to the applied electrical field, i.e., a material exhibiting an electro-optic effect. Consequently, the phase of input optical carrier signals is altered as a result of the changing refractive index of the optical waveguide. A suitable electro-optic waveguiding material for the external modulators is lithium niobate, LiNbO3. An exemplary electro-optic modulator for use as external modulator 36 is a Mach-Zehnder interferometric modulator which provides high-speed intensity modulation of optical carriers, In the Mach-Zehnder configuration, two optical paths are provided. An incoming optical carrier is split between the two paths of the . interferometer. At least one path of the interferometer is phase modulated. When the signal is recombined at the output, the light from the paths either constructively or destructively interferes, depending upon the electrical field applied to the surrounding electrodes during the travel time of the carrier, creating an amplitude-modulated output signal. Further details of electro-optic modulators are described in Becker, "Broad-Band Guided Wave Electrooptic Modulators," IEEE Journal of Quantum Electronics, Vol, QE-20, No. 7, July, 1984, pp. 723-727. Mach-Zchnder interferometers suitable for use in external electro-optic modulator 36 are commercially available from United Technologies, and IOC. The modulated output signal is the information-bearing optical channel whose wavelength corresponds to a particular channel selector wavelength in the optical communication system.
  • Alternatively, the external modulator employed in the remodulators can be selected from electro-absorption external modulators. Electro-absorption modulators function by changing the bandgap of the modulating material to impart information to the optical carrier signal. Exemplary electro-absorption modulators are described in Wood, "Multiple Quantum Well (MQW) Waveguide Modulators," Journal of Lightwave Technology, Vol. 6, No. 6, June, 1988, pp. 743-757.
  • Optionally, remodulators 30 include forward error correction (FEC) encoders 45. The addition of forward error correction to a WDM optical communication system advantageously decreases the bit error rate (BER) by adding redundancy, e.g., coding bits, to the individual optical channels which comprise the WDM signal. In particular, the addition of FEC permits the WDM system to achieve substantially error-free performance in the presence of the nonlinearities present in optical communication system. At the receive end, a forward error correction decoder examines the coding bits to accurately reconstruct the transmitted information. A variety of coding algorithms may be used to accomplish forward error correction in the WDM optical systems. Exemplary algorithms are convolutional encoding with threshold decoding, Viterbi decoding, or Reed-Solomon encoding/decoding. Detailed descriptions of these and other coding algorithms are found in Wiggert, Error-Control Coding and Applications (Artech House, c. 1978).
  • Advantageously, forward error correction in the WDM optical systems enables a "channel trace" function that encodes the channel ID, source, and destination into a small overhead bit stream which would permit the remodulating channel selector to respond only to an incoming signal with the proper addressing. The use of channel tracing through forward error correction additionally permits channel path trace through the WDM system, a particularly useful feature for complex system topologies and WDM systems with extensive add/drop multiplexing or cross-connect features.
  • An exemplary encoder 45 is shown in greater detail in FIG. 3. Signals received from clock/data recovery circuit 43 are supplied to encoder 45 on input line 410. Serial-to-parallel converter circuit 412 converts the received serial data to parallel data. The output of serial-to parallel converter circuit 412 is supplied on a plurality of lines 413 to FEC encoder core circuit 414, as described, for example, in U.S. Patent No. 6, 308, 295 "Parallel Spectral Reed-Solomon Encoder and Decoder" to Neifeld et al.. FEC encoder core circuit 414 encodes the received data in parallel in accordance with a Reed-Solomon code by attaching a plurality of syndrome symbols or groupings of bits followed by an inverse Fourier transform of the data and syndromes. FEC encoder core circuit 414 outputs encoded data in parallel to parallel-to-serial converter 416, which serializes the data for output to modulator drive 35.
  • Returning to FIG. 1, each information-bearing optical signal produced by a remodulator constitutes a channel in optical system 10, the wavelength of which corresponds to a channel selector wavelength. The optical signal channels output from remodulators 30 are brought together in optical combiner 50 for conveyance to optical waveguide 60. Optical combiner 50 is selected from any passive optical component which can combine plural wavelengths into a single output medium. Frequently, optical splitters used to divide a signal among plural outputs are used as optical combiners, operated in reverse fashion from the splitter. Exemplary optical combiners include 1 x N passive splitters available from Corning, Inc., Corning, NY, 1x N wideband single mode splitters available from IOT Integrierte Optik GmbH, Waghausel-Kirrlach, Germany, and fused fiber combiners available from Gould, Inc., Millersville, MD. The combination of channels forms a multiplexed optical signal which is output to waveguide 60. Optical waveguide 60 is typically a single-mode optical fiber such as SMF-28, available from Corning, and TRUEWAVE, available from AT&T Corp./Lucent Technologies, and is the principal transmission medium for the optical communication system. However, any optical waveguide which is capable of transporting multiple optical wavelengths can be employed as waveguide 60 in optical system 10.
  • Interposed along optical waveguide 60 are one or more optical amplifiers 70. Optical amplifiers 70 are selected from any device which directly increases the strength of plural optical signals without the need for optical-to-electrical conversion. In general, optical amplifiers 70 are selected from optical waveguides doped with rare earth ions such as erbium, neodymium, praseodymium, ytterbium, or mixtures thereof. Optical amplifiers, their materials , and their operation are further described in Gowar, Ed. Optical Communication Systems and in Desurvire, Erbium-Doped Fiber Amplifiers, (John Wiley & Sons, Inc., NY), c. 1994. Exemplary optical amplifier configurations are described in the parent applications. Further descriptions of doped-fiber optical amplifier configurations suitable for use in the optical communication system are described in Bjarklev, Optical Fiber Amplifiers: Design and System Applications, (Artech House, Norwood, MA) c. 1993.
  • Following transmission and amplification of the multiplexed optical signals along waveguide 60, a portion of the multiplexed optical signal must be sent to each of the remodulating channel selectors for selection and routing to an appropriate optical receiver. The multiplexed signal is input to optical splitter 90 which places a portion of the multiplexed signal onto plural output paths 92. Each output path 92 optically communicates with a remodulation channel selector 100. Optical splitter 90 is selected from any optical device which can divide an input optical signal and place it onto plural output paths. Exemplary splitters include passive optical components such as those components described for use as optical combiner 50. Splitter 90 in combination with remodulating channel selectors 100 constitute an exemplary wavelength demultiplexer.
  • FIG. 4 schematically depicts an exemplary remodulating channel selector 100 for use in WDM optical communication system 10. Remodulating channel selector 100 includes an optical input port 101 for receiving the WDM optical signal from splitter output path 92. The WDM optical signal traverses optical path 105 through splitter 103 to channel selector 102. Channel selector 102 passes optical signals having wavelengths other than the channel wavelength to be processed by the remodulating channel selector. These non-selected channels pass through low reflectivity port 104 and exit the optical communication system. The low reflectivity port 104 may be an angled fiber cut, although any low reflectivity waveguide termination technique may be employed. The selected channel wavelength is reflected by channel selector 102 through splitter 103 onto optical path 106. In an exemplary embodiment, optical splitter 103 is a fused fiber coupler and channel selector 102 comprises a Bragg grating member configured to reflect the selected channel wavelength. Preferably, the Bragg grating comprises a series of photoinduced refractive index perturbations in an optical fiber which causes the reflection of optical signals within a selected wavelength band. Bragg gratings suitable for use in the optical system of the present invention are described in Morey et al., "Photoinduced Bragg Gratings in Optical Fibers," Optics and Photonics News, February 1994, pp. 8-14.
  • Although a Bragg grating is depicted as the channel selecting element, it is understood that numerous other optical components can be employed as channel selector 102. Such optical components include, but are not limited to, multilayer interference filters, tunable Fabry-Perot selectors, and wavelength routers. In an exemplary embodiment, the optical bandwidth is selected to be sufficiently narrow to minimize the deleterious effects of amplified spontaneous emission (ASE).
  • The selected optical channel is converted by electro-optical converter 108, typically a photodiode, to an electrical signal. The electrical signal is amplified by transimpedance amplifier 110 and routed through clock and data recovery circuit 112 for retiming. In an exemplary embodiment, the electrical bandwidth of the optical-to-electrical converter and the transimpedance amplifier is selected to match the data rate of the incoming signal. Optionally, the remodulating channel selector includes FEC decoder 114 circuit for accurate reconstruction of the transmitted signal, as discussed above.
  • As shown in Fig. 5, FEC decoder 114 includes a serial-to-parallel converter 510, and FEC decoder core circuit 512 and a parallel-to-serial converter circuit 514. Data from clock/data recovery circuit 112 is supplied to a senal-to-parallel converter 510, which supplies a parallel output to FEC decoder core circuit 512, as described, for example, in Neifeld et al., supra. As further described in Neifeld et al., FEC decoder core circuit 512 includes a Fourier transform circuit, Berlekamp algorithm circuit and Recursive Extension circuit (not shown). Received data is decoded by initially performing the Fourier transform. The data is next typically supplied to both a temporary memory and the Berlekamp algorithm circuit, which acts on the data in parallel to supply a parallel output to the Recursive Extension circuit. The recursive extension circuit, also operates in parallel, to generate an error signal, which is compared with the received data stored in memory. As a result, errors which may have occurred during transmission, for example, are corrected The resulting parallel output ofFEC decoder core circuit 512 is supplied to parallel-to-serial conversion circuit 514 and passed to modulator 118. The parallel construction of FEC decoder 114, as well as FEC encoder 45 descirbed above, permits encoding and decoding of data at high speeds.
  • Returning to FIG. 4, direct modulation of optical transmitter 116 by way of modulator 118 will now be described. Although "modulator" 118 is depicted as a discrete device, in actuality it can consist of d.c. power supply 119 interconnected with an electronic switch. The electronic switch in turn optically communicates with the electrical signal containing the information from the selected channel output through the optical-to-electrical converter and processed by the subsequent elements, The electronic switch controls the flow of current from the d.c, supply to the optical emitter in response to the information received from the electrical signal. Alternatively, the direct modulation of the emitter can be performed using a voltage-controlled current source for the elements labeled 118 and 119 in FIG. 3. Such a current source for the optical emitter provides a current whose magnitude is directly related to the applied voltage. The applied voltage represents the information received from the optical-to electrical converter; alternatively the current may be directly derived from the modulating voltage.
  • Optical transmitter 116 is selected from a variety of optical devices, depending upon the optical interface required for receiver 130. When the signal emitted by the remodulating channel selector is destined for long distance transmission (e.g., through the optical combiner of a further WDM optical system as depicted in FIG. 1), the optical emitter is selected to be a DFB laser. When the signal emitted by the remodulating channel selector is destined for an adjacent receiver, the optical emitter within the optical transmitter is selected from lower-cost, shorter-range optical emitters such as Fabry-Perot lasers, light-emitting diodes, and superluminescent diodes.
  • If the optical signal emitted by the remodulating channel selector is destined for transmission in another WDM system, then the wavelength of the optical emitter is selected to be compatible with the channel plan of that system. For example, the optical emitter may produce an optical signal having a wavelength which corresponds to another channel from the input WDM optical signal. If the remodulating channel selectors are incorporated into a switching matrix, a variable wavelength optical emitter can be used to dynamically select an available wavelength within a WDM optical channel plan.
  • In an alternate embodiment (not shown) the optical signal emitter is externally modulated, e.g., as in the remodulators of FIG. 2. External modulation is particularly advantageous when the signal output by the remodulating channel selector is destined for long-distance transmission. In such an embodiment, the remodulating channel selectors can serve to reshape and retime an optical signal, e.g., an optical signal which has traversed the maximum dispersion-limited transmission distance (e.g., a distance of approximately 600 km for optical fibers such as SMF-28).
  • In this manner, a modulated optical signal is output by optical transmitter 116 through remodulating channel selector output port 113. The remodulating channel selector output signal is transmitted to optical receiver 130. Receiver 130 generally detects the optical signal and converts it to an electrical signal, typically through the use of a photodiode device. Various optical receivers suitable for use in optical system 10 are described in Gowar, Optical Communication Systems, discussed above. In optical communication system 10, receiver 130 will frequently be part of an existing optical communication system to which the remodulated optical signal is routed. Consequently, the optical system 10 can function with numerous types of receivers to ensure compatibility with existing optical equipment. In particular, the presence of remodulating channel selectors 100 enables the WDM optical communication system to communicate with optical receivers conforming to the SONET "short-haul" standard. Further descriptions of SONET interface standards are found in SONET Transport Systems: Common Criteria, (GR-253-CORE, ).
  • Alternatively, as depicted in FIG. 1, the output of a remodulating channel selector is conveyed to another WDM optical system or a portion of the same WDM optical system through input to an optical combiner for multiplexing with other optical signals or routing, e.g., through an add/drop multiplexer.
  • While the foregoing invention has been described in terms of the embodiments discussed above, numerous variations are possible. Accordingly, modifications and changes such as those suggested above, but not limited thereto, are considered to be within the scope of following claims.

Claims (20)

  1. A remodulating channel selector (100) for a wavelength division multiplexed optical communication system comprising:
    an optical input port (101) configured to receive a wavelength division multiplexed optical communication signal (92) from a wavelength division multiplexed optical communication system;
    an optical channel selector (102) optically communicating with the optical input port (101) for optically selecting a single optical channel from the wavelength division multiplexed optical communication signal (92) received from the optical input port (101);
    an optical-to-electrical converter (108) optically communicating with the optical channel selector (102) for receiving the selected optical channel from the optical channel selector (102) and outputting an electrical signal corresponding to information from the selected optical channel;
    an optical signal emitter (116) for creating an optical signal for outputting to an output port (113) of the remodulating channel selector; and
    modulator means (118) for imparting information from the selected optical channel to the optical signal created by the optical signal emitter (116), the modulator means (118) communicating with the electrical signal created by the optical-to-electrical converter (108) and communicating with the optical signal emitter (116).
  2. A remodulating channel selector as recited in claim 1 wherein the optical channel selector (102) is configured to reflect the selected channel wavelength.
  3. A remodulating channel selector as recited in claim 1 or 2 wherein the optical channel selector (102) comprises a Bragg grating.
  4. A remodulating channel selector as recited in claim 1, 2 or 3, wherein the optical signal emitter (116) is a laser.
  5. A remodulating channel selector as recited in claim 1, 2 or 3, wherein the optical signal emitter (116) is a light-emitting diode.
  6. A remodulating channel selector as recited in any preceding claim further comprising clock and data recovery elements (112) positioned between the optical-to-electrical converter (108) and the modulator means (118).
  7. A remodulating channel selector as recited in any preceding claim wherein the modulator means (118) directly modulates the optical signal emitter (116).
  8. A remodulating channel selector as recited in any of claims 1-6 wherein the modulator means is an external modulator.
  9. A remodulating channel selector as recited in any preceding claim further comprising a forward error correction decoder (114) positioned between the optical-to -electrical converter (108) and the modulating means (118).
  10. A remodulating channel selector as recited in any preceding claim wherein the wavelength of the optical signal emitted by the optical signal emitter (116) is different from any of the channel wavelengths which comprise a wavelength division multiplexed optical signal input to the optical input port (101).
  11. A wavelength division multiplexed optical communication method using a remodulating channel selector (100) to carry out the steps of:
    receiving a wavelength division multiplexed input signal (92), wherein the remodulating channel selector comprises an optical input port (101) that is configured to receive the input signal (92) from a wavelength division multiplexed optical communication system;
    selecting a particular optical channel from the input signal (92), wherein the remodulating channel selector comprises an optical channel selector (102) that optically communicates with the optical input port (101) to select a single optical channel from the input signal (92);
    the remodulating channel selector comprising an optical-to-electrical converter (108) optically communicating with the optical channel selector (102), the method comprising receiving the selected optical channel and outputting an electrical signal corresponding to information from the selected optical channel; and
    the remodulating channel selector comprising an optical signal emitter (116), a remodulating channel selector output port (113) and modulator means (118), and the method further comprising placing information from the selected signal onto a newly-generated optical output signal created by the optical signal emitter (116) and outputted to the remodulating channel selector output port (113), wherein the modulator means (118) communicates with the electrical signal created by the optical-to-electrical converter (108) and imparts information from the selected optical channel to the optical signal created by the optical signal emitter (116).
  12. An optical communication method as recited in claim 11, wherein the optical channel selector (102) reflects the selected channel wavelength.
  13. An optical communication method as recited in claim 11 or 12, wherein the optical channel selector (102) comprises a Bragg grating.
  14. An optical communication method as recited in claim 11, 12 or 13, wherein the optical signal emitter (116) is a laser.
  15. An optical communication method as recited in claim 11, 12 or 13, wherein the optical signal emitter (116) is a light-emitting diode.
  16. An optical communication method as recited in any of claims 11-15, further comprising re-timing the electrical signal using clock and data recovery elements (112) positioned between the optical-to-electrical converter (108) and the modulator means (118).
  17. An optical communication method as recited in any of claims 11-16, wherein the modulator means (118) directly modulates the optical signal emitter (116).
  18. An optical communication method as recited in any of claims 11-16, wherein the modulator means is an external modulator.
  19. An optical communication method as recited in any of claims 11-16, further comprising reconstructing the electrical signal using a forward error correction decoder (114) positioned between the optical-to-electrical converter (108) and the modulating means (118).
  20. An optical communication method as recited in any of claims 11-19, wherein the wavelength of the optical signal emitted by the optical signal emitter (116) is different from any of the channel wavelengths which comprise a wavelength division multiplexed optical signal input to the optical input port (101).
EP08000267.8A 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems Expired - Lifetime EP1903709B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US95505897A 1997-10-21 1997-10-21
EP98956132A EP0951765B1 (en) 1997-10-21 1998-10-21 Remodulators for wdm optical communication systems
EP04008323A EP1434377B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems

Related Parent Applications (4)

Application Number Title Priority Date Filing Date
EP04008323A Division EP1434377B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems
EP98956132.9 Division 1998-10-21
EP98956132A Division EP0951765B1 (en) 1997-10-21 1998-10-21 Remodulators for wdm optical communication systems
EP04008323.0 Division 2004-04-06

Publications (3)

Publication Number Publication Date
EP1903709A2 EP1903709A2 (en) 2008-03-26
EP1903709A3 EP1903709A3 (en) 2010-12-01
EP1903709B1 true EP1903709B1 (en) 2015-11-18

Family

ID=25496321

Family Applications (5)

Application Number Title Priority Date Filing Date
EP04008323A Expired - Lifetime EP1434377B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems
EP98956132A Expired - Lifetime EP0951765B1 (en) 1997-10-21 1998-10-21 Remodulators for wdm optical communication systems
EP08000263.7A Expired - Lifetime EP1903708B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems
EP08000267.8A Expired - Lifetime EP1903709B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems
EP08000257.9A Expired - Lifetime EP1903707B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP04008323A Expired - Lifetime EP1434377B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems
EP98956132A Expired - Lifetime EP0951765B1 (en) 1997-10-21 1998-10-21 Remodulators for wdm optical communication systems
EP08000263.7A Expired - Lifetime EP1903708B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08000257.9A Expired - Lifetime EP1903707B1 (en) 1997-10-21 1998-10-21 Remodulators for WDM optical communication systems

Country Status (5)

Country Link
EP (5) EP1434377B1 (en)
AU (1) AU1272599A (en)
CA (1) CA2275700A1 (en)
DE (2) DE69840134D1 (en)
WO (1) WO1999021316A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690884B1 (en) 1999-02-19 2004-02-10 Corvis Corporation Optical transmission systems including error correction and protection apparatuses and methods
WO2000055663A1 (en) 1999-03-15 2000-09-21 Visionex, Inc. Optical networking assembly
WO2000067408A1 (en) * 1999-04-30 2000-11-09 Sorrento Networks, Inc. Dense wavelength division multiplexing-based network interface module
EP1186131B1 (en) * 1999-05-25 2006-08-16 Cirrex Corporation Method and system for increasing a number of information channels carried by optical waveguides
AU5445300A (en) 1999-05-25 2000-12-12 Cirrex Corporation Optical feedback assembly
JP3388464B2 (en) * 1999-11-04 2003-03-24 日本電気株式会社 Optical transmission system using error correction and performance monitor method used therefor
GB0124234D0 (en) 2001-10-09 2001-11-28 Marconi Comm Ltd Apparatus for data transmission
EP1341353A1 (en) * 2002-02-28 2003-09-03 Corvis Algety Transmitter, receiver and method for reordering of multiplexed data streams
ATE387043T1 (en) * 2002-04-24 2008-03-15 Alcatel Lucent REMODULATOR FOR OPTICAL TRANSMISSION SYSTEMS
US7901870B1 (en) 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
US7565084B1 (en) 2004-09-15 2009-07-21 Wach Michael L Robustly stabilizing laser systems
CN103957476B (en) * 2014-04-29 2015-07-15 中国人民解放军国防科学技术大学 High-speed message obtaining method and system based on PON delay distance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267073A (en) 1989-10-30 1993-11-30 Pirelli Cavi S.P.A. Amplifier adapter for optical lines
SG48905A1 (en) * 1994-01-18 1998-05-18 British Telecomm Optical communications networks
US5504609A (en) * 1995-05-11 1996-04-02 Ciena Corporation WDM optical communication system with remodulators
US5715076A (en) * 1995-05-11 1998-02-03 Ciena Corporation Remodulating channel selectors for WDM optical communication systems
US5784184A (en) * 1995-05-11 1998-07-21 Ciena Corporation WDM Optical communication systems with remodulators and remodulating channel selectors
US5726784A (en) 1995-05-11 1998-03-10 Ciena Corp. WDM optical communication system with remodulators and diverse optical transmitters
US6308295B1 (en) 1996-10-08 2001-10-23 Arizona Board Of Regents Parallel spectral reed-solomon encoder and decoder
US6308294B1 (en) 1999-11-17 2001-10-23 Motorola, Inc. Adaptive hybrid ARQ using turbo code structure

Also Published As

Publication number Publication date
EP1903709A3 (en) 2010-12-01
EP1903708A3 (en) 2010-12-01
DE69840134D1 (en) 2008-11-27
EP0951765B1 (en) 2005-08-17
EP1434377B1 (en) 2008-10-15
EP1903708B1 (en) 2017-04-19
WO1999021316A9 (en) 1999-08-05
AU1272599A (en) 1999-05-10
CA2275700A1 (en) 1999-04-29
EP0951765A1 (en) 1999-10-27
WO1999021316A1 (en) 1999-04-29
EP1903709A2 (en) 2008-03-26
DE69831214T2 (en) 2006-06-08
EP1903708A2 (en) 2008-03-26
EP1434377A3 (en) 2005-08-31
EP1903707B1 (en) 2017-04-19
EP1434377A2 (en) 2004-06-30
EP1903707A2 (en) 2008-03-26
EP1903707A3 (en) 2010-12-01
DE69831214D1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US6233077B1 (en) Remodulating channel selectors for WDM optical communication systems
US5784184A (en) WDM Optical communication systems with remodulators and remodulating channel selectors
US5715076A (en) Remodulating channel selectors for WDM optical communication systems
US9191117B2 (en) High-speed optical transponder systems
US5726784A (en) WDM optical communication system with remodulators and diverse optical transmitters
US5938309A (en) Bit-rate transparent WDM optical communication system with remodulators
US5504609A (en) WDM optical communication system with remodulators
US6101011A (en) Modulation format adjusting optical transponders
US8521020B2 (en) Forward error correction (FEC) enabled photonic integrated circuit (PIC) chips with multiple signal channels
CA2333713A1 (en) Multiwavelength mode-locked dense wavelength division multiplexed optical communication systems
EP1903709B1 (en) Remodulators for WDM optical communication systems
Renaudier et al. Spectrally efficient 1-Tb/s transceivers for long-haul optical systems
Buchali et al. DCI field trial demonstrating 1.3-Tb/s single-channel and 50.8-Tb/s WDM transmission capacity
US6604872B2 (en) Method and apparatus for improving spectral efficiency in fiber-optic communication systems
Tomizawa et al. Parallel FEC code in high-speed optical transmission systems
Arabaci et al. Rate-adaptive nonbinary-LDPC-coded modulation with backpropagation for long-haul optical transport networks
Tychopoulos et al. A low-cost inband FEC scheme for SONET/SDH optical metro networks
Tychopoulos et al. Demonstration of a low-cost inband FEC scheme for STM-64 transparent metro networks
van Deventer A common data-induced-polarization-switching (CDIPS) method for coherent optical transmission systems
Savov Multichannel photonic networks.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 0951765

Country of ref document: EP

Kind code of ref document: P

Ref document number: 1434377

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 20110601

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20120709

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 10/29 20130101ALI20150326BHEP

Ipc: H04J 14/02 20060101AFI20150326BHEP

Ipc: H04L 1/00 20060101ALI20150326BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0951765

Country of ref document: EP

Kind code of ref document: P

Ref document number: 1434377

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 69843472

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 69843472

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171019

Year of fee payment: 20

Ref country code: FR

Payment date: 20171024

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69843472

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181020