EP1662096A1 - Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant - Google Patents

Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant Download PDF

Info

Publication number
EP1662096A1
EP1662096A1 EP04028295A EP04028295A EP1662096A1 EP 1662096 A1 EP1662096 A1 EP 1662096A1 EP 04028295 A EP04028295 A EP 04028295A EP 04028295 A EP04028295 A EP 04028295A EP 1662096 A1 EP1662096 A1 EP 1662096A1
Authority
EP
European Patent Office
Prior art keywords
water
power plant
steam
steam power
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04028295A
Other languages
German (de)
French (fr)
Inventor
Michael Dr. Schöttler
Anja Wallmann
Rainer Wulff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04028295A priority Critical patent/EP1662096A1/en
Priority to PCT/EP2005/056008 priority patent/WO2006058845A1/en
Priority to US11/791,798 priority patent/US7886538B2/en
Priority to EP05803061A priority patent/EP1819909A1/en
Priority to KR1020077015077A priority patent/KR101259515B1/en
Priority to CN2005800401951A priority patent/CN101065559B/en
Priority to JP2007541951A priority patent/JP4901749B2/en
Publication of EP1662096A1 publication Critical patent/EP1662096A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/06Treating live steam, other than thermodynamically, e.g. for fighting deposits in engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the present invention relates to a method for operating a steam power plant and in particular a method for operating a power plant for generating at least electrical energy with a steam power plant, the steam power plant having a water cycle with at least one pressure stage and water if necessary from the water cycle or from the Pressure levels, can be drained.
  • the power plant has at least one electric generator which can be driven by the steam power plant.
  • the invention also relates to a steam power plant for generating at least electrical energy, at which the method according to the invention can be carried out.
  • Such a steam power plant usually includes one or more circulating steam generators with steam drums (pressure drums) with associated heating surfaces. With the circulation steam generators, in particular at different pressure levels, steam is generated, which can be fed to a steam turbine or the respective pressure stage of the steam turbine.
  • the steam power plant may also have one or more so-called.
  • Continuous steam generator which are also referred to as Benson boiler, but which are usually involved in the high-pressure stage.
  • a disadvantage of the prior art is in particular that the dewatered deionized produced at high cost is not returned to the water cycle, but discarded in the form of waste water into the environment. Therefore, in conventional steam power plants, the costs incurred for deionized, especially in frequent take-off and start-up operations, significantly increased. In addition, the environment is significantly burdened by the high discharge of wastewater.
  • the replenished deionate has high levels of oxygen and carbon dioxide which require degassing of the deionate, thus prolonging the startup time of the steam power plant.
  • the object of the invention is to eliminate the disadvantages of the prior art. In detail, it is therefore the task the invention significantly reduce the running costs of a steam power plant and a power plant for generating electrical energy with such a steam power plant, which arise from the deionized supply. Another object of the invention is to significantly reduce the pollution of the environment by wastewater and the consumption of water. It is also an object of the invention to shorten the startup time of the steam power plant with low resources.
  • the object is achieved by a method with the features of claim 1.
  • the object is achieved by a steam power plant with the features of claim 12.
  • the invention has the advantage over the prior art that the costs for the provision of deionized water, especially in the case of frequent take-off and start-up operations, are significantly reduced. With the help of the invention it is also possible to operate steam power plants in regions with severe lack of water. Furthermore, much water can be saved by the invention and the environment is less burdened with discharged wastewater. The start-up time of the steam power plant or the power plant is shortened. In particular, by the return of the substantially entire dehydrated water, this is achieved, wherein essentially means, for example, that about 99% of the dewatered amount of water is recycled.
  • the dewatered water is collected at least from the pressure stage with the highest pressure, stored and completely returned to the water cycle.
  • the largest part of the dehydrated water can be returned with little effort, since the water flowing in the highest pressure stage Amount of water makes up the largest part of the water volume of the entire water cycle.
  • the pressure level is lower than that of the highest pressure level, in a corresponding training while all pressure levels can be included. In this way, a greater part or the total amount of the dewatered water is collected, stored and returned to the water cycle, thus saving even more water.
  • the dewatered water is subjected to a liquid water vapor separation, wherein the separated steam can be supplied to the condenser of the steam power plant.
  • the separated clean steam can be easily cooled in the condenser and liquefied by this measure.
  • a special cooling measure on the stored water can thus largely be omitted.
  • a simple return of collected water is given in the water cycle.
  • the resulting during a shutdown dewatered water is always returned so far back to the water cycle that at the end of the shutdown, ie at a standstill, the dehydrated water, so the maximum dehydrated amount of water is stored.
  • the dewatered amount of water is then fed back to the water cycle at the next startup.
  • At least a portion of the dewatered water is returned to the water cycle via a water treatment plant.
  • at least some of the water exiting from the condenser can also be routed through the water treatment plant, whereby it is also possible the two partial streams must be mixed before entering the water treatment plant.
  • a first embodiment of a steam power plant 2 is shown.
  • the steam power plant 2 is part of a power plant 1, which may be formed, for example, as a combined gas and steam turbine power plant.
  • the steam power plant 2 has a steam turbine 4 with three different pressure ranges in the exemplary embodiment.
  • the steam power plant 2 in the exemplary embodiment a water cycle with essentially the steam turbine 4, a condenser 6, a condensate pump 7 and three pressure stages 8, 9, 10, which are each associated with the individual respective pressure ranges of the steam turbine 4.
  • the water cycle also includes a feedwater pump, not shown.
  • the pressure stages 8, 9, 10 are connected to the pressure ranges of the steam turbine 4 in each case by steam lines 11.
  • the pressure stages 8, 9, 10 are divided in the embodiment in the form of a high-pressure stage first pressure stage 8, formed as a medium pressure stage second pressure stage 9 and designed as a low pressure stage third pressure stage 10.
  • the first pressure stage 8 of the water cycle has a continuous steam generator 12 with a continuous heating surface 16 and a separator bottle 15.
  • the second pressure stage 9 has a first circulation steam generator 13 with a first pressure drum 17 and a first circulating heating surface 18 designed as a circulation evaporator.
  • the third pressure stage 10 constructed similar to the second pressure stage 9 has a second circulation steam generator 14 with a second pressure drum 19 and a second circulation heating surface 20 designed as a circulation evaporator.
  • the heating surfaces 16, 18, 20 are arranged in a boiler 5, which may be formed, for example, as in the embodiment as a horizontal waste heat boiler and is fed by the exhaust gases of a gas turbine, not shown.
  • the steam generators 12, 13, 14 in the exemplary embodiment in each case a superheater 21 is connected downstream.
  • the output of the respective superheater 21 is connected via the respective steam line 11 with its associated pressure range of the steam turbine 4 in connection.
  • Each steam line 11 is part of each pressure stage 8, 9, 10th
  • deionized water so-called deionized water
  • deionized water is fed to the steam generators 12, 13, 14 via lines which are not shown for the sake of simplicity. Since in the embodiment shown different types of steam generators 12, 13, 14 are used, which have different requirements on the nature of the supplied deionized, in particular the ph value, the deionate is shortly before its entry into the respective steam generator 12, 13, 14 prepared accordingly by a corresponding device, not shown.
  • the evaporation of the supplied water takes place.
  • the continuous steam generator 12 is usually also still overheating. The vaporized water is overheated in the subsequent superheater 21 and via the steam lines 11 fed to the respective pressure range of the steam turbine 4.
  • the emerging from the high pressure region of the steam turbine 4 in the form of steam water is conventionally supplied to the next lower pressure stage via lines, which are not shown for the sake of clarity.
  • water issuing from the high-pressure region of the steam turbine 4 in the form of steam is thus supplied to the second pressure stage 9.
  • From the medium pressure range of the steam turbine 4 in the form of steam escaping water is the third pressure stage 10, and thus at the end and the lowest pressure range of the steam turbine 10 is supplied.
  • the water emerging from the low-pressure region of the steam turbine 4 is supplied to the condenser 6 for cooling and liquefaction via an exhaust steam line 41.
  • the exhaust steam line 41 closes the water cycle of the steam power plant 2 between the steam turbine 4 and the condenser 6.
  • the water emerging from the condensate pump 7 is supplied via the feedwater pump, not shown, mainly the first pressure stage 8.
  • 9 10 amount of water flowing in the first pressure stage 8 amount of water in the embodiment in operation has a share of about 75%, as in her compared to the other pressure levels 9, 10 significantly more power is implemented ,
  • the energy supplied in the steam of the steam turbine 4 is converted into rotational energy in the steam turbine 4 and thus delivered to the connected electric generator 3.
  • water is dewatered intermittently or partially from the pressure stages 8, 9, 10.
  • the dewatered water is first by a collecting device 22, which in the embodiment by a first bundle of raw cables 23 and a second pipe bundle 24 is performed, collected.
  • a collecting device 22 which in the embodiment by a first bundle of raw cables 23 and a second pipe bundle 24 is performed, collected.
  • water is continuously drained from the pressure drums 17 and 19 in the nominal operation of the steam power plant 2.
  • This process is also referred to as desludging, as accumulate by the circulation operation in the pressure drums 17, 18 deposits that must be tillschlämmt. For example, about 0.5% to 1% of the throughput of water of the printing drum 17, 18 is constantly dehydrated.
  • the water drained and collected in the exemplary embodiment from the pressure stages 8, 9, 10 is then stored.
  • a plurality of storage containers 25, 26, 27 and 28 are provided, which may be more or less filled depending on the operating state of the power plant 1. More specifically, in the embodiment, the dehydrated water from the pressure drums 17, 19, the dehydrated water from the separator bottle 15, and the dehydrated water from the superheaters 21 are first supplied to the first storage tank 25 and stored there.
  • the first storage tank 25 is designed in size so that it can initially accumulate the very high supply of dehydrated water when starting or stopping the steam power plant 2 for some time and so can buffer.
  • the first storage tank 25 also acts as a first separator 32, since the hot, dehydrated water evaporates in the first storage tank 25, liquid water is separated from steam, wherein the in itself impurities of impurities via a first return line 29 to the inlet of the condenser 6 is supplied and the liquid water is initially stored in the storage tank 25. If necessary, liquid water stored in the first storage tank 25 is pumped into a third storage tank 27 by means of a first pump 34. By a arranged after the output of the first pump 34 branch, the pumped amount of water can be partially or completely pumped through a first cooler 37 back into the first storage tank 25 by a corresponding position of a valve, not shown. As a result, additional cooling of the water stored in the first storage tank 25 is possible.
  • the water drained from the steam lines 11 of the pressure stages 8, 9, 10 is dewatered through the second pipe bundle 24 and stored in the second storage tank 26.
  • a cooling circuit consisting of a second pump 35 and a second cooler 38 is also associated with the second storage tank 26.
  • the second storage tank 26 has a second separating device 33, which is provided as in the first storage tank 25, wherein the water vapor, which is clean per se, can also be fed to the inlet of the condenser 6 via a second return line 30.
  • the liquid water stored in the second storage tank 26 can also be supplied to the third storage tank 27 via the second pump 35 if required.
  • the liquid water stored in the third storage tank 27 is supplied via a third cooler 39, a third pump 36 and a water treatment plant 40 to the inlet of the condensate pump 7 via a third return line 31.
  • the water treatment plant 40 is switched and arranged so that in it the entire liquid phase of the dewatered water is passed and treated before this liquid phase is returned to the water cycle of the steam power plant 2.
  • the entire water emerging from the third storage tank 27 is passed through the water treatment plant 40 and processed there.
  • the water treatment plant 40 is arranged in the secondary flow of the water cycle, wherein a partial flow of water emerging from a formed as a condensate receiver fourth storage tank 28 via the third pump 36 of the water treatment plant 40 can be fed.
  • the partial flow can be mixed with the liquid water coming from the third storage tank 27 before it reaches the water treatment plant 40.
  • the entire water emerging from the condenser 6 can be passed through the water treatment plant 40, wherein the water treatment plant 40 is then in the main stream of water coming out of the condenser 6.
  • the entire amount of dewatered water accumulating over a certain period of time is collected in the exemplary embodiment, stored to a certain extent and then released to the water cycle.
  • the water drained from all pressure stages 8, 9, 10 is collected, stored and returned.
  • the water from only one, preferably the highest pressure stage 8 dehydrated water can be collected in this way, stored and returned.
  • a continuous steam generator 12 is used.
  • Continuous steam generators 12 place increased demands on water quality, which can usually only be produced and secured by the water treatment plant 40.
  • other requirements for the water quality relate in particular to the pH value and the oxygen content. Since the water treatment plant 40 is anyway necessary because of the continuous steam generator 12, it is more advantageous to reduce the relatively small quantities of water drained from the circulating steam generators 13, 14 also via the water treatment plant 40 to the water cycle than to reject them.
  • the water treatment plant 40 may in particular have a mechanical cleaning and a cation / anion exchanger.
  • the Wasseraufbeltungsstrom 40 prepares the water supplied to him in particular with regard to its chemical properties.
  • the entire water cycle in particular the collecting device 22, the storage container 25, 26, 27, 28 and the return lines 29, 30, 31, are closed to the atmosphere to prevent uncontrolled air entry into the dewatered water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

The method involves providing water circuit, where a steam turbine (4), pressure stage (8, 9, 10) and a condenser (6) is provided in a steam power plant (2). Water that is drained from the pressure stage of the steam power plant is collected, stored in a storage tank and recirculated into the water circuit of the steam power plant. Steam is applied to the condenser in the water circuit. An independent claim is also included for a steam power plant with water circulation.

Description

Verfahren zum Betrieb einer Dampfkraftanlage, insbesondere einer Dampfkraftanlage eines Kraftwerks zur Erzeugung von zumindest elektrischer Energie, und entsprechende DampfkraftanlageMethod for operating a steam power plant, in particular a steam power plant of a power plant for generating at least electrical energy, and corresponding steam power plant

Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Dampfkraftanlage und insbesondere ein Verfahren zum Betrieb eines Kraftwerk zur Erzeugung von zumindest elektrischer Energie mit einer Dampfkraftanlage, wobei die Dampfkraftanlage einen Wasserkreislauf mit-zumindest einer Druckstufe aufweist und Wasser wenn notwendig aus dem Wasserkreislauf bzw. aus den Druckstufen, entwässert werden kann. Das Kraftwerk weist zumindest einen elektrischen Generator auf, der mit der Dampfkraftanlage antreibbar ist. Die Erfindung betrifft außerdem eine Dampfkraftanlage zur Erzeugung von zumindest elektrischer Energie, an der das erfindungsgemäße Verfahren ausgeführt werden kann.The present invention relates to a method for operating a steam power plant and in particular a method for operating a power plant for generating at least electrical energy with a steam power plant, the steam power plant having a water cycle with at least one pressure stage and water if necessary from the water cycle or from the Pressure levels, can be drained. The power plant has at least one electric generator which can be driven by the steam power plant. The invention also relates to a steam power plant for generating at least electrical energy, at which the method according to the invention can be carried out.

Eine solche Dampfkraftanlage enthält üblicherweise eine oder mehrere Umlaufdampferzeuger mit Dampftrommeln (pressure drums) mit zugehörigen Heizflächen. Mit den Umlaufdampferzeugern wird, insbesondere in unterschiedlichen Druckstufen, Dampf erzeugt, der einer Dampfturbine bzw. der jeweiligen Druckstufe der Dampfturbine zugeführt werden kann. Die Dampfkraftanlage kann auch einen oder mehrere sog. Durchlaufdampferzeuger, welche auch als Benson-Kessel bezeichnet werden, aufweisen, welche aber zumeist in der Hochdruckstufe eingebunden sind.Such a steam power plant usually includes one or more circulating steam generators with steam drums (pressure drums) with associated heating surfaces. With the circulation steam generators, in particular at different pressure levels, steam is generated, which can be fed to a steam turbine or the respective pressure stage of the steam turbine. The steam power plant may also have one or more so-called. Continuous steam generator, which are also referred to as Benson boiler, but which are usually involved in the high-pressure stage.

Herkömmlicherweise wird bei Dampfkraftanlagen, je nach Betriebszustand der Dampfkraftanlage, mehr oder minder stark entwässert. Entwässert wird beispielsweise bei laufendem Betrieb aus länger geschlossenen Rohrleitungen, in denen sich Kondensat angesammelt hat. Dazu werden die betreffenden Rohrleitungen kurz geöffnet und damit entwässert. Dabei geht dem Wasserkreislauf Wasser verloren, das durch Zusatzwasser, so genanntes Deionat, wieder zugeführt werden muss. Entwässerungen fallen besonders vermehrt an beim Anfahren und Abfahren der Dampfkraftanlage, da beispielsweise beim Abfahren der Dampfkraftanlage der im Wasserkreislauf befindliche Dampf nach und nach kondensiert und das so anfallende Flüssigwasser nicht in den Anlagenteilen, insbesondere in den Heizflächen, stehen darf. Beim Abfahren wird aus dem Wasserkreislauf mehr Wasser entwässert als nachgefüllt wird, bis am Ende kein Wasser mehr nachgefüllt wird.Conventionally, in steam power plants, depending on the operating state of the steam power plant, drained more or less strong. Dewatering, for example, during operation from longer closed pipelines, in which condensate has accumulated. For this purpose, the relevant pipes are opened briefly and thus dewatered. It goes to the Water cycle water lost, which must be supplied by additional water, so-called deionized. Drainage is particularly increased when starting up and shutting down the steam power plant, since, for example, when the steam power plant steam in the water cycle condenses gradually and the resulting liquid water may not be in the system parts, especially in the heating surfaces. When driving off, more water is dewatered from the water cycle than is refilled until no more water is added at the end.

Es ist bekannt die Entwässerungen zu sammeln, also zusammen zu führen. Weiterhin ist bekannt diese Entwässerungen teilweise kurzzeitig in einem Tank zu speichern. Da die Entwässerungen, also das entwässerte Wasser, herkömmlicherweise über eine Pumpe in die Umwelt verworfen werden, dient der Tank lediglich dazu die Laufzeit und die Intervallhäufigkeit der Pumpe zu reduzieren. Weiterhin ist bekannt das entwässerte Wasser in einem Abscheiderbehälter zu entspannen und Wasser und Dampf voneinander zu trennen. Der abgetrennte Dampf wird anschließend in die Umwelt abgegeben.It is known to collect the drainages, that is, to lead together. Furthermore, it is known to temporarily store these drains in a tank for a short time. Since the drains, so the dehydrated water, are conventionally discarded by a pump into the environment, the tank serves only to reduce the running time and the frequency of intervals of the pump. It is also known to relax the dehydrated water in a separator tank and to separate water and steam from each other. The separated steam is then released into the environment.

Nachteilig bei dem Stand der Technik ist insbesondere, dass das mit hohen Kosten hergestellte entwässerte Deionat nicht wieder in den Wasserkreislauf zurückgeführt, sondern in Form von Abwasser in die Umwelt verworfen wird. Daher sind bei herkömmlichen Dampfkraftanlagen die anfallenden Kosten für Deionat, insbesondere bei häufigen Ab- und Anfahrbetrieben, erheblich gesteigert. Außerdem wird die Umwelt durch die hohe Abgabe von Abwasser erheblich belastet. Das nachgespeiste Deionat hat hohe Sauerstoff- und Kohlendioxidgehalte, die eine Entgasung des Deionates erfordern, wodurch die Anfahrzeit der Dampfkraftanlage verlängert wird.A disadvantage of the prior art is in particular that the dewatered deionized produced at high cost is not returned to the water cycle, but discarded in the form of waste water into the environment. Therefore, in conventional steam power plants, the costs incurred for deionized, especially in frequent take-off and start-up operations, significantly increased. In addition, the environment is significantly burdened by the high discharge of wastewater. The replenished deionate has high levels of oxygen and carbon dioxide which require degassing of the deionate, thus prolonging the startup time of the steam power plant.

Aufgabe der Erfindung ist, die Nachteile aus dem Stand der Technik zu beseitigen. Im Einzelnen ist es daher Aufgabe der Erfindung die laufenden Kosten einer Dampfkraftanlage und eines Kraftwerks zur Erzeugung von elektrischer Energie mit einer solchen Dampfkraftanlage, welche durch die Deionatbereitstellung entstehen, deutlich zu senken. Eine weitere Aufgabe der Erfindung ist es, die Belastung der Umwelt durch Abwasser und den Verbrauch von Wasser deutlich zu vermindern. Ebenso ist es Aufgabe der Erfindung die Anfahrzeit der Dampfkraftanlage mit geringen Mitteln zu verkürzen.The object of the invention is to eliminate the disadvantages of the prior art. In detail, it is therefore the task the invention significantly reduce the running costs of a steam power plant and a power plant for generating electrical energy with such a steam power plant, which arise from the deionized supply. Another object of the invention is to significantly reduce the pollution of the environment by wastewater and the consumption of water. It is also an object of the invention to shorten the startup time of the steam power plant with low resources.

Die Aufgabe ist erfindungsgemäß mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Hinsichtlich einer Vorrichtung ist die Aufgabe durch eine Dampfkraftanlage mit den Merkmalen des Anspruchs 12 gelöst.The object is achieved by a method with the features of claim 1. With regard to a device, the object is achieved by a steam power plant with the features of claim 12.

Die Erfindung hat gegenüber dem Stand der Technik den Vorteil, dass die Kosten für die Bereitstellung von Deionat, insbesondere bei häufigen Ab- und Anfahrbetrieben, deutlich reduziert sind. Mit Hilfe der Erfindung ist es zudem möglich Dampfkraftwerke auch in Regionen mit starkem Wassermangel zu betreiben. Weiterhin kann durch die Erfindung sehr viel Wasser eingespart werden und die Umwelt wird weniger mit abgegebenem Abwasser belastet. Die Anfahrzeit der Dampfkraftanlage bzw. des Kraftwerks wird verkürzt. Insbesondere durch die Rückführung des im wesentlichen gesamten entwässerten Wassers wird dies erreicht, wobei im wesentlichen beispielsweise bedeutet, dass ca. 99% der entwässerten Wassermenge zurückgeführt wird.The invention has the advantage over the prior art that the costs for the provision of deionized water, especially in the case of frequent take-off and start-up operations, are significantly reduced. With the help of the invention it is also possible to operate steam power plants in regions with severe lack of water. Furthermore, much water can be saved by the invention and the environment is less burdened with discharged wastewater. The start-up time of the steam power plant or the power plant is shortened. In particular, by the return of the substantially entire dehydrated water, this is achieved, wherein essentially means, for example, that about 99% of the dewatered amount of water is recycled.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous developments of the invention will become apparent from the dependent claims.

Bei einer vorteilhaften Weiterbildung der Erfindung wird mindestens aus der Druckstufe mit dem höchsten Druck das entwässerte Wasser gesammelt, angespeichert und dem Wasserkreislauf vollständig zurückgeführt. So lässt sich in einfacher Weise mit geringem Aufwand der Größte Teil des entwässerten Wassers zurückführen, da die in der höchsten Druckstufe fließende Wassermenge den größten Teil der Wassermenge des gesamten Wasserkreislaufs ausmacht.In an advantageous embodiment of the invention, the dewatered water is collected at least from the pressure stage with the highest pressure, stored and completely returned to the water cycle. Thus, in a simple manner, the largest part of the dehydrated water can be returned with little effort, since the water flowing in the highest pressure stage Amount of water makes up the largest part of the water volume of the entire water cycle.

Vorteilhafterweise wird außer der höchsten Druckstufe noch mindestens eine weitere Druckstufe mit einbezogen, deren Druckniveau niedriger ist als das der höchsten Druckstufe, wobei in einer entsprechenden Fortbildung dabei auch alle Druckstufen mit einbezogen sein können. In dieser Weise wird ein größerer Teil oder die Gesamtmenge des entwässerten Wassers gesammelt, angespeichert und dem Wasserkreislauf zurückgeführt und so noch mehr Wasser gespart.Advantageously, in addition to the highest pressure level at least one further pressure stage is included, the pressure level is lower than that of the highest pressure level, in a corresponding training while all pressure levels can be included. In this way, a greater part or the total amount of the dewatered water is collected, stored and returned to the water cycle, thus saving even more water.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das entwässerte Wasser einer Flüssigwasser-Dampf-Trennung unterzogen, wobei der abgetrennte Dampf dem Kondensator der Dampfkraftanlage zugeführt werden kann. Der abgetrennte saubere Dampf kann durch diese Maßnahme einfach im Kondensator gekühlt und verflüssigt werden. Eine besondere Kühlmaßnahme an dem angespeicherten Wasser kann dadurch weitgehend unterbleiben. Außerdem ist auf diese Weise eine einfache Rückführung gesammelten Wassers in den Wasserkreislauf gegeben.In a further advantageous embodiment of the invention, the dewatered water is subjected to a liquid water vapor separation, wherein the separated steam can be supplied to the condenser of the steam power plant. The separated clean steam can be easily cooled in the condenser and liquefied by this measure. A special cooling measure on the stored water can thus largely be omitted. In addition, in this way a simple return of collected water is given in the water cycle.

Bei einer weiteren vorteilhaften Weiterbildung der Erfindung wird das während eines Abfahrvorgangs anfallende entwässerte Wasser immer nur so weit wieder dem Wasserkreislauf zurückgeführt, dass am Ende des Abfahrvorgangs, also bei Stillstand, das entwässerbare Wasser, also die maximal entwässerbare Wassermenge, angespeichert ist. Im Weiteren wird dann die so entwässerte Wassermenge dem Wasserkreislauf beim nächsten Anfahrvorgang wieder zugeführt wird.In a further advantageous embodiment of the invention, the resulting during a shutdown dewatered water is always returned so far back to the water cycle that at the end of the shutdown, ie at a standstill, the dehydrated water, so the maximum dehydrated amount of water is stored. In addition, the dewatered amount of water is then fed back to the water cycle at the next startup.

Vorteilhafterweise wird wenigstens ein Teil des entwässerten Wassers über eine Wasseraufbereitungsanlage dem Wasserkreislauf zurückgeführt. Dabei kann zumindest ein Teil des vom Kondensator austretenden Wassers ebenfalls über die Wasseraufbereitungsanlage geführt werden, wobei es ebenfalls möglich ist die beiden Teilströme vor Eintritt in die Wasseraufbereitungsanlage zu vermischen. Beispielsweise kann so die Beschaffenheit, insbesondere der Verschmutzungsgrad, des der Wasseraufbereitungsanlage zugeführten Wasser eingestellt werden. Die Belastung der Wasseraufbereitungsanlage kann somit leicht vor einer Überbelastung geschützt werden.Advantageously, at least a portion of the dewatered water is returned to the water cycle via a water treatment plant. In this case, at least some of the water exiting from the condenser can also be routed through the water treatment plant, whereby it is also possible the two partial streams must be mixed before entering the water treatment plant. For example, it is possible to set the quality, in particular the degree of soiling, of the water supplied to the water treatment plant. The burden on the water treatment plant can thus be easily protected against overloading.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beigefügten schematischen Zeichnung näher erläutert. Es zeigt:

Fig. 1
ein Ausführungsbeispiel einer erfindungsgemäßen Dampfkraftanlage mit drei Druckstufen.
An embodiment of the invention will be explained in more detail with reference to the accompanying schematic drawing. It shows:
Fig. 1
an embodiment of a steam power plant according to the invention with three pressure levels.

Im Folgenden werden für gleiche und gleich wirkende Elemente durchweg gleiche Bezugszeichen verwendet.In the following, the same reference numerals are used throughout for the same and the same elements.

In Fig. 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Dampfkraftanlage 2 dargestellt. Die Dampfkraftanlage 2 ist Bestandteil eines Kraftwerks 1, welches beispielsweise auch als kombiniertes Gas- und Dampfturbinenkraftwerk ausgebildet sein kann. Die Dampfkraftanlage 2 weist eine Dampfturbine 4 mit im Ausführungsbeispiel drei unterschiedlichen Druckbereichen auf. Weiterhin weist die Dampfkraftanlage 2 im Ausführungsbeispiel einen Wasserkreislauf mit im wesentlichem der Dampfturbine 4, einem Kondensator 6, einer Kondensatpumpe 7 und drei Druckstufen 8, 9, 10 auf, welche jeweils den einzelnen jeweiligen Druckbereichen der Dampfturbine 4 zugeordnet sind. Der Wasserkreislauf umfasst außerdem noch eine nicht dargestellte Speisewasserpumpe. Die Druckstufen 8, 9, 10 sind mit den Druckbereichen der Dampfturbine 4 jeweils durch Dampfleitungen 11 verbunden. Die Druckstufen 8, 9, 10 gliedern sich im Ausführungsbeispiel in die als Hochdruckstufe ausgebildete erste Druckstufe 8, die als Mitteldruckstufe ausgebildete zweite Druckstufe 9 und die als Niederdruckstufe ausgebildete dritte Druckstufe 10. Die erste Druckstufe 8 des Wasserkreislaufs weist einen Durchlaufdampferzeuger 12 mit einer Durchlaufheizfläche 16 und einer Abscheiderflasche 15 auf. Die zweite Druckstufe 9 weist einen ersten Umlaufdampferzeuger 13 mit einer ersten Drucktrommel 17 und einer als Umlaufverdampfer ausgebildeten ersten Umlaufheizfläche 18 auf. Die ähnlich wie die zweite Druckstufe 9 aufgebaute dritte Druckstufe 10 weist einen zweiten Umlaufdampferzeuger 14 mit einer zweiten Drucktrommel 19 und einer als Umlaufverdampfer ausgebildeten zweiten Umlaufheizfläche 20 auf.In Fig. 1, a first embodiment of a steam power plant 2 according to the invention is shown. The steam power plant 2 is part of a power plant 1, which may be formed, for example, as a combined gas and steam turbine power plant. The steam power plant 2 has a steam turbine 4 with three different pressure ranges in the exemplary embodiment. Furthermore, the steam power plant 2 in the exemplary embodiment, a water cycle with essentially the steam turbine 4, a condenser 6, a condensate pump 7 and three pressure stages 8, 9, 10, which are each associated with the individual respective pressure ranges of the steam turbine 4. The water cycle also includes a feedwater pump, not shown. The pressure stages 8, 9, 10 are connected to the pressure ranges of the steam turbine 4 in each case by steam lines 11. The pressure stages 8, 9, 10 are divided in the embodiment in the form of a high-pressure stage first pressure stage 8, formed as a medium pressure stage second pressure stage 9 and designed as a low pressure stage third pressure stage 10. The first pressure stage 8 of the water cycle has a continuous steam generator 12 with a continuous heating surface 16 and a separator bottle 15. The second pressure stage 9 has a first circulation steam generator 13 with a first pressure drum 17 and a first circulating heating surface 18 designed as a circulation evaporator. The third pressure stage 10 constructed similar to the second pressure stage 9 has a second circulation steam generator 14 with a second pressure drum 19 and a second circulation heating surface 20 designed as a circulation evaporator.

Die Heizflächen 16, 18, 20 sind in einem Kessel 5 angeordnet, der beispielsweise wie im Ausführungsbeispiel als liegender Abhitzekessel ausgebildet sein und von den Abgasen einer nicht dargestellten Gasturbine gespeist wird. Den Dampferzeugern 12, 13, 14 ist im Ausführungsbeispiel jeweils ein Überhitzer 21 nachgeschaltet. Der Ausgang des jeweiligen Überhitzers 21 steht über die jeweilige Dampfleitung 11 mit dem ihm zugeordneten Druckbereich der Dampfturbine 4 in Verbindung. Jede Dampfleitung 11 ist jeweils Bestandteil der einzelnen Druckstufe 8, 9, 10.The heating surfaces 16, 18, 20 are arranged in a boiler 5, which may be formed, for example, as in the embodiment as a horizontal waste heat boiler and is fed by the exhaust gases of a gas turbine, not shown. The steam generators 12, 13, 14 in the exemplary embodiment in each case a superheater 21 is connected downstream. The output of the respective superheater 21 is connected via the respective steam line 11 with its associated pressure range of the steam turbine 4 in connection. Each steam line 11 is part of each pressure stage 8, 9, 10th

Im Betrieb der Dampfkraftanlage 2 bzw. des Kraftwerks 1 wird durch die nicht dargestellte Speisewasserpumpe deionisiertes Wasser, sog. Deionat, den Dampferzeugern 12, 13, 14 über Leitungen zugeführt, welche der Einfachheit wegen nicht dargestellt sind. Da im gezeigten Ausführungsbeispiel unterschiedliche Arten von Dampferzeugern 12, 13 ,14 Verwendung finden, welche unterschiedliche Anforderungen an die Beschaffenheit des zugeführten Deionats, insbesondere des ph-Wertes, haben, wird das Deionat kurz vor seinem Eintritt in den jeweiligen Dampferzeuger 12, 13 ,14 durch eine entsprechende nicht dargestellte Einrichtung entsprechend aufbereitet. Im Dampferzeuger 12, 13 ,14 erfolgt die Verdampfung des zugeführten Wassers. Im Durchlaufdampferzeuger 12 erfolgt zumeist auch noch eine Überhitzung. Das verdampfte Wasser wird im sich anschließenden Überhitzer 21 überhitzt und über die Dampfleitungen 11 dem jeweiligen Druckbereich der Dampfturbine 4 zugeführt.During operation of the steam power plant 2 or of the power plant 1, deionized water, so-called deionized water, is fed to the steam generators 12, 13, 14 via lines which are not shown for the sake of simplicity. Since in the embodiment shown different types of steam generators 12, 13, 14 are used, which have different requirements on the nature of the supplied deionized, in particular the ph value, the deionate is shortly before its entry into the respective steam generator 12, 13, 14 prepared accordingly by a corresponding device, not shown. In the steam generator 12, 13, 14, the evaporation of the supplied water takes place. In the continuous steam generator 12 is usually also still overheating. The vaporized water is overheated in the subsequent superheater 21 and via the steam lines 11 fed to the respective pressure range of the steam turbine 4.

Das aus dem Hochdruckbereich der Dampfturbine 4 in Form von Dampf austretende Wasser wird herkömmlicherweise der nächst niedrigeren Druckstufe über Leitungen zugeführt, welche der besseren Übersicht wegen nicht dargestellt sind. Im Ausführungsbeispiel wird aus dem Hochdruckbereich der Dampfturbine 4 in Form von Dampf austretendes Wasser also der zweiten Druckstufe 9 zugeführt. Aus dem Mitteldruckbereich der Dampfturbine 4 in Form von Dampf austretendes Wasser wird der dritten Druckstufe 10, und damit am Ende auch dem niedersten Druckbereich der Dampfturbine 10 zugeführt.The emerging from the high pressure region of the steam turbine 4 in the form of steam water is conventionally supplied to the next lower pressure stage via lines, which are not shown for the sake of clarity. In the exemplary embodiment, water issuing from the high-pressure region of the steam turbine 4 in the form of steam is thus supplied to the second pressure stage 9. From the medium pressure range of the steam turbine 4 in the form of steam escaping water is the third pressure stage 10, and thus at the end and the lowest pressure range of the steam turbine 10 is supplied.

Das aus dem Niederdruckbereich der Dampfturbine 4 austretende Wasser wird dem Kondensator 6 zur Abkühlung und Verflüssigung über eine Abdampfleitung 41 zugeführt. Die Abdampfleitung 41 schließt den Wasserkreislauf der Dampfkraftanlage 2 zwischen Dampfturbine 4 und Kondensator 6.The water emerging from the low-pressure region of the steam turbine 4 is supplied to the condenser 6 for cooling and liquefaction via an exhaust steam line 41. The exhaust steam line 41 closes the water cycle of the steam power plant 2 between the steam turbine 4 and the condenser 6.

Das aus der Kondensatpumpe 7 austretende Wasser wird über die nicht dargestellte Speisewasserpumpe hauptsächlich der ersten Druckstufe 8 zugeführt. Von der in allen Druckstufen 8, 9, 10 strömenden Wassermenge hat die in der ersten Druckstufe 8 strömende Wassermenge im Ausführungsbeispiel im Betrieb einen Anteil von ca. 75%, da in ihr, verglichen mit den anderen Druckstufen 9, 10 deutlich mehr Leistung umgesetzt wird.The water emerging from the condensate pump 7 is supplied via the feedwater pump, not shown, mainly the first pressure stage 8. Of the flowing in all pressure levels 8, 9, 10 amount of water flowing in the first pressure stage 8 amount of water in the embodiment in operation has a share of about 75%, as in her compared to the other pressure levels 9, 10 significantly more power is implemented ,

Die im Dampf der Dampfturbine 4 zugeführte Energie wird in der Dampfturbine 4 in Rotationsenergie umgewandelt und so an den angeschlossenen elektrischen Generator 3 abgegeben.The energy supplied in the steam of the steam turbine 4 is converted into rotational energy in the steam turbine 4 and thus delivered to the connected electric generator 3.

Im laufenden Betrieb, insbesondere auch im Anfahr- und Abfahrbetrieb, wird aus den Druckstufen 8, 9, 10 intermittierend oder teilweise auch laufend Wasser entwässert. Das entwässerte Wasser wird dazu zunächst durch eine Sammelvorrichtung 22, welche im Ausführungsbeispiel durch ein erstes Rohleitungsbündel 23 und ein zweites Rohrleitungsbündel 24 ausgeführt ist, gesammelt. Beispielsweise wird aus den Drucktrommeln 17 und 19 im Nominalbetrieb der Dampfkraftanlage 2 ständig Wasser entwässert. Dieser Vorgang wird auch als Entschlämmen bezeichnet, da sich durch den Umlaufbetrieb in den Drucktrommeln 17, 18 Ablagerungen ansammeln, die abgeschlämmt werden müssen. Beispielsweise werden ca. 0,5% bis 1% des Durchsatzes von Wasser der Drucktrommel 17, 18 ständig entwässert. Durch den im Durchlauferdampferzeuger 12 im Nominalbetrieb fehlenden Umlaufbetrieb muss aus der Abscheiderflasche 15 im Ausführungsbeispiel nicht ständig entwässert werden, sondern zumeist hauptsächlich im Anfahr- und Abfahrbetrieb. Unter Anderem wird auch aus den Überhitzern 21 entwässert, jedoch auch meist nur im Anfahr- und Abfahrbetrieb. Im Ausführungsbeispiel wird Wasser auch aus den Dampfleitungen 11 entwässert und durch das zweite Rohleitungsbündel 24 gesammelt. Wasser kann auch aus anderen Bereichen bzw. Teilen der Druckstufen 8, 9, 10 entwässert werden, welche aufgrund der vereinfachten Darstellung des Ausführungsbeispiels nicht alle dargestellt sind.During operation, especially in the startup and shutdown operation, water is dewatered intermittently or partially from the pressure stages 8, 9, 10. The dewatered water is first by a collecting device 22, which in the embodiment by a first bundle of raw cables 23 and a second pipe bundle 24 is performed, collected. For example, water is continuously drained from the pressure drums 17 and 19 in the nominal operation of the steam power plant 2. This process is also referred to as desludging, as accumulate by the circulation operation in the pressure drums 17, 18 deposits that must be abgeschlämmt. For example, about 0.5% to 1% of the throughput of water of the printing drum 17, 18 is constantly dehydrated. Due to the absence of circulating operation in the continuous-flow steam generator 12 in the nominal mode, it is not necessary to dewater continuously from the separator bottle 15 in the exemplary embodiment, but mostly mainly during start-up and shut-down operation. Among other things, it is drained from the superheaters 21, but mostly only in the start-up and shutdown. In the exemplary embodiment, water is also dewatered from the steam pipes 11 and collected by the second pipe bundle 24. Water can also be drained from other areas or parts of the pressure stages 8, 9, 10, which are not all shown due to the simplified representation of the embodiment.

Das im Ausführungsbeispiel aus den Druckstufen 8, 9, 10 entwässerte und gesammelte Wasser wird anschließend angespeichert. Dazu sind mehrere Speicherbehälter 25, 26, 27 und 28 vorgesehen, die je nach Betriebszustand des Kraftwerks 1 mehr oder weniger gefüllt sein können. Im Einzelnen wird im Ausführungsbeispiel das aus den Drucktrommeln 17, 19 entwässerte Wasser, das aus der Abscheiderflasche 15 entwässerte Wasser und das aus den Überhitzern 21 entwässerte Wasser zunächst dem ersten Speicherbehälter 25 zugeführt und dort angespeichert. Der erste Speicherbehälter 25 ist größenmäßig so ausgelegt, das er die beim Anfahren oder Abfahren der Dampfkraftanlage 2 sehr hohe Zufuhr von entwässertem Wasser zunächst für einige Zeit anspeichern und so puffern kann. Der erste Speicherbehälter 25 wirkt auch als eine erste Trenneinrichtung 32, da das heiße, entwässerte Wasser im ersten Speicherbehälter 25 ausdampft, wird Flüssigwasser von Dampf getrennt, wobei der an sich von Verunreinigungen freie Dampf über eine erste Rückführungsleitung 29 dem Eingang des Kondensators 6 zugeführt wird und das Flüssigwasser vorerst im Speicherbehälter 25 angespeichert wird. Im ersten Speicherbehälter 25 angespeichertes Flüssigwasser wird bei Bedarf in einen dritten Speicherbehälter 27 mittels einer ersten Pumpe 34 gepumpt. Durch einen nach dem Ausgang der ersten Pumpe 34 angeordneten Abzweig, kann durch eine entsprechende Stellung eines nicht dargestellten Ventils die gepumpte Wassermenge teilweise oder vollständig über einen ersten Kühler 37 zurück in den ersten Speicherbehälter 25 gepumpt werden. Dadurch ist eine zusätzliche Kühlung des im ersten Speicherbehälter 25 angespeicherten Wassers möglich. Insbesondere kann durch den Einsatz des ersten Kühlers 37 die ausdampfende Wassermenge reduziert und die Wärmebelastung des Kondensators 6 verringert werden.
Im Ausführungsbeispiel wird das aus den Dampfleitungen 11 der Druckstufen 8, 9, 10 entwässerte Wasser durch das zweite Rohleitungsbündel 24 entwässert und in dem zweiten Speicherbehälter 26 angespeichert. Wie der erste Speicherbehälter 25 ist auch dem zweiten Speicherbehälter 26 ein Kühlkreislauf bestehend aus einer zweiten Pumpe 35 und einem zweiten Kühler 38 zugeordnet. Außerdem weist der zweite Speicherbehälter 26 eine wie im ersten Speicherbehälter 25 beschaffene zweite Trenneinrichtung 33 auf, wobei auch hier der an sich saubere Wasserdampf dem Eingang des Kondensators 6 über eine zweite Rückführungsleitung 30 zuführbar ist. Das im zweiten Speicherbehälter 26 angespeicherte Flüssigwasser ist auch hier dem dritten Speicherbehälter 27 über die zweite Pumpe 35 bei Bedarf zuführbar.
The water drained and collected in the exemplary embodiment from the pressure stages 8, 9, 10 is then stored. For this purpose, a plurality of storage containers 25, 26, 27 and 28 are provided, which may be more or less filled depending on the operating state of the power plant 1. More specifically, in the embodiment, the dehydrated water from the pressure drums 17, 19, the dehydrated water from the separator bottle 15, and the dehydrated water from the superheaters 21 are first supplied to the first storage tank 25 and stored there. The first storage tank 25 is designed in size so that it can initially accumulate the very high supply of dehydrated water when starting or stopping the steam power plant 2 for some time and so can buffer. The first storage tank 25 also acts as a first separator 32, since the hot, dehydrated water evaporates in the first storage tank 25, liquid water is separated from steam, wherein the in itself impurities of impurities via a first return line 29 to the inlet of the condenser 6 is supplied and the liquid water is initially stored in the storage tank 25. If necessary, liquid water stored in the first storage tank 25 is pumped into a third storage tank 27 by means of a first pump 34. By a arranged after the output of the first pump 34 branch, the pumped amount of water can be partially or completely pumped through a first cooler 37 back into the first storage tank 25 by a corresponding position of a valve, not shown. As a result, additional cooling of the water stored in the first storage tank 25 is possible. In particular, can be reduced by the use of the first cooler 37, the evaporating amount of water and the heat load of the capacitor 6 can be reduced.
In the exemplary embodiment, the water drained from the steam lines 11 of the pressure stages 8, 9, 10 is dewatered through the second pipe bundle 24 and stored in the second storage tank 26. Like the first storage tank 25, a cooling circuit consisting of a second pump 35 and a second cooler 38 is also associated with the second storage tank 26. In addition, the second storage tank 26 has a second separating device 33, which is provided as in the first storage tank 25, wherein the water vapor, which is clean per se, can also be fed to the inlet of the condenser 6 via a second return line 30. The liquid water stored in the second storage tank 26 can also be supplied to the third storage tank 27 via the second pump 35 if required.

Das im dritten Speicherbehälter 27 angespeicherte Flüssigwasser wird im Ausführungsbeispiel bei Bedarf über einen dritten Kühler 39, eine dritte Pumpe 36 und eine Wasseraufbereitungsanlage 40 dem Eingang der Kondensatpumpe 7 über eine dritte Rückführungsleitung 31 zugeführt.In the exemplary embodiment, the liquid water stored in the third storage tank 27 is supplied via a third cooler 39, a third pump 36 and a water treatment plant 40 to the inlet of the condensate pump 7 via a third return line 31.

Die Wasseraufbereitungsanlage 40 ist so geschaltet und angeordnet, dass in sie die gesamte Flüssigphase des entwässerten Wassers geleitet und aufbereitet wird, bevor diese Flüssigphase in den Wasserkreislauf der Dampfkraftanlage 2 zurückgeführt wird. Das gesamte aus dem dritten Speicherbehälter 27 austretende Wasser wird über die Wasseraufbereitungsanlage 40 geführt und dort aufbereitet. Im Ausführungsbeispiel ist die Wasseraufbereitungsanlage 40 im Nebenstrom des Wasserkreislaufes angeordnet, wobei ein Teilstrom des aus einem als Kondensatsammelbehälter ausgebildeten vierten Speicherbehälter 28 austretenden Wassers über die dritte Pumpe 36 der Wasseraufbereitungsanlage 40 zuführbar ist. Der Teilstrom ist im Ausführungsbeispiel mit dem aus dem dritten Speicherbehälter 27 kommenden Flüssigwasser mischbar, bevor er die Wasseraufbereitungsanlage 40 erreicht. Insbesondere im Nominalbetrieb der Dampfkraftanlage 2 kann der auch das gesamte aus dem Kondensator 6 austretende Wasser über die Wasseraufbereitungsanlage 40 geführt werden, wobei die Wasseraufbereitungsanlage 40 dann im Hauptstrom des aus dem Kondensator 6 tretenden Wassers liegt.The water treatment plant 40 is switched and arranged so that in it the entire liquid phase of the dewatered water is passed and treated before this liquid phase is returned to the water cycle of the steam power plant 2. The entire water emerging from the third storage tank 27 is passed through the water treatment plant 40 and processed there. In the exemplary embodiment, the water treatment plant 40 is arranged in the secondary flow of the water cycle, wherein a partial flow of water emerging from a formed as a condensate receiver fourth storage tank 28 via the third pump 36 of the water treatment plant 40 can be fed. In the exemplary embodiment, the partial flow can be mixed with the liquid water coming from the third storage tank 27 before it reaches the water treatment plant 40. In particular, in the nominal operation of the steam power plant 2, the entire water emerging from the condenser 6 can be passed through the water treatment plant 40, wherein the water treatment plant 40 is then in the main stream of water coming out of the condenser 6.

Erfindungsgemäß wird im Ausführungsbeispiel die gesamte über einen bestimmten Zeitraum anfallende entwässerte Wassermenge gesammelt, bis zu einem bestimmten Maße angespeichert und dann an den Wasserkreislauf abgegeben. Im Ausführungsbeispiel wird das aus allen Druckstufen 8, 9, 10 entwässerte Wasser gesammelt, angespeichert und zurückgeführt. In anderen nicht dargestellten Ausführungsbeispielen kann auch das aus nur einer, vorzugsweise der höchste Druckstufe 8 entwässerte Wasser in dieser Weise gesammelt, angespeichert und zurück geführt werden.According to the invention, the entire amount of dewatered water accumulating over a certain period of time is collected in the exemplary embodiment, stored to a certain extent and then released to the water cycle. In the exemplary embodiment, the water drained from all pressure stages 8, 9, 10 is collected, stored and returned. In other embodiments, not shown, the water from only one, preferably the highest pressure stage 8 dehydrated water can be collected in this way, stored and returned.

Beim Abfahren, also beispielsweise wenn die Dampfkraftanlage 2 ausgeschaltet werden soll, fallen vermehrt Entwässerungen an. Dies ist auch beim Anfahren der Fall da die für den Nominalbetrieb erforderlichen Dampfparameter nur allmählich erreicht werden können. Der Wasserkreislauf muss auch beim Abfahren aufrechterhalten werden, da durch das zirkulierende Wasser den Druckstufen 8, 9, 10 die Wärme entzogen werden muss. Am Ende des Abfahrvorgangs ist die anfallende Menge an zu entwässerndem Wasser am Größten. Die Rückführung des entwässerten Wassers kann deshalb auch während des Abfahrvorgangs erfolgen, dies erfolgt jedoch so, dass am Ende des Abfahrvorgangs die gesamte Wassermenge angespeichert ist. Die Speicherbehälter sind von ihrer Größe bzw. ihrem Fassungsvermögen entsprechend konzipiert. Die Pumpen 34, 35, 36 und 7 werden entsprechend gesteuert. Insbesondere beim erneuten Anfahren muss auf diese Weise höchstens nur eine geringe Menge an neuem Deionat dem Wasserkreislauf zugeführt werden. Wasser wird so gespart und die Umwelt durch eine verringerte Abgabe an Abwasser entlastet.When driving down, so for example when the steam power plant 2 is to be turned off, more and more drainages. This is also the case when starting because the steam parameters required for the nominal operation can only be achieved gradually. The water cycle must also be shut down can be maintained because of the circulating water pressure levels 8, 9, 10, the heat must be withdrawn. At the end of the shutdown process, the amount of water to be drained is the largest. The return of the dehydrated water can therefore also be done during the shutdown, but this is done so that at the end of the shutdown process, the entire amount of water is stored. The storage containers are designed according to their size or their capacity. The pumps 34, 35, 36 and 7 are controlled accordingly. In particular, when restarting must be supplied to the water cycle in this way at most only a small amount of new deionized. Water is thus saved and the environment relieved by a reduced discharge of wastewater.

Besonders vorteilhaft ist die erfindungsgemäße Anordnung und Anwendung der Wasseraufbereitungsanlage 40 im Ausführungsbeispiel, da im Ausführungsbeispiel in der höchsten Druckstufe 8 ein Durchlaufdampferzeuger 12 Verwendung findet. Durchlaufdampferzeuger 12 stellen erhöhte Anforderungen an die Wasserqualität, die für gewöhnlich nur durch die Wasseraufbereitungsanlage 40 hergestellt und gesichert werden kann. Die im Vergleich zu den Anforderungen der Umlaufdampferzeuger 13, 14 anderen Anforderungen an die Wasserqualität betreffen insbesondere den pH-Wert und den Sauerstoffgehalt. Da die Wasseraufbereitungsanlage 40 wegen des Durchlaufdampferzeugers 12 sowieso notwendig ist, ist es vorteilhafter die vergleichsweise geringen aus den Umlaufdampferzeuger 13, 14 entwässerten Wassermengen ebenfalls über die Wasseraufbereitungsanlage 40 dem Wasserkreislauf zurückzuführen, als diese zu Verwerfen. Dies trifft zumeist auch auf die vergleichsweise stark belasteten aus den Drucktrommeln 17, 19 entschlämmten Wassermengen, bzw. im An- und Abfahrbetrieb aus der Abscheiderflasche 15 entschlämmten Wassermengen zu. Um jedoch die Wasseraufbereitungsanlage 40 zu entlasten ist es denkbar die aus den Drucktrommeln 17, 18 der Umlaufdampferzeuger 13, 14 Entschlämmungen nicht in den Wasserkreislauf zurückzuführen. Eine Dampf-Flüssigwassertrennung ist für diese Entschlämmungen trotzdem möglich, wobei der dann an sich saubere anfallende Dampf dem Wasserkreislauf, insbesondere dem Eingang des Kondensators 6 zurückgeführt werden kann.Particularly advantageous is the inventive arrangement and application of the water treatment plant 40 in the embodiment, since in the embodiment in the highest pressure stage 8, a continuous steam generator 12 is used. Continuous steam generators 12 place increased demands on water quality, which can usually only be produced and secured by the water treatment plant 40. In comparison to the requirements of the circulating steam generators 13, 14 other requirements for the water quality relate in particular to the pH value and the oxygen content. Since the water treatment plant 40 is anyway necessary because of the continuous steam generator 12, it is more advantageous to reduce the relatively small quantities of water drained from the circulating steam generators 13, 14 also via the water treatment plant 40 to the water cycle than to reject them. This is usually also the comparatively heavily loaded from the pressure drums 17, 19 entschlämmten amounts of water, or in the startup and shutdown of the separator bottle 15 dewatered amounts of water. However, in order to relieve the water treatment plant 40, it is conceivable that from the pressure drums 17, 18 of the circulation steam generator 13, 14 do not return slurries in the water cycle. A Steam-liquid water separation is nevertheless possible for these slurries, whereby the then inherently clean accumulating steam can be returned to the water cycle, in particular to the inlet of the condenser 6.

Die Wasseraufbreitungsanlage 40 kann insbesondere eine mechanische Reinigung und einen Kationen/Anionentauscher aufweisen. Die Wasseraufbreitungsanlage 40 bereitet das ihm zugeführte Wasser insbesondere hinsichtlich seiner chemischen Eigenschaften auf.The water treatment plant 40 may in particular have a mechanical cleaning and a cation / anion exchanger. The Wasseraufbeltungsanlage 40 prepares the water supplied to him in particular with regard to its chemical properties.

Der gesamte Wasserkreislauf, insbesondere die Sammel vorrichtung 22, die Speicherbehälter 25, 26, 27, 28 und die Rückführungsleitungen 29, 30, 31, sind gegenüber der Atmosphäre abgeschlossen, um einen unkontrollierten Lufteintrag in das entwässerte Wasser zu verhindern.The entire water cycle, in particular the collecting device 22, the storage container 25, 26, 27, 28 and the return lines 29, 30, 31, are closed to the atmosphere to prevent uncontrolled air entry into the dewatered water.

Die Merkmale des Ausführungsbeispiels können miteinander kombiniert werden.The features of the embodiment can be combined.

Claims (18)

Verfahren zum Betrieb einer Dampfkraftanlage (2) mit einem Wasserkreislauf mit zumindest einer Druckstufe (8, 9, 10), einer Dampfturbine (4) und einem Kondensator (6), wobei Wasser aus der zumindest einen Druckstufe (8, 9, 10) entwässert wird,
dadurch gekennzeichnet,
dass das aus der zumindest einen Druckstufe (8, 9, 10) im wesentlichen gesamte entwässerte Wasser gesammelt und angespeichert wird und
dass das so gesammelte und angespeicherte entwässerte Wasser im Wesentlichen vollständig dem Wasserkreislauf zurückgeführt wird.
Method for operating a steam power plant (2) with a water circuit having at least one pressure stage (8, 9, 10), a steam turbine (4) and a condenser (6), wherein water from the at least one pressure stage (8, 9, 10) drains becomes,
characterized,
that from the at least one pressure stage (8, 9, 10) substantially all dehydrated water is collected and stored and
that the dewatered water thus collected and stored is substantially completely returned to the water cycle.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Druckstufe (8, 9, 10) die höchste Druckstufe (8) des Wasserkreislaufs ist.
Method according to claim 1,
characterized in that the pressure stage (8, 9, 10) is the highest pressure stage (8) of the water cycle.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass zudem noch zumindest eine weitere niedrigere Druckstufe (9, 10) einbezogen ist.
Method according to claim 2,
characterized in that in addition at least one further lower pressure stage (9, 10) is included.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass das entwässerte Wasser einer Flüssigwasser-Dampf-Trennung unterzogen wird.
Method according to one of the preceding claims,
characterized in that the dewatered water is subjected to liquid water vapor separation.
Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass der abgetrennte Dampf dem Kondensator (6) des Wasserkreislaufs zugeführt wird.
Method according to claim 4,
characterized in that the separated steam is supplied to the condenser (6) of the water cycle.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass das entwässerte Wasser in zumindest einem Speicherbehälter (25, 26, 27, 28) angespeichert wird.
Method according to one of the preceding claims,
characterized in that the dehydrated water in at least one storage container (25, 26, 27, 28) is stored.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass das während des Abfahrens der Dampfkraftanlage (2) anfallende entwässerte Wasser immer nur soweit wieder zurück geführt wird, dass am Ende des Abfahrens die im wesentlichen vollständige entwässerbare Wassermenge angespeichert ist und die so angespeicherte Wassermenge dem Wasserkreislauf beim Anfahren wieder zugeführt wird.
Method according to one of the preceding claims,
characterized in that during the shutdown of the steam power plant (2) resulting dewatered water is always returned to the extent that at the end of the shutdown, the substantially complete dehydrated amount of water is stored and the amount of water so stored is returned to the water cycle when starting again.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass das entwässerte Wasser wenigsten zum Teil über eine Wasseraufbereitungsanlage (40) dem Wasserkreislauf zurückgeführt wird.
Method according to one of the preceding claims,
characterized in that the dehydrated water is at least partly returned to the water cycle via a water treatment plant (40).
Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass zumindest ein Teilstrom des von dem Kondensator (6) austretenden kondensierten Wassers über die Wasseraufbereitungsanlage (40) geführt wird.
Method according to claim 8,
characterized in that at least a partial flow of condensed water exiting from the condenser (6) is passed over the water treatment plant (40).
Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass das über die Wasseraufbereitungsanlage (40) in den Wasserkreislauf zurück geführte entwässerte Wasser vor dem Eintritt in die Wasseraufbereitungsanlage (40) mit dem aus dem Kondensator (6) kommenden Teilstrom vermischt wird.
Method according to claim 9,
characterized in that via the water treatment plant (40) guided back into the water cycle dewatered water before entering the water treatment plant (40) with the from the condenser (6) coming partial stream is mixed.
Verfahren zum Betrieb eines Kraftwerks (1) zur Erzeugung von zumindest elektrischer Energie, wobei das Kraftwerk (1) eine Dampfkraftanlage (2) aufweist, mit welcher ein elektrischer Generator (3) antreibbar ist und die Dampfkraftanlage (2) mit einem Verfahren nach einem der Ansprüche 1 bis 10 betrieben wird.Method for operating a power plant (1) for generating at least electrical energy, the power plant (1) having a steam power plant (2) with which an electric generator (3) can be driven and the steam power plant (2) with a method according to one of Claims 1 to 10 is operated. Dampfkraftanlage (2) mit einem Wasserkreislauf mit zumindest einer Druckstufe (8, 9, 10), einer Dampfturbine (4) und einem Kondensator (6), wobei Wasser aus der zumindest einen Druckstufe (8, 9, 10) entwässert werden kann,
dadurch gekennzeichnet, dass zumindest eine Sammelvorrichtung (22), zumindest ein Speicherbehälter (25, 26, 27, 28) für das gesamte aus der zumindest einen Druckstufe (8, 9, 10), entwässerte Wasser vorgesehen ist, wobei das gesamte so gesammelte und angespeicherte entwässerte Wasser in den Wasserkreislauf zurückführbar ist.
Steam power plant (2) having a water circuit with at least one pressure stage (8, 9, 10), a steam turbine (4) and a condenser (6), wherein water can be dewatered from the at least one pressure stage (8, 9, 10),
characterized in that at least one collecting device (22), at least one storage container (25, 26, 27, 28) for the entire of the at least one pressure stage (8, 9, 10), drained water is provided, the entire so collected and stored dehydrated water is traceable into the water cycle.
Dampfkraftanlage nach Anspruch 12,
dadurch gekennzeichnet, dass die zumindest eine Druckstufe (8, 9, 10), die höchste Druckstufe (8) ist.
Steam power plant according to claim 12,
characterized in that the at least one pressure stage (8, 9, 10), the highest pressure level (8).
Dampfkraftanlage nach Anspruch 12 oder 13,
gekennzeichnet durch, zumindest eine Trenneinrichtung (32, 33) zum Trennen von Flüssigwasser und Dampf.
Steam power plant according to claim 12 or 13,
characterized by at least one separator (32, 33) for separating liquid water and steam.
Dampfkraftanlage nach Anspruch 14,
dadurch gekennzeichnet, dass die Trenneinrichtung (32, 33) dampfseitig mit dem Eingang des Kondensators (6) über zumindest eine Rückführungsleitung (29, 30) verbunden ist.
Steam power plant according to claim 14,
characterized in that the separating device (32, 33) on the steam side to the input of the capacitor (6) via at least one return line (29, 30) is connected.
Dampfkraftanlage nach Anspruch 14 oder 15,
dadurch gekennzeichnet, dass die Trenneinrichtung (32, 33) als Bestandteil des zumindest einen Speicherbehälters (25, 26, 27) ausgebildet ist.
Steam power plant according to claim 14 or 15,
characterized in that the separating device (32, 33) is formed as part of the at least one storage container (25, 26, 27).
Dampfkraftanlage nach einem der Ansprüche 12 bis 16,
dadurch gekennzeichnet,dass der zumindest eine Speicherbehälter (25, 26, 27, 28) so groß ausgebildet ist, dass er die gesamte am Ende eines Abfahrvorgangs der Dampfkraftanlage (2) anfallende entwässerte Wassermenge anspeichern kann.
Steam power plant according to one of claims 12 to 16,
characterized in that the at least one storage container (25, 26, 27, 28) is formed so large that it can accumulate the entire at the end of a shutdown of the steam power plant (2) resulting dewatered amount of water.
Dampfkraftanlage nach einem der Ansprüche 12 bis 17, gekennzeichnet durch, zumindest eine Wasseraufbereitungsanlage (40), welche das ihr zugeführte Wasser insbesondere chemisch aufbereitet und konditioniert.Steam power plant according to one of claims 12 to 17, characterized by at least one water treatment plant (40) which in particular chemically processes and conditions the water supplied to it.
EP04028295A 2004-11-30 2004-11-30 Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant Withdrawn EP1662096A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04028295A EP1662096A1 (en) 2004-11-30 2004-11-30 Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant
PCT/EP2005/056008 WO2006058845A1 (en) 2004-11-30 2005-11-16 Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station
US11/791,798 US7886538B2 (en) 2004-11-30 2005-11-16 Method for operating a steam power plant, particularly a steam power plant in a power plant for generating at least electrical energy, and corresponding steam power plant
EP05803061A EP1819909A1 (en) 2004-11-30 2005-11-16 Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station
KR1020077015077A KR101259515B1 (en) 2004-11-30 2005-11-16 Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electrical power, and corresponding steam power station
CN2005800401951A CN101065559B (en) 2004-11-30 2005-11-16 A steam power station operation method, and corresponding steam power device
JP2007541951A JP4901749B2 (en) 2004-11-30 2005-11-16 Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04028295A EP1662096A1 (en) 2004-11-30 2004-11-30 Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant

Publications (1)

Publication Number Publication Date
EP1662096A1 true EP1662096A1 (en) 2006-05-31

Family

ID=34927576

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04028295A Withdrawn EP1662096A1 (en) 2004-11-30 2004-11-30 Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant
EP05803061A Withdrawn EP1819909A1 (en) 2004-11-30 2005-11-16 Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05803061A Withdrawn EP1819909A1 (en) 2004-11-30 2005-11-16 Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station

Country Status (6)

Country Link
US (1) US7886538B2 (en)
EP (2) EP1662096A1 (en)
JP (1) JP4901749B2 (en)
KR (1) KR101259515B1 (en)
CN (1) CN101065559B (en)
WO (1) WO2006058845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048779A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
DE102015206484A1 (en) * 2015-04-10 2016-10-13 Siemens Aktiengesellschaft Process for preparing a liquid medium and treatment plant

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8984892B2 (en) * 2009-03-31 2015-03-24 General Electric Company Combined cycle power plant including a heat recovery steam generator
US20100242430A1 (en) * 2009-03-31 2010-09-30 General Electric Company Combined cycle power plant including a heat recovery steam generator
DE102010054667B3 (en) * 2010-12-15 2012-02-16 Voith Patent Gmbh Frost-resistant steam cycle process device and method of operation thereof
KR101058430B1 (en) * 2010-12-28 2011-08-24 임주혁 Water supply pumping system for power station which uses vapor pressure
MX355445B (en) 2012-01-17 2018-04-18 General Electric Technology Gmbh Tube and baffle arrangement in a once-through horizontal evaporator.
WO2013108215A2 (en) 2012-01-17 2013-07-25 Alstom Technology Ltd Start-up system for a once-through horizontal evaporator
KR101245088B1 (en) 2012-08-13 2013-03-18 서영호 Power generator using electrical furnace
EP2746656A1 (en) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Drainage of a power plant assembly
US10054012B2 (en) 2014-03-05 2018-08-21 Siemens Aktiengesellschaft Flash tank design
DE102014217280A1 (en) * 2014-08-29 2016-03-03 Siemens Aktiengesellschaft Method and arrangement of a steam turbine plant in combination with a thermal water treatment
EP3204622B1 (en) * 2015-01-23 2018-08-01 Siemens Aktiengesellschaft Pre-heating of untreated water in power plants
KR102043890B1 (en) 2016-06-15 2019-11-12 두산중공업 주식회사 Supercritical CO2 power generation system of direct fired type
KR101967024B1 (en) 2016-06-15 2019-08-13 두산중공업 주식회사 Supercritical CO2 power generation system of direct fired type
CN106895388A (en) * 2016-12-30 2017-06-27 芜湖顺景自动化设备有限公司 The intelligent light velocity steam machine equipment of energy-saving safe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299555A1 (en) * 1987-07-03 1989-01-18 Waste Power B.V. Method and apparatus for generating electrical and/or mechanical energy from at least a low-grade fuel
JPH0642703A (en) * 1992-06-05 1994-02-18 Kawasaki Heavy Ind Ltd Cement waste heat recovery power generating plant combined with gas turbine
JPH0783006A (en) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd Discharged heat recovering device for compound refuse power generation plant
WO1997007323A1 (en) * 1995-08-18 1997-02-27 Siemens Aktiengesellschaft Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant
DE19736886A1 (en) * 1997-08-25 1999-03-04 Siemens Ag Steam generator operating method e.g. for gas-and-steam turbine plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH406247A (en) * 1963-07-23 1966-01-31 Sulzer Ag Steam power plant with forced steam generator and reheater
US3518830A (en) * 1968-10-17 1970-07-07 Westinghouse Electric Corp Vapor heated tube and shell heat exchanger system and method of purging
DE3804605A1 (en) * 1988-02-12 1989-08-24 Siemens Ag METHOD AND SYSTEM FOR THE PRODUCTION OF HEAT-STEAM
DE4409811C1 (en) * 1994-03-22 1995-05-18 Siemens Ag Method of driving heat steam producer partic. for gas and steam turbine installation
JPH10331607A (en) * 1997-06-03 1998-12-15 Babcock Hitachi Kk Exhaust heat recovery boiler blowing device and a boiler blowing-out method
US6735948B1 (en) * 2002-12-16 2004-05-18 Icalox, Inc. Dual pressure geothermal system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299555A1 (en) * 1987-07-03 1989-01-18 Waste Power B.V. Method and apparatus for generating electrical and/or mechanical energy from at least a low-grade fuel
JPH0642703A (en) * 1992-06-05 1994-02-18 Kawasaki Heavy Ind Ltd Cement waste heat recovery power generating plant combined with gas turbine
JPH0783006A (en) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd Discharged heat recovering device for compound refuse power generation plant
WO1997007323A1 (en) * 1995-08-18 1997-02-27 Siemens Aktiengesellschaft Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant
DE19736886A1 (en) * 1997-08-25 1999-03-04 Siemens Ag Steam generator operating method e.g. for gas-and-steam turbine plant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"THE PERFECT MATCH: COMBINED CYCLES AND DISTRICT HEATING/COOLING", POWER, HILL PUB. CO., NEW YORK, NY, US, vol. 135, no. 4, 1 April 1991 (1991-04-01), pages 117 - 118,120, XP000209855, ISSN: 0032-5929 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 269 (M - 1609) 23 May 1994 (1994-05-23) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 06 31 July 1995 (1995-07-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048779A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
DE102012217717A1 (en) 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Process for the recovery of process waste water from a steam power plant
US9962664B2 (en) 2012-09-28 2018-05-08 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
DE102015206484A1 (en) * 2015-04-10 2016-10-13 Siemens Aktiengesellschaft Process for preparing a liquid medium and treatment plant

Also Published As

Publication number Publication date
WO2006058845A1 (en) 2006-06-08
CN101065559B (en) 2011-07-13
EP1819909A1 (en) 2007-08-22
JP4901749B2 (en) 2012-03-21
KR101259515B1 (en) 2013-05-06
US7886538B2 (en) 2011-02-15
JP2008522124A (en) 2008-06-26
KR20070089837A (en) 2007-09-03
CN101065559A (en) 2007-10-31
US20080104959A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006058845A1 (en) Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station
DE102016214960B3 (en) Power plant with optimized preheating of feed water for low-level turbo sets
EP1706667B1 (en) Method and device for removing water from a steam plant
EP2885578B1 (en) Method for recovering process wastewater from a steam power plant
EP0134457A1 (en) Steam power plant
EP1806533A1 (en) Steam cycle of a power plant
EP3339507B1 (en) Method for operating a heating group subsystem and heating group subsystem
EP0981014B1 (en) Power plant and process for starting and for purification of its water-steam cycle
EP2923149B1 (en) Draining a power plant
EP3150761B1 (en) Machine for producing or treating a fibrous web with a steam heated cylinder and an apparatus for supplying the cylinder with steam, and method for recovering steam from a steam heated cylinder in a machine for producing or treating a fibrous web
EP3066310B1 (en) Flash tank design
WO2013170916A1 (en) Method and device for cleaning waste process water
CH625015A5 (en)
AT521069B1 (en) Apparatus and method for drying a fibrous web using vapor recovery
EP3707306B1 (en) Machine for producing or treating a fiber web and method for recycling steam of a steam user in the machine
EP1706188B1 (en) Method and device for treating contaminated water
EP3280883B1 (en) Method for processing a liquid medium and processing system
EP1270877B1 (en) Heat transformation with repressurization
EP2994570B1 (en) Method for operating a heating system for a drying section of a machine for producing or treating a fibrous web, and heating system
DE102012100645A1 (en) Device for performing organic rankine cycle (ORC) process for generating power using waste heat obtained from industrial plant, involves providing heat exchanger with throttle for throttling condensed process fluid
DE3214647A1 (en) Process and plant for treating dirty water
WO2019238905A1 (en) Operating method and control unit for a combined heat and power system, and combined heat and power system
EP2589764A1 (en) Power plant assembly with integrated steam turbine with hogging ejector and method for starting-up a power-plant assembly with steam turbine
EP3086033A1 (en) Method and device for starting a continuous steam generator
DD246156A1 (en) METHOD FOR SELECTIVELY INCREASING DRYING PERFORMANCE IN BRIKETTFABRIKEN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566