EP1698775B1 - System and method to control the combustion behaviour of an internal combustion engine - Google Patents

System and method to control the combustion behaviour of an internal combustion engine Download PDF

Info

Publication number
EP1698775B1
EP1698775B1 EP20050101640 EP05101640A EP1698775B1 EP 1698775 B1 EP1698775 B1 EP 1698775B1 EP 20050101640 EP20050101640 EP 20050101640 EP 05101640 A EP05101640 A EP 05101640A EP 1698775 B1 EP1698775 B1 EP 1698775B1
Authority
EP
European Patent Office
Prior art keywords
signal
internal combustion
combustion engine
crankshaft angle
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20050101640
Other languages
German (de)
French (fr)
Other versions
EP1698775A1 (en
Inventor
Christian Winge Vigild
Daniel Roettger
Evangelos Karvounis
Charles Tumelaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP20050101640 priority Critical patent/EP1698775B1/en
Priority to DE200550002989 priority patent/DE502005002989D1/en
Publication of EP1698775A1 publication Critical patent/EP1698775A1/en
Application granted granted Critical
Publication of EP1698775B1 publication Critical patent/EP1698775B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors

Definitions

  • the invention relates to a method for characterizing the combustion behavior of an internal combustion engine and to a control system and a method for feedback control of the combustion of an internal combustion engine, which are based on the former method
  • a method for characterizing the combustion behavior of an internal combustion engine having the features of the preamble of claim 1 is known from DE 103 51 133 A1 known.
  • the combustion information obtained from the feedback signal essentially the combustion position and intensity, can be used to correct injection and cylinder charge composition control variables. In this way, for. B. life drift of sensors and actuators such as air mass sensor and fuel injector can be compensated.
  • Knock sensor signals are routinely detected in many engines to detect premature auto-ignition ("knocking") of the engine and, if necessary, to cause appropriate countermeasures thereto.
  • knock sensor signals Various types are known in the art and are suitable for the present method.
  • the knock sensor signal may detect mechanical vibrations of the engine generated by the combustion in the cylinders.
  • the "course" of the knock sensor signal can be described both as a function of time and in particular of the associated crankshaft angle of the internal combustion engine.
  • an index X can be obtained with the method according to the invention, which characterizes the combustion behavior with surprising accuracy. It is important that the index X depends on a more or less long course of the knock sensor signal and not only on individual values of a sensor signal.
  • the advantage of the method is, moreover, that the knock sensor signal is relatively simple and robust to determine or is already available in many motor vehicles anyway.
  • the knock sensor signal can be detected in particular as a function of the crankshaft angle (determined in parallel).
  • the crankshaft angle is directly related to the state of the engine or the position of the engine cylinder, so that the mutual assignment of crankshaft angle and knock sensor signal can describe the combustion behavior particularly meaningful.
  • crankshaft angle is preferably determined with a resolution of less than 1 °, more preferably less than 0.5 °.
  • the resolution of the crankshaft angle present in the raw data is determined primarily by the sampling rate and is typically significantly higher than the above-mentioned values.
  • the required finer resolution of the crankshaft angle is then preferably obtained by interpolation or extrapolation from the existing measurement data.
  • the knock sensor signal is taken into account only in an interval of its definition range, which is characteristic of a selected cylinder of the internal combustion engine.
  • the knock sensor signal may be considered only at a predetermined angular interval around top dead center between the compression and combustion strokes of the selected cylinder to provide combustion relevant information to detect this cylinder and hide interference from other events.
  • ⁇ 0 means a predetermined (lower) integration limit. If the knock sensor signal K is considered only at one interval as described above, ⁇ 0 typically corresponds to the lower limit of this interval. Furthermore, it is understood that equation (1) is intended to include the corresponding discretized formulation in the case of discrete-time processing of the signals.
  • the above-defined signal energy E ( ⁇ ) is preferably bandpass filtered and / or normalized before being further used to calculate the index X.
  • the invention further relates to a method for the feedback control of combustion in an internal combustion engine, in which a feedback signal is formed by an index X according to the method according to the invention.
  • a feedback signal is formed by an index X according to the method according to the invention.
  • the index X is easy to win and on the other hand very meaningful in terms of combustion, so that it allows a simple and robust control of the operation of the internal combustion engine.
  • control signals influenced by the method may in particular be the time or points in time, the number, the pulse width (s) of the fuel injections, the ignition timing, the valve opening and closing times, the exhaust gas recirculation, the position of the throttle valve or the like.
  • the invention further relates to a control system for an internal combustion engine, which contains an input for the signal of a knock sensor and is designed to carry out the method according to the invention. That is, the control system may calculate an index X based on the history of a knock sensor signal and use it as a feedback signal for feedback control of the combustion.
  • the knock sensor is a structure-borne sound acceleration sensor, such.
  • the control system can be realized in a known manner, for example by a microprocessor with associated components such as memory and interfaces as well as with suitable software.
  • FIG. 1 is schematically shown an internal combustion engine 10 with (at least) a cylinder 13 and a piston 12 movable up and down therein.
  • the piston 12 is connected in a known manner via a connecting rod with the crankshaft 11, wherein a crankshaft angle sensor 18 measures the crankshaft angle ⁇ .
  • the cylinder further includes an intake valve 14 and an exhaust valve 16 for fresh air and exhaust gases, respectively, and a fuel injector 15 for direct injection of fuel into the combustion chamber.
  • a knock sensor 17 is arranged, which may be formed for example as a pressure sensor with piezo pickups. By the knock sensor 17 vibrations of the engine block caused by the combustion are detected. Preferably, the signal of the knock sensor 17 is immediately low-pass filtered in order to avoid aliasing effects (cf. Ch. Vigild, A. Chevalier, E. Hendricks: "Avoiding signal aliasing in event-based engine control", SAE Paper No: 2000-01-0268 ).
  • the - possibly low-pass filtered - signal K of the knock sensor 17 and the crankshaft angle ⁇ from the sensor 18 are sampled by a gain and filter module 20, amplified and filtered.
  • the sampling of the signals can be done either in the time domain or in the crankshaft angle range. When scanning in the time domain is a fixed time interval, in the scan in the crankshaft angle range a fixed crankshaft angle between the sampling points.
  • the sampling can also be carried out according to other schemes and the sampling rate, for example, vary (in the angular range or in the time domain). In the latter case, a high signal resolution can be achieved, in particular in certain signal areas of interest.
  • crankshaft angle ⁇ is detected by a toothed disk on the flywheel, in which - due to the tooth spacing - only angular resolutions of typically 3 °, 5 °, 6 ° or 10 ° are obtained. In contrast, in the present case higher resolutions up to 0.1 ° or less are needed.
  • the crankshaft angle ⁇ is therefore determined in the module 20 by interpolation or extrapolation with the required fineness from the raw data. An interpolation can be used if the crankshaft angle is not needed immediately and can therefore be calculated as an intermediate value of two consecutive sampling points. If, on the other hand, an immediate use of the crankshaft angle ⁇ takes place, then it must be extrapolated from the preceding sampling points.
  • the amplified and filtered signals ⁇ , K ( ⁇ ) of the crankshaft angle and the knock sensor are forwarded to a combustion profile module 21 for estimating the combustion profile or for determining characteristic indices X for this purpose.
  • the signals or indices calculated by the module 21 are used by the subsequent control module 22 as feedback signals for the feedback control of the internal combustion engine 10.
  • a preferred method implemented in module 21 for calculating an index X is explained in more detail:
  • the variable ⁇ n defines the sampling interval between the crankshaft angle samples number (n-1) and n, N ( ⁇ 0 ) and N ( ⁇ ), respectively, are the numbers of sampling for the crankshaft angle ⁇ 0 or ⁇ , and K J, n is the knock sensor signal K of the n-th sample.
  • ⁇ n 1
  • the discretized form of equation (4) is used as a basis for further consideration, although all considerations apply analogously to the continuous version.
  • the function F BP represents the band-pass filtering, which may be either the forward type or the forward / backward type.
  • Forward type filters filter a signal only in the forward direction, that is, the angle ⁇ grows at one such filter incrementally. For this reason, forward filters require less computation and can be used for online calculations, for example, for calculations of current events. Due to the nature of these filters, however, these lead to a phase shift of the input signal.
  • forward / reverse type filters filter a signal in both the forward and reverse directions so that these phase shifts can be compensated. However, they usually require more computational effort than corresponding forward filters and can only be used offline, eg. In calculations between combustion events.
  • N ( ⁇ end ) - N ( ⁇ start ) is the total number of sampling points.
  • indices are now defined which characterize the combustion behavior of the engine. According to their definition, these indices are also referred to as "energy focus" indexes.
  • An important feature of the indices is that they focus on the distribution of the signal energy in the given signal window J, rather than on individual signal values or points, such as abrupt changes in signal energy (which would be intuitively close to estimating the maximum pressure gradient in the cylinder).
  • Another benefit of the energy-balance indexes This is because they rely on signal integration and are therefore less susceptible to noise problems.
  • module 21 of FIG. 1 from the amplified and filtered knock sensor signals K ( ⁇ ) calculates the combustion characteristic indices X p , the latter implicitly describing the profile of the diesel combustion or the profile of the heat output in the combustion chambers.
  • the indices X p may then be used in the control module 22 to affect fuel injection via injection pressure, injection pulse width, and / or injection time (s), exhaust gas recirculation, boost pressure, and / or another suitable amount.
  • FIG. 2 shows in this regard the functional relationship between the knock sensor signal based combustion characterization and selected combustion parameters.
  • the left diagram shows the behavior of the center of gravity energy index X 50 with increasing BOA.
  • the normalized energy width or "knock energy duration", X 90 - X 10 is plotted against the normalized main burn duration (ie the time to get from 20% to 80% of the total energy release within the data window) in the center graph.
  • the right diagram finally shows the relationship between the value of a sound pressure level meter (in dB) and the average normalized knock signal energy (in dB) accumulated over the data window.
  • FIG. 3 shows the curves associated with the experiments described above, the heat release in the cylinder for each set values of the BOA.
  • FIGS. 4 and 5 show the results of the second series of experiments in an analogue representation like the Figures 2 and 3 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Charakterisierung des Verbrennungsverhaltens einer Brennkraftmaschine sowie ein Regelungssystem und ein Verfahren zur rückgekoppelten Regelung der Verbrennung einer Brennkraftmaschine, welche auf dem erstgenannten Verfahren basierenThe invention relates to a method for characterizing the combustion behavior of an internal combustion engine and to a control system and a method for feedback control of the combustion of an internal combustion engine, which are based on the former method

Ein Verfahren zur Charakterisierung des Verbrennungsverhaltens einer Brennkraftmaschine mit den Merkmalen des Oberbegriffs von Anspruch 1 ist aus der DE 103 51 133 A1 bekannt.A method for characterizing the combustion behavior of an internal combustion engine having the features of the preamble of claim 1 is known from DE 103 51 133 A1 known.

Herkömmliche Regelungssysteme für die Kraftstoffinjektion in Brennkraftmaschinen wie z. B. Dieselmotoren arbeiten typischerweise in einem offenen Regelkreis. D. h., daß der Injektionszeitpunkt und die Pulsbreite der Injektion aus fest vorgegebenen Kennfelder bzw. Tabellenspeichern entnommen werden, die im Motorregler gespeichert sind. Derartige Systeme zeigen zwar ein sehr schnelles Regelverhalten, sind jedoch andererseits nicht sehr robust gegenüber Motortoleranzen, da die Regelungsstrategie im Falle von Störungen nicht angepaßt werden kann. Wenn sich beispielsweise die Durchflußcharakteristik eines Injektors in einem Dieselmotor in Folge von Verschleißerscheinungen ändert, wird die verwendete Pulsbreite des Injektors den Motor nicht mehr mit der erforderlichen Kraftstoffmenge versorgen. Die Folge hiervon können höhere Werte für die Motoremissionen, den Kraftstoffverbrauch und die Geräuschentwicklung oder sogar ein Motorschaden sein. Aus diesen Gründen ist es wünschenswert, im Rahmen der Verbrennungsregelung bei einer Brennkraftmaschine eine Rückkopplung vorzusehen.Conventional control systems for fuel injection in internal combustion engines such. B. Diesel engines typically operate in an open loop. In other words, the injection time and the pulse width of the injection are taken from permanently predetermined maps or table memories which are stored in the engine controller. While such systems have very fast control performance, they are not very robust to motor tolerances because the control strategy can not be adjusted in the event of disturbances. For example, if the flow characteristic of an injector in a diesel engine changes due to wear, the pulse width of the injector used will no longer provide the engine with the required amount of fuel. The consequence of this may be higher values for engine emissions, fuel consumption and noise, or even engine damage. For these reasons, it is desirable to provide feedback in the context of combustion control in an internal combustion engine.

Eine derartige rückgekoppelte Regelung einer Brennkraftmaschine erfordert jedoch die Verfügbarkeit eines Rückkopplungssignals, welches das Verbrennungsverhalten charakterisieren kann. Diesbezüglich sind Messungen des Zylinderinnendrucks vorgeschlagen und verschiedentlich untersucht worden. Ein Nachteil solcher Messungen besteht indes darin, daß diese einen Sensor pro Zylinder erfordern und daher verhältnismäßig kostenaufwendig sind. Darüber hinaus zeigen die derzeit verfügbaren Sensoren für den Zylinderinnendruck ein Driftverhalten und eine verhältnismäßig kurze Lebensdauer. Nicht zuletzt stellt der bei den derzeit verfügbaren Sensoren erforderliche direkte Zugang zu den Brennkammern ein Problem dar.However, such a feedback control of an internal combustion engine requires the availability of a feedback signal which can characterize the combustion behavior. In this regard, measurements of in-cylinder pressure have been proposed and variously studied. A disadvantage However, such measurements is that they require one sensor per cylinder and therefore are relatively expensive. In addition, currently available in-cylinder pressure sensors exhibit drift behavior and a relatively short life. Last but not least, the direct access to the combustion chambers required by currently available sensors poses a problem.

Die aus dem Rückkopplungssignal gewonnenen Verbrennungsinformationen, im wesentlichen die Verbrennungslage und -intensität, können genutzt werden, um Regelgrößen der Einspritzung sowie der Zylinderladungszusammensetzung, zu korrigieren. Auf diese Weise können z. B. Lebensdauerdrift von Sensoren und Aktuatoren wie Luftmassensensor und Kraftstoffinjektor kompensiert werden.The combustion information obtained from the feedback signal, essentially the combustion position and intensity, can be used to correct injection and cylinder charge composition control variables. In this way, for. B. life drift of sensors and actuators such as air mass sensor and fuel injector can be compensated.

Vor diesem Hintergrund war es Aufgabe der vorliegenden Erfindung, Mittel für eine einfache und zugleich robuste Regelung des Verbrennungsverhaltens einer Brennkraftmaschine bereitzustellen.Against this background, it was an object of the present invention to provide means for a simple yet robust control of the combustion behavior of an internal combustion engine.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. 7 sowie durch ein Regelungssystem mit den Merkmalen des Anspruchs 8 gelöst.This object is achieved by a method having the features of claim 1 or 7 and by a control system having the features of claim 8.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.Advantageous embodiments are contained in the subclaims.

Klopfsensor-Signale werden bei vielen Brennkraftmaschinen routinemäßig erfaßt, um eine vorzeitige Selbstzündung ("Klopfen") des Motors zu erkennen und gegebenenfalls geeignete Gegenmaßnahmen hiergegen zu veranlassen. Verschiedene Arten von Klopfsensor-Signalen sind im Stand der Technik bekannt und für das vorliegende Verfahren geeignet. Insbesondere kann das Klopfsensor-Signal mechanische Schwingungen der Brennkraftmaschine erfassen, die durch die Verbrennung in den Zylindern erzeugt werden. Der "Verlauf" des Klopfsensor-Signals kann sowohl in Abhängigkeit von der Zeit als auch insbesondere von dem zugehörigen Kurbelwellenwinkel der Brennkraftmaschine beschrieben werden.Knock sensor signals are routinely detected in many engines to detect premature auto-ignition ("knocking") of the engine and, if necessary, to cause appropriate countermeasures thereto. Various types of knock sensor signals are known in the art and are suitable for the present method. In particular, the knock sensor signal may detect mechanical vibrations of the engine generated by the combustion in the cylinders. The "course" of the knock sensor signal can be described both as a function of time and in particular of the associated crankshaft angle of the internal combustion engine.

Wie Untersuchungen gezeigt haben, läßt sich mit dem erfindungsgemäßen Verfahren ein Index X gewinnen, welcher das Verbrennungsverhalten überraschend genau charakterisiert. Wichtig hierbei ist, daß der Index X von einem mehr oder weniger langen Verlauf des Klopfsensor-Signals und nicht nur von Einzelwerten eines Sensorsignals abhängt. Vorteilhaft an dem Verfahren ist im Übrigen, daß das Klopfsensor-Signal verhältnismäßig einfach und robust zu ermitteln ist bzw. in vielen Kraftfahrzeugen ohnehin schon zur Verfügung steht.As studies have shown, an index X can be obtained with the method according to the invention, which characterizes the combustion behavior with surprising accuracy. It is important that the index X depends on a more or less long course of the knock sensor signal and not only on individual values of a sensor signal. The advantage of the method is, moreover, that the knock sensor signal is relatively simple and robust to determine or is already available in many motor vehicles anyway.

Wie bereits erwähnt, kann das Klopfsensor-Signal insbesondere in Abhängigkeit vom (parallel ermittelten) Kurbelwellenwinkel erfaßt werden. Der Kurbelwellenwinkel hängt unmittelbar mit dem Zustand der Brennkraftmaschine bzw. der Stellung der Motorzylinder zusammen, so daß die wechselseitige Zuordnung von Kurbelwellenwinkel und Klopfsensor-Signal das Verbrennungsverhalten besonders aussagekräftig beschreiben kann.As already mentioned, the knock sensor signal can be detected in particular as a function of the crankshaft angle (determined in parallel). The crankshaft angle is directly related to the state of the engine or the position of the engine cylinder, so that the mutual assignment of crankshaft angle and knock sensor signal can describe the combustion behavior particularly meaningful.

Das beschriebene Verfahren kann prinzipiell mit zeitkontinuierlichen Signalen bzw. analogen Signalen durchgeführt werden. Typischerweise erfolgt jedoch die Signalerfassung und -verarbeitung zeitdiskret und digitalisiert. In diesem Falle wird der Kurbelwellenwinkel vorzugsweise mit einer Auflösung von weniger als 1°, besonders bevorzugt von weniger als 0.5° ermittelt. Die in den Rohdaten vorhandene Auflösung des Kurbelwellenwinkels wird in erster Linie durch die Abtastrate bestimmt und liegt typischerweise deutlich höher als die vorstehend genannten Werte. Die erforderliche feinere Auflösung des Kurbelwellenwinkels wird dann vorzugsweise durch Interpolation bzw. Extrapolation aus den vorhandenen Meßdaten gewonnen.The method described can in principle be carried out with time-continuous signals or analog signals. Typically, however, signal acquisition and processing is time discrete and digitized. In this case, the crankshaft angle is preferably determined with a resolution of less than 1 °, more preferably less than 0.5 °. The resolution of the crankshaft angle present in the raw data is determined primarily by the sampling rate and is typically significantly higher than the above-mentioned values. The required finer resolution of the crankshaft angle is then preferably obtained by interpolation or extrapolation from the existing measurement data.

Gemäß einer Weiterbildung des Verfahrens wird das Klopfsensor-Signal nur in einem Intervall seines Definitionsbereiches berücksichtigt, das für einen ausgewählten Zylinder der Brennkraftmaschine charakteristisch ist. Insbesondere kann das Klopfsensor-Signal nur in einem vorgegebenem Winkelintervall um den oberen Totpunkt zwischen Verdichtungs- und Verbrennungstakt des ausgewählten Zylinders herum berücksichtigt werden, um verbrennungsrelevante Informationen für diesen Zylinder zu erfassen und Störungen durch andere Ereignisse auszublenden.According to a development of the method, the knock sensor signal is taken into account only in an interval of its definition range, which is characteristic of a selected cylinder of the internal combustion engine. In particular, the knock sensor signal may be considered only at a predetermined angular interval around top dead center between the compression and combustion strokes of the selected cylinder to provide combustion relevant information to detect this cylinder and hide interference from other events.

Bei dem erfindungsgemäßen Verfahren wird der Index X aus einer vom Kurbelwellenwinkel θ abhängigen "Signalenergie" E(θ) des (ebenfalls vom Kurbelwellenwinkel θ bzw. τ abhängigen) Klopfsensor-Signals K (θ) berechnet, wobei E(θ) gemäß der folgenden Formel definiert ist: E θ = θ 0 θ K ( τ ) 2 .

Figure imgb0001
In the method according to the invention, the index X is calculated from a "signal energy" E (θ) dependent on the crankshaft angle θ of the knock sensor signal K (θ) (also dependent on the crankshaft angle θ or τ), where E (θ) is calculated according to the following formula is defined: e θ = θ 0 θ K ( τ ) 2 ,
Figure imgb0001

Hierin bedeutet θ0 eine vorgegebene (untere) Integrationsgrenze. Wenn das Klopfsensor-Signal K wie vorstehend beschrieben nur in einem Intervall betrachtet wird, entspricht θ0 typischerweise der unteren Grenze dieses Intervalls. Des Weiteren versteht es sich, daß Gleichung (1) bei einer zeitdiskreten Verarbeitung der Signale die entsprechende diskretisierte Formulierung umfassen soll.Here, θ 0 means a predetermined (lower) integration limit. If the knock sensor signal K is considered only at one interval as described above, θ 0 typically corresponds to the lower limit of this interval. Furthermore, it is understood that equation (1) is intended to include the corresponding discretized formulation in the case of discrete-time processing of the signals.

Die vorstehend definierte Signalenergie E(θ) wird vorzugsweise bandpaßgefiltert und/oder normiert, bevor sie zur Berechnung des Indexes X weiterverwendet wird.The above-defined signal energy E (θ) is preferably bandpass filtered and / or normalized before being further used to calculate the index X.

Basierend auf der oben eingeführten Signalenergie wird ein geeigneter Index X des Verbrennungsverhaltens der Brennkraftmaschine für einen vorgegebenen Wert p (0 ≤ p ≤ 100) definiert durch die Formel X = X p = min θ | E θ p 100 max τ E τ .

Figure imgb0002
Based on the signal energy introduced above, a suitable index X of the combustion performance of the internal combustion engine for a given value p (0≤p≤100) is defined by the formula X = X p = min θ | e θ p 100 Max τ e τ ,
Figure imgb0002

In diesem Falle entspricht der Index X = Xp somit dem Kurbelwellenwinkel, bei welchem die Signalenergie E zum ersten Mal p Prozent ihres Maximalwertes überschreitet. Der für p = 50 gebildete Index X50 stellt dabei als sog. "Energieschwerpunkt" eine besonders aussagekräftige Größe dar.In this case, the index X = X p thus corresponds to the crankshaft angle at which the signal energy E exceeds p per cent of its maximum value for the first time. The formed for p = 50 Index X 50 represents it as so. "Energy focus on" a particularly meaningful size represents.

Die Erfindung betrifft ferner ein Verfahren zur rückgekoppelten Regelung der Verbrennung in einer Brennkraftmaschine, bei welchem ein Rückkopplungssignal durch einen Index X gemäß dem erfindungsgemäßen Verfahren gebildet wird. Wie erläutert wurde, ist der Index X einerseits einfach zu gewinnen und andererseits sehr aussagekräftig in Bezug auf die Verbrennung, so daß er eine einfache und robuste Regelung des Betriebs der Brennkraftmaschine ermöglicht. Von dem Verfahren beeinflußte Steuersignale können dabei insbesondere der Zeitpunkt bzw. die Zeitpunkte, die Anzahl, die Pulsbreite(n) der Kraftstoffinjektionen, der Zündzeitpunkt, die Ventilöffnungs- und Schließzeiten, die Abgasrückführung, die Stellung der Drosselklappe od. dgl. sein.The invention further relates to a method for the feedback control of combustion in an internal combustion engine, in which a feedback signal is formed by an index X according to the method according to the invention. As has been explained, on the one hand, the index X is easy to win and on the other hand very meaningful in terms of combustion, so that it allows a simple and robust control of the operation of the internal combustion engine. In this case, control signals influenced by the method may in particular be the time or points in time, the number, the pulse width (s) of the fuel injections, the ignition timing, the valve opening and closing times, the exhaust gas recirculation, the position of the throttle valve or the like.

Die Erfindung betrifft ferner ein Regelungssystem für eine Brennkraftmaschine, welches einen Eingang für das Signal eines Klopfsensors enthält und dahingehend ausgebildet ist, das erfindungsgemäße Verfahren durchzuführen. D.h., daß das Regelungssystem einen Index X basierend auf dem Verlauf eines Klopfsensor-Signals berechnen und als Rückkopplungssignal für eine rückgekoppelte Regelung der Verbrennung verwenden kann. Bei dem Klopfsensor handelt es sich um einen Körperschall-Beschleunigungssensor, wie z. B. ein Piezo-Drucksensor, welcher am Motorblock angebracht ist, um mechanische Schwingungen aufzuzeichnen. Das Regelungssystem kann im Übrigen in bekannter Weise realisiert werden, beispielsweise durch einen Mikroprozessor mit zugehörigen Komponenten wie Speicher und Schnittstellen sowie mit geeigneter Software.The invention further relates to a control system for an internal combustion engine, which contains an input for the signal of a knock sensor and is designed to carry out the method according to the invention. That is, the control system may calculate an index X based on the history of a knock sensor signal and use it as a feedback signal for feedback control of the combustion. The knock sensor is a structure-borne sound acceleration sensor, such. B. a piezo pressure sensor which is mounted on the engine block to record mechanical vibrations. Incidentally, the control system can be realized in a known manner, for example by a microprocessor with associated components such as memory and interfaces as well as with suitable software.

Im Folgenden wird die Erfindung anhand der Figuren beispielhaft näher erläutert. Es zeigen:

Fig. 1
schematisch das Zusammenwirken einer Brennkraftmaschine mit einem erfindungsgemäßen Regelungssystem;
Fig. 2
die Abhängigkeit dreier verschiedener charakteristischer Größen für das Verbrennungsverhalten einer Brennkraftmaschine bei variierendem Beginn der Injektor-Aktivierung (BOA) für 35% Abgasrückführung;
Fig. 3
den Verlauf der Wärmeabgabe in einem Zylinder bei der Versuchsserie von Figur 2;
Fig. 4
die Abhängigkeit dreier verschiedener charakteristischer Größen entsprechend Figur 2 bei einer Abgasrückführung von 20%, und
Fig. 5
den Verlauf der Wärmeabgabe in einem Zylinder bei der Versuchsserie von Figur 4.
In the following the invention will be explained in more detail by way of example with reference to the figures. Show it:
Fig. 1
schematically the interaction of an internal combustion engine with a control system according to the invention;
Fig. 2
the dependence of three different characteristic quantities for the combustion behavior of an internal combustion engine with varying Initiation of injector activation (BOA) for 35% exhaust gas recirculation;
Fig. 3
the course of heat release in a cylinder in the pilot series of FIG. 2 ;
Fig. 4
the dependence of three different characteristic quantities accordingly FIG. 2 at an exhaust gas recirculation of 20%, and
Fig. 5
the course of heat release in a cylinder in the pilot series of FIG. 4 ,

In Figur 1 ist schematisch eine Brennkraftmaschine 10 mit (mindestens) einem Zylinder 13 und einem darin auf und ab beweglichen Kolben 12 dargestellt. Bei der Brennkraftmaschine handelt es sich z. B. um einen Dieselmotor, ohne daß die Erfindung jedoch hierauf eingeschränkt wäre. Der Kolben 12 ist in bekannter Weise über eine Pleuelstange mit der Kurbelwelle 11 verbunden, wobei ein Kurbelwellenwinkel-Sensor 18 den Kurbelwellenwinkel θ mißt. Der Zylinder weist ferner ein Einlaßventil 14 und ein Auslaßventil 16 für Frischluft bzw. Abgase sowie einen Kraftstoffinjektor 15 zur Direktinjektion von Kraftstoff in die Brennkammer auf.In FIG. 1 is schematically shown an internal combustion engine 10 with (at least) a cylinder 13 and a piston 12 movable up and down therein. When the internal combustion engine is z. As a diesel engine, but without the invention would be limited thereto. The piston 12 is connected in a known manner via a connecting rod with the crankshaft 11, wherein a crankshaft angle sensor 18 measures the crankshaft angle θ. The cylinder further includes an intake valve 14 and an exhaust valve 16 for fresh air and exhaust gases, respectively, and a fuel injector 15 for direct injection of fuel into the combustion chamber.

Am Motorblock ist ein Klopfsensor 17 angeordnet, welcher beispielsweise als Drucksensor mit Piezo-Aufnehmern ausgebildet sein kann. Durch den Klopfsensor 17 werden von der Verbrennung verursachte Schwingungen des Motorblocks erfaßt. Vorzugsweise wird das Signal des Klopfsensors 17 unmittelbar tiefpaßgefiltert, um Alias-Effekte zu vermeiden (vgl. Ch. Vigild, A. Chevalier, E. Hendricks: "Avoiding signal aliasing in event-based engine control", SAE Paper No: 2000-01-0268 ).At the engine block, a knock sensor 17 is arranged, which may be formed for example as a pressure sensor with piezo pickups. By the knock sensor 17 vibrations of the engine block caused by the combustion are detected. Preferably, the signal of the knock sensor 17 is immediately low-pass filtered in order to avoid aliasing effects (cf. Ch. Vigild, A. Chevalier, E. Hendricks: "Avoiding signal aliasing in event-based engine control", SAE Paper No: 2000-01-0268 ).

Das - ggf. tiefpaßgefilterte - Signal K des Klopfsensors 17 sowie der Kurbelwellenwinkel θ vom Sensor 18 werden von einem Verstärkungs- und Filtermodul 20 abgetastet, verstärkt und gefiltert. Die Abtastung der Signale kann dabei entweder im Zeitbereich oder im Kurbelwellenwinkelbereich erfolgen. Bei der Abtastung im Zeitbereich liegt ein festes Zeitintervall, bei der Abtastung im Kurbelwellenwinkelbereich ein fester Kurbelwellenwinkel zwischen den Abtastpunkten. Selbstverständlich kann die Abtastung auch nach anderen Schemata erfolgen und die Abtastrate beispielsweise (im Winkelbereich oder im Zeitbereich) variieren. Im letztgenannten Fall kann insbesondere in bestimmten interessierenden Signalbereichen eine hohe Signalauflösung erreicht werden.The - possibly low-pass filtered - signal K of the knock sensor 17 and the crankshaft angle θ from the sensor 18 are sampled by a gain and filter module 20, amplified and filtered. The sampling of the signals can be done either in the time domain or in the crankshaft angle range. When scanning in the time domain is a fixed time interval, in the scan in the crankshaft angle range a fixed crankshaft angle between the sampling points. Of course, the sampling can also be carried out according to other schemes and the sampling rate, for example, vary (in the angular range or in the time domain). In the latter case, a high signal resolution can be achieved, in particular in certain signal areas of interest.

Für die gewünschte Charakterisierung des Verbrennungsverhaltens durch das Klopfsensor-Signal K ist eine korrekte Synchronisation dieses Signals K mit dem Kurbelwellenwinkel θ von hoher Bedeutung. In der Regel wird jedoch der Kurbelwellenwinkel θ durch eine Zahnscheibe am Schwungrad erfaßt, bei der - bedingt durch den Zahnabstand - nur Winkelauflösungen von typischerweise 3°, 5°, 6° oder 10° erhalten werden. Demgegenüber werden vorliegend höhere Auflösungen bis hin zu 0.1 ° oder weniger benötigt. Der Kurbelwellenwinkel θ wird daher im Modul 20 durch Interpolation oder Extrapolation mit der erforderlichen Feinheit aus den Rohdaten ermittelt. Eine Interpolation kann dabei angewendet werden, wenn der Kurbelwellenwinkel nicht sofort benötigt wird und daher als Zwischenwert zweier aufeinander folgender Abtastpunkte berechnet werden kann. Soll dagegen eine sofortige Verwendung des Kurbelwellenwinkels θ erfolgen, so muß er aus den vorangehenden Abtastpunkten extrapoliert werden.For the desired characterization of the combustion behavior by the knock sensor signal K, a correct synchronization of this signal K with the crankshaft angle θ is of great importance. As a rule, however, the crankshaft angle θ is detected by a toothed disk on the flywheel, in which - due to the tooth spacing - only angular resolutions of typically 3 °, 5 °, 6 ° or 10 ° are obtained. In contrast, in the present case higher resolutions up to 0.1 ° or less are needed. The crankshaft angle θ is therefore determined in the module 20 by interpolation or extrapolation with the required fineness from the raw data. An interpolation can be used if the crankshaft angle is not needed immediately and can therefore be calculated as an intermediate value of two consecutive sampling points. If, on the other hand, an immediate use of the crankshaft angle θ takes place, then it must be extrapolated from the preceding sampling points.

Die verstärkten und gefilterten Signale θ, K(θ) des Kurbelwellenwinkels und des Klopfsensors werden an ein Verbrennungsprofil-Modul 21 zur Abschätzung des Verbrennungsprofils bzw. zur Ermittlung von hierfür charakteristischen Indizes X weitergeleitet. Die vom Modul 21 berechneten Signale bzw. Indizes werden vom anschließenden Regelungsmodul 22 als Rückkopplungssignale zur rückgekoppelten Regelung der Brennkraftmaschine 10 verwendet. Nachfolgend wird ein bevorzugtes, im Modul 21 realisiertes Verfahren zur Berechnung eines Indexes X detaillierter erläutert:The amplified and filtered signals θ, K (θ) of the crankshaft angle and the knock sensor are forwarded to a combustion profile module 21 for estimating the combustion profile or for determining characteristic indices X for this purpose. The signals or indices calculated by the module 21 are used by the subsequent control module 22 as feedback signals for the feedback control of the internal combustion engine 10. In the following, a preferred method implemented in module 21 for calculating an index X is explained in more detail:

Bei diesem Verfahren wird zunächst aus dem vom Modul 20 bereitgestellten Klopfsensor-Signal K(θ) für einen ausgewählten Zylinder der Brennkraftmaschine 10 ein interessierender Bereich extrahiert, was z.B. durch Beschränkung des Signals auf ein (Winkel-) Fenster J = startend] geschehen kann gemäß der Formel: K J θ = { K θ , θ J = θ start ; θ end 0 , sonst

Figure imgb0003
In this method, first of all, a region of interest is extracted from the knock sensor signal K (θ) provided by the module 20 for a selected cylinder of the internal combustion engine, which can be achieved, for example, by limiting the Signal on a (angle) window J = start ; θ end ] can be done according to the formula: K J θ = { K θ . θ J = θ begin ; θ end 0 . otherwise
Figure imgb0003

Als nächstes wird die enthaltene Signalenergie E(θ) hieraus berechnet gemäß der Formel: E θ = θ 0 θ K J ( τ ) 2 d τ E N θ = n = N θ 0 N θ K J , n 2 Δθ n

Figure imgb0004
Next, the included signal energy E (θ) is calculated therefrom according to the formula: e θ = θ 0 θ K J ( τ ) 2 d τ e N θ = Σ n = N θ 0 N θ K J . n 2 Δθ n
Figure imgb0004

Dabei ist θ0 ein vorgegebener Startwinkel der Integration, der typischerweise gleich der unteren Intervallgrenze ist: θ0 = θstart. In der diskretisierten Form dieser Formel definiert die Variable Δθn den Abtast-Abstand zwischen den Kurbelwellenwinkel-Abtastungen Nummer (n-1) und n, N(θ0) bzw. N(θ) sind die Nummern der Abtastung für den Kurbelwellenwinkel θ0 bzw. θ, und KJ,n ist das Klopfsensor-Signal K der n-ten Abtastung. Im einfachsten Falle konstanter Abtast-Distanzen ist Δθn = 1. Nachfolgend wird die diskretisierte Form von Gleichung (4) der weiteren Betrachtung zugrunde gelegt, wobei alle Überlegungen jedoch analog auch für die kontinuierliche Fassung gelten.Here, θ 0 is a predetermined starting angle of the integration, which is typically equal to the lower interval limit: θ 0 = θ start . In the discretized form of this formula, the variable Δθ n defines the sampling interval between the crankshaft angle samples number (n-1) and n, N (θ 0 ) and N (θ), respectively, are the numbers of sampling for the crankshaft angle θ 0 or θ, and K J, n is the knock sensor signal K of the n-th sample. In the simplest case of constant sampling distances, Δθ n = 1. The discretized form of equation (4) is used as a basis for further consideration, although all considerations apply analogously to the continuous version.

Das Energiesignal EN(θ) aus Gleichung (4) wird sodann vorteilhafterweise digital bandpaßgefiltert und normiert gemäß der Formel E N θ F = F BP E N θ max τ J F BP E N τ

Figure imgb0005
The energy signal E N (θ) from equation (4) is then advantageously digitally bandpass filtered and normalized according to the formula e N θ F = F BP e N θ Max τ J F BP e N τ
Figure imgb0005

Hierin repräsentiert die Funktion FBP die Bandpaßfilterung, die entweder vom Vorwärtstyp oder vom Vorwärts-/Rückwärtstyp sein kann. Filter vom Vorwärtstyp filtern ein Signal nur in Vorwärtsrichtung, das heißt der Winkel θ wächst bei einem derartigen Filter inkrementell. Vorwärtsfilter benötigen daher einen geringeren Rechenaufwand und können für Online-Berechnungen eingesetzt werden, beispielsweise für Berechnungen aktueller Ereignisse. Aufgrund der Natur dieser Filter führen diese allerdings zu einer Phasenverschiebung des Eingangssignals. Filter vom Vorwärts/Rückwärtstyp filtern dagegen ein Signal sowohl in Vorwärts- als auch in Rückwärtsrichtung, so daß diese Phasenverschiebungen kompensieren können. Sie erfordern jedoch üblicherweise einen höheren Rechenaufwand als entsprechende Vorwärtsfilter und können nur offline eingesetzt werden, z. B. in Berechnungen zwischen Verbrennungsereignissen.Herein, the function F BP represents the band-pass filtering, which may be either the forward type or the forward / backward type. Forward type filters filter a signal only in the forward direction, that is, the angle θ grows at one such filter incrementally. For this reason, forward filters require less computation and can be used for online calculations, for example, for calculations of current events. Due to the nature of these filters, however, these lead to a phase shift of the input signal. On the other hand, forward / reverse type filters filter a signal in both the forward and reverse directions so that these phase shifts can be compensated. However, they usually require more computational effort than corresponding forward filters and can only be used offline, eg. In calculations between combustion events.

Der im Nenner von Gleichung (5) stehende Maximalwert wird über das gesamte betrachtete Kurbelwellenwinkelintervall J gebildet. Nachfolgend wird zur Vereinfachung das auf die Bandpaßfilterung und Normierung hinweisende Superskript F fortgelassen und weiterhin nur das Energiesymbol E verwendet, wobei es sich jedoch versteht, daß dieses (auch) ein bandpaßgefiltertes und normiertes Signal bezeichnen soll.The maximum value in the denominator of equation (5) is formed over the entire considered crankshaft angle interval J. Hereinafter, for simplicity, the superscript F indicating the bandpass filtering and normalization will be omitted, and further only the energy symbol E will be used, but it will be understood that this is (also) to designate a bandpass filtered and normalized signal.

Aus den Energiesignalwerten im abgetasteten Winkelintervall J läßt sich ein Signalenergievektor definieren gemäß E = E N θ start , E N θ start + 1 , E N θ end ,

Figure imgb0006
wobei N(θend) - N(θstart) die Gesamtzahl der Abtastpunkte ist.From the energy signal values in the sampled angular interval J, a signal energy vector can be defined in accordance with e = e N θ begin . e N θ begin + 1 . ... e N θ end .
Figure imgb0006
where N (θ end ) - N (θ start ) is the total number of sampling points.

Basierend auf den oben erläuterten Größen werden nunmehr Indizes definiert, welche das Verbrennungsverhalten des Motors charakterisieren. Entsprechend ihrer Definition werden diese Indizes auch als "Energieschwerpunkt"-Indizes bezeichnet. Ein wichtiges Merkmal der Indizes ist, daß diese sich auf die Verteilung der Signalenergie in dem gegebenen Signalfenster J konzentrieren statt auf einzelne Signalwerte bzw. einzelne Stellen wie beispielsweise auf abrupte Änderungen der Signalenergie (welche intuitiv für die Abschätzung des maximalen Druckgradienten im Zylinder nahe lägen). Ein weiterer Vorteil der Energieschwerpunkt-Indizes liegt darin, daß diese auf einer Signalintegration beruhen und daher wenig anfällig für Rauschprobleme sind.Based on the variables explained above, indices are now defined which characterize the combustion behavior of the engine. According to their definition, these indices are also referred to as "energy focus" indexes. An important feature of the indices is that they focus on the distribution of the signal energy in the given signal window J, rather than on individual signal values or points, such as abrupt changes in signal energy (which would be intuitively close to estimating the maximum pressure gradient in the cylinder). , Another benefit of the energy-balance indexes This is because they rely on signal integration and are therefore less susceptible to noise problems.

Die allgemeine Formel für die Definition der Energieschwerpunkt-Indizes Xp läßt sich wie folgt schreiben (dies entspricht der diskretisierten Formulierung von Gleichung (2)): X = X p = min θ | E N ( θ ) p 100 max τ J E τ .

Figure imgb0007
The general formula for the definition of the energy center indices X p can be written as follows (this corresponds to the discretized formulation of equation (2)): X = X p = min θ | e N ( θ ) p 100 Max τ J e τ ,
Figure imgb0007

Für einen gegebenen Prozentsatz p mit 0 ≤ p ≤ 100 entspricht der Index Xp somit dem minimalen Kurbelwellenwinkel, bei welchem p Prozent der gesamten Signalenergie erreicht werden. Von besonderer Bedeutung sind diesbezüglich die vier Indizes

X10,
bei welchem 10% der gesamten Signalenergie erreicht werden;
X50,
bei welchem 50% der gesamten Signalenergie erreicht werden und welcher daher auch als "Schwerpunkt" der Signalenergie bezeichnet wird;
X90,
bei welchem 90% der gesamten Signalenergie erreicht werden; und
Emax =
max(EN(θ)), d. h. der Wert der gesamten Signalenergie.
For a given percentage p with 0 ≦ p ≦ 100, the index X p thus corresponds to the minimum crankshaft angle at which p percent of the total signal energy is reached. Of particular importance in this regard are the four indices
X 10 ,
at which 10% of the total signal energy is achieved;
X 50 ,
at which 50% of the total signal energy is reached and which is therefore also called the "center of gravity" of the signal energy;
X 90 ,
where 90% of the total signal energy is reached; and
E max =
max (E N (θ) ), ie the value of the total signal energy.

Falls M ≥ 1 Klopfsensoren verwendet werden, können die oben erläuterten Indizes durch die mit der jeweiligen gesamten Signalenergie Emax (i) gewichteten einzelnen Indizes Xp (i) ersetzt werden gemäß folgender Formel X p = i = 1 M E max i X p i i = 1 M E max i

Figure imgb0008
If M ≥ 1 knock sensors are used, the indices explained above can be replaced by the individual indices X p (i) weighted with the respective total signal energy E max (i) according to the following formula X ~ p = Σ i = 1 M e Max i X p i Σ i = 1 M e Max i
Figure imgb0008

Zusammenfassend werden somit im Modul 21 von Figur 1 aus den verstärkten und gefilterten Klopfsensor-Signalen K(θ) die für die Verbrennung charakteristischen Indizes Xp berechnet, wobei Letztere das Profil der Dieselverbrennung bzw. das Profil der Wärmeabgabe in den Brennkammern implizit beschreiben. Die Indizes Xp können dann im Regelungsmodul 22 verwendet werden, um die Kraftstoffinjektion über den Injektionsdruck, die Injektionspulsbreite und/oder die Injektionszeit(en), die Abgasrückführung, den Ladedruck und/oder eine andere geeignete Größe zu beeinflussen.In summary, in module 21 of FIG. 1 from the amplified and filtered knock sensor signals K (θ) calculates the combustion characteristic indices X p , the latter implicitly describing the profile of the diesel combustion or the profile of the heat output in the combustion chambers. The indices X p may then be used in the control module 22 to affect fuel injection via injection pressure, injection pulse width, and / or injection time (s), exhaust gas recirculation, boost pressure, and / or another suitable amount.

In den Figuren 2 bis 5 sind experimentelle Ergebnisse zur Anwendung des oben erläuterten Verfahrens dargestellt. Diese Ergebnisse wurden für den Zylinder Nr. 2 eines 2.7 l V6 Dieselmotors bei verschiedenen Lastzuständen zwischen ca. 0.5 und 6 bar indiziertem mittlerem Druck (IMEP) und bei Motordrehzahlen zwischen 1.500 und 3.400 U/min gewonnen. Das in Gleichung (3) verwendete Kurbelwellenwinkelintervall J wurde mit einer Breite von 80° symmetrisch um den oberen Totpunkt (TDC) herum gewählt, das heißt mit den Grenzen θstart = -40°, θend = +40°.In the FIGS. 2 to 5 experimental results for the application of the method explained above are shown. These results were obtained for cylinder # 2 of a 2.7L V6 diesel engine at various load conditions between approximately 0.5 and 6 bar indicated mean pressure (IMEP) and at engine speeds between 1500 and 3400 rpm. The crankshaft angle interval J used in equation (3) was selected to be 80 ° wide symmetrically about top dead center (TDC), that is, the limits θ start = -40 °, θ end = + 40 °.

In einer ersten Versuchsreihe wurde eine Abgasrückführungsrate (AGR) von ca. 35% eingestellt, während der Beginn der Aktivierung der Kraftstoffinjektoren (BOA: Begin Of Activation) zwischen 6° und 18° vor dem oberen Totpunkt (BTDC) verstellt wurde. Die Daten der Versuche sind im Einzelnen in der nachfolgenden Tabelle aufgelistet: BOA=6° 10° 12° 14° 16° 18° Versuchsnr. 73 72 69 62 65 68 75 Motordrehzahl [U/min] 1995 1995 1995 1995 1994 1994 1994 Einlaßdruck [bar] 1.210 1.211 1.215 1.226 1.220 1.209 1.207 IMEP [bar] 5.96 6.01 6.03 5.98 6.17 6.18 6.23 Norm. Luft-/Kraftstoff-Verhältnis 0.559 0.564 0.597 0.665 0.607 0.605 0.600 AGR Rate [%] 29.5 30.6 34.0 41.8 37.1 34.7 33.8 Rail Druck [bar] 1008 1008 1008 1002 1010 1015 1007 Injektor Pulsbreite [µs] 470 470 470 470 470 470 470 Start der Verbrennung [° BTDC] -5 -3 -1 1 3 4 6 Norm. Verbrennungsdauer (20% bis 80%) [%] 15 17 17 19 20 21 22 AVL Geräusch [dB] 94.9 95.4 95.3 93.8 96.0 96.8 97.5 Norm. Energieschwerpunkt [%] 82 80 78 77 72 69 68 Norm. Energiebreite [%] 23 25 25 27 30 32 33 Norm. Signal Intensität [%] 68 73 74 70 83 88 91 In a first series of experiments, an exhaust gas recirculation rate (EGR) of approximately 35% was set, while the beginning of activation of the fuel injectors (BOA: Begin Of Activation) was adjusted between 6 ° and 18 ° before top dead center (BTDC). The data of the experiments are listed in detail in the following table: BOA = 6 ° 8 ° 10 ° 12 ° 14 ° 16 ° 18 ° Of test. 73 72 69 62 65 68 75 Engine speed [rpm] 1995 1995 1995 1995 1994 1994 1994 Inlet pressure [bar] 1210 1211 1215 1226 1220 1209 1207 IMEP [cash] 5.96 6:01 6:03 5.98 6.17 6.18 6.23 Standard. Air / fuel ratio 0559 0564 0597 0665 0607 0605 0600 AGR rate [%] 29.5 30.6 34.0 41.8 37.1 34.7 33.8 Rail pressure [bar] 1008 1008 1008 1002 1010 1015 1007 Injector pulse width [μs] 470 470 470 470 470 470 470 Start of combustion [° BTDC] -5 -3 -1 1 3 4 6 Standard. Combustion time (20% to 80%) [%] 15 17 17 19 20 21 22 AVL noise [dB] 94.9 95.4 95.3 93.8 96.0 96.8 97.5 Standard. Energy focus [%] 82 80 78 77 72 69 68 Standard. Energy width [%] 23 25 25 27 30 32 33 Standard. Signal intensity [%] 68 73 74 70 83 88 91

Figur 2 zeigt diesbezüglich die funktionelle Beziehung zwischen der auf dem Klopfsensor-Signal basierenden Charakterisierung der Verbrennung und ausgewählten Verbrennungsparametern. Das linke Diagramm zeigt das Verhalten des Schwerpunktsenergie-Indexes X50 bei zunehmendem BOA. Die normalisierte E-nergiebreite oder "Klopfenergie-Dauer", X90- X10, ist im mittleren Diagramm gegen die normalisierte hauptsächliche Verbrennungsdauer (d. h. die Zeit, um von 20% zu 80% der gesamten Energiefreisetzung innerhalb des Datenfensters zu gelangen) aufgetragen. Das rechte Diagramm zeigt schließlich die Beziehung zwischen dem Wert eines Schalldruckpegelmeßgerätes (in dB) und der mittleren normalisierten Klopfsignalenergie (in dB) akkumuliert über das Datenfenster. FIG. 2 shows in this regard the functional relationship between the knock sensor signal based combustion characterization and selected combustion parameters. The left diagram shows the behavior of the center of gravity energy index X 50 with increasing BOA. The normalized energy width or "knock energy duration", X 90 - X 10 , is plotted against the normalized main burn duration (ie the time to get from 20% to 80% of the total energy release within the data window) in the center graph. The right diagram finally shows the relationship between the value of a sound pressure level meter (in dB) and the average normalized knock signal energy (in dB) accumulated over the data window.

Figur 3 zeigt die zu den vorstehend beschriebenen Versuchen gehörigen Verläufe der Wärmefreisetzung im Zylinder für die jeweils eingestellten Werte der BOA. FIG. 3 shows the curves associated with the experiments described above, the heat release in the cylinder for each set values of the BOA.

In einer zweiten Versuchsserie wurde abweichend von der ersten Serie ein Einlaßdruck von ca. 1.0 bar und eine AGR-Rate von ca. 20% eingestellt. Die detaillierten Daten der Versuchsreihe sind in der nachfolgenden Tabelle wiedergegeben: BOA=6° 10° 12° 14° 16° 18° Versuchsnr. 74 71 70 63 66 67 76 Motordrehzahl [U/min] 1995 1995 1994 1995 1995 1995 1995 Einlaßdruck [bar] 1.035 1.033 1.031 1.033 1.031 1.030 1.029 IMEP [bar] 5.89 5.95 6.00 6.09 6.13 4.52 6.11 Norm. Luft-/Kraftstoff-Verhältnis 0.573 0.568 0.575 0.581 0.582 0.580 0.591 AGR Rate [%] 20.6 20.6 20.7 20.6 20.8 20.8 20.9 Rail Druck [bar] 1007 1008 1008 1008 1010 1014 1018 Injektor Pulsbreite [µs] 470 470 470 470 470 470 470 Start der Verbrennung [° BTDC] -6 -3 -1 0 2 4 6 Norm. Verbrennungsdauer (20% bis 80%)[%] 13 15 17 19 20 18 20 AVL Geräusch [dB] 95.8 96.7 97 97.5 98.0 98.5 98.9 Norm. Energieschwerpunkt [%] 84 82 79 76 74 73 69 Norm. Energiebreite [%] 20 23 25 28 32 34 36 Norm. Signal Intensität [%] 72 81 86 91 95 98 97 In a second series of experiments, an inlet pressure of about 1.0 bar and an EGR rate of about 20% was set, deviating from the first series. The detailed data of the test series are shown in the following table: BOA = 6 ° 8 ° 10 ° 12 ° 14 ° 16 ° 18 ° Of test. 74 71 70 63 66 67 76 Engine speed [rpm] 1995 1995 1994 1995 1995 1995 1995 Inlet pressure [bar] 1035 1033 1031 1033 1031 1030 1029 IMEP [cash] 5.89 5.95 6:00 am 6:09 6.13 4:52 6.11 Standard. Air / fuel ratio 0573 0568 0575 0581 0582 0580 0591 AGR rate [%] 20.6 20.6 20.7 20.6 20.8 20.8 20.9 Rail pressure [bar] 1007 1008 1008 1008 1010 1014 1018 Injector pulse width [μs] 470 470 470 470 470 470 470 Start of combustion [° BTDC] -6 -3 -1 0 2 4 6 Standard. Combustion time (20% to 80%) [%] 13 15 17 19 20 18 20 AVL noise [dB] 95.8 96.7 97 97.5 98.0 98.5 98.9 Standard. Energy focus [%] 84 82 79 76 74 73 69 Standard. Energy width [%] 20 23 25 28 32 34 36 Standard. Signal intensity [%] 72 81 86 91 95 98 97

Die Figuren 4 und 5 zeigen die Ergebnisse der zweiten Versuchsreihe in einer analogen Darstellung wie die Figuren 2 und 3.The FIGS. 4 and 5 show the results of the second series of experiments in an analogue representation like the Figures 2 and 3 ,

Claims (8)

  1. Method for characterizing the combustion behavior of an internal combustion engine (10), wherein an index X characterizing the combustion behavior is calculated on the basis of the profile of a knocking sensor signal K characterized in that the index X is calculated from the signal energy E(θ), dependent on the crankshaft angle θ, of the knocking sensor signal K(θ), wherein E θ = θ 0 θ K ( τ ) 2 d τ ,
    Figure imgb0011
    and the index X is defined for a given value 0 ≤ p ≤ 100 by X = X p = min θ | E θ p 100 max τ E τ .
    Figure imgb0012
  2. Method according to Claim 1, characterized in that the knocking sensor signal K characterizes mechanical vibrations of the internal combustion engine (10).
  3. Method according to Claim 1 or 2, characterized in that the knocking sensor signal K is sensed as a function of the crankshaft angle θ.
  4. Method according to Claim 3, characterized in that the crankshaft angle θ is determined with a resolution of less than 1°, preferably less than 0.5°.
  5. Method according to at least one of Claims 1 to 4, characterized in that the knocking sensor signal K is taken into account only in an interval which is characteristic for a selected cylinder of the internal combustion engine (10).
  6. Method according to at least one of Claims 1 to 5, characterized in that the signal energy E(θ) is bandpass-filtered and/or normalized for the calculation of the index X.
  7. Method for feedback control of the combustion in an internal combustion engine (10), characterized in that a feedback signal is formed by an index X according to a method according to at least one of Claims 1 to 6.
  8. Control system for an internal combustion engine (10), containing an input for the signal of a knocking sensor (17), characterized in that the latter is designed to carry out a method according to at least one of Claims 1 to 6.
EP20050101640 2005-03-03 2005-03-03 System and method to control the combustion behaviour of an internal combustion engine Expired - Fee Related EP1698775B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20050101640 EP1698775B1 (en) 2005-03-03 2005-03-03 System and method to control the combustion behaviour of an internal combustion engine
DE200550002989 DE502005002989D1 (en) 2005-03-03 2005-03-03 Device and method for controlling the combustion behavior of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050101640 EP1698775B1 (en) 2005-03-03 2005-03-03 System and method to control the combustion behaviour of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1698775A1 EP1698775A1 (en) 2006-09-06
EP1698775B1 true EP1698775B1 (en) 2008-02-27

Family

ID=34938873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050101640 Expired - Fee Related EP1698775B1 (en) 2005-03-03 2005-03-03 System and method to control the combustion behaviour of an internal combustion engine

Country Status (2)

Country Link
EP (1) EP1698775B1 (en)
DE (1) DE502005002989D1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923556A1 (en) * 2006-11-14 2008-05-21 Delphi Technologies, Inc. Improvements to engine control system
FR2916803A3 (en) * 2007-05-30 2008-12-05 Renault Sas Combustion noise determining device for e.g. oil engine of motor vehicle, has filtering module implementing band-pass function by low-pass module and high-pass module, whose cut-off frequency is less than that of low-pass module
GB2479567A (en) * 2010-04-15 2011-10-19 T Baden Hardstaff Ltd Engine system having first and second fuel type modes
US9752949B2 (en) 2014-12-31 2017-09-05 General Electric Company System and method for locating engine noise
US9556810B2 (en) 2014-12-31 2017-01-31 General Electric Company System and method for regulating exhaust gas recirculation in an engine
US9803567B2 (en) 2015-01-07 2017-10-31 General Electric Company System and method for detecting reciprocating device abnormalities utilizing standard quality control techniques
US9874488B2 (en) 2015-01-29 2018-01-23 General Electric Company System and method for detecting operating events of an engine
US9528445B2 (en) 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
US9903778B2 (en) 2015-02-09 2018-02-27 General Electric Company Methods and systems to derive knock sensor conditions
US9791343B2 (en) 2015-02-12 2017-10-17 General Electric Company Methods and systems to derive engine component health using total harmonic distortion in a knock sensor signal
US10001077B2 (en) 2015-02-19 2018-06-19 General Electric Company Method and system to determine location of peak firing pressure
US9915217B2 (en) 2015-03-05 2018-03-13 General Electric Company Methods and systems to derive health of mating cylinder using knock sensors
US9695761B2 (en) 2015-03-11 2017-07-04 General Electric Company Systems and methods to distinguish engine knock from piston slap
US9435244B1 (en) 2015-04-14 2016-09-06 General Electric Company System and method for injection control of urea in selective catalyst reduction
US9784231B2 (en) 2015-05-06 2017-10-10 General Electric Company System and method for determining knock margin for multi-cylinder engines
US9933334B2 (en) 2015-06-22 2018-04-03 General Electric Company Cylinder head acceleration measurement for valve train diagnostics system and method
US9784635B2 (en) 2015-06-29 2017-10-10 General Electric Company Systems and methods for detection of engine component conditions via external sensors
US10393609B2 (en) 2015-07-02 2019-08-27 Ai Alpine Us Bidco Inc. System and method for detection of changes to compression ratio and peak firing pressure of an engine
US9897021B2 (en) 2015-08-06 2018-02-20 General Electric Company System and method for determining location and value of peak firing pressure
US10760543B2 (en) 2017-07-12 2020-09-01 Innio Jenbacher Gmbh & Co Og System and method for valve event detection and control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587543B2 (en) * 1991-03-07 1997-03-05 株式会社日立製作所 Knock detection device
DE19539171C2 (en) * 1995-10-20 1998-08-06 Bayerische Motoren Werke Ag Knock control for a spark-ignited internal combustion engine
DE19616744C2 (en) * 1996-04-26 1999-11-04 Iav Gmbh Method and device for detecting knocking combustion by means of an optical probe in combustion chambers of internal combustion engines
DE10004166A1 (en) * 2000-02-01 2001-08-02 Bosch Gmbh Robert Device for knock detection with digital signal evaluation
DE10220597B3 (en) * 2002-05-08 2004-02-26 Siemens Ag IC engine knock regulation adaption method e.g. for automobile, has knock detection parameters and knock correction parameters corrected via correction functions dependent on actual compression ratio
US7137382B2 (en) * 2002-11-01 2006-11-21 Visteon Global Technologies, Inc. Optimal wide open throttle air/fuel ratio control

Also Published As

Publication number Publication date
DE502005002989D1 (en) 2008-04-10
EP1698775A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
EP1698775B1 (en) System and method to control the combustion behaviour of an internal combustion engine
DE4312587C2 (en) Method and device for controlling a fuel injection system
EP1907683B1 (en) Method and control device for metering fuel for combustion chambers in an internal combustion engine
DE102006044866B4 (en) Method and device for generating injection signals for an injection system of an internal combustion engine
EP1716331B1 (en) Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine
DE10008553B4 (en) Method and device for evaluating an ion current sensor signal of an internal combustion engine
DE102007050302A1 (en) Method and device for determining a cylinder pressure feature
EP1321655A1 (en) Method for sensing and controlling the ignition point in an internal combustion engine
DE10356133B4 (en) Method for determining the start of combustion of internal combustion engines
DE102005059909B4 (en) Method for controlling an internal combustion engine
DE102005059908A1 (en) Method for metering fuel into combustion chambers of an internal combustion engine
WO1989003983A1 (en) Process for determining and evaluating the combustion pressure of an internal combustion engine
WO2010124699A1 (en) Method for suppressing irregular combustion in a combustion chamber of an internal combustion engine which especially occurs prior to a predetermined ignition point, and control device
DE102004044705A1 (en) Method and system for assessing combustion noise in an internal combustion engine
DE60302636T2 (en) Diesel engine with fuel injection quantity control device
DE10154422A1 (en) Method and device for suppressing noise during knock detection in an internal combustion engine
DE10343069B4 (en) Method for quantifying a pilot injection in a fuel injection system of an internal combustion engine
DE19963225B4 (en) Method for monitoring the combustion process in a diesel engine and corresponding measuring system
EP3430252B1 (en) Method and controller for determining the quantity of filling components in a cylinder of an internal combustion engine
DE3917905A1 (en) IC engine efficiency optimisation system - uses detected engine knock and monitored air of engine cylinder working vol to adjust ignition timing
EP1316707B1 (en) Method for operating an electronic control device in a vehicle
WO2010060445A1 (en) Method for detecting misfires in an internal combustion engine, control device for an internal combustion engine, and internal combustion engine
DE19616744C2 (en) Method and device for detecting knocking combustion by means of an optical probe in combustion chambers of internal combustion engines
DE102006040656A1 (en) Method for determination of noise emissions of internal-combustion engine, involves detecting impact sound of internal-combustion engine with impact sound sensor
AT524524B1 (en) Method and system for diagnosing and/or controlling a variable compression ratio reciprocating engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070306

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005002989

Country of ref document: DE

Date of ref document: 20080410

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200228

Year of fee payment: 16

Ref country code: DE

Payment date: 20200214

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002989

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331