EP1608998A1 - Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator - Google Patents

Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator

Info

Publication number
EP1608998A1
EP1608998A1 EP04711353A EP04711353A EP1608998A1 EP 1608998 A1 EP1608998 A1 EP 1608998A1 EP 04711353 A EP04711353 A EP 04711353A EP 04711353 A EP04711353 A EP 04711353A EP 1608998 A1 EP1608998 A1 EP 1608998A1
Authority
EP
European Patent Office
Prior art keywords
signal
arrangement
oscillator
measurement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04711353A
Other languages
German (de)
French (fr)
Inventor
Martin Vossiek
Martin Nalezinski
Andreas Kornbichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1608998A1 publication Critical patent/EP1608998A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/12Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/341Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal wherein the rate of change of the transmitted frequency is adjusted to give a beat of predetermined constant frequency, e.g. by adjusting the amplitude or frequency of the frequency-modulating signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • Pulse radar sensors are often used to measure distances with microwaves.
  • the methods and arrangements for the construction and operation of pulse radar sensors exist in a variety of forms and have long been e.g. known from US 3,117,317, US 4,132,991 and US 4,521,778.
  • Pulse radar sensors are used as level sensors in industrial measurement technology, as parking aids or near-distance sensors in motor vehicles to avoid collisions, to map the surroundings and to navigate autonomous vehicles and transport systems such as Robots and conveyor systems.
  • Pulse radar sensors usually work in the listed areas of application at center frequencies of approx. 1 GHz to 100 GHz with typical pulse lengths of 100 ps to 20 ns. Because of the large bandwidth, such sensors have been referred to as ultra-wideband (UWB) radar for some time.
  • UWB ultra-wideband
  • the pulse signals have such a large bandwidth that they cannot be recorded and processed directly with the usual methods of signal detection, but must first be converted to a lower frequency.
  • almost all known pulse systems use the so-called sequential scanning method. With this principle, which is already known from early digital sampling oscilloscopes, the measurement signal is sampled over several measurement cycles, the sampling times being shifted sequentially from cycle to cycle.
  • FIG. 1 shows a known embodiment of a pulse radar with sequential sampling, which operates according to the prior art.
  • the output signal of a continuously operated oscillator is divided into a transmit and a receive path. These two signals are switched through for a brief moment via the switches SW-Tx / SW-Rx with the clock CLK-Tx / CLK-Rx, whereby two cyclic pulse sequences s Tx (t) and S ⁇ x (t) are generated with a slightly different clock rate ,
  • the pulse train s Tx (t) is transmitted via the antenna ANT-Tx.
  • the pulse sequence S ⁇ (t) is fed to the first gate of the mixer MIX, which acts as a scanning gate.
  • the mixer is fed with the received signal reflected by the object TARGET1 and the object TARGET2.
  • the pulse train received is mixed in the mixer MIX into the low-frequency baseband.
  • the resulting sampling pulse sequence is smoothed by a bandpass filter and thus results in the low-frequency measurement signal s m (t).
  • FIG. 2 shows, it is also known to use a common antenna for transmitting and receiving instead of separate antennas as in FIG. 1, the transmitting and
  • Received signals are separated from each other, for example by a circulator or directional coupler.
  • Pulse envelope as shown in FIG. 3 (labeled TARGET2) as a function of the instantaneous reflection phase given by the respective distance of the moving object TARGET2 between the values + A and -A, with the
  • a complex value acquisition of the measurement signal s m (t) can be used to calculate a non-"wobbling" pulse envelope curve according to FIG. 6 from the real and the imaginary part of the measurement signal by forming an amount.
  • FIG. 4 solves some of the problems mentioned.
  • the function essentially corresponds to that of the arrangement of FIG. 1, the pulse sequences in this case being achieved by briefly switching on the signal sources HFO-Tx / HFO-Rx by a fast voltage pulse from PO-Tx / PO-Rx can be reached.
  • the resulting pulse trains have slightly different clock rates CLK-Tx / CLK-Rx.
  • SNR SNR of the measurement signal is crucial that the oscillators PO-Tx / PO-Rx are in a deterministic, that is to say in a non-stochastic, phase relationship to one another over all pulses of a sequence.
  • a deterministic relationship arises when the pulse signals that the
  • High frequency oscillators are.
  • the harmonics mean that the oscillators do not oscillate stochastically, but in relation to the voltage pulses PO-Tx / PO-Rx with a rigid, characteristic initial phase.
  • the output signals of the two oscillators are therefore also in a deterministic phase and time relationship to one another, predetermined by the transmission signal sequence and the scanning signal sequence.
  • the system no longer has complex high-frequency switches.
  • the object of the present invention is to show systems which fulfill the task of the radar arrangements described in a different and improved form.
  • an arrangement or device has transmission means for generating and transmitting an electromagnetic signal, and reception means for receiving an echo of the transmitted electromagnetic signal.
  • the receiving means have a receiving oscillator whose transient response, in particular the transient period and thus the average power output, can be influenced by the strength, in particular the amplitude, of the received reflection of the transmitted electromagnetic signal. So the local oscillator is like this wired that it can be excited and / or stimulated by reflection of the transmitted electromagnetic signal, whereby a measurement signal depending on the strength, in particular amplitude, of the reflection of the transmitted electromagnetic signal can be generated.
  • the arrangement preferably has a detector by means of which the average power of the local oscillator can be measured.
  • the arrangement is designed for pulse operation in the transmission and / or reception branch, in that the transmission means and / or reception means have means for periodically switching on and off.
  • the arrangement can have means for periodic input and output
  • the local oscillator can be connected in such a way that it also functions as a local oscillator for generating the electromagnetic signal to be transmitted.
  • the arrangement can have a second oscillator, which functions as a transmission oscillator for generating the electromagnetic signal to be transmitted.
  • the arrangement is in particular an arrangement for distance measurement, a radar, preferably a pulse radar.
  • a mixer in which a first partial measurement signal and a second partial measurement signal are added, in particular a mixer with two diodes, the diodes being used with the same polarity, that is to say in parallel, and the measurement signal being formed as the sum of two partial measurement signals or where the diodes are used with opposite polarity, ie anti-parallel and the measurement signal is formed by the difference between the two partial signals.
  • the advantage of using such a symmetrical mixer is the doubling of the measurement signal amplitude and its particularly good transmission properties, which are particularly desirable for the low-attenuation transmission of the transmission signal and the excitation of the local oscillator by a received signal.
  • reception means which have a reception oscillator
  • the transient response, in particular the transient period and thus the average power output, of the local oscillator is influenced by the strength, in particular amplitude, of the reflection of the transmitted electromagnetic signal.
  • Figure 1 A pulse radar according to the prior art
  • Figure 2 shows a second pulse radar according to the prior art
  • FIG. 3 shows a measurement carried out with the pulse radar according to FIG. 1 or the pulse radar according to FIG. 2;
  • Figure 4 shows a third pulse radar according to the prior art;
  • 5 shows an arrangement with transmitting means and receiving means;
  • FIG. 6 shows a measurement carried out with the arrangement according to FIG. 5;
  • Figure 7 shows an alternative arrangement with transmission means and
  • FIG. 8 shows an alternative arrangement with transmitting means and receiving means; 9 shows a mixer which can be used in the arrangements.
  • Start-up behavior is influenced not only in its phase, but also in its start-up speed by an injected signal of a similar frequency.
  • a periodically switched on and off oscillator then swings faster under the influence of a received signal of a similar frequency than without this signal. The greater the amplitude of the received signal at the switched oscillator, the shorter its settling time and the longer the oscillator vibrates during a predetermined switch-on time.
  • the detector in this arrangement functions as a power meter which measures the average power output of the stimulated oscillator. If the oscillator is stimulated by an AM reception signal, the mean output power of the oscillator fluctuates depending on the signal amplitude of the stimulating reception signal that is present at the oscillator.
  • the measurement signal S m (t) thus represents a highly amplified image of the AM received signal.
  • the amplification effect with a switched oscillator is used to implement a very simple distance radar with extremely low power consumption using the sequential sampling method.
  • a corresponding radar system is shown in FIG. 5.
  • This radar system has a transmit oscillator HFO-Tx, which is periodically switched on briefly using a fast switch PO-Tx with a clock rate CLK-Tx. Typical operating times are 100 ps - 20 ns, typical clock rates 0.1 - 10 MHz.
  • the signal is transmitted via a diplexer DIP, which is designed as a circulator in the case shown, reflected on an object, received again via the diplexer DIP and reaches a reception oscillator HFO-Rx in the form of a detector DET
  • Received signal at the time the local oscillator HFO-Rx is connected to it these signals, as described above, cause the oscillator to oscillate faster than when the oscillator swings out of the noise.
  • echoes of different strengths arrive in accordance with the reflector scenario over time. Received signals of different strengths thus reach the local oscillator HFO-Rx via antenna ANT, diplexer DIP and detector DET.
  • the strength of the reflection at the time of switching on is shown as the mean duty cycle of the oscillator, that is to say as the mean oscillator power.
  • the detector DET forms the pulse envelope curve shown in FIG. 6 from this mean oscillator power.
  • the "wobbling" of the signal amplitude as a function of the phase of the reflection is also eliminated for a moving reflector TARGET2.
  • the measurement signal does not have to be generated with complex values for this.
  • Typical reflections lead to measurement signal amplitudes in the range of a few hundred millivolts, in contrast to mixed signals which are typically a few ten millivolts in a coherent system. Without additional circuitry in the HF range, amplifier stages of 20-30 dB in the LF range can be saved. - The radar system works with extremely low power consumption.
  • FIG. 7 shows:
  • the oscillator HFO operates both as a transmitter oscillator as well as stimulated local oscillator which is both turned on by the switch PO-Tx at the clock rate CLK-Tx, is referred to as also switched on by the switch PO-Rx with the ⁇ clock rate CLK-Rx.
  • it can
  • Switching on can also be carried out by an arrangement as in FIG. However, this requires a switch that can achieve extremely fast pulse repetition rates.
  • the special feature exists in that the two diodes, as in a frequency doubler, are used with the same polarity, that is in parallel, and the measurement signal is nevertheless a sum of the two partial signals S m i (t) and ⁇ m2 (t) is formed or the diodes are used with opposite polarity, i.e. antiparallel, and the measurement signal is formed by the difference between the two partial signals.
  • the measurement signal amplitude is doubled in comparison to an arrangement with only one diode or the tapping of only one partial signal s m ⁇ (t) or S ⁇ ⁇ Ct).
  • the advantage of using a symmetrical mixer according to FIG. 9 is furthermore its particularly good transmission properties, which are particularly desirable for the excitation of the oscillator by a received signal.
  • the measurement signal is formed in a conventional mixer by either using the two diodes in anti-parallel and the
  • Partial signals are added or the diodes are used in parallel and the two partial signals are subtracted.
  • the diodes in the mixer presented here are not adapted to be low-reflection, but deliberately high-resistance and therefore reflective
  • a series resistor R can be connected in series with the diodes in order to achieve the high resistance.
  • this system also has to be very simple. Only an RF oscillator is required to generate the pulses.
  • the radar system can only be made sensitive for a predetermined range in which the two clock rates CLK-Tx and CLK-Rx are identical. are and are offset from one another by a time period which corresponds to the signal transit time between the sensor and the distance range to be monitored.
  • the system could, for example, serve as a very cost-effective limit switch (e.g. in industrial level measurement technology as overflow or underflow protection) or as a type of radar barrier (e.g. for counting / detecting people and vehicles or for detecting objects on assembly lines) be used.
  • the clocks CLK-Tx and CLK-Rx do not have to be regularly shifting the clocks to each other to generate a complete distance profile, but a series of samples can also be used according to any scheme (e.g. stochastic or coded)
  • Reception separation also take place via a directional coupler or are completely dispensed with.
  • the antenna can be connected via a simple stub line.
  • a significantly poorer performance in distance measurement is to be expected, since direct crosstalk from the transmit path to the receive path or signals reflected on the stub act like a very close reflector.
  • the range of uniqueness of the radar is determined by the pulse repetition rate. Reflected pulses that arrive at the radar sensor only after the next transmission pulse has been transmitted are interpreted as very close reflectors. Since the average received energy determines the S / N, it is desirable to select a high pulse repetition rate and inevitably to make the uniqueness range as small as possible.
  • the magnitude of the duty cycle of CLK-Tx and CLK-Rx must be in the range of Q oscillation periods of the oscillators HFO-Tx / HFO-Rx, where Q represents the loaded quality of the resonator in the oscillator. Otherwise the oscillator cannot swing up to its maximum amplitude during the switch-on time. In this respect, the resonator should have the lowest possible quality. In contrast to many pulse radar sensors (such as that in FIG. 4), it is not necessary that the switch-on pulse vibrate particularly steeply and generate harmonics in the high-frequency range.
  • the radar arrangements are outstandingly suitable for all cost-sensitive applications.
  • the short-range sensors around vehicles vehicle parking aid, automotive blind spot, automotive airbag, pre-crash, robot navigation, generally as sensors for autonomous vehicles
  • the short-range sensors in vehicles sleep occupancy control, intrusion detectors, windows - Sunroof pinch protection
  • the entire area of industrial distance sensors and the area of house sensors monitoring of windows, doors, rooms and boundaries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a pulse radar that comprises a receiving oscillator whose transient response is influenced by a received return.

Description

Beschreibungdescription
Kompakter Mikrowellen-Abstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten EmpfangsoszillatorCompact microwave distance sensor with low power consumption through power measurement on a stimulated local oscillator
Zur Messung von Abständen mit Mikrowellen werden häufig Pulsradarsensoren verwendet. Die Verfahren und Anordnungen zum Aufbau und Betrieb von Pulsradarsensoren existieren in vielfältiger Form und sind seit langem z.B. aus US 3,117,317, US 4,132,991 und US 4,521,778 bekannt. Eingesetzt werden Pulsradar-Sensoren als Füllstandsensoren in der industriellen Messtechnik, als Einparkhilfe oder Nahdistanzsensor in Kraftfahrzeugen zur Kollisionsvermeidung, zur Abbildung der Umgebung und zur Navigation von autonomen Fahrzeugen und Transportsystemen wie z.B. Roboter und Förderanlagen.Pulse radar sensors are often used to measure distances with microwaves. The methods and arrangements for the construction and operation of pulse radar sensors exist in a variety of forms and have long been e.g. known from US 3,117,317, US 4,132,991 and US 4,521,778. Pulse radar sensors are used as level sensors in industrial measurement technology, as parking aids or near-distance sensors in motor vehicles to avoid collisions, to map the surroundings and to navigate autonomous vehicles and transport systems such as Robots and conveyor systems.
Üblicherweise arbeiten Pulsradar-Sensoren in den aufgeführten Anwendungsgebieten bei Mittenfrequenzen von ca. 1 GHz bis 100 GHz mit typischen Pulslängen von 100 ps bis 20 ns . Wegen der großen Bandbreite werden derartige Sensoren seit einiger Zeit als Ultrawideband (UWB) -Radar bezeichnet. Gemeinsam ist fast allen Pulsradar-Sensoren, dass die Pulssignale eine so große Bandbreite besitzen, dass diese mit den üblichen Methoden der Signalerfassung nicht direkt aufgezeichnet und verarbeitet werden können, sondern hierfür zunächst auf eine tiefere Frequenz umgesetzt werden müssen. Hierzu verwenden fast alle bekannten Pulssysteme die Methode des so genannten sequentiellen Abtastens. Bei diesem Prinzip, welches schon aus frühen digitalen Abtastoszilloskopen bekannt ist, wird das Messsignal über mehrere Messzyklen abgetastet, wobei die Abtastzeitpunkte von Zyklus zu Zyklus sequentiell verschoben werden .Pulse radar sensors usually work in the listed areas of application at center frequencies of approx. 1 GHz to 100 GHz with typical pulse lengths of 100 ps to 20 ns. Because of the large bandwidth, such sensors have been referred to as ultra-wideband (UWB) radar for some time. Common to almost all pulse radar sensors is that the pulse signals have such a large bandwidth that they cannot be recorded and processed directly with the usual methods of signal detection, but must first be converted to a lower frequency. For this purpose, almost all known pulse systems use the so-called sequential scanning method. With this principle, which is already known from early digital sampling oscilloscopes, the measurement signal is sampled over several measurement cycles, the sampling times being shifted sequentially from cycle to cycle.
In US 3,117,317, US 4,132,991 und US 4,521,778 wird die schaltungstechnische Umsetzung des sequentiellen Samplings so beschrieben, dass ein Sendeimpuls mit einer bestimmten Wiederholfrequenz CLK-Tx (Clock-Transmission) ausgesendet wird und sein Echo mit einem Abtasttor mit einer Wiederholfrequenz CLK-Rx (Clock-Reception) abgetastet wird. Unterscheiden sich die Frequenzen der Sendefolge und der Abtastfolge geringfügig, so verschieben sich die beidenUS Pat. No. 3,117,317, US Pat. No. 4,132,991 and US Pat. No. 4,521,778 describe the circuitry implementation of sequential sampling in such a way that a transmit pulse with a specific one Repetition frequency CLK-Tx (clock transmission) is transmitted and its echo is sampled with a scanning gate with a repetition frequency CLK-Rx (clock reception). If the frequencies of the transmission sequence and the scanning sequence differ slightly, the two shift
Folgen langsam in ihrer Phase gegeneinander. Diese langsame relative Verschiebung des Abtastpunktes zum Sendezeitpunkt bewirkt einen sequentiellen Abtastvorgang.Follow each other slowly in their phase. This slow relative shift of the sampling point at the time of transmission causes a sequential sampling process.
Figur 1 zeigt eine bekannte Ausführungsform eines nach dem Stand der Technik arbeitenden Pulsradars mit sequentiellem Sampling. Das Ausgangssignal eines kontinuierlich betriebenen Oszillators wird in einen Sende- und einen Empfangspfad aufgeteilt. Diese beiden Signale werden über die Schalter SW- Tx/SW-Rx mit dem Takt CLK-Tx/CLK-Rx für einen kurzen Moment durchschaltet wodurch zwei zyklische Pulsfolgen sTx(t) und Sτx(t) mit geringfügig unterschiedlicher Taktrate erzeugt werden. Die Impulsfolge sTx(t) wird über die Antenne ANT-Tx ausgesendet. Die Impulsfolge Sκχ(t) wird dem ersten Tor des Mischers MIX zugeführt, der als Abtasttor fungiert. DerFIG. 1 shows a known embodiment of a pulse radar with sequential sampling, which operates according to the prior art. The output signal of a continuously operated oscillator is divided into a transmit and a receive path. These two signals are switched through for a brief moment via the switches SW-Tx / SW-Rx with the clock CLK-Tx / CLK-Rx, whereby two cyclic pulse sequences s Tx (t) and Sτ x (t) are generated with a slightly different clock rate , The pulse train s Tx (t) is transmitted via the antenna ANT-Tx. The pulse sequence Sκχ (t) is fed to the first gate of the mixer MIX, which acts as a scanning gate. The
Mischer wird an seinem zweiten Tor mit dem vom Objekt TARGETl und vom Objekt TARGET2 reflektierten Empfangssignal gespeist. Die empfangene Impulsfolge wird im Mischer MIX in das niederfrequente Basisband gemischt. Die dabei entstehende Abtastimpulsfolge wird durch ein Bandpassfilter geglättet und ergibt so das niederfrequente Messsignal sm(t) .At its second gate, the mixer is fed with the received signal reflected by the object TARGET1 and the object TARGET2. The pulse train received is mixed in the mixer MIX into the low-frequency baseband. The resulting sampling pulse sequence is smoothed by a bandpass filter and thus results in the low-frequency measurement signal s m (t).
Wie Figur 2 zeigt ist auch bekannt, anstatt getrennter Antennen wie in Figur 1 eine gemeinsame Antenne zum Senden und Empfangen zu verwenden, wobei die Sende- undAs FIG. 2 shows, it is also known to use a common antenna for transmitting and receiving instead of separate antennas as in FIG. 1, the transmitting and
Empfangssignale beispielsweise durch einen Zirkulator oder Richtkoppler voneinander getrennt werden.Received signals are separated from each other, for example by a circulator or directional coupler.
Wird mit der herkömmlichen Radartopologie nach Figur 1 und 2 mit sequentiellem Sampling gemessen, ergeben sich folgende Nachteile: Im Falle, in dem das Messsignal sm(t) reellwertig erfasst wird, ändert sich die Amplitude des Echopulses in Abhängigkeit von der spezifischen Phase zwischen dem Sende- und Empfangssignal . Bewegt sich also das Objekt TARGET2, „wabert* die zu diesem Objekt gehörendeIf measurements are carried out with the conventional radar topology according to FIGS. 1 and 2 with sequential sampling, the following disadvantages result: In the case in which the measurement signal s m (t) is recorded as a real value, the amplitude of the echo pulse changes as a function of the specific phase between the transmit and receive signal. If the TARGET2 object moves, the one belonging to this object "wobbles"
Pulshüllkurve, wie in Figur 3 dargestellt (mit TARGET2 gekennzeichnet) in Abhängigkeit von der durch den jeweiligen Abstand des sich bewegenden Objektes TARGET2 gegebenen momentanen Reflexionsphase zwischen den Werten +A und -A hin und her, wobei sich gleichzeitig diePulse envelope as shown in FIG. 3 (labeled TARGET2) as a function of the instantaneous reflection phase given by the respective distance of the moving object TARGET2 between the values + A and -A, with the
Position der Pulshüllkurve entsprechend der Ortsänderung verschiebt. Dabei verschwindet die Hüllkurve zwischen diesen Extrema auch vollständig. Reflektiert das zu messende Objekt mit eben einer solchen Phase, bei der die Pulshüllkurve verschwindet, wird das Objekt nicht erkannt. Durch eine komplexwertige Erfassung des Messsignals sm(t) kann aus dem Real- und dem Imaginärteil des Messsignals rechnerisch durch eine Betragsbildung eine nicht „wabernde" Pulshüllkurve gemäß Figur 6 gebildet werden. Es ist jedoch dafür die komplexwertige Messwerterfassung, d.h. die Verwendung von zwei Mischern, sowie die Auswertung zweier Signale Re{Sm(t)} und Im{sm(t)} notwendig. Die Schalter SW-Tx/SW-Rx ermöglichen nur einen begrenzten Schaltkontrast. Das bedeutet, dass stets ein Signal abgestrahlt wird und ein Dopplersignal zwischen den Pulshüllen zu sehen sind. Außerdem kann das ausgesendete Dauerstrichsignal problematisch im Sinne der von den Behörden zugelassenen NebenausSendungen sein. Der Oszillator HFO ist stets eingeschaltet und verbrauchtThe position of the pulse envelope is shifted according to the change in location. The envelope between these extremes disappears completely. If the object to be measured reflects a phase in which the pulse envelope disappears, the object is not recognized. A complex value acquisition of the measurement signal s m (t) can be used to calculate a non-"wobbling" pulse envelope curve according to FIG. 6 from the real and the imaginary part of the measurement signal by forming an amount. However, it is the complex value acquisition, ie the use of two Mixers and the evaluation of two signals Re {S m (t)} and Im {s m (t)} are necessary.The switches SW-Tx / SW-Rx allow only a limited switching contrast, which means that one signal is always emitted and a Doppler signal can be seen between the pulse envelopes. In addition, the continuous wave signal emitted can be problematic in the sense of the secondary transmissions approved by the authorities. The oscillator HFO is always switched on and used up
Strom. In batteriebetriebenen Anwendungen bedeutet das eine reduzierte Batterie-Lebensdauer . Für die Erzeugung der Pulse werden bei der HF ein Oszillator und zwei aufwändig zu gestaltende Schalter benötigt. Einige der erwähnten Probleme löst eine Anordnung nach Figur 4. Die Funktion entspricht im Wesentlichen der der Anordnung von Figur 1, wobei die Impulsfolgen in diesem Falle durch kurzzeitiges Einschalten der Signalquellen HFO-Tx/HFO- Rx durch einen schnellen Spannungspuls von PO-Tx/PO-Rx erreicht werden. Auch hier besitzen die entstehenden Impulsfolgen geringfügig unterschiedliche Taktraten CLK- Tx/CLK-Rx.Electricity. In battery-operated applications, this means a reduced battery life. To generate the pulses, an oscillator and two switches, which are difficult to design, are required for the HF. An arrangement according to FIG. 4 solves some of the problems mentioned. The function essentially corresponds to that of the arrangement of FIG. 1, the pulse sequences in this case being achieved by briefly switching on the signal sources HFO-Tx / HFO-Rx by a fast voltage pulse from PO-Tx / PO-Rx can be reached. Here too, the resulting pulse trains have slightly different clock rates CLK-Tx / CLK-Rx.
Zur Erzielung eines guten Signal-zu-Rausch-VerhältnissesTo achieve a good signal-to-noise ratio
(SNR) des Messsignals ist entscheidend, dass die Oszillatoren PO-Tx/PO-Rx über alle Pulse einer Folge in einem deterministischen, also in einem nicht stochastischem, Phasenverhältnis zueinander stehen. Ein deterministischer Zusammenhang ergibt sich, wenn die Pulssignale, die die(SNR) of the measurement signal is crucial that the oscillators PO-Tx / PO-Rx are in a deterministic, that is to say in a non-stochastic, phase relationship to one another over all pulses of a sequence. A deterministic relationship arises when the pulse signals that the
Pulsoszillatoren HFO-Tx/HFO-Rx einschalten, sehr reich an Oberwellenanteilen im Frequenzband derSwitch on pulse oscillators HFO-Tx / HFO-Rx, very rich in harmonic components in the frequency band of
Hochfrequenzoszillatoren sind. Die Oberwellen führen dazu, dass die Oszillatoren nicht stochastisch anschwingen, sondern bezogen auf die Spannungspulse PO-Tx/PO-Rx mit einer starren, charakteristischen Anfangsphase. Also stehen auch die Ausgangssignale der beiden Oszillatoren in einem deterministischen, durch die Sendesignalfolge und die Abtastsignalfolge vorgegebenen Phasen- und Zeit-Verhältnis zueinander.High frequency oscillators are. The harmonics mean that the oscillators do not oscillate stochastically, but in relation to the voltage pulses PO-Tx / PO-Rx with a rigid, characteristic initial phase. The output signals of the two oscillators are therefore also in a deterministic phase and time relationship to one another, predetermined by the transmission signal sequence and the scanning signal sequence.
Die Vorteile der Anordnung von Figur 4 sind:The advantages of the arrangement in FIG. 4 are:
- Das System besitzt eine deutlich geringere Stromaufnahme als das von Figur 1, da die Hochfrequenzoszillatoren die meiste Zeit eines Messzyklus ausgeschaltet sind.- The system has a significantly lower current consumption than that of Figure 1, since the high-frequency oscillators are switched off most of the time of a measuring cycle.
Das System besitzt keine aufwändigen Hochfrequenzschalter mehr .The system no longer has complex high-frequency switches.
Nachteilig ist aber: - Es erfordert auch einen hohen Aufwand ausreichend starke, schnelle, oberwellenreiche Spannungspulse zu erzeugen. Sind die Oberwellen sehr schwach, wird die Anschwingphase auch durch andere einstreuende Signale beeinflusst, die Messsignalamplitude rauscht und jittert. Zur Abstandsermittlung aus dem Messsignal muss üblicherweise dessen Hüllkurve ermittelt werden. Hierfür ist in der Regel eine sehr hohe Verstärkung des niederfrequenten Messsignals notwendig, die ebenfalls aufwändig zu gewährleisten ist.However, it is disadvantageous: - It also requires a great deal of effort to generate sufficiently strong, fast, harmonic-rich voltage pulses. If the harmonics are very weak, the start-up phase is also influenced by other interfering signals, the measurement signal amplitude is noisy and jittery. To determine the distance from the measurement signal, the envelope curve usually has to be determined. This usually requires a very high amplification of the low-frequency measurement signal, which is also difficult to ensure.
Auf einem anderen technischen Gebiet, nämlich dem der Transponder, ist aus US 5,630,216 bekannt, dass ein Oszillator in seinem Anschwingverhalten nicht nur in seiner Phase, sondern auch in seiner Anschwinggeschwindigkeit von einem eingekoppelten Signal ähnlicher Frequenz beeinflusst wird. Dieser Effekt wird zu einer sehr leistungsarmen Demodulation eines empfangenen AM-Code-Signals genutzt. Dieser Verstärkungseffekt ist jedoch nicht für ein kohärentes Messverfahren wie das zuvor beschriebene geeignet. In another technical field, namely that of the transponder, it is known from US Pat. No. 5,630,216 that an oscillator is influenced not only in its phase, but also in its speed of oscillation, by an injected signal of a similar frequency. This effect is used for a very low-power demodulation of a received AM code signal. However, this amplification effect is not suitable for a coherent measurement method like the one described above.
Aufgabe der vorliegenden Erfindung ist es, Systeme aufzuzeigen, die die Aufgabe der beschriebenen Radaranordnungen in anderer und verbesserter Form erfüllen.The object of the present invention is to show systems which fulfill the task of the radar arrangements described in a different and improved form.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by the inventions specified in the independent claims. Advantageous refinements result from the dependent claims.
Dementsprechend verfügt eine Anordnung oder Vorrichtung über Sendemittel, zum Erzeugen und Senden eines elektromagnetischen Signals, und über Empfangsmittel zum Empfangen eines Echos des gesendeten elektromagnetischen Signals. Die Empfangsmittel weisen einen Empfangsoszillator auf, dessen Einschwingverhalten, insbesondere die Einschwingdauer und damit die mittlere abgegebene Leistung, durch die Stärke, insbesondere Amplitude, der empfangenen Reflexion des gesendeten elektromagnetischen Signals beeinflussbar ist. Der Empfangsoszillator ist also so beschaltet, dass er durch Reflexion des gesendeten elektromagnetischen Signals anregbar und/oder stimulierbar ist, wodurch ein Messsignal in Abhängigkeit der Stärke, insbesondere Amplitude, der Reflexion des gesendeten elektromagnetischen Signals erzeugbar ist.Accordingly, an arrangement or device has transmission means for generating and transmitting an electromagnetic signal, and reception means for receiving an echo of the transmitted electromagnetic signal. The receiving means have a receiving oscillator whose transient response, in particular the transient period and thus the average power output, can be influenced by the strength, in particular the amplitude, of the received reflection of the transmitted electromagnetic signal. So the local oscillator is like this wired that it can be excited and / or stimulated by reflection of the transmitted electromagnetic signal, whereby a measurement signal depending on the strength, in particular amplitude, of the reflection of the transmitted electromagnetic signal can be generated.
Vorzugsweise weist die Anordnung dazu einen Detektor auf, durch den die mittlere Leistung des Empfangsoszillators messbar ist.For this purpose, the arrangement preferably has a detector by means of which the average power of the local oscillator can be measured.
Es ist weiterhin vorteilhaft, wenn die Anordnung für einen Pulsbetrieb im Sende- und/oder Empfangszweig ausgebildet ist, indem die Sendemittel und/oder Empfangsmittel Mittel zum periodischen Ein- und Ausschalten aufweisen. Insbesondere kann die Anordnung Mittel zum periodischen Ein- undIt is also advantageous if the arrangement is designed for pulse operation in the transmission and / or reception branch, in that the transmission means and / or reception means have means for periodically switching on and off. In particular, the arrangement can have means for periodic input and output
Ausschalten des Empfangsoszillators mit einer Taktrate aufweisen.Turn off the local oscillator at a clock rate.
Besonders kostengünstig und Platz sparend kann der Empfangsoszillator so geschaltet sein, dass er auch als Sendeoszillator zum Generieren des zu sendenden elektromagnetischen Signals fungiert.In a particularly cost-effective and space-saving manner, the local oscillator can be connected in such a way that it also functions as a local oscillator for generating the electromagnetic signal to be transmitted.
Alternativ kann die Anordnung einen zweiten Oszillator aufweisen, der als Sendeoszillator zum Generieren des zu sendenden elektromagnetischen Signals fungiert.Alternatively, the arrangement can have a second oscillator, which functions as a transmission oscillator for generating the electromagnetic signal to be transmitted.
Die Anordnung ist insbesondere eine Anordnung zur Abstandsmessung, ein Radar, bevorzugt ein Pulsradar.The arrangement is in particular an arrangement for distance measurement, a radar, preferably a pulse radar.
Sie kann zur Detektion eines Messsignals einen Mischer aufweisen, in dem ein erstes Teilmesssignal und ein zweites Teilmesssignal addiert werden, insbesondere einen Mischer mit zwei Dioden, wobei die Dioden mit gleicher Polarität, also parallel, eingesetzt werden und das Messsignal als Summe zweier Teilmesssignale gebildet wird oder wobei die Dioden mit gegensätzlicher Polarität, also antiparallel, eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird. Der Vorteil in der Verwendung eines solchen symmetrischen Mischers besteht in der Verdopplung der Messsignalamplitude und in seinen besonders guten Transmissionseigenschaften, die für die dämpfungsarme Übertragung des Sendesignals sowie die Anregung des Empfangsoszillators durch ein Empfangssignal besonders wünschenswert sind.To detect a measurement signal, it can have a mixer in which a first partial measurement signal and a second partial measurement signal are added, in particular a mixer with two diodes, the diodes being used with the same polarity, that is to say in parallel, and the measurement signal being formed as the sum of two partial measurement signals or where the diodes are used with opposite polarity, ie anti-parallel and the measurement signal is formed by the difference between the two partial signals. The advantage of using such a symmetrical mixer is the doubling of the measurement signal amplitude and its particularly good transmission properties, which are particularly desirable for the low-attenuation transmission of the transmission signal and the excitation of the local oscillator by a received signal.
Bei einem Messverfahren, insbesondere zur Abstandsmessung, wirdIn the case of a measuring method, in particular for measuring distance,
- mit Sendemitteln ein elektromagnetisches Signal erzeugt und gesendet,- generates and transmits an electromagnetic signal using transmission means,
- mit Empfangsmitteln, die einen Empfangsoszillator aufweisen, eine Reflexion, also ein Echo des gesendeten elektromagnetischen Signals empfangen,receive a reflection, that is to say an echo of the transmitted electromagnetic signal, with reception means which have a reception oscillator,
- das Einschwingverhalten, insbesondere die Einschwingdauer und damit die mittlere abgegebene Leistung, des Empfangsoszillators durch die Stärke, insbesondere Amplitude, der Reflexion des gesendeten elektromagnetischen Signals beeinflusst.- The transient response, in particular the transient period and thus the average power output, of the local oscillator is influenced by the strength, in particular amplitude, of the reflection of the transmitted electromagnetic signal.
Vorteilhafte Ausgestaltungen des Verfahrens ergeben sich analog zu den vorteilhaften Ausgestaltungen der Anordnung.Advantageous configurations of the method result analogously to the advantageous configurations of the arrangement.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen. Dabei zeigt:Further advantages and features of the invention result from the description of exemplary embodiments. It shows:
Figur 1 Ein Pulsradar nach dem Stand der Technik; Figur 2 ein zweites Pulsradar nach dem Stand der Technik;Figure 1 A pulse radar according to the prior art; Figure 2 shows a second pulse radar according to the prior art;
Figur 3 eine mit dem Pulsradar nach Figur 1 oder dem Pulsradar nach Figur 2 durchgeführte Messung; Figur 4 ein drittes Pulsradar nach dem Stand der Technik; Figur 5 eine Anordnung mit Sendemitteln und Empfangsmitteln;3 shows a measurement carried out with the pulse radar according to FIG. 1 or the pulse radar according to FIG. 2; Figure 4 shows a third pulse radar according to the prior art; 5 shows an arrangement with transmitting means and receiving means;
Figur 6 eine mit der Anordnung nach Figur 5 durchgeführte Messung; Figur 7 eine alternative Anordnung mit Sendemitteln undFIG. 6 shows a measurement carried out with the arrangement according to FIG. 5; Figure 7 shows an alternative arrangement with transmission means and
Empfangsmitteln; Figur 8 noch eine alternative Anordnung mit Sendemitteln und Empfangsmitteln; Figur 9 ein in den Anordnungen verwendbarer Mischer.Receiving means; FIG. 8 shows an alternative arrangement with transmitting means and receiving means; 9 shows a mixer which can be used in the arrangements.
Im Folgenden sind Anordnungen beschrieben, die die Nachteile der Systeme der Figuren 1, 2 und 4 vermeiden.Arrangements are described below which avoid the disadvantages of the systems of FIGS. 1, 2 and 4.
Wie bereits erwähnt wird ein Oszillator in seinemAs already mentioned, an oscillator is in its
Anschwingverhalten nicht nur in seiner Phase, sondern auch in seiner Anschwinggeschwindigkeit von einem eingekoppelten Signal ähnlicher Frequenz beeinflusst. Ein periodisch ein- und ausgeschalteter Oszillator schwingt danach unter dem Einfluss eines empfangenen Signals ähnlicher Frequenz schneller an, als ohne dieses Signal. Je größer die Amplitude des Empfangssignals am geschalteten Oszillator ist, desto kürzer ist dessen Einschwingzeit und desto länger schwingt der Oszillator während einer vorgegebenen Einschaltzeit.Start-up behavior is influenced not only in its phase, but also in its start-up speed by an injected signal of a similar frequency. A periodically switched on and off oscillator then swings faster under the influence of a received signal of a similar frequency than without this signal. The greater the amplitude of the received signal at the switched oscillator, the shorter its settling time and the longer the oscillator vibrates during a predetermined switch-on time.
Führt man das Ausgangssignal eines geschalteten Oszillators, der durch ein Empfangssignal stimuliert wurde, einem Detektor DET mit anschließendem Tiefpass zu, so funktioniert der Detektor in dieser Anordnung als Leistungsmesser, der die mittlere Leistungsabgabe des stimulierten Oszillators misst. Wird der Oszillator von einem AM-Empfangssignal stimuliert, schwankt die mittlere Ausgangsleistung des Oszillators in Abhängigkeit von der augenblicklich am Oszillator anliegenden Signalamplitude des stimulierenden EmpfangsSignals . Das Messsignal Sm(t) stellt damit ein hoch verstärktes Abbild des AM-Empfangssignals dar.If the output signal of a switched oscillator, which has been stimulated by a received signal, is fed to a detector DET with a subsequent low pass, the detector in this arrangement functions as a power meter which measures the average power output of the stimulated oscillator. If the oscillator is stimulated by an AM reception signal, the mean output power of the oscillator fluctuates depending on the signal amplitude of the stimulating reception signal that is present at the oscillator. The measurement signal S m (t) thus represents a highly amplified image of the AM received signal.
Im vorliegenden Fall wird der Verstärkungseffekt mit geschaltetem Oszillator zur Realisierung eines sehr einfachen Abstandsradars mit äußerst geringer Leistungsaufnahme nach dem Verfahren des sequentiellen Samplings genutzt. Ein entsprechendes Radarsystem zeigt Figur 5. Dieses Radarsystem weist einen Sendeoszillator HFO-Tx auf, der über einen schnellen Schalter PO-Tx mit einer Taktrate CLK-Tx periodisch kurzzeitig eingeschaltet wird. Typische Einschaltdauern sind 100 ps - 20 ns, typische Taktraten 0,1 - 10 MHz. Das Signal wird über einen Diplexer DIP, der im dargestellten Fall als Zirkulator ausgeführt ist, ausgesendet, an einem Objekt reflektiert, über den Diplexer DIP wieder empfangen und erreicht über einen Detektor DET einen Empfangsoszillator HFO-Rx in Form einesIn the present case, the amplification effect with a switched oscillator is used to implement a very simple distance radar with extremely low power consumption using the sequential sampling method. A corresponding radar system is shown in FIG. 5. This radar system has a transmit oscillator HFO-Tx, which is periodically switched on briefly using a fast switch PO-Tx with a clock rate CLK-Tx. Typical operating times are 100 ps - 20 ns, typical clock rates 0.1 - 10 MHz. The signal is transmitted via a diplexer DIP, which is designed as a circulator in the case shown, reflected on an object, received again via the diplexer DIP and reaches a reception oscillator HFO-Rx in the form of a detector DET
Lokaloszillators, der über einen Schalter PO-Rx mit einer Taktrate CLK-Rx ein- und ausgeschaltet wird. In dem Fall, in dem beispielsweise durch praktisch unvermeidliche Überkopplung von der Empfangsantenne über Detektor DET zum Lokaloszillator HFO-Rx Signalanteile des reflektiertenLocal oscillator, which is switched on and off via a switch PO-Rx with a clock rate CLK-Rx. In the case where, for example, through practically unavoidable coupling from the receiving antenna via detector DET to the local oscillator HFO-Rx, signal components of the reflected
Empfangssignal zum Einschaltzeitpunkt des Lokaloszillators HFO-Rx an diesem anliegen, bewirken diese Signale wie oben beschrieben ein schnelleres Anschwingen des Oszillators gegenüber dem Fall, dass der Oszillator aus dem Rauschen heraus anschwingt. Bei einer Abstandsmessung treffen entsprechend dem Reflektorszenario über der Zeit verteilt verschieden starke Echos ein. Es gelangen also verschieden starke Empfangssignale über Antenne ANT, Diplexer DIP und Detektor DET zum Lokaloszillator HFO-Rx. Die Stärke der Reflexion zum Einschaltzeitpunkt bildet sich als mittlere Einschaltdauer des Oszillators ab, also als mittlere Oszillatorleistung. Der Detektor DET bildet aus dieser mittleren Oszillatorleistung die in Figur 6 dargestellte Pulshüllkurve .Received signal at the time the local oscillator HFO-Rx is connected to it, these signals, as described above, cause the oscillator to oscillate faster than when the oscillator swings out of the noise. In a distance measurement, echoes of different strengths arrive in accordance with the reflector scenario over time. Received signals of different strengths thus reach the local oscillator HFO-Rx via antenna ANT, diplexer DIP and detector DET. The strength of the reflection at the time of switching on is shown as the mean duty cycle of the oscillator, that is to say as the mean oscillator power. The detector DET forms the pulse envelope curve shown in FIG. 6 from this mean oscillator power.
Die Vorteile dieser Systemtopologie und Messmethode bestehen in folgenden Punkten:The advantages of this system topology and measurement method are as follows:
- Nachdem das Messsignal sm(t) nicht kohärent durch Mischen sondern durch Lelstungsdetektion erzeugt wird, entfällt das „Wabern" der Signalamplitude in Abhängigkeit von der Phase der Reflexion auch für einen bewegten Reflektor TARGET2. Das Messsignal muss hierfür nicht komplexwertig erzeugt werden.- After the measurement signal s m (t) is generated not coherently by mixing but by power detection, the "wobbling" of the signal amplitude as a function of the phase of the reflection is also eliminated for a moving reflector TARGET2. The measurement signal does not have to be generated with complex values for this.
Typische Reflexionen führen zu Messsignalamplituden im Bereich von einigen hundert Millivolt im Gegensatz zu Mischsignalen die in einem kohärenten System typisch bei wenigen zehn Millivolt liegen. Ohne schaltungstechnischen Mehraufwand im HF-Bereich können damit Verstärkerstufen von 20-30 dB im NF-Bereich eingespart werden. - Das Radarsystem arbeitet dabei mit äußerst geringer Leistungsaufnahme.Typical reflections lead to measurement signal amplitudes in the range of a few hundred millivolts, in contrast to mixed signals which are typically a few ten millivolts in a coherent system. Without additional circuitry in the HF range, amplifier stages of 20-30 dB in the LF range can be saved. - The radar system works with extremely low power consumption.
Für die Erzeugung der Pulse werden bei HF-Frequenzen nur zwei Oszillatoren benötigt. Für den Gehalt an Oberwellen in den von den Schaltern erzeugten Spannungspulsen bestehen nicht die hohen Anforderungen wie bei den Spannungspulsen der Schalter SW-Rx bzw. SW-Tx für die Anordnung von Figur 4.At HF frequencies, only two oscillators are required to generate the pulses. For the content of harmonics in the voltage pulses generated by the switches, there are not the high requirements as for the voltage pulses of the switches SW-Rx or SW-Tx for the arrangement in FIG. 4.
Eine besonders einfache Ausgestaltung des Radarsystems stelltA particularly simple embodiment of the radar system provides
Figur 7 dar: Der Oszillator HFO arbeitet sowohl als Sendeoszillator wie auch als stimulierter Empfangsoszillator, der sowohl vom Schalter PO-Tx mit der Taktrate CLK-Tx eingeschaltet wird, als auch vom Schalter PO-Rx mit der Taktrate CLK-Rx eingeschaltet wird. Alternativ kann dasFigure 7 shows: The oscillator HFO operates both as a transmitter oscillator as well as stimulated local oscillator which is both turned on by the switch PO-Tx at the clock rate CLK-Tx, is referred to as also switched on by the switch PO-Rx with the clock rate CLK-Rx. Alternatively, it can
Einschalten auch durch eine Anordnung wie in Figur 8 durchgeführt werden. Das setzt allerdings einen Schalter voraus, der äußerst schnelle Pulswiederholraten realisieren kann.Switching on can also be carried out by an arrangement as in FIG. However, this requires a switch that can achieve extremely fast pulse repetition rates.
Es ist vorteilhaft aber nicht zwingend, wenn der Detektor DET in dem System von Figur 7 und Figur 8 als symmetrischerIt is advantageous but not mandatory if the detector DET in the system of FIGS. 7 and 8 is more symmetrical
Mischer auf Basis eines 90°-Hybrids (siehe z.B. A. Maas: „The RF and Microwave Circuit Design Cookbook", Artech House 1998, S. 107 - 109), wie in Figur 9 dargestellt mit einer Besonderheit ausgeführt ist. Die Besonderheit besteht darin, dass die beiden Dioden, wie bei einem Frequenzverdoppler, mit gleicher Polarität, also parallel, eingesetzt werden und das Messsignal dennoch als Summe beider Teilsignale Smi(t) und Ξm2(t) gebildet wird oder die Dioden mit gegensätzlicher Polarität, also antiparallel, eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird. Hierbei verdoppelt sich die Messsignalamplitude im Vergleich zu einer Anordnung mit nur einer Diode oder dem Abgriff nur eines Teilsignals smι(t) oder SπώCt). Der Vorteil in der Verwendung eines symmetrischen Mischers nach Figur 9 besteht weiter in seinen besonders guten Transmissionseigenschaften, die für die Anregung des Oszillators durch ein Empfangssignal besonders wünschenswert sind.Mixer based on a 90 ° hybrid (see, for example, A. Maas: "The RF and Microwave Circuit Design Cookbook", Artech House 1998, pp. 107-109), as shown in FIG. 9 with a special feature. The special feature exists in that the two diodes, as in a frequency doubler, are used with the same polarity, that is in parallel, and the measurement signal is nevertheless a sum of the two partial signals S m i (t) and Ξ m2 (t) is formed or the diodes are used with opposite polarity, i.e. antiparallel, and the measurement signal is formed by the difference between the two partial signals. The measurement signal amplitude is doubled in comparison to an arrangement with only one diode or the tapping of only one partial signal s m ι (t) or Sπ ώ Ct). The advantage of using a symmetrical mixer according to FIG. 9 is furthermore its particularly good transmission properties, which are particularly desirable for the excitation of the oscillator by a received signal.
Im Gegensatz zum hier vorgestellten Mischer wird in einem herkömmlichen Mischer das Messsignal gebildet, indem entweder die beiden Dioden antiparallel eingesetzt und dieIn contrast to the mixer presented here, the measurement signal is formed in a conventional mixer by either using the two diodes in anti-parallel and the
Teilssignale addiert werden oder die Dioden parallel eingesetzt und die beiden Teilsignale subtrahiert werden. Im Gegensatz zu einem herkömmlichen Mischer werden die Dioden beim hier vorgestellten Mischer nicht reflexionsarm angepasst, sondern bewusst hochohmig und damit reflektivPartial signals are added or the diodes are used in parallel and the two partial signals are subtracted. In contrast to a conventional mixer, the diodes in the mixer presented here are not adapted to be low-reflection, but deliberately high-resistance and therefore reflective
(typ. 100 Ω - 100 kΩ in einem 50-Ω-System) . Gegebenenfalls kann in Serie mit den Dioden ein Serienwiderstand R geschaltet werden, um die Hochohmigkeit zu erzielen.(typ. 100 Ω - 100 kΩ in a 50 Ω system). If necessary, a series resistor R can be connected in series with the diodes in order to achieve the high resistance.
Neben den Vorteilen, die auch schon für das System gemäß Figur 5 genannt wurden, gilt für dieses System zusätzlich, dass es sehr einfach ist. Zur Erzeugung der Pulse wird lediglich ein HF-Oszillator benötigt.In addition to the advantages that have already been mentioned for the system according to FIG. 5, this system also has to be very simple. Only an RF oscillator is required to generate the pulses.
Ausgestaltungen:configurations:
- Mit dem beschriebenen Radarsensor können statt nach der Methode des sequentiellen Samplings auch alle anderen für Pulsradare gängigen Verfahren zur Abstandsmessung angewendet werden. So kann das Radarsystem nur für einen vorgegebenen Entfernungsbereich sensitiv gemacht werden, in dem die beiden Taktraten CLK-Tx und CLK-Rx identisch . sind und um eine Zeitspanne gegeneinander versetzt sind, die der Signallaufzeit zwischen dem Sensor und dem zu überwachenden Entfernungsbereich entspricht. In dieser Betriebsart könnte das System z.B. sehr gut als sehr kostengünstiger Grenzschalter (z.B. in der industriellen Füllstandmesstechnik als Über- oder UnterlaufSicherung) oder als eine Art Radar- chranke (etwa zum Zählen/Detektieren von Personen und Fahrzeugen oder zur Detektion von Objekten auf Fließbändern) eingesetzt werden.- With the radar sensor described, instead of using the method of sequential sampling, all other methods for distance measurement common for pulse radars can also be used. For example, the radar system can only be made sensitive for a predetermined range in which the two clock rates CLK-Tx and CLK-Rx are identical. are and are offset from one another by a time period which corresponds to the signal transit time between the sensor and the distance range to be monitored. In this operating mode, the system could, for example, serve as a very cost-effective limit switch (e.g. in industrial level measurement technology as overflow or underflow protection) or as a type of radar barrier (e.g. for counting / detecting people and vehicles or for detecting objects on assembly lines) be used.
Genauso wenig müssen die Takte CLK-Tx und CLK-Rx noch die Verschiebung der Takte zueinander regelmäßig sein um ein komplettes Entfernungsprofil zu erzeugen sondern man kann eine Serie von Abtastwerten auch nach einem beliebigen Schema (z.B. stochastisch oder kodiert) über dieLikewise, the clocks CLK-Tx and CLK-Rx do not have to be regularly shifting the clocks to each other to generate a complete distance profile, but a series of samples can also be used according to any scheme (e.g. stochastic or coded)
Objektszene erzeugen und die korrekte An- und Zuordnung der Entfernungsmesspunkte zueinander anschließend in einer Auswerteeinheit durchführen. Weitere Verfahren zur Betriebsart des Radars sind denkbar. Statt des Zirkulators nach Figur 5 kann die Sende-Generate object scene and then correctly assign and assign the distance measuring points to each other in an evaluation unit. Other methods of operating the radar are conceivable. Instead of the circulator according to FIG. 5, the transmission
Empfangstrennung auch über einen Richtkoppler erfolgen oder ganz auf sie verzichtet werden. Die Ankopplung der Antenne kann in letzterem Falle über eine einfache Stichleitung erfolgen. Dabei ist allerdings mit einer deutlich schlechteren Performance bei der Abstandsmessung zu rechnen, da direktes Übersprechen vom Sende- in den Empfangspfad oder an der Stichleitung reflektierte Signale wie ein sehr naher Reflektor wirken. Der Eindeutigkeitsbereich des Radars ist wie bei Pulsradaren üblich durch die Pulswiederholrate bestimmt. Reflektierte Pulse, die erst nach der Aussendung des nächsten Sendepulses am Radarsensor eintreffen, werden als sehr nahe Reflektoren interpretiert. Da die mittlere empfangene Energie das S/N bestimmt, ist es wünschenswert die Pulswiederholrate hoch und zwangsläufig damit auch den Eindeutigkeitsbereich möglichst klein zu wählen. - Die Größenordnung der Einschaltdauer von CLK-Tx und CLK-Rx muss im Bereich von Q Schwingungsperioden der Oszillatoren HFO-Tx/HFO-Rx liegen, wobei Q die belastete Güte des Resonators im Oszillator darstellt. Andernfalls kann der Oszillator während der Einschaltzeit nicht vollständig bis zu seiner maximalen Amplitude anschwingen. Insofern sollte der Resonator eine möglichst kleine Güte besitzen. Im Gegensatz zu vielen Pulsradarsensoren (wie z.B. dem in Figur 4) ist es nicht notwendig, dass der Einschaltpuls besonders steil anschwingt und Oberwellen im Hochfrequenzbereich erzeugt.Reception separation also take place via a directional coupler or are completely dispensed with. In the latter case, the antenna can be connected via a simple stub line. However, a significantly poorer performance in distance measurement is to be expected, since direct crosstalk from the transmit path to the receive path or signals reflected on the stub act like a very close reflector. The range of uniqueness of the radar, as is customary with pulse radars, is determined by the pulse repetition rate. Reflected pulses that arrive at the radar sensor only after the next transmission pulse has been transmitted are interpreted as very close reflectors. Since the average received energy determines the S / N, it is desirable to select a high pulse repetition rate and inevitably to make the uniqueness range as small as possible. - The magnitude of the duty cycle of CLK-Tx and CLK-Rx must be in the range of Q oscillation periods of the oscillators HFO-Tx / HFO-Rx, where Q represents the loaded quality of the resonator in the oscillator. Otherwise the oscillator cannot swing up to its maximum amplitude during the switch-on time. In this respect, the resonator should have the lowest possible quality. In contrast to many pulse radar sensors (such as that in FIG. 4), it is not necessary that the switch-on pulse vibrate particularly steeply and generate harmonics in the high-frequency range.
Aufgrund des besonders einfachen und kostengünstigen Aufbaus eigen sich die Radaranordnungen hervorragend für alle kostensensitiven Anwendungen. Insbesondere zu nennen wäre die Nahdistanzsensorik rund um Fahrzeuge (Kfz-Einparkhilfe, Kfz- blind-spot, Kfz-Airbag, pre-crash, Roboter-Navigation, generell als Sensor für autonome Fahrzeuge) , die Nahdistanzsensorik in Fahrzeugen (Sitzbelegungskontrolle, Einbruchmelder, Fenster- Schiebedach-Einklemmschutz) und der ganze Bereich der industriellen Abstandsensorik und der Bereich der Haussensorik (Überwachung von Fenster, Türen, Räumen und Begrenzungen) . Due to the particularly simple and inexpensive construction, the radar arrangements are outstandingly suitable for all cost-sensitive applications. Worth mentioning in particular are the short-range sensors around vehicles (vehicle parking aid, automotive blind spot, automotive airbag, pre-crash, robot navigation, generally as sensors for autonomous vehicles), the short-range sensors in vehicles (seat occupancy control, intrusion detectors, windows - Sunroof pinch protection) and the entire area of industrial distance sensors and the area of house sensors (monitoring of windows, doors, rooms and boundaries).

Claims

Patentansprüche claims
1. Anordnung mit Sendemitteln zum Senden eines Signals und mit Empfangsmitteln zum Empfangen einer Reflexion des gesendeten Signals, wobei die Empfangsmittel einen1. Arrangement with transmitting means for transmitting a signal and with receiving means for receiving a reflection of the transmitted signal, the receiving means one
Empfangsoszillator aufweisen, dadurch gekennzeichnet, dass das Einschwingverhalten des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflussbar ist.Have local oscillator, characterized in that the transient response of the local oscillator can be influenced by the reflection of the transmitted signal.
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die Einschwingdauer und/oder die mittlere abgegebene Leistung des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflussbar ist.2. Arrangement according to claim 1, characterized in that the settling time and / or the average power output of the local oscillator can be influenced by the reflection of the transmitted signal.
3. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistung des Empfangsoszillators messbar ist.3. Arrangement according to one of the preceding claims, characterized in that the power of the local oscillator is measurable.
4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung Mittel zum, insbesondere periodischen, Ein- und Ausschalten des Empfangsoszillators mit einer Taktrate aufweist.4. Arrangement according to one of the preceding claims, characterized in that the arrangement has means for, in particular periodic, switching the receiving oscillator on and off at a clock rate.
5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Empfangsoszillator auch als Sendeoszillator zum Generieren des zu sendenden Signals fungiert.5. Arrangement according to one of the preceding claims, characterized in that the local oscillator also functions as a local oscillator for generating the signal to be transmitted.
6. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung einen zweiten Oszillator aufweist, der als Sendeoszillator zum Generieren des zu sendenden Signals fungiert. 6. Arrangement according to one of the preceding claims, characterized in that the arrangement has a second oscillator which functions as a transmission oscillator for generating the signal to be transmitted.
7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung eine Anordnung zur Abstandsmessung ist.7. Arrangement according to one of the preceding claims, characterized in that the arrangement is an arrangement for distance measurement.
8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung ein Radar ist, insbesondere ein Pulsradar.8. Arrangement according to one of the preceding claims, characterized in that the arrangement is a radar, in particular a pulse radar.
9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung zur Detektion eines Messsignals einen Mischer aufweist, in dem ein erstes Teilmesssignal und ein zweites Teilmesssignal addiert werden.9. Arrangement according to one of the preceding claims, characterized in that the arrangement for detecting a measurement signal has a mixer in which a first partial measurement signal and a second partial measurement signal are added.
10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung zur Detektion eines Messsignals einen Mischer mit zwei Dioden aufweist, wobei die Dioden mit gleicher Polarität eingesetzt werden und das Messsignal als Summe zweier Teilmesssignale gebildet wird oder wobei die Dioden mit gegensätzlicher Polarität eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird.10. Arrangement according to one of the preceding claims, characterized in that the arrangement for detecting a measurement signal has a mixer with two diodes, the diodes being used with the same polarity and the measurement signal being formed as the sum of two partial measurement signals, or with the diodes having opposite polarity are used and the measurement signal is formed by the difference between the two partial signals.
11. Fahrzeug, Gebäude oder Industrieanlage aufweisend eine Anordnung nach einem der vorhergehenden Ansprüche.11. Vehicle, building or industrial plant comprising an arrangement according to one of the preceding claims.
12. Messverfahren, insbesondere zur Abstandsmessung, bei dem12. Measuring method, in particular for distance measurement, in which
- mit Sendemitteln ein Signal erzeugt und gesendet wird, - mit Empfangsmitteln, die einen Empfangsoszillator aufweisen, eine Reflexion des gesendeten Signals empfangen wird,a signal is generated and transmitted with transmission means, a reflection of the transmitted signal is received with reception means which have a reception oscillator,
- das Einschwingverhalten des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflusst wird. - The transient response of the local oscillator is influenced by the reflection of the transmitted signal.
EP04711353A 2003-03-31 2004-02-16 Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator Withdrawn EP1608998A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10314557 2003-03-31
DE10314557A DE10314557A1 (en) 2003-03-31 2003-03-31 Compact microwave proximity sensor with low power consumption thanks to power measurement on a stimulated local oscillator
PCT/EP2004/001441 WO2004088354A1 (en) 2003-03-31 2004-02-16 Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator

Publications (1)

Publication Number Publication Date
EP1608998A1 true EP1608998A1 (en) 2005-12-28

Family

ID=33038822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04711353A Withdrawn EP1608998A1 (en) 2003-03-31 2004-02-16 Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator

Country Status (5)

Country Link
US (1) US20060220947A1 (en)
EP (1) EP1608998A1 (en)
JP (1) JP2006515424A (en)
DE (1) DE10314557A1 (en)
WO (1) WO2004088354A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI374573B (en) * 2008-08-22 2012-10-11 Ind Tech Res Inst Uwb antenna and detection apparatus for transportation means
DE102010063800A1 (en) * 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Diplexer for homodyne FMCW radar
US8686895B2 (en) 2011-04-29 2014-04-01 Rosemount Tank Radar Ab Pulsed radar level gauge system with higher order harmonic regulation
BR112017013646A2 (en) * 2014-12-31 2018-03-06 Bridgestone Americas Tire Operations Llc Radar wear detection for tire applications
US10008069B2 (en) * 2016-02-26 2018-06-26 Ford Global Technologies, Llc Multi-passenger door detection for a passenger transport
US10062254B1 (en) * 2017-04-03 2018-08-28 Alexander Paul Intrusion detection system
TWI690720B (en) * 2019-01-30 2020-04-11 昇雷科技股份有限公司 Noncontact vibration sensor

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117317A (en) * 1959-05-25 1964-01-07 Sperry Rand Corp Distance measuring circuit
US2939139A (en) * 1959-07-14 1960-05-31 Handler Bernard Transmit-receive systems with means for adjusting receiver output during transmission time
US3140489A (en) * 1961-10-12 1964-07-07 Gen Electric Frequency modulated pulse radar system
US3246322A (en) * 1964-10-23 1966-04-12 Avco Corp Distance measuring equipment
US3739379A (en) * 1971-02-03 1973-06-12 Hoffman Electronics Corp Coherent pulse doppler altimeter
NL162211C (en) * 1973-07-05 1980-04-15 Hollandse Signaalapparaten Bv IMPULSE RADAR DEVICE.
DE2544842A1 (en) * 1975-10-07 1977-04-21 Bosch Gmbh Robert METHOD AND CIRCUIT ARRANGEMENT FOR EVALUATING SIGNAL PULSE SEQUENCES, IN PARTICULAR RADAR PULSE SEQUENCES
FR2344031A1 (en) * 1976-03-12 1977-10-07 Trt Telecom Radio Electr FREQUENCY MODULATION DEVICE INTENDED FOR HIGH PRECISION DISTANCE MEASUREMENTS
FR2343258A1 (en) * 1976-07-01 1977-09-30 Trt Telecom Radio Electr RADIO-ELECTRIC SYSTEM FOR LOCATING A DETERMINED OBJECT
DE2907315A1 (en) * 1979-02-24 1980-08-28 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR EVALUATING DOPPLER RADAR SIGNALS FOR A DOPPLER RADAR IN THE GHZ RANGE
US4328470A (en) * 1980-05-12 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Pulse modulated IMPATT diode modulator
DE3107444C2 (en) * 1981-02-27 1984-01-12 Dornier System Gmbh, 7990 Friedrichshafen High resolution coherent pulse radar
US4599618A (en) * 1982-07-26 1986-07-08 Rockwell International Corporation Nearest return tracking in an FMCW system
US4725841A (en) * 1983-06-30 1988-02-16 X-Cyte, Inc. System for interrogating a passive transponder carrying phase-encoded information
JPH0616081B2 (en) * 1988-10-06 1994-03-02 日本鋼管株式会社 Distance measuring device
JP2981312B2 (en) * 1991-08-08 1999-11-22 富士通株式会社 FM-CW radar device
DE4308373C2 (en) * 1993-03-16 1995-04-13 Siemens Ag Process for the detection and separation of useful and false echoes in the received signal from distance sensors, which work according to the pulse-echo principle
US5630216A (en) * 1994-09-06 1997-05-13 The Regents Of The University Of California Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer
US5576627A (en) * 1994-09-06 1996-11-19 The Regents Of The University Of California Narrow field electromagnetic sensor system and method
DE19538309C2 (en) * 1995-10-14 1998-10-15 Volkswagen Ag Radar method for measuring distances and relative speeds between a vehicle and one or more obstacles
US6107910A (en) * 1996-11-29 2000-08-22 X-Cyte, Inc. Dual mode transmitter/receiver and decoder for RF transponder tags
DE19703237C1 (en) * 1997-01-29 1998-10-22 Siemens Ag Radar range finder
US6633226B1 (en) * 1997-08-18 2003-10-14 X-Cyte, Inc. Frequency hopping spread spectrum passive acoustic wave identification device
FR2772527A1 (en) * 1997-12-15 1999-06-18 Philips Electronics Nv DIODES MIXER CIRCUIT
US6091356A (en) * 1998-10-05 2000-07-18 Sensor Concepts Incorporated Chirp source with rolling frequency lock for generating linear frequency chirps
US6191724B1 (en) * 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
US6373428B1 (en) * 1999-04-01 2002-04-16 Mcewan Technologies, Llc Self locking dual frequency clock system
DE19925216C1 (en) * 1999-06-01 2001-01-04 Siemens Ag Process for the interference-free evaluation of radar signals
JP3720662B2 (en) * 2000-01-19 2005-11-30 三菱電機株式会社 Automotive radar equipment
JP2001242241A (en) * 2000-02-28 2001-09-07 Aisin Seiki Co Ltd Radar device and on-vehicle radar device
US6725029B1 (en) * 2000-03-10 2004-04-20 Northrop Grumman Corporation Compact, space efficient, sub-harmonic image reject mixer
JP3600499B2 (en) * 2000-03-17 2004-12-15 三菱電機株式会社 FM pulse Doppler radar device
DE10032822A1 (en) * 2000-07-06 2002-01-24 Siemens Ag Device for generating an oscillator signal
JP4228527B2 (en) * 2000-07-31 2009-02-25 セイコーエプソン株式会社 Oscillator
AU2002211571A1 (en) * 2000-10-10 2002-04-22 Xtremespectrum, Inc. Ultra wide bandwidth noise cancellation mechanism and method
JP4678945B2 (en) * 2000-12-28 2011-04-27 富士通テン株式会社 Scanning radar stationary object detection method
JP3995890B2 (en) * 2001-03-05 2007-10-24 株式会社村田製作所 Radar
DE10155251A1 (en) * 2001-11-09 2003-06-18 Siemens Ag Transponder system and method for distance measurement
DE10210037A1 (en) * 2002-03-07 2003-10-02 Siemens Ag Active backscatter transponder, communication system with such an and method for transmitting data with such an active backscatter transponder
US6633254B1 (en) * 2002-08-15 2003-10-14 Bae Systems Information And Electronics Systems Integration Inc. Self-modulating remote moving target detector
US6992614B1 (en) * 2004-04-22 2006-01-31 Honeywell International Inc. Radar altimeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004088354A1 *

Also Published As

Publication number Publication date
JP2006515424A (en) 2006-05-25
WO2004088354A1 (en) 2004-10-14
US20060220947A1 (en) 2006-10-05
DE10314557A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP1570291B1 (en) Multistatic method and device for radar measuring a close distance
DE602004011514T2 (en) Method and device for distance measurement with a pulse radar
DE19829762A1 (en) Radar system operating method, e.g. for motor vehicle separation distance or speed detection
WO2011045109A1 (en) Method and device for improved ultrasonic propagation time difference measurement
DE102007023698A1 (en) Distance measurement sensor and distance measurement method using the sensor
EP1825293A1 (en) Method for electronic measurement
WO2001018502A1 (en) Device for determining a physical process variable of a medium
EP2440949B1 (en) Method and device for measuring a change in distance
EP1608999B1 (en) Radar comprising a transmitting oscillator that can be excited by an evaluation oscillator in a quasi-phase coherent manner
EP1608998A1 (en) Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator
WO2015176889A1 (en) Method for monitoring the operational capability of a radar device
DE112015006258B4 (en) Proximity sensor and method for measuring the distance to a target
EP1245964B1 (en) Method for generation and evaluation of radar pulses and a radarsensor
DE4420432C2 (en) Arrangement for location-selective speed measurement based on the Doppler principle
EP2031417A1 (en) Microwave proximity sensor and method for calculating the distance between a measuring head of a microwave proximity sensor and a target object
DE1805993A1 (en) Distance measurement device
EP1815266B1 (en) Apparatus for measuring distances by means of electromagnetic waves
DE1279130B (en) Radio measuring device, especially portable patrol radar device
DE102005020246B4 (en) Method for determining and setting the intermediate frequency in frequency-pulse radar systems and frequency-pulse radar system
DE10119289A1 (en) Radar system, for use in motor vehicle, is operated by setting transmission frequency to frequency deviating by constant frequency difference when interference is detected
DE19859082A1 (en) Method for measuring the time delay between two periodic pulse signals with the same frequency
EP2416172A2 (en) Distance measurement for an RFID tag
EP1434059A2 (en) Tx/Rx switch for preventing a frequency drift of local oscillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901