EP1603678B1 - Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung - Google Patents

Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung Download PDF

Info

Publication number
EP1603678B1
EP1603678B1 EP04721159A EP04721159A EP1603678B1 EP 1603678 B1 EP1603678 B1 EP 1603678B1 EP 04721159 A EP04721159 A EP 04721159A EP 04721159 A EP04721159 A EP 04721159A EP 1603678 B1 EP1603678 B1 EP 1603678B1
Authority
EP
European Patent Office
Prior art keywords
particles
microsystem
compartment
electrodes
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04721159A
Other languages
English (en)
French (fr)
Other versions
EP1603678A1 (de
Inventor
Torsten Müller
Thomas Schnelle
Rolf Hagedorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Revvity Cellular Technologies GmbH
Original Assignee
Evotec OAI AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evotec OAI AG filed Critical Evotec OAI AG
Publication of EP1603678A1 publication Critical patent/EP1603678A1/de
Application granted granted Critical
Publication of EP1603678B1 publication Critical patent/EP1603678B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength

Definitions

  • the present invention relates to methods for separating particles in a fluidic microsystem, in particular under the action of electrophoresis, and fluidic microsystems adapted to carry out such methods.
  • FIGS. 10A, B Two conventional separation principles, which basically differ according to the type of electrical separation forces, are illustrated schematically in FIGS. 10A, B.
  • Figure 10A shows schematically the separation by means of negative dielectrophoresis (see, for example, DE 198 59 459).
  • a fluidic microsystem 100 ' particles having different dielectric properties flow through a first channel 30'.
  • an electrode arrangement 40 ' By means of an electrode arrangement 40 ', a field barrier extending transversely across the channel 30' is generated by application of high-frequency electric fields which, depending on the dielectric properties of the particles, has a permeable or laterally deflecting effect in cooperation with the flow forces.
  • Particles 22 'having a low dielectric constant (or conductivity) compared to the medium are deflected into an adjacent channel 30A', while particles 21 'having a higher dielectric constant (or conductivity) continue in channel 30'.
  • dielectrophoresis depends on the particle size (see T. Schnelle et al., In “Naturburgen” Bd., 83, 1996, pp. 172-176), even with the same dielectric Characteristics of a separation of the particles made according to the size.
  • Conventional dielectrophoretic particle separation may have disadvantages in terms of separation reliability, especially for particles with similar dielectric constants, and the complexity of the channel design.
  • the reliability of the separation may be limited especially in the separation of biological cells of the same type into different subtypes (eg macrophages, T lymphocytes, B lymphocytes).
  • Figure 10B illustrates an electrophoretic separation of particles, e.g. Molecules in a microstructured channel (see T. Pfohl et al., In “Physik Journal", Vol. 2, 2003, pages 35-40).
  • electrodes 41', 42 ' are arranged, which form an electrophoresis field when subjected to a DC voltage in the channel 30'.
  • the drift velocity of the molecules in the electrophoresis field depends on their molecular weight and charge. In the wider sections of the channel 30 ', the drift velocity of the larger molecules is lower, so that in the course of the separation first the small molecules and later the large molecules arrive at the end of the separation distance.
  • the electrophoretic separation in fluidic microsystems has the advantage that it can be dispensed with the use of a separation gel as in macroscopic electrophoresis.
  • the principle shown in FIG. 10B has the disadvantage that a separate microsystem with adapted geometrical parameters must be provided for each separation task and in particular each particle type.
  • Another disadvantage is that the separation takes place in the dormant liquid, because this is associated with a high expenditure of time and additional measures for adaptation to flow systems.
  • the combination of dielectrophoresis and electrophoresis on the closed field cage is limited to relatively large, single particles. Disadvantages may arise in the measurement of, for example, macromolecules, since in these the effect of the negative dielectrophoresis is significantly lower than that of the electrophoresis, so that it can lead to an undesired attachment of the macromolecules to the electrodes. Particle groups can not be measured with this technique, since all particles require their own correction movement. Separation of particles would also be hampered by a dipole-dipole effect (see T. Schnelle et al., "NaturBiben", Vol. 83, 1996, pp. 172-176), which promotes particle aggregation.
  • DE 198 59 459 also discloses the combination of alternating and direct voltages in fluidic microsystems for targeted cell fusion or fusion. In this technique, the effect of the DC voltage on the fusion or poration is limited, a particle separation is not provided.
  • the object of the invention is to provide improved methods for the separation of particles in liquid flows in fluidic microsystems, with which the disadvantages of conventional techniques are avoided.
  • Processes according to the invention are to be distinguished, in particular, by a broader field of application with a multiplicity of different particles and increased reliability in particle separation.
  • the object of the invention is also to provide improved microsystems for implementing such methods, in particular improved microfluidic separation devices, which are characterized by a simplified construction, a high reliability, a simplified control and a wide range of applications for various particles.
  • the present invention is based on the general technical teaching of the method and apparatus, at least one particle suspended in a liquid by means of a combined exercise of separation forces, on the one hand focusing dielectrophoretic separation forces and on the other hand distracting separation forces, such as electrophoretic separation forces to move in a state of continuous flow within the liquid, so relative to the flowing liquid.
  • the at least one particle can be directed into at least one separating device in the fluidic microsystem, depending on its geometric, electrical, magnetic or derived properties in a certain flow range during the pre-accession.
  • the flow region may comprise a specific flow path within the flow cross-section of the liquid or a downstream or downstream portion of the flow.
  • the movement of the particle into a particular flow area allows separation of particle mixtures during the continuous flow of the particle suspension, for example, through a group of multiple electrodes.
  • the release effect is based on the specific reaction of different particles to the different deflecting and focusing field effects.
  • a separation distance can be traversed, whereby the reliability of the targeted movement of individual particles can be increased, for example, to specific, preferably two, flow paths.
  • the effect of the electric fields can be tuned by adjusting the field characteristics (in particular frequency, voltage amplitudes, clock, etc.) to the parameters of the particles to be separated.
  • the invention enables a simplified construction of the electrophoretic separator, since no gels for embedding electrophoresis electrodes or special channel shapes are needed. Furthermore, a gas formation by suitable control of the electrodes in combination with the permanent Flow can be avoided.
  • the invention also has advantages particularly in terms of reliability and selectivity in particle separation into different flow paths, and high efficiency and high throughput of separation.
  • a separation of particles in a compartment in particular a channel of a fluidic microsystem, through which particles flow in the suspended state, wherein at least a portion of the particles or particles of at least one type under the action of a deflecting potential from the sample to be separated in a predetermined deflecting direction (first reference direction, for example to the edge of the compartment) are moved to the effect that simultaneously or temporally and / or spatially alternating under the action of an opposite potential by dielectrophoresis, in particular negative or positive dielectrophoresis an opposite movement of the particles (second reference direction , for example, away from the walls or as a rally in the canal center).
  • first reference direction for example to the edge of the compartment
  • particles with different electrical, magnetic or geometric properties experience the potential effects as separation forces in various ways, so that different effective forces (potential minima) form due to the combined application of the potentials to which the particles migrate.
  • the potential minima are z. B. in the flow cross-section of the liquid, so that a separation in the flow to different flow paths is possible.
  • the focusing, dielectrophoretic potential is preferably formed towards the center of the channel acting. If, in the channel cross-section, the electrodes are arranged essentially on a circular line, the focusing potential with respect to the flow direction in the channel can advantageously be formed radially symmetrically.
  • the particles which are preferably separated or separated from one another by the technique according to the invention generally comprise colloidal or individual particles with a diameter of z. B. 1 nm to 100 microns.
  • synthetic particles eg, latex beads, superparamagnetic particles, vesicles
  • biological particles eg, cell groups, cell constituents, cell debris, organelles, viruses
  • hybrid particles made of synthetic and biological, different synthetic or different are constructed biological particles, subjected to the separation process of the invention.
  • the distinction of the subtypes represents a particular advantage of the invention, since these are poorly distinguishable with conventional dielectrophoretic separation methods.
  • the selectivity is increased especially for cells of the same type.
  • the separation method can be advantageously used for cleaning a suspension sample with suspended biological material.
  • the material which, for example, is inhomogeneously composed after cultivation and, for example, complete cells, dead cells, living cells or fragments of cells, such as, for example, cells.
  • organelles cell residues or protein clumps can be purified by the method according to the invention.
  • the Unwanted fragments of cells can be removed from the microsystem via certain flow paths. An adverse effect on the following structural elements in the microsystem, such. As a clogging of channels by cell components can be avoided.
  • the deflecting potential can be generated by electrical, magnetic, optical, thermal and / or mechanical forces and thus adapted to a wide variety of applications and particle types.
  • Mechanical forces include, for example, forces transmitted by sound, additional currents or inertia.
  • the deflecting potential can in particular be given by a gravitational field, wherein according to the invention the movement of the particles in the focusing potential (by high-frequency electric fields) is superimposed with a sedimentation movement of the particles.
  • the deflecting separation forces comprise electrical forces under the effect of which the particles are drawn by electrophoresis from the liquid towards the edge thereof, there may be advantages in terms of the separation result.
  • the combination of electrophoresis and dielectrophoresis for particle separation can in particular have advantages in the separation of biological materials which, for example, react very differently to electrophoresis and dielectrophoresis depending on the material or particle size and can therefore be separated with high selectivity.
  • the DC fields for the electrophoretic particle movement can additionally be used for an electrical treatment of the particles.
  • biological cells can be lysed in static electric fields. Lysis involves an electrically induced change, for example destruction of the cells.
  • the lysis serves For example, the preparation of cell material for PCR procedures. Since the effect of the lysis is field-strength-dependent, it is provided according to a particularly preferred embodiment of the invention that certain cells are deflected from a cell mixture by electrophoresis in a flow region near the electrodes, where due to the smaller distance from the electrodes, the field strength is higher and thus the lysis is carried out simultaneously to the process of particle separation.
  • the selectivity can also be flexibly adjusted by a suitable AC voltage control.
  • the dielectric potential can be shaped differently in the case of negative dielectrophoresis.
  • the DC voltage control pH profiles that affect the electrophoretically or dielectrically effective potential.
  • the separating devices for generating the opposing potentials can advantageously be formed by a common unit.
  • the separator comprises electrodes which are disposed on walls of the channel and which are supplied with electric fields for the production of dielectrophoresis and electrophoresis. Advantages for the control of the separation may in particular arise if the electric fields comprise high-frequency AC components and DC components which are generated simultaneously or alternately.
  • the deflecting separation forces may comprise electrical forces which, like the focusing potential, are generated by high-frequency electric fields.
  • the deflection can thus also be generated by suitable dielectrophoretic forces formed by high-frequency electrical signals, z. B. sine or square wave signals are superimposed with suitable frequency components.
  • the deflecting and focusing potentials may be formed alternately in time in at least a portion of the channel.
  • the particles effectively have a potential that corresponds to the superposition of both potentials.
  • control of the at least one separating device can be simplified.
  • the two potentials can be generated alternately in different, successive sections of the channel.
  • the structure of the microsystem can be simplified.
  • a further separation according to the principle of the invention for example, a combined exercise of electrophoretic and dielectrophoretic field effect takes place.
  • advantageously hierarchical separation principles can be realized with a separation in coarse and subsequently in fine fractions.
  • sequence of several separation processes in the manner of a cascade into different fractions is not necessarily to the provision bound to separate compartments. Rather, the realization of the separation cascade with flow paths in a common, sufficiently wide channel of the microsystem is possible.
  • the flow in the microsystem can be directed so that particles pass through a separation stage several times, so that advantageously the separation result can be improved even more.
  • the detection comprises, for example, a known optical measurement (fluorescence measurement or transmitted light measurement) or a known impedance measurement.
  • control parameters of the deflecting and focusing potentials are adjusted so that improves the separation effect.
  • the effectiveness of the separation according to the invention can advantageously be increased if the particles first pass past a dielectrophoretic or hydrodynamic line-up element.
  • individual particles or a group of particles are strung on a particular flow path on which they pass at the separators, for example, the electrodes for performing dielectrophoresis and electrophoresis.
  • a pH gradient is generated in the channel of the microsystem in which the particle separation takes place, advantages for the separation effect can result. Due to the pH gradient, the effect of the distracting Potentials such. B. the electrophoretic cell particle movement location-dependent. This allows a particle deflection into different flow paths as a function of the particle position along the flow direction through the channel.
  • a particularly simple design of the microsystem results when the pH gradient is generated electrochemically using the electrodes, which are also used to form the DC field for electrophoresis.
  • Another advantage of the invention is that the particle separation can take place simultaneously in several spatial directions.
  • a plurality of deflecting potentials with different effective directions can be generated with the focusing potential, which is then preferably acting towards the center of the channel, in order to simultaneously separate the particles to be separated with respect to two different features, such as e.g. B. to separate dielectric and magnetic properties.
  • Another object of the invention is a fluidic microsystem, which is adapted to implement the method according to the invention and in particular comprises at least one separating device for exercising focusing dielectrophoretic separation forces and deflecting separation forces.
  • a fluidic microsystem with at least one compartment for example a channel for receiving a flowing liquid with suspended particles and a first separator for generating a deflecting, the particles in the first reference direction, for example, from the center of the flow pulling potential is in particular with a second separator equipped for generating at least one focusing, opposite potential. Under the action of high-frequency electric fields, the particles with the second separator become by dielectrophoresis from the lateral Walls of the channel and / or disposed thereon electrodes or other parts of separating devices repelled.
  • the first separating device is designed to generate electrical, magnetic, optical and / or mechanical forces. It comprises, for example, an electrode device with electrodes or electrode sections and in this case forms a common deflection unit with the second separation device.
  • the first separator comprises a magnetic field device, a laser or an ultrasound source.
  • the deflection unit preferably comprises electrodes, which are constructed like micro-electrodes known per se in fluidic microsystems.
  • the electrodes can be controlled alternately in time.
  • the electrodes for combined dielectrophoresis and electrophoresis are preferably arranged on insides of the walls of the compartment. In this design, there may be advantages in terms of the effectiveness of the field effect.
  • the separation devices can act alternately or temporally and / or spatially alternately, so that particles are directed to different flow paths depending on the effective time potentials, it is advantageously possible for the first and second separation devices to be separate in different, consecutive Sections of the compartment are arranged.
  • the separation devices comprise, for example, electrode sections which can each be activated for dielectrophoresis or electrophoresis.
  • FIG. 1 and 2 show a detail of an inventive fluidic microsystem 100 in an enlarged schematic plan view and cross-sectional view.
  • the microsystem 100 includes a channel 30 bounded by the lateral channel walls 31, 32, the channel bottom 33 (top view in FIG. 1) and the top surface 34.
  • electrodes 40 are formed as a separator.
  • funnel electrodes 51, 52 of a dielectric alignment element 50 are provided.
  • the structure of the microsystem 100 and the formation of the electrodes and their electrical connection are known per se from microsystem technology.
  • the channel has, for example, a width of approx. 400 ⁇ m and a height of approx. 40 microns (these ratios are not shown to scale in the figures).
  • the lateral electrode spacing in the planes of the channel bottom 33 and the top surface 34 is, for example, 70 ⁇ m, while the vertical distance between the opposing electrodes corresponds to the channel height rd. 40 microns.
  • the electrodes 40 comprise straight electrode strips extending longitudinally of the channel 30, i. extend in the flow direction through the channel.
  • the electrodes 40 are divided into individual electrode segments 41, 42,... In each case a group of electrode segments forms an electrode section, which can be controlled separately.
  • Each segment has a width of about 50 microns and in the flow direction a length of z. B. 1000 microns.
  • Each electrode section is connected to a controller 70 (shown here only for the electrodes 41, 42).
  • the control device 70 is designed to act on the electrodes 40 with voltages such that the passing particles in an electrode section (for example 45-48, see FIG. 2) are exposed to repulsion from the electrodes by means of negative dielectrophoresis and / or electrophoretic drift motion perpendicular to the flow direction become.
  • the controller includes an AC generator 71 and / or a DC generator 72 connected to the electrodes.
  • the AC generator 71 may be equipped with an actuator, with which the amplitudes of high-frequency AC voltages can be adjusted at the electrodes.
  • the suspension liquid 10 (carrier liquid) flows with particles 20 through the channel 30.
  • the flow rate of the suspension liquid 10, which can be adjusted with a syringe pump is z. B. 300 microns / s.
  • the particles 20 are preferably lined up with the dielectric line-up element 50.
  • a hydrodynamic Auf Herbertlement be provided, in which the particles 20 are focused with additional enveloping streams.
  • the potentials acting on the particles are schematically illustrated in FIG.
  • a DC voltage field is generated which generates a potential P1 which drops transversely to the flow cross-section. Particles experience in the potential P1 an outward force (deflecting potential, deflection direction transverse to the flow direction).
  • the high-frequency activation of the electrodes generates an opposite, inwardly directed, focusing potential profile P2a or P2b.
  • the negative dielectrophoresis is based on a particle polarization, which has a stronger effect on the large particles than on the small particles. In the high-frequency field, therefore, the large particles 21 experience the potential P2a and the small particles 22 the shallower potential P2b.
  • Electrodes in FIG. 2 Phase of the high frequency alternating voltage Potential DC voltage 47 0 ° Dimensions 48 180 ° pulse 45 0 ° pulse 46 180 ° Dimensions
  • the electrode drive can take place, for example, according to the following scheme (rotating electric field): Electrodes in FIG. 2 Phase of the high frequency alternating voltage Potential DC voltage 47 0 ° Dimensions 48 90 ° pulse 45 270 ° pulse 46 180 ° Dimensions
  • Figure 1 shows schematically a separator 40A (shown in phantom)
  • the separator 40A provided in or outside the duct wall is, for example, a magnetic device for applying magnetic forces, a laser device for applying optical forces analogous to the principle the laser tweezer or a sound source for the exercise of mechanical forces z. B. by ultrasound.
  • Figure 4 shows features of modified embodiments of the invention. Notwithstanding Figure 1 may be provided that the flow path 11 is displaced from the center of the channel 30 to the outside, in which the potential minimum of the dielectrophoresis is shifted by appropriate asymmetric activation of the electrodes 40. Furthermore, it can be provided that the flow paths 11, 12 open into separate compartments 35, 36 of the channel 30, which are separated from one another by channel walls or (as illustrated) by an electric field barrier. The electric field barrier is created by at least one barrier on the electrode 60 which extends in the channel direction.
  • electrodes 41, 42 for electrophoresis are located in a channel 30 laterally on the channel walls 31, 32 and / or on the bottom surface 33, and at least one electrode 43 for dielectrophoresis is centrally located.
  • the electrode 43 is provided in a manner known per se with an electrically insulating passivation layer 43a.
  • the passivation layer 43a has two functions. First, it prevents field loss of the DC field for electrophoresis, second, it prevents permanent attachment and thus possibly associated denaturation of particles or electrochemical reactions at the electrodes.
  • the electrodes 41, 42 and 43 are each connected to a DC voltage source and an AC voltage source.
  • the channel edge can be realized by porous materials (eg hollow fibers). This makes it possible to impose additional external chemical gradients (eg a pH profile).
  • the at least one electrode 43 and the electrodes 41, 42 may be arranged offset in the flow direction for electrophoresis.
  • micro-objects for example macromolecules
  • the central electrode 43 For particle separation, flushed-in micro-objects (for example macromolecules) are pulled to the central electrode 43 by positive dielectrophoresis. Simultaneously or with alternating activation of the electrodes, the microobjects are drawn by electrophoresis to the edge of the channel 30.
  • the separation is based on the principles described above of a differential effect of the combination of dielectrophoresis and electrophoresis on the different particles.
  • the following procedure can be realized.
  • the particles are first collected at the central electrode 43.
  • the lateral flow 10 is stopped by the channel 30 and carried out a separation of the micro-objects via electrophoresis.
  • the flow 10 is continued.
  • the essential advantage of the interruption of the flow transport through the channel which is optionally provided according to the invention during the electrophoresis, is that an increased selectivity of the electrophoresis can be achieved by the previously defined start conditions.
  • electrodes 43.1 to 43.5 are provided for dielectrophoresis, the structure shown in FIG. 6 results.
  • the electrodes 41, 42 for electrophoresis and on the bottom surface of the electrodes 43.1 to 43.5 for dielectrophoresis (electrical leads not shown).
  • On the top surface are dielectrophoresis electrodes in the same number and arrangement as the electrodes 43.1 to 43.5.
  • the electrodes 43.1 to 43.5 are subjected to signals which are phase-shifted between adjacent electrodes (for example 43.1, 43.2) by 180 ° and for in-phase electrodes (for example 43.1 and opposite electrode on the top surface) in phase are.
  • the particles 20 sparged with the flow 10 include two types, one type of which is not addressed by electrophoresis.
  • the particles 20 first arrange themselves dielectrophoretically (negative dielectrophoresis) in the intermediate space of the electrodes standing one above the other (hidden in the top view). It is only when passing the electrophoretic field that the particles of one type are deflected, while the other type remains unaffected.
  • many optionally passivated electrodes 43.1 to 43.11 for dielectrophoresis are arranged between the electrodes 41, 42 for electrophoresis.
  • On the top surface are dielectrophoresis electrodes in the same number and arrangement as the electrodes 43.1 to 43.11.
  • the first dielectrophoresis electrode pair 43.1, 43.2 is provided with a dielectric line-up element 50 for increasing the selectivity.
  • the DC electrophoresis field is aligned parallel to the flow direction of the liquid 10 (see arrow) through the compartment 30.
  • the particles 20 arrange between the electrodes (negative dielectrophoresis).
  • the dielectrophoresis electrodes form a periodic i.
  • the asymmetric modulation of the dielectrophoresis fields means that alternately higher or lower field strengths are set between adjacent electrode strips of the array 43.1 to 43.11.
  • the electrophoresis potential between the electrodes 41, 42 is not kept constant in time, but switched periodically or randomly.
  • Brown's ratchet a highly sensitive separation according to the principle of the so-called Brown's ratchet ("Brownian ratchet” or Rüttelratsche, see H. Linke et al., Physikalische full Bd. 56, No. 5, 2000, pp 45-47) realize.
  • Brown's ratchet the migration speed of particles through Brownian motion is highly dependent on particle size.
  • the separation takes place in different flow sections in the flow direction depending on the different migration velocities of the particles.
  • a particular advantage of this procedure is that the separation over several adjustable parameters can be sensitively controlled by the superposition of Brownian motion, electrophoresis and dielectrophoresis.
  • This embodiment of the invention is particularly suitable for molecular separation (eg, separation of DNA molecules or DNA fragments that are all negatively charged in a physiological environment).
  • the input channel with the array element 50 should be centered on the array of dielectrophoresis electrodes so that different charge objects are electrophoretically moved in different directions.
  • planar structures can also realize asymmetric potential for positive dielectrophoresis, z. B. by applying asymmetric, so relative to the channel longitudinal direction, for example, different thick passivation layers.
  • FIG. 8 illustrates, like FIG. 2, a cross-sectional view of a fluidic microsystem 100 with four electrodes 45-48. With these electrodes, a focusing potential is generated whose potential minimum lies in the middle of the channel.
  • a first electrical potential acting in the x direction is generated for an electrophoretic field effect, and additionally in the y direction a magnetic field gradient for forming a second deflecting potential.
  • the magnetic field gradient is with a magnetic field generating element 49th formed, for example, a permanent magnet or a liquid-insulated, current-carrying conductor comprises.
  • the magnetic field generating element may be arranged at a distance from the channel.
  • This embodiment of the invention is used, for example, for the separation of latex-coated, superparamagnetic particles with the aim of obtaining fractions with high monodispersity.
  • the graph in FIG. 9 illustrates the dielectrophoretic force f diel normalized to the respective volume, which acts on a particle in the alternating field as a function of the frequency of the alternating field.
  • the symbolically illustrated electrodes are arranged analogously to FIG. 1 and are applied alternately or superimposed with a signal which contains frequency components below 100 kHz and above 1 MHz.
  • the low-frequency and higher-frequency signal components are generated, for example, with equal amplitudes in time-quadratic mean, but different phase relationships illustrated in the image feeds.
  • the higher-frequency signal focuses the particles by negative dielectrophoresis towards the center of the channel.
  • the low-frequency signal acts as a function of the particle size by positive or negative dielectrophoresis, which is superimposed on the focusing effect of the higher-frequency signal.
  • the smaller particles are deflected to the top left, while the larger particles (eg 5 ⁇ m) collect on a diagonal line at the bottom right.
  • Corresponding Particles of different sizes enter different flow paths within the flow through the channel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrostatic Separation (AREA)
  • Cyclones (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die vorliegende Erfindung betrifft Verfahren zur Trennung von Partikeln in einem fluidischen Mikrosystem, insbesondere unter der Wirkung von Elektrophorese, und fluidische Mikrosysteme, die zur Durchführung derartiger Verfahren eingerichtet sind.
  • In der biomedizinischen und chemisch-analytischen Technik gewinnen die Trennung von Mikroobjekten, wie z. B. Partikeln natürlichen oder synthetischen Ursprungs oder Molekülen in fluidischen Mikrosystemen unter der Wirkung elektrisch oder magnetisch induzierter Kräfte zunehmend an Bedeutung. Zwei herkömmliche Trennprinzipien, die sich grundsätzlich nach der Art der elektrischen Trennkräfte unterscheiden, sind schematisch in den Figuren 10A, B illustriert.
  • Figur 10A zeigt schematisch die Trennung mittels negativer Dielektrophorese (siehe z. B. DE 198 59 459). In einem fluidischen Mikrosystem 100' strömen Partikel mit verschiedenen dielektrischen Eigenschaften durch einen ersten Kanal 30'. Mit einer Elektrodenanordnung 40' wird durch Beaufschlagung mit hochfrequenten elektrischen Feldern eine sich quer über den Kanal 30' erstreckende Feldbarriere erzeugt, die je nach den dielektrischen Eigenschaften der Partikel durchlässig oder in Zusammenwirkung mit den Strömungskräften seitlich ablenkend wirkt. Partikel 22' mit einer im Vergleich zum Medium niedrigen Dielektrizitätskonstante (bzw. Leitfähigkeit) werden in einen benachbarten Kanal 30A' abgelenkt, während Partikel 21' mit einer höheren Dielektrizitätskonstante (bzw. Leitfähigkeit) im Kanal 30' weiterströmen. Da die Dielektrophorese von der Partikelgröße abhängt (siehe T. Schnelle et al. in "Naturwissenschaften" Bd. 83, 1996, S. 172-176), kann sogar bei gleichen dielektrischen Eigenschaften eine Trennung der Partikel nach der Größe erfolgen. Die herkömmliche dielektrophoretische Partikeltrennung kann Nachteile in Bezug auf die Zuverlässigkeit der Trennung, insbesondere bei Partikeln mit ähnlichen Dielektrizitätskonstanten und die Komplexität des Kanalaufbaus besitzen. Die Zuverlässigkeit der Trennung kann insbesondere bei der Trennung biologischer Zellen gleichen Typs in verschiedene Subtypen (z. B. Makrophagen, T-Lymphozyten, B-Lymphozyten) beschränkt sein.
  • Ein weiteres, bei der herkömmlichen dielektrophoretischen Partikeltrennung nur beschränkt gelöstes Problem kann durch das Auftreten von unerwünschten Zellbestandteilen in biologischen Suspensionsproben gegeben sein. Zellbestandteile können häufig allein durch ihre dielektrophoretischen Eigenschaften nicht von kompletten Zellen unterschieden werden. Des Weiteren können sie in Mikrosystemen zu unerwünschten Ansammlungen an Kanalverengungen und zu Verstopfungen bis hin zum Systemausfall führen. Schließlich können sich unerwünschte Zellbestandteile auch störend auf Messungen an Zellen, wie zum Beispiel auf eine patchclamp-Messung auswirken. Es besteht daher ein Interesse an einem verbesserten Verfahren zur Reinigung von Suspensionsproben, das eine höhere Zuverlässigkeit als die dielektrophoretische Partikeltrennung besitzt.
  • Figur 10B illustriert eine elektrophoretische Trennung von Partikeln, z. B. Molekülen in einem mikrostrukturierten Kanal (siehe T. Pfohl et al. in "Physik Journal", Bd. 2, 2003, Seite 35-40). An den Enden des abwechselnd mit breiten und schmalen Abschnitten gebildeten Kanals 30' sind Elektroden 41', 42' angeordnet, die bei Beaufschlagung mit einer Gleichspannung im Kanal 30' ein Elektrophoresefeld bilden. Die Driftgeschwindigkeit der Moleküle im Elektrophoresefeld hängt von deren Molekulargewicht und Ladung ab. In den breiteren Abschnitten des Kanals 30' ist die Driftgeschwindigkeit der größeren Moleküle geringer, so dass im Lauf der Trennung zunächst die kleinen Moleküle und später die großen Moleküle am Ende der Trennstrecke ankommen. Die elektrophoretische Trennung in fluidischen Mikrosystemen besitzt zwar den Vorteil, dass auf die Verwendung eines Trenngels wie bei der makroskopischen Elektrophorese verzichtet werden kann. Das in Figur 10B gezeigte Prinzip besitzt jedoch den Nachteil, dass für jede Trennaufgabe und insbesondere jede Partikelart ein gesondertes Mikrosystem mit angepassten geometrischen Parametern bereitgestellt werden muss. Nachteilig ist auch, dass die Trennung in der ruhenden Flüssigkeit erfolgt, weil dies mit einem hohen Zeitaufwand und zusätzlichen Maßnahmen zur Anpassung an Durchflusssysteme verbunden ist.
  • Die oben genannten Trennprinzipien werden auch in WO 98/10267 erwähnt. Im Kanal eines fluidischen Mikrosystems werden geladene Partikel z. B. elektrophoretisch aus einer Probe in eine parallel strömende Pufferlösung gezogen. Diese Technik ist auf Proben mit bestimmten Eigenschaften der Probenbestandteile beschränkt. Sie ist ferner nachteilig, da die Partikel elektrophoretisch an die Kanalwände gezogen werden können, was insbesondere bei biologischen Materialien, z. B. Zellen unerwünscht ist.
  • Die elektrophoretische Ablenkung von Partikeln wird auch in DE 41 27 405 beschrieben. Partikel werden in einer ruhenden Flüssigkeit unter der Wirkung von elektrischen Wanderwellen bewegt. Wenn sie bei der Bewegung an Elektrophorese-Elektroden vorbeitreten, erfolgt eine Trennung nach den elektrischen Eigenschaften der Partikel. Es ergeben sich die gleichen Nachteile wie bei der o. g. WO 98/10267.
  • Es ist auch bekannt, dielektrophoretische und elektrophoretische Feldwirkungen bei der Manipulation von Partikeln in fluidischen Mikrosystemen zu kombinieren. Gemäß DE 195 00 683 werden flüssigkeitssuspendierte Partikel in einer Elektrodenanordnung gehaltert, die bei Beaufschlagung mit hochfrequenten Wechselspannungen durch negative Dielektrophorese einen geschlossenen Feldkäfig (Potentialtopf) bildet. Um bei Präzisionsmessungen Positionsvariationen durch thermische Stöße zu korrigieren, werden Partikel im Feldkäfig zusätzlich elektrophoretisch verschoben. Die elektrophoretische Verschiebung erfolgt im Rahmen eines Regelkreises je nach den beispielsweise optisch festgestellten Positionsvariationen des Partikels. Die in DE 195 00 683 beschriebene Technik ist zur Partikeltrennung nicht geeignet, da sie ein geschlossenes, stationäres Messsystem darstellt. Des Weiteren ist die Kombination von Dielektrophorese und Elektrophorese am geschlossenen Feldkäfig auf relativ große, einzelne Partikel beschränkt. Nachteile können sich bei der Vermessung beispielsweise von Makromolekülen ergeben, da bei diesen die Wirkung der negativen Dielektrophorese deutlich geringer als die der Elektrophorese ist, so dass es zu einer unerwünschten Anlagerung der Makromoleküle an den Elektroden kommen kann. Partikelgruppen lassen sich mit dieser Technik nicht vermessen, da alle Partikel eine eigene Korrekturbewegung erfordern. Eine Trennung von Partikeln wäre auch durch einen Dipol-Dipol-Effekt erschwert (siehe T. Schnelle et al. in "Naturwissenschaften" Bd. 83, 1996, S. 172-176), durch den eine Teilchenaggregation gefördert wird.
  • Aus DE 198 59 459 ist auch die Kombination von Wechsel- und Gleichspannungen in fluidischen Mikrosystemen zur gezielten Zellfusion oder -poration bekannt. Bei dieser Technik ist die Wirkung der Gleichspannung auf die Fusion oder Poration beschränkt, eine Partikeltrennung ist nicht vorgesehen.
  • Aus der Publikation von S. Fiedler et al. in "Anal Chem." Bd. 67, 1995, S. 820-828, ist bekannt, durch eine ggf. gepulste Gleichspannungs-Ansteuerung von Mikroelektroden in wässrigen Elektrolytlösungen zeitliche oder lokale, mit Fluoreszenzfarbstoffen nachweisbare pH-Gradienten zu generieren.
  • Für die pharmakologische, analytische und biotechnologische Forschung besteht nicht nur ein Interesse an einer Trennung von Partikelgemischen nach geometrischen (Größe, Form) oder elektrischen Eigenschaften (Dielektrizitätskonstante, Leitfähigkeit), sondern auch nach anderen Parametern, wie z. B. Oberflächenladungen oder Ladungs-Volumen-Verhältnissen. Das Auftreten von Oberflächenladungen wird beispielsweise von N. Arnold et al. in "J. Phys. Chem." Bd. 91, 1987, S. 5093 - 5098, L. Gorre-Talini et al. in "Phys. Rev. E" Bd. 56, 1997, S. 2025-2034 und Maier et al. in "Biophysical J." Bd. 73, 1997, S. 1617-1626 beschrieben.
    Das Dokument WO 00/00292 offenbart das Verfahren zur Trennung gemäß Oberbegriff des Anspruchs 1 und ein fluidischen Mikrosystem gemäß Oberbegriff des Anspruchs 21.
  • Die Aufgabe der Erfindung ist es, verbesserte Verfahren zur Trennung von Partikeln in Flüssigkeitsströmungen in fluidischen Mikrosystemen bereitzustellen, mit denen die Nachteile herkömmlicher Techniken vermieden werden. Erfindungsgemäße Verfahren sollen sich insbesondere durch einen erweiterten Anwendungsbereich bei einer Vielzahl verschiedener Partikel und eine erhöhte Zuverlässigkeit bei der Partikeltrennung auszeichnen. Die Aufgabe der Erfindung ist es auch, verbesserte Mikrosysteme zur Umsetzung derartiger Verfahren, insbesondere verbesserte mikrofluidische Trenneinrichtungen bereitzustellen, die sich durch einen vereinfachten Aufbau, eine hohe Zuverlässigkeit, eine vereinfachte Steuerung und einen breiten Anwendungsbereich bei verschiedenartigen Partikeln auszeichnen.
  • Diese Aufgaben werden durch Verfahren und Vorrichtungen mit den Merkmalen der Patentansprüche 1 und 21 gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Die vorliegende Erfindung basiert verfahrens- und vorrichtungsbezogen auf der allgemeinen technischen Lehre, mindestens einen, in einer Flüssigkeit suspendierten Partikel durch eine kombinierte Ausübung von Trennkräften, die einerseits fokussierende dielektrophoretische Trennkräfte und andererseits ablenkende Trennkräfte, wie zum Beispiel elektrophoretische Trennkräfte umfassen, im Zustand eines kontinuierlichen Flusses innerhalb der Flüssigkeit, also relativ zur strömenden Flüssigkeit zu verschieben. Der mindestens eine Partikel kann während des Vorbeitritts an mindestens einer Trenneinrichtung im fluidischen Mikrosystem je nach seinen geometrischen, elektrischen, magnetischen oder davon abgeleiteten Eigenschaften in einen bestimmten Strömungsbereich gelenkt werden. Je nach Ausrichtung der ablenkenden Trennkräfte (Ablenkrichtung) relativ zur Bewegungsrichtung der Flüssigkeit (Strömungsrichtung) kann der Strömungsbereich einen bestimmten Strömungspfad innerhalb des Strömungsquerschnittes der Flüssigkeit oder einen in Strömungsrichtung vorderen oder hinteren Abschnitt der Strömung umfassen.
  • Die Bewegung des Partikels in einen bestimmten Strömungsbereich ermöglicht eine Trennung von Partikelgemischen während des kontinuierlichen Flusses der Partikelsuspension zum Beispiel durch eine Gruppe von mehreren Elektroden. Die Trennwirkung basiert auf der spezifischen Reaktion verschiedener Partikel auf die verschiedenen ablenkenden und fokussierenden Feldwirkungen. Im Gegensatz zur Trennung an Feldbarrieren kann eine Trennstrecke durchlaufen werden, wodurch die Zuverlässigkeit der gezielten Bewegung einzelner Partikel zum Beispiel auf bestimmte, vorzugsweise zwei Strömungspfade erhöht werden kann. Die Wirkung der elektrischen Felder kann durch Einstellung der Feldeigenschaften (insbesondere Frequenz, Spannungsamplituden, Takt usw.) auf die Parameter der zu trennenden Partikel abgestimmt werden. Die Erfindung ermöglicht einen vereinfachten Aufbau der elektrophoretischen Trenneinrichtung, da keine Gele zur Einbettung von Elektrophorese-Elektroden oder besondere Kanalformen benötigt werden. Des Weiteren kann eine Gasbildung durch geeignete Ansteuerung der Elektroden in Kombination mit der permanenten Strömung vermieden werden. Die Erfindung besitzt ferner Vorteile insbesondere in Bezug auf die Zuverlässigkeit und Trennschärfe bei der Partikeltrennung in verschiedene Strömungspfade und eine hohe Effektivität und einen hohen Durchsatz der Trennung.
  • Erfindungsgemäß wird eine Trennung von Partikeln in einem Kompartiment, insbesondere einem Kanal eines fluidischen Mikrosystems, durch das Partikel im suspendierten Zustand strömen, wobei wenigstens ein Teil der Partikel oder Partikel von mindestens einem Typ unter der Wirkung eines ablenkenden Potentials aus der zu trennenden Probe in eine vorbestimmte Ablenkrichtung (erste Bezugsrichtung, zum Beispiel zum Rand des Kompartiments) bewegt werden, dahingehend weiterentwickelt, dass gleichzeitig oder zeitlich und/oder räumlich alternierend unter der Wirkung eines entgegengesetzten Potentials durch Dielektrophorese, insbesondere negative oder positive Dielektrophorese eine entgegengesetzte bewegung der Partikel (zweite Bezugsrichtung, zum Beispiel weg von den Wänden oder als Sammlung in der Kanalmitte) erfolgt. Vorteilhafterweise erfahren Partikel mit verschiedenen elektrischen, magnetischen oder geometrischen Eigenschaften die Potentialwirkungen als Trennkräfte in verschiedener Weise, so dass sich durch die kombinierte Ausübung der Potentiale verschiedene effektive Kräfte (Potentialminima) bilden, zu denen die Partikel wandern. Die Potentialminima sind z. B. im Strömungsquerschnitt der Flüssigkeit beabstandet, so dass eine Trennung in der Strömung auf verschiedene Strömungspfade möglich ist. Das fokussierende, dielektrophoretisch wirkende Potential ist vorzugsweise hin zur Kanalmitte wirkend gebildet. Wenn im Kanalquerschnitt die Elektroden im wesentlichen auf einer Kreislinie angeordnet sind, kann das fokussierende Potential in Bezug auf die Strömungsrichtung im Kanal vorteilhafterweise radialsymmetrisch gebildet sein.
  • Die mit der erfindungsgemäßen Technik vorzugsweise voneinander getrennten oder separierten Partikel umfassen allgemein kolloidale oder einzelne Partikel mit einem Durchmesser von z. B. 1 nm bis 100 µm. Es können synthetische Partikel (z. B. Latexbeads, superparamagnetische Partikel, Vesikeln), biologische Partikel (z. B. Zellgruppen, Zellbestandteile, Zelltrümmer, Organellen, Viren) und/oder hybride Partikel, die aus synthetischen und biologischen, unterschiedlichen synthetischen oder unterschiedlichen biologischen Partikeln aufgebaut sind, den erfindungsgemäßen Trennverfahren unterzogen werden.
  • Vorteilhafterweise hängt die elektrophoretische Beweglichkeit µ (v = µ · E) für Zellen nicht nur von der Zusammensetzung des äußeren Mediums, also der Suspensionsflüssigkeit (insbesondere Leitfähigkeit, Ionenzusammensetzung, z. B. Ca2+-Gehalt und pH-Wert), sondern auch vom Zelltyp ab, so dass sich mit der erfindungsgemäßen Technik innerhalb einer Zellgruppe verschiedene Zelltypen oder innerhalb von einer Zellgruppe gleicher Zelltypen verschiedene Subtypen (z. B. Makrophagen, T-Lymphozyten, B-Lymphozyten) unterscheiden lassen. Die Unterscheidung der Subtypen stellt einen besonderen Vorteil der Erfindung dar, da diese mit herkömmlichen dielektrophoretischen Trennverfahren nur schlecht unterscheidbar sind. Durch die Kombination einer dielektrophoretischen Fokussierung gemäß der Erfindung wird die Trennschärfe insbesondere für Zellen von gleichem Typ erhöht.
  • Wenn die zu trennenden Partikel eine Mischung aus biologischen Zellen und Zellbestandteilen, wie z. B. Zelltrümmern umfasst, kann das Trennverfahren vorteilhafterweise für eine Reinigung einer Suspensionsprobe mit suspendiertem biologischem Material verwendet werden. Das Material, das bspw. nach einer Kultivierung inhomogen zusammengesetzt ist und bspw. vollständige Zellen, tote Zellen, lebende Zellen oder Bruchstücke von Zellen, wie z. B. Organellen, Zellreste oder Proteinklumpen umfasst, kann mit dem erfindungsgemäßen Verfahren gereinigt werden. Die unerwünschten Bruchstücke von Zellen können über bestimmte Strömungspfade aus dem Mikrosystem abgeführt werden. Ein nachteiliger Einfluss auf folgende Strukturelemente im Mikrosystem, wie z. B. ein Verstopfen von Kanälen durch Zellbestandteile kann vermieden werden.
  • Vorteilhafterweise kann das ablenkende Potential durch elektrische, magnetische, optische, thermische und/oder mechanische Kräfte erzeugt und damit an die verschiedensten Anwendungen und Partikelarten angepasst werden. Mechanische Kräfte umfassen zum Beispiel Kräfte, die durch Schall, zusätzliche Strömungen oder Massenträgheit übertragen werden. Das ablenkende Potential kann insbesondere durch ein Gravitationsfeld gegeben sein, wobei erfindungsgemäß die Bewegung der Partikel im fokussierenden Potential (durch hochfrequente elektrische Felder) mit einer Sedimentationsbewegung der Partikel überlagert werden.
  • Wenn gemäß einer bevorzugten Ausführungsform der Erfindung die ablenkenden Trennkräfte elektrische Kräfte umfassen, unter deren Wirkung die Partikel durch Elektrophorese aus der Flüssigkeit hin zu deren Rand gezogen werden, können sich Vorteile in Bezug auf das Trennergebnis ergeben. Die Kombination von Elektrophorese und Dielektrophorese zur Partikeltrennung kann insbesondere Vorteile bei der Trennung biologischer Materialien besitzen, die zum Beispiel je nach Material oder Partikelgröße sehr verschieden auf Elektrophorese und Dielektrophorese reagieren und daher mit hoher Trennschärfe zu trennen sind.
  • Vorteilhafterweise können die Gleichspannungsfelder für die elektrophoretische Partikelbewegung gemäß einer weiteren Ausführungsform der Erfindung zusätzlich für eine elektrische Behandlung der Partikel verwendet werden. Es ist bekannt, dass biologische Zellen in statischen elektrischen Feldern lysiert werden können. Die Lyse umfasst eine elektrisch induzierte Veränderung, zum Beispiel Zerstörung der Zellen. Die Lyse dient bspw. der Vorbereitung von Zellmaterial für PCR-Verfahren. Da die Wirkung der Lyse feldstärkeabhängig ist, ist gemäß einer besonders bevorzugten Ausführungsform der Erfindung vorgesehen, dass bestimmte Zellen aus einem Zellgemisch durch die Elektrophorese in einen Strömungsbereich nahe den Elektroden abgelenkt werden, wo aufgrund des geringeren Abstandes von den Elektroden die Feldstärke höher ist und damit die Lyse gleichzeitig zum Vorgang der Partikeltrennung erfolgt.
  • Die Trennschärfe kann weiterhin flexibel durch eine geeignete Wechselspannungs-Steuerung eingestellt werden. Durch Änderung der Phasenlage von Feldern kann bei negativer Dielektrophorese das dielektrische Potential verschieden ausgeformt werden. Zusätzlich können durch die Gleichspannungs-Ansteuerung pH-Profile aufgeprägt werden, die das elektrophoretisch oder dielektrisch wirksame Potential beeinflussen.
  • Bei der erfindungsgemäßen Kombination von Elektrophorese und Dielektrophorese können die Trenneinrichtungen zur Erzeugung der gegenläufigen Potentiale vorteilhafterweise durch eine gemeinsame Einheit gebildet werden. Die Trenneinrichtung umfasst Elektroden, die an Wänden des Kanals angeordnet sind und die mit elektrischen Feldern zur Erzeugung der Dielektrophorese und der Elektrophorese beaufschlagt werden. Vorteile für die Steuerung der Trennung können sich insbesondere ergeben, wenn die elektrischen Felder hochfrequente Wechselspannungsanteile und Gleichspannungsanteile umfassen, die gleichzeitig oder alternierend erzeugt werden.
  • Gemäß einer abgewandelten Variante der Erfindung können die ablenkenden Trennkräfte elektrische Kräfte umfassen, die wie das fokussierende Potential durch hochfrequente elektrische Felder erzeugt werden. Die Ablenkung kann somit ebenfalls durch geeignete gebildete dielektrophoretische Kräfte erzeugt werden, indem hochfrequente elektrische Signale, z. B. Sinus- oder Rechtecksignale mit geeigneten Frequenzanteilen überlagert werden.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung können die ablenkenden und fokussierenden Potentiale zeitlich abwechselnd in mindestens einem Abschnitt des Kanals gebildet werden. Im zeitlichen Mittel wirkt auf die Partikel effektiv ein Potential, das der Superposition beider Potentiale entspricht. Vorteilhafterweise kann damit die Ansteuerung der mindestens einen Trenneinrichtung vereinfacht werden.
  • Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung können die beiden Potentiale abwechselnd in verschiedenen, aufeinander folgenden Abschnitten des Kanals erzeugt werden. Vorteilhafterweise kann damit der Aufbau des Mikrosystems vereinfacht werden.
  • Besonders vorteilhaft für die Erhaltung des Trennergebnisses kann es sein, wenn die Strömungspfade in weitere, getrennte Kompartimente des Mikrosystems münden. Wenn die getrennten Fraktionen in die sich anschließenden Kompartimente eingeströmt sind, ist eine nachträgliche Durchmischung ausgeschlossen. Besonders wirksam kann diese Trennung der Fraktionen sein, wenn die Kompartimente durch Kanalwände oder elektrische Feldbarrieren voneinander getrennt werden.
  • Gemäß einer weiteren Ausführungsform der Erfindung kann vorgesehen sein, dass in den Kompartimenten eine weitere Trennung nach dem erfindungsgemäßen Prinzip, zum Beispiel eine kombinierte Ausübung von elektrophoretischer und dielektrophoretischer Feldwirkung erfolgt. Damit können vorteilhafterweise hierarchische Trennprinzipien mit einer Trennung in Grob- und nachfolgend in Feinfraktionen realisiert werden. Die Abfolge mehrerer Trennvorgänge nach Art einer Kaskade in verschiedene Fraktionen ist allerdings nicht zwingend an die Bereitstellung der getrennten Kompartimente gebunden. Vielmehr ist die Realisierung der Trennkaskade mit Strömungspfaden in einem gemeinsamen, genügend breiten Kanal des Mikrosystems möglich.
  • Gemäß einer Abwandlung der Erfindung kann die Strömung im Mikrosystem so gelenkt werden, dass Partikel mehrfach eine Trennstufe durchlaufen, so dass vorteilhafterweise das Trennergebnis noch verbessert werden kann.
  • Weitere Vorteile der Erfindung können sich ergeben, wenn nach der Trennung (Ablenkung in verschiedene Strömungsbereiche) eine Detektion in den Strömungsbereichen zur Überprüfung des Trennergebnisses erfolgt. Die Detektion umfasst bspw. eine an sich bekannte optische Messung (Fluoreszenzmessung oder Durchlichtmessung) oder eine an sich bekannte Impedanzmessung.
  • Vorteilhafterweise können in Abhängigkeit vom Messergebnis, z. B. in Abhängigkeit von der Trennqualität oder auftretenden Fehltrennungen die Steuerparameter der ablenkenden und fokussierenden Potentiale so verstellt werden, dass sich die Trennwirkung verbessert.
  • Die Wirksamkeit der erfindungsgemäßen Trennung kann vorteilhafterweise erhöht werden, wenn die Partikel zuerst an einem dielektrophoretischen oder hydrodynamischen Aufreihelement vorbeitreten. An diesem werden einzelne Partikel oder eine Gruppe von Partikeln auf einem bestimmten Strömungspfad aufgereiht, auf dem sie an den Trenneinrichtungen, zum Beispiel den Elektroden zur Ausübung der Dielektrophorese und Elektrophorese vorbeitreten.
  • Wenn gemäß einer weiteren Variante der Erfindung im Kanal des Mikrosystems, in dem die Partikeltrennung erfolgt, ein pH-Gradient erzeugt wird, können sich Vorteile für die Trennwirkung ergeben. Durch den pH-Gradienten wird die Wirkung des ablenkenden Potentials, wie z. B. die elektrophoretische Zellpartikelbewegung ortsabhängig. Dies ermöglicht eine Partikelablenkung in verschiedene Strömungspfade in Abhängigkeit von der Partikelposition entlang der Strömungsrichtung durch den Kanal. Vorteilhafterweise ergibt sich ein besonders einfacher Aufbau des Mikrosystems, wenn der pH-Gradient elektrochemisch unter Verwendung der Elektroden erzeugt wird, die auch zur Bildung des Gleichspannungsfeldes für die Elektrophorese verwendet werden.
  • Ein weiterer Vorteil der Erfindung besteht darin, dass die Partikeltrennung gleichzeitig in mehreren Raumrichtungen erfolgen kann. Erfindungsgemäß können mehrere ablenkende Potentiale mit verschiedenen Wirkrichtungen mit dem fokussierendem Potential, das dann vorzugsweise hin zur Kanalmitte wirkend gebildet ist, erzeugt werden, um die zu trennenden Partikel gleichzeitig in Bezug auf zwei verschiedene Merkmale, wie z. B. dielektrische und magnetische Eigenschaften zu trennen.
  • Ein weiterer Gegenstand der Erfindung ist ein fluidisches Mikrosystem, das zur Umsetzung der erfindungsgemäßen Verfahren eingerichtet ist und insbesondere mindestens eine Trenneinrichtung zur Ausübung fokussierender dielektrophoretischer Trennkräfte und ablenkender Trennkräfte umfasst. Ein fluidisches Mikrosystem mit mindestens einem Kompartiment, zum Beispiel Kanal zur Aufnahme einer strömenden Flüssigkeit mit suspendierten Partikeln und einer ersten Trenneinrichtung zur Erzeugung eines ablenkenden, die Partikel in die erste Bezugsrichtung, zum Beispiel aus der Mitte der Strömung ziehenden Potentials wird insbesondere mit einer zweiten Trenneinrichtung ausgestattet, die zur Erzeugung mindestens eines fokussierenden, entgegengesetzten Potentials eingerichtet ist. Unter der Wirkung von hochfrequenten elektrischen Feldern werden die Partikel mit der zweiten Trenneinrichtung durch Dielektrophorese von den seitlichen Wänden des Kanals und/oder darauf angeordneten Elektroden oder anderen Teilen von Trenneinrichtungen abgestoßen.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist die erste Trenneinrichtung zur Erzeugung elektrischer, magnetischer, optischer und/oder mechanischer Kräfte eingerichtet. Sie umfasst beispielsweise eine Elektrodeneinrichtung mit Elektroden oder Elektrodenabschnitten und bildet in diesem Fall mit der zweiten Trenneinrichtung eine gemeinsame Ablenkeinheit. Alternativ umfasst die erste Trenneinrichtung eine Magnetfeldeinrichtung, einen Laser oder eine Ultraschallquelle. Diese Komponenten werden erfindungsgemäß erstmalig zur Trennung strömender Partikel mit einer dielektrophoretischen Manipulation kombiniert.
  • Wenn die Trenneinrichtungen eine gemeinsame Ablenkeinheit bilden, ergibt sich vorteilhafterweise ein vereinfachter Aufbau des Mikrosystems. Die Ablenkeinheit umfasst vorzugsweise Elektroden, die wie an sich bekannte Mikroelektroden in fluidischen Mikrosystemen aufgebaut sind. Die Elektroden können zeitlich abwechselnd ansteuerbar sein.
  • Die Elektroden zur kombinierten Dielektrophorese und Elektrophorese sind vorzugsweise an Innenseiten der Wände des Kompartiments angeordnet. Bei dieser Gestaltung können sich Vorteile in Bezug auf die Effektivität der Feldwirkung ergeben.
  • Da die Trenneinrichtungen gleichzeitig oder zeitlich und/oder räumlich alternierend wirken können, so dass Partikel je nach den im zeitlichen Mittel wirkenden, effektiven Potentialen auf verschiedene Strömungspfade gelenkt werden, ist es vorteilhafterweise möglich, dass die ersten und zweiten Trenneinrichtungen getrennt in verschiedenen, aufeinander folgenden Abschnitten des Kompartiments angeordnet sind. Die Trenneinrichtungen umfassen beispielsweise Elektrodenabschnitte, die jeweils zur Dielektrophorese oder Elektrophorese ansteuerbar sind.
  • Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben.
    Es zeigen:
  • Figur 1:
    eine schematische Draufsicht auf eine erste Ausführungsform eines erfindungsgemäßen Mikrosystems (Ausschnitt),
    Figur 2:
    eine Querschnittansicht des Mikrosystems gemäß Figur 1 entlang der Linie II-II,
    Figur 3:
    eine Querschnittansicht des Mikrosystems mit schematisch illustrierten Potentialverhältnissen,
    Figuren 4
    bis 7: schematische Draufsichten auf weitere Ausführungsformen erfindungsgemäßer Mikrosysteme (Ausschnitt), und
    Figur 8:
    eine schematische Querschnittsansicht einer Elektrodenanordnung zur Illustration einer Ausführungsform der Erfindung, bei der mehrere ablenkende Potentiale erzeugt werden,
    Figur 9:
    eine Kurvendarstellung zur Erklärung der Erzeugung eines ablenkenden Potentials durch die Überlagerung dielektrophoretischer Kräfte,
    Figuren 10A, B:
    schematische Illustrationen herkömmlicher Mikrosysteme mit einer dielektrophoretischen (A) und einer elektrophoretischen (B) Trennung.
  • Die Erfindung wird im Folgenden unter Bezug auf die Trennung von Partikeln im Kanal eines fluidischen Mikrosystems beschrieben. Fluidische Mikrosysteme sind an sich bekannt und werden daher mit weiteren Einzelheiten nicht beschrieben. Die Umsetzung der Erfindung ist nicht auf die illustrierten Kanalstrukturen zum Beispiel in Chipstrukturen oder in Hohlfasern beschränkt, sondern allgemein auch in anders geformten Kompartimenten realisierbar.
  • Die erfindungsgemäße Kombination von fokussierenden und ablenkenden Kräften, deren Überlagerung für die zu trennenden Partikel je nach den Partikeleigenschaften zu verschiedenen Gleichgewichtslagen (Strömungspfade- oder abschnitte) in der Flüssigkeitsströmung führen, mit zwei Trenneinrichtungen oder einer kombiniert wirkenden Trenneinrichtung wird unter Bezug auf das bevorzugte Ausführungsbeispiel einer Kombination von Dielektrophorese und Elektrophorese beschrieben. Wenn die ablenkende Kraft wenigstens eine Vektorkomponente in einer Bezugsrichtung (Ablenkrichtung) senkrecht zur Richtung der Flüssigkeitsbewegung im Kanal besitzt, so wirkt die Dielektrophorese von den Wänden des Kanals hin in das Innere des Strömungsquerschnitts der strömenden Flüssigkeit fokussierend, während die Elektrophorese umgekehrt zum äußeren Rand des Strömungsprofils, insbesondere zu Elektroden an den Wänden hin lenkend wirkt. Analog zu den im folgenden erläuterten Prinzipien können andere ablenkende Kräfte verwendet werden. Wenn die ablenkende Kraft hingegen parallel zur Richtung der Flüssigkeitsströmung verläuft, wirkt die Dielektrophorese entlang der Flüssigkeitsströmung fokussierend, wobei durch eine Modulation der dielektrophoretischen Wirkung die Partikel im Elektrophoresefeld verschieden schnell bewegt werden.
  • Die Figuren 1 und 2 zeigen ausschnittsweise ein erfindungsgemäßes fluidisches Mikrosystem 100 in vergrößerter schematischer Draufsicht und Querschnittsansicht. Das Mikrosystem 100 enthält einen Kanal 30, der durch die seitlichen Kanalwände 31, 32, den Kanalboden 33 (Draufsicht in Fig. 1) und die Deckfläche 34 begrenzt wird. Auf dem Kanalboden 33 und der Deckfläche 34 sind als Trenneinrichtung Elektroden 40 gebildet. Des weiteren sind Trichterelektroden 51, 52 eines dielektrischen Aufreihelements 50 vorgesehen. Der Aufbau des Mikrosystems 100 und die Ausbildung der Elektroden sowie deren elektrischer Anschluss sind an sich aus der Mikrosystemtechnik bekannt. Der Kanal besitzt beispielsweise eine Breite von rd. 400 µm und eine Höhe von rd. 40 µm (diese Verhältnisse sind in den Figuren nicht maßstäblich dargestellt). Der laterale Elektrodenabstand in den Ebenen des Kanalbodens 33 und der Deckfläche 34 beträgt beispielsweise 70 µm, während der senkrechte Abstand der einander gegenüberliegenden Elektroden entsprechend der Kanalhöhe rd. 40 µm beträgt.
  • Die Elektroden 40 umfassen gerade Elektrodenstreifen, die sich in Längsrichtung des Kanals 30, d.h. in Strömungsrichtung durch den Kanal erstrecken. Die Elektroden 40 sind in einzelne Elektrodensegmente 41, 42, ... unterteilt. Jeweils eine Gruppe von Elektrodensegmenten bildet einen Elektrodenabschnitt, der separat ansteuerbar ist. Jedes Segment besitzt eine Breite von rund 50 µm und in Strömungsrichtung eine Länge von z. B. 1000 µm. Jeder Elektrodenabschnitt ist mit einer Steuerungseinrichtung 70 verbunden (hier nur für die Elektroden 41, 42 gezeigt).
  • Die Steuerungseinrichtung 70 ist zur Beaufschlagung der Elektroden 40 mit Spannungen derart eingerichtet, dass die vorbeiströmenden Partikel in einem Elektrodenabschnitt (zum Beispiel 45-48, siehe Figur 2) einer Abstoßung von den Elektroden mittels negativer Dielektrophorese und/oder einer elektrophoretischen Driftbewegung senkrecht zur Strömungsrichtung ausgesetzt werden. Die Steuerungseinrichtung enthält einen Wechselspannungsgenerator 71 und/oder einen Gleichspannungsgenerator 72, die mit den Elektroden verbunden sind. Der Wechselspannungsgenerator 71 kann mit einer Stelleinrichtung ausgestattet sein, mit der die Amplituden von hochfrequenten Wechselspannungen an den Elektroden eingestellt werden können.
  • Zur Durchführung des erfindungsgemäßen Verfahrens strömt die Suspensionsflüssigkeit 10 (Trägerflüssigkeit) mit Partikeln 20 durch den Kanal 30. Die Strömungsgeschwindigkeit der Suspensionsflüssigkeit 10, die mit einer Spritzenpumpe eingestellt werden kann, beträgt z. B. 300 µm/s. Zuerst erfolgt vorzugsweise eine Aufreihung der Partikel 20 mit dem dielektrischen Aufreihelement 50. Die Trichterelektroden 51, 52 werden beispielsweise mit einer hochfrequenten Wechselspannung (f = 2 MHz, U = 20 Vpp) betrieben, um die Partikel 20 auf einen Strömungspfad 11 in der Mitte des Kanals 30 zu fokussieren. Alternativ kann ein hydrodynamisches Aufreihelement vorgesehen sein, bei dem mit zusätzlichen Hüllströmen die Partikel 20 fokussiert werden.
  • Nach der Aufreihung der Partikel gelangen diese in den Bereich der Elektroden 40. Diese werden beispielsweise alternierend mit einer Wechselspannung und einer Gleichspannung mit einer Taktfrequenz im Bereich von 1 bis 10 Hz angesteuert (Wechselspannung: f = 2.5 MHz, U = 20 Vpp, Gleichspannung U = 50 V, Dauer t = 80 µs). Durch Abgleichung der Spannungs- und Frequenzparameter der hochfrequenten Wechselspannung an die Strömungsgeschwindigkeit und die Einstellung der Gleichspannungsparameter (Impulszeit, Spannung und Taktfrequenz) lassen sich die kleineren Partikel innerhalb von wenigen Sekunden um einige 10 µm aus dem ursprünglichen Strömungspfad 11 in einen benachbarten Strömungspfad 12 (siehe Figur 2) herausziehen, während die größeren Partikel im ursprünglichen Strömungspfad 11 verbleiben.
  • Die auf die Partikel wirkenden Potentiale sind schematisch in Figur 3 illustriert. Zur Elektrophorese wird ein Gleichspannungsfeld erzeugt, das ein quer zum Strömungsquerschnitt abfallendes Potential P1 erzeugt. Partikel erfahren im Potential P1 eine nach außen gerichtete Kraft (ablenkendes Potential, Ablenkrichtung quer zur Strömungsrichtung). Die Hochfrequenzansteuerung der Elektroden generiert einen entgegengesetzten, nach innen gerichteten, fokussierenden Potentialverlauf P2a oder P2b. Die negative Dielektrophorese basiert auf einer Partikelpolarisation, die sich bei den großen Partikeln stärker auswirkt als bei den kleinen Partikeln. Im Hochfrequenzfeld erfahren daher die großen Partikel 21 das Potential P2a und die kleinen Partikel 22 das flachere Potential P2b. Die Überlagerung der beiden Fälle mit dem fokussierenden Potential P1 ergibt die effektiven Potentiale Pa, Pb entsprechend den durchgezogenen Linien. Während das tiefe Potential P2a durch die Elektrophorese kaum verändert wird, ergibt sich für das flache Potential P2b eine Verschiebung des Potentialminimums aus der Kanalmitte nach außen. Für die großen Partikel sind die dielektrophoretischen, fokussierenden Kräfte so groß, dass sie die elektrophoretische Auslenkung jeweils kompensieren, während dies bei den kleinen Partikeln 21 nicht der Fall ist. Entsprechend bilden sich die getrennten Strömungspfade 11, 12 aus. In den Strömungspfaden 11, 12 können verschiedene Strömungsgeschwindigkeiten gegeben sein. Mit einer laminaren Strömung im Kanal ist die Strömungsgeschwindigkeit nahe der Kanalwand beispielsweise geringer als in der Mitte des Kanals. Erfindungsgemäß können Partikel unterschiedlicher Eigenschaften somit in Bereiche mit verschiedenen Strömungsgeschwindigkeiten fokussiert werden, was die Trennschärfe verbessern kann.
  • Analoge Effekte ergeben sich bei Partikeln mit verschiedenen relativen Dielektrizitätskonstanten oder mit verschiedenen Nettoladungen, zum Beispiel Oberflächenladungen.
  • Experimentell wurde die Trennung mit einem Gemisch aus Partikeln 20 gezeigt, die kleinere Partikel 21 mit einem Durchmesser von 1 µm ("Fluospheres"-Sulfatmikrosphären, Molecular Probes) und größere Partikel 22 mit einem Durchmesser von 4.5 µm (Polybeadpolystyren, 17135, Polysciences) umfassen. Als Suspensionsflüssigkeit wurde die Cytoconlösung I (Evotech Technologies GmbH, Hamburg, Deutschland) verwendet. Da die negative Dielektrophorese auf die kleinen Partikel erheblich schwächer wirkt als auf die großen Partikel, können die kleinen Partikel durch die elektrophoretische Kraft aus dem mittleren Strömungspfad 11 herausgezogen werden.
  • Die Elektrodenansteuerung erfolgt beispielsweise nach dem folgenden Schema:
    Elektroden in Figur 2 Phase der Hochfrequenzwechselspannung Potential Gleichspannung
    47 Masse
    48 180° Impuls
    45 Impuls
    46 180° Masse
  • Alternativ kann die Elektrodenansteuerung beispielsweise nach dem folgenden Schema (rotierendes elektrisches Feld) erfolgen:
    Elektroden in Figur 2 Phase der Hochfrequenzwechselspannung Potential Gleichspannung
    47 Masse
    48 90° Impuls
    45 270° Impuls
    46 180° Masse
  • Zur Illustration der erfindungsgemäßen Kombination der Dielektrophorese mit anderen ablenkenden Kräften zeigt Figur 1 schematisch eine Trenneinrichtung 40A (gestrichelt gezeichnet) Die in oder außerhalb der Kanalwand vorgesehene Trenneinrichtung 40A ist zum Beispiel eine Magneteinrichtung zur Ausübung magnetischer Kräfte, eine Lasereinrichtung zur Ausübung optischer Kräfte analog zum Prinzip des Laser-Tweezers oder eine Schallquelle zur Ausübung mechanischer Kräfte z. B. durch Ultraschall.
  • Figur 4 zeigt Merkmale von abgewandelten Ausführungsformen der Erfindung. Abweichend von Figur 1 kann vorgesehen sein, dass auch der Strömungspfad 11 von der Mitte des Kanals 30 nach außen verlagert wird, in dem das Potentialminimum der Dielektrophorese durch entsprechende asymmetrische Ansteuerung der Elektroden 40 verschoben wird. Des weiteren kann vorgesehen sein, dass die Strömungspfade 11, 12 in getrennte Kompartimente 35, 36 des Kanals 30 münden, die durch Kanalwände oder (wie illustriert) durch eine elektrische Feldbarriere voneinander getrennt sind. Die elektrische Feldbarriere wird durch mindestens eine Barriere an der Elektrode 60 erzeugt, die sich in Kanalrichtung erstreckt.
  • Bei der in Figur 5 illustrierten Ausführungsform befinden sich in einem Kanal 30 seitlich an den Kanalwänden 31, 32 und/oder auf der Bodenfläche 33 Elektroden 41, 42 zur Elektrophorese und zentral mindestens eine Elektrode 43 zur Dielektrophorese. Die Elektrode 43 ist in an sich bekannter Weise mit einer elektrisch isolierenden Passivierungsschicht 43a versehen. Die Passivierungsschicht 43a hat zwei Funktionen. Erstens verhindert sie einen Feldverlust des Gleichstromfeldes für die Elektrophorese, zweitens verhindert sie ein permanentes Anlagern und damit ggf. verbundenes Denaturieren von Partikeln oder elektrochemische Reaktionen an den Elektroden. Die Elektroden 41, 42 und 43 sind jeweils mit einer Gleichspannungsquelle und einer Wechselspannungsquelle verbunden.
  • Optional kann der Kanalrand durch poröse Materialien (z. B. Hohlfasern) realisiert werden. Damit ist es möglich, zusätzliche externe chemische Gradienten aufzuprägen (z.B. ein pH-Profil). Des Weiteren können die mindestens eine Elektrode 43 und die Elektroden 41, 42 zur Elektrophorese in Strömungsrichtung versetzt angeordnet sein.
  • Zur Partikeltrennung werden eingespülte Mikroobjekte (zum Beispiel Makromoleküle) durch positive Dielektrophorese zu der zentralen Elektrode 43 gezogen. Simultan oder bei wechselweiser Ansteuerung der Elektroden werden die Mikroobjekte durch Elektrophorese zum Rand des Kanals 30 gezogen. Die Trennung basiert auf den oben beschriebenen Prinzipien einer verschieden starken Auswirkung der Kombination von Dielektrophorese und Elektrophorese auf die verschiedenen Partikel.
  • Alternativ kann mit der Anordnung gemäß Figur 5 die folgende Prozedur realisiert werden. Durch Dielektrophorese werden die Partikel zunächst an der zentralen Elektrode 43 gesammelt. Anschließend wird die laterale Strömung 10 durch den Kanal 30 gestoppt und eine Trennung der Mikroobjekte über Elektrophorese durchgeführt. Nach der elektrophoretischen Trennung in verschiedene Strömungspfade wird die Strömung 10 fortgesetzt. Der wesentliche Vorteil der erfindungsgemäß während der Elektrophorese optional vorgesehen Unterbrechung des Strömungstransports durch den Kanal besteht darin, dass eine erhöhte Trennschärfe der Elektrophorese durch die vorher definierten Startbedingungen erreicht werden kann.
  • Wenn mehrere, ggf. passivierte Elektroden 43.1 bis 43.5 zur Dielektrophorese vorgesehen sind, ergibt sich der in Figur 6 gezeigte Aufbau. Im Kanal 30 befinden sich dreidimensional angeordnet an den Seitenwänden die Elektroden 41, 42 für die Elektrophorese und auf der Bodenfläche die Elektroden 43.1 bis 43.5 zur Dielektrophorese (elektrische Zuführungen nicht dargestellt). Auf der Deckfläche (nicht dargestellt) befinden sich Dielektrophorese-Elektroden in gleicher Zahl und Anordnung wie die Elektroden 43.1 bis 43.5. Die Elektroden 43.1 bis 43.5 werden mit Signalen beaufschlagt, die zwischen benachbarten Elektroden (zum Beispiel 43.1, 43.2) um 180° phasenverschoben sind und für übereinanderliegende Elektroden (zum Beispiel 43.1 und gegenüberliegende Elektrode auf der Deckfläche) phasengleich sind. Die mit der Strömung 10 eingespülten Partikel 20 umfassen zum Beispiel zwei Typen, von denen ein Typ nicht durch Elektrophorese angesprochen wird. Die Partikel 20 ordnen sich dielektrophoretisch (negative Dielektrophorese) zunächst im Zwischenraum der übereinander stehenden Elektroden an (in Aufsicht verdeckt). Erst beim Passieren des elektrophoretischen Feldes werden die Partikel des einen Typs ausgelenkt, während der andere Typ unbeeinflusst bleibt.
  • Bei der Ausführungsform gemäß Figur 7 sind ebenfalls viele, ggf. passivierte Elektroden 43.1 bis 43.11 zur Dielektrophorese zwischen den Elektroden 41, 42 zur Elektrophorese angeordnet. Auf der Deckfläche (nicht dargestellt) befinden sich Dielektrophorese-Elektroden in gleicher Zahl und Anordnung wie die Elektroden 43.1 bis 43.11. Das erste Dielektrophorese-Elektrodenpaar 43.1, 43.2 ist zur Erhöhung der Trennschärfe mit einem dielektrischen Aufreihelement 50 versehen. Im Unterschied zu den oben beschriebenen Ausführungsformen ist in Figur 7 das Gleichspannungs-Elektrophoresefeld (Ablenkrichtung) parallel zur Strömungsrichtung der Flüssigkeit 10 (siehe Pfeil) durch das Kompartiment 30 ausgerichtet.
  • Bei Ansteuerung des Dielektrophorese-Elektroden-Arrays mit 180°-Phasenverschiebung zwischen benachbarten und gegenüberliegenden Elektroden oder mit 90°-Phasenverschiebung ordnen sich die Partikel 20 zwischen den Elektroden an (negative Dielektrophorese). Die Dielektrophorese-Elektroden bilden ein periodisches i. A. asymmetrisches moduliertes Potential, dem das Elektrophoresepotential zwischen den Elektroden 41, 42 überlagert wird. Die asymmetrische Modulation der Dielektrophorese-Felder bedeutet, dass zwischen benachbarten Elektrodenstreifen des Arrays 43.1 bis 43.11 wechselweise höhere oder geringere Feldstärken eingestellt sind. Das Elektrophoresepotential zwischen den Elektroden 41, 42 wird nicht zeitlich konstant gehalten, sondern periodisch oder zufällig geschaltet. Damit lässt sich eine hochempfindliche Auftrennung nach dem Prinzip der sogenannten Brown'schen Ratsche ("Brownian ratchet" oder Rüttelratsche, siehe H. Linke et al. Physikalische Blätter Bd. 56, Nr. 5, 2000, S. 45-47) realisieren. In der Brown'schen Ratsche hängt die Wandergeschwindigkeit von Partikeln durch Brown'sche Bewegung stark von der Partikelgröße ab. Die Trennung erfolgt in verschiedene Strömungsabschnitte in Strömungsrichtung je nach den verschiedenen Wandergeschwindigkeiten der Partikel. Ein besonderer Vorteil dieser Prozedur besteht darin, dass sich die Trennung über mehrere einstellbare Parameter durch die Überlagerung der Brown'schen Bewegung, der Elektrophorese und der Dielektrophorese empfindlich steuern lässt. Diese Ausführungsform der Erfindung ist besonders für die Molekülseparation geeignet (z.B. Trennung von DNS-Molekülen oder DNS-Fragmenten, die in physiologischer Umgebung alle negativ geladen sind).
  • Bei Mischpopulation differierender Ladungen (+/-) sollte der Eingangskanal mit dem Aufreihelement 50 mittig zum Array der Dielektrophorese-Elektroden liegen, damit Objekte unterschiedlicher Ladung in elektrophoretisch in verschiedene Richtungen bewegt werden. In planaren Strukturen lassen sich ebenfalls asymmetrische Potential für positive Dielektrophorese realisieren, z. B. durch Aufbringung asymmetrischer, also relativ zur Kanallängsrichtung zum Beispiel verschieden dicker Passivierungsschichten.
  • Figur 8 illustriert wie die Figur 2 eine Querschnittsansicht eines fluidischen Mikrosystems 100 mit vier Elektroden 45-48. Mit diesen Elektroden wird ein fokussierendes Potential erzeugt, dessen Potentialminimum in der Kanalmitte liegt. Gleichzeitig wird analog zu Figur 3 ein erstes, in x-Richtung wirkendes elektrisches Potential für eine elektrophoretische Feldwirkung und zusätzlich in y-Richtung ein Magnetfeldgradient zur Bildung eines zweiten ablenkenden Potentials erzeugt. Der Magnetfeldgradient wird mit einem magnetfelderzeugenden Element 49 gebildet, das zum Beispiel einen Permanentmagneten oder einen von der Flüssigkeit isolierten, stromdurchflossenen Leiter umfasst. Abweichend von der dargestellten Ausführungsform kann das magnetfelderzeugende Element mit einem Abstand vom Kanal angeordnet sein.
  • Während sich die Partikel in z-Richtung durch den Kanal bewegen, erfahren sie eine Ablenkung in beide x- und y-Raumrichtungen, deren Stärke von den dielektrischen und magnetischen Eigenschaften der zu trennenden Partikel abhängt. Diese Ausführungsform der Erfindung wird bspw. zur Trennung latexumhüllter, superparamagnetischer Partikel mit dem Ziel der Gewinnung von Fraktionen mit hoher Monodispersität angewendet.
  • Die Kurvendarstellung in Figur 9 illustriert die auf das jeweilige Volumen normierte, dielektrophoretische Kraft fdiel, die auf einen Partikel im Wechselfeld wirkt, in Abhängigkeit von der Frequenz des Wechselfeldes. Die Simulationsergebnisse beziehen sich auf Latexbeads mit Durchmessern von 0,5 µm, 1 µm, 2 µm und 5 µm (Kurven von oben) mit einer Leitfähigkeit von 0.7 mS/m und DK = 3.5 in Wasser. Die symbolisch illustrierten Elektroden sind analog zu Figur 1 angeordnet und werden alternierend oder überlagert mit einem Signal beaufschlagt, das Frequenzanteile unterhalb 100 kHz und oberhalb 1 MHz enthält. Die nieder- und höherfrequenten Signalanteile werden beispielsweise mit im zeitlichen quadratischen Mittel gleichen Amplituden, jedoch verschiedenen, in den Bildeinschüben illustrierten Phasenbeziehungen erzeugt. Das höherfrequente Signal fokussiert die Partikel durch negative Dielektrophorese hin zur Kanalmitte. Das niederfrequente Signal hingegen wirkt in Abhängigkeit von der Partikelgröße durch positive oder negative Dielektrophorese, die sich mit der fokussierenden Wirkung des höherfrequenten Signals überlagert. Die kleineren Partikel werden im Ergebnis nach links oben abgelenkt, während die größeren Partikel (z. B. 5 µm) sich auf einer Diagonallinie rechts unten sammeln. Entsprechend gelangen Partikel mit unterschiedlichen Größen in verschiedene Strömungspfade innerhalb der Strömung durch den Kanal.
  • Die in der vorstehenden Beschreibung, den Zeichnungen und Ansprüchen offenbarten Merkmalen der Erfindung können sowohl einzeln als auch in Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.

Claims (33)

  1. Verfahren zur Trennung von Partikeln (20, 21, 22) in einem Kompartiment (30) eines fluidischen Mikrosystems (100), mit den Schritten:
    - Bewegung einer Flüssigkeit (10), in der Partikel (20, 21, 22) suspendiert sind, mit einer vorbestimmten Strömungsrichtung durch das Kompartiment (30), und
    - Erzeugung eines ablenkenden Potentials, in dem mindestens ein Teil der Partikel (20, 21, 22) relativ zur Flüssigkeit in eine Ablenkrichtung bewegt wird,
    gekennzeichnet durch die weiteren Schritte:
    - Erzeugung mindestens eines fokussierenden Potentials, so dass unter der Wirkung von hochfrequenten elektrischen Feldern mindestens ein Teil der Partikel relativ zur Flüssigkeit durch Dielektrophorese entgegengesetzt zur Ablenkrichtung bewegt wird, und
    - Lenkung von Partikeln mit verschiedenen elektrischen, magnetischen oder geometrischen Eigenschaften in verschiedene Strömungsbereiche (11, 12) in der Flüssigkeit.
  2. Verfahren nach Anspruch 1, bei dem die Ablenkrichtung von der Strömungsrichtung abweicht und eine Komponente quer zur Strömungsrichtung aufweist.
  3. Verfahren nach Anspruch 2, bei dem die Ablenkrichtung senkrecht zur Strömungsrichtung hin zu mindestens einer der seitlichen Wänden des Kompartiments verläuft, das ablenkende Potential durch elektrische, magnetische, optische, thermische und/oder mechanische Kräfte erzeugt wird, und die Strömungsbereiche Strömungspfade (11, 12) umfassen, die verschiedenen Potentialminima entsprechen, die für die jeweiligen Partikel durch die Überlagerung der ablenkenden und fokussierenden Potentiale während des Durchtritts durch das Kompartiment im zeitlichen Mittel gebildet werden.
  4. Verfahren nach Anspruch 3, bei dem das ablenkende Potential durch ein Gleichspannungsfeld gebildet wird, unter dessen Wirkung die Partikel durch Elektrophorese zu mindestens einer der seitlichen Wände des Kompartiments (30) gezogen werden.
  5. Verfahren nach Anspruch 4, bei dem die Partikel biologische Zellen umfassen, von denen zumindest ein Teil unter der Wirkung des Gleichspannungsfeldes lysiert werden.
  6. Verfahren nach Anspruch 3, bei dem die Flüssigkeit (10) eine Suspension biologischen Materials umfasst, das biologische Zellen und Zellbestandteile enthält, wobei unter der Wirkung des Gleichspannungsfeldes eine Trennung der Zellen von den Zellbestandteilen erfolgt.
  7. Verfahren nach Anspruch 4, bei dem an Wänden (31-34) des Kompartiments (30) Elektroden (40) angeordnet sind, die mit elektrischen Feldern zur Erzeugung der Dielektrophorese und der Elektrophorese beaufschlagt werden.
  8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem die ablenkenden und fokussierenden Potentiale zeitlich abwechselnd in mindestens einem Abschnitt des Kompartiments (30) oder geometrisch abwechselnd in verschiedenen, aufeinander folgenden Abschnitten des Kompartiments (30) erzeugt werden.
  9. Verfahren nach den vorhergehenden Ansprüchen 5 und 6, bei dem die elektrischen Felder hochfrequente Wechselspannungsanteile und Gleichspannungsanteile umfassen, die gleichzeitig oder alternierend erzeugt werden.
  10. Verfahren nach Anspruch 7, bei dem mit einem Elektroden-Array (43.1 bis 43.11) zwischen den zwei Elektroden (41, 42) eine Vielzahl fokussierender Potentiale erzeugt werden, wobei die Partikel je nach ihren elektrischen oder geometrischen Eigenschaften auf die verschiedenen Strömungspfade (11, 12) gelenkt werden.
  11. Verfahren nach mindestens einem der vorhergehenden Ansprüche 2 bis 9, bei dem die Partikel (20, 21, 22) auf mindestens zwei getrennte Strömungspfade (11, 12) gelenkt werden.
  12. Verfahren nach Anspruch 11, bei dem die mindestens zwei Strömungspfade (11, 12) in weitere, getrennte Kompartimente (35, 36) des Mikrosystems (100) münden.
  13. Verfahren nach Anspruch 12, bei dem die mindestens zwei Strömungspfade (11, 12) in getrennte Kompartimente (35, 36) des Mikrosystems (100) münden, die durch Kompartimentwände oder elektrische Barrieren (60) getrennt sind.
  14. Verfahren nach Anspruch 1, bei dem die Ablenkrichtung parallel zur Strömungsrichtung verläuft und mehrere fokussierende Potentiale erzeugt werden, die parallel zur Ablenkrichtung asymmetrisch moduliert sind und in denen die Partikel das ablenkende Potential verschieden schnell durchlaufen.
  15. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem die Partikel (20, 21, 22) vor den Elektroden an einem dielektrophoretischen oder hydrodynamischen Aufreihelement (50) vorbeiströmen.
  16. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Kanal (30) ein pH-Gradient erzeugt wird.
  17. Verfahren nach Anspruch 16, bei dem der pH-Gradient durch elektrische Gleichspannungsfelder erzeugt wird, die zur elektrophoretischen Trennung der Partikel vorgesehen sind.
  18. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem nach der Lenkung der Partikel auf die verschiedenen Strömungspfade (11, 12) eine Detektion der Partikel erfolgt.
  19. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem das ablenkende und das fokussierende Potential durch mehrere überlagerte Wechselspannungen mit verschiedenen Frequenzen gebildet werden.
  20. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem mindestens zwei ablenkende Potentiale mit verschiedenen Ablenkrichtungen erzeugt werden.
  21. Fluidisches Mikrosystem, mit:
    - mindestens einem Kompartiment (30), das von einer Flüssigkeit mit Partikeln (20, 21, 22) in einer vorbestimmten Strömungsrichtung durchströmt wird, und
    - einer ersten Trenneinrichtung zur Erzeugung eines ablenkenden Potentials, in dem die Partikel (20, 21, 22) in eine Ablenkrichtung bewegt werden,
    gekennzeichnet durch
    - eine zweite Trenneinrichtung mit Elektroden (40) zur Erzeugung mindestens eines fokussierenden Potentials, so dass die Partikel durch Dielektrophorese entgegengesetzt zur Ablenkrichtung bewegt werden.
  22. Mikrosystem nach Anspruch 21, bei dem die Ablenkrichtung von der Strömungsrichtung abweicht.
  23. Mikrosystem nach Anspruch 21 oder 22, bei dem die erste Trenneinrichtung zur Erzeugung elektrischer, magnetischer, optischer und/oder mechanischer Kräfte eingerichtet ist.
  24. Mikrosystem nach Anspruch 23, bei dem die erste Trenneinrichtung Elektrophorese-Elektroden, eine Magnetfeldeinrichtung, einen Laser oder eine Ultraschallquelle umfasst.
  25. Mikrosystem nach mindestens einem der vorhergehenden Ansprüche 21 bis 24, bei dem die ersten und zweiten Trenneinrichtungen getrennt in verschiedenen, aufeinander folgenden Abschnitten des Kompartiments (30) angeordnet sind.
  26. Mikrosystem nach Anspruch 21, 23 oder 25, bei dem die ersten und zweiten Trenneinrichtungen eine gemeinsame Ablenkeinheit bilden, die die Elektroden (40) umfasst.
  27. Mikrosystem nach Anspruch 26, bei dem die Ablenkeinheit zeitlich abwechselnd mit Wechsel- und Gleichspannungen ansteuerbar ist.
  28. Mikrosystem nach Anspruch 24, bei dem zwischen den Elektrophorese-Elektroden (41, 42) ein Elektroden-Array (43.1 bis 43.11) aus Elektrodenstreifen angeordnet ist, die einzeln mit hochfrequenten Wechselspannungen ansteuerbar sind.
  29. Mikrosystem nach Anspruch 21, bei dem die Ablenkrichtung parallel zur Strömungsrichtung verläuft.
  30. Mikrosystem nach mindestens einem der vorhergehenden Ansprüche 21 bis 29, bei dem die Elektroden (40) an Innenseiten der Wände des Kompartiments (30) angeordnet sind.
  31. Mikrosystem nach mindestens einem der vorhergehenden Ansprüche 21 bis 30, bei dem das Kompartiment (30) in getrennte Kompartimente (35, 36) des Mikrosystems (100) mündet.
  32. Mikrosystem nach Anspruch 31, bei dem die Kompartimente (35, 36) des Mikrosystems (100) durch Kompartimentwände oder elektrische Barrieren (60) getrennt sind.
  33. Mikrosystem nach mindestens einem der vorhergehenden Ansprüche 21 bis 32, bei dem im Kompartiment (30) vor den Trenneinrichtungen ein dielektrophoretisches oder hydrodynamisches Aufreihelement (50) angeordnet ist.
EP04721159A 2003-03-17 2004-03-17 Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung Expired - Lifetime EP1603678B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10311716A DE10311716A1 (de) 2003-03-17 2003-03-17 Verfahren und Vorrichtung zur Trennung von Partikeln in einer Flüssigkeitsströmung
DE10311716 2003-03-17
PCT/EP2004/002774 WO2004082840A1 (de) 2003-03-17 2004-03-17 Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung

Publications (2)

Publication Number Publication Date
EP1603678A1 EP1603678A1 (de) 2005-12-14
EP1603678B1 true EP1603678B1 (de) 2006-07-19

Family

ID=32980607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04721159A Expired - Lifetime EP1603678B1 (de) 2003-03-17 2004-03-17 Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung

Country Status (5)

Country Link
US (2) US8262883B2 (de)
EP (1) EP1603678B1 (de)
AT (1) ATE333323T1 (de)
DE (2) DE10311716A1 (de)
WO (1) WO2004082840A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2524646C (en) 2003-05-08 2012-02-21 The University Court Of The University Of St Andrews Fractionation of particles
US7704362B2 (en) * 2005-03-04 2010-04-27 Wisconsin Alumni Research Foundation Apparatus for transport and analysis of particles using dielectrophoresis
DE102005012128A1 (de) * 2005-03-16 2006-09-21 Evotec Technologies Gmbh Mikrofluidisches System und zugehöriges Ansteuerverfahren
DE102005046657B4 (de) * 2005-09-29 2008-10-09 Bruker Daltonik Gmbh Stationäres Trennsystem für Gemischkomponenten
US20070105206A1 (en) * 2005-10-19 2007-05-10 Chang Lu Fluidic device
CN100457239C (zh) * 2005-12-30 2009-02-04 财团法人工业技术研究院 多样品微流体介电泳分离装置
GB0618605D0 (en) 2006-09-21 2006-11-01 Univ St Andrews Optical sorting
GB0618606D0 (en) 2006-09-21 2006-11-01 Univ St Andrews Optical sorting
DE102006052925A1 (de) * 2006-11-09 2008-05-15 Evotec Technologies Gmbh Feldkäfig und zugehöriges Betriebsverfahren
US8698031B2 (en) * 2007-04-17 2014-04-15 Dynamic Connections, Llc Separation and manipulation of a chiral object
US7935906B2 (en) * 2007-04-17 2011-05-03 Dynamic Connections, Llc Separation and manipulation of a chiral object
EP2027929A3 (de) * 2007-08-20 2013-03-27 Olympus Corporation Zelltrennvorrichtung und Zelltrennverfahren
US8740600B1 (en) * 2007-10-09 2014-06-03 Isopur Technologies, Inc. Apparatus for agglomerating particles in a non-conductive liquid
KR101338349B1 (ko) * 2007-11-30 2013-12-06 연세대학교 산학협력단 미세입자 분리 장치 및 이의 제작 방법
JP2011516867A (ja) * 2008-04-03 2011-05-26 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア 細胞、小胞、ナノ粒子およびバイオマーカーを分離および単離するためのエキソビボの多次元システム
KR101023040B1 (ko) * 2008-11-13 2011-03-24 한국항공대학교산학협력단 고속 입자분리 장치 및 그 방법
DE102011050254A1 (de) * 2011-05-10 2012-11-15 Technische Universität Dortmund Verfahren zur Separation polarisierbarer Biopartikel
CA2845713A1 (en) * 2011-08-19 2013-02-28 David Martin Morrow Gradient array dielectrophoresis separation (grads) with concomitant light therapy
EP2754709A4 (de) * 2011-09-07 2015-01-21 Panasonic Healthcare Co Ltd Messzelle für mikroorganismenmengen und mikroorganismenmengenmessvorrichtung damit
JP5924276B2 (ja) * 2012-04-03 2016-05-25 ソニー株式会社 流路デバイス、粒子分取装置及び粒子分取方法
CA2870160C (en) 2012-04-16 2021-08-24 Biological Dynamics, Inc. Nucleic acid sample preparation
US8932815B2 (en) 2012-04-16 2015-01-13 Biological Dynamics, Inc. Nucleic acid sample preparation
US9192944B2 (en) * 2012-09-30 2015-11-24 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Methods, systems and apparatus for size-based particle separation
US9731293B2 (en) * 2012-10-03 2017-08-15 The United States Of America, As Represented By The Secretary Of The Navy Paired laser and electrokinetic separation, manipulation, and analysis device
US20160025610A1 (en) * 2013-03-26 2016-01-28 Sony Corporation Measurement apparatus and measurement method
KR101501983B1 (ko) * 2013-06-05 2015-03-13 한국항공대학교산학협력단 음의 유전 영동력 기반의 고효율 다단 세포 분리장치
US10954546B2 (en) * 2013-09-24 2021-03-23 Ait Austrian Institute Of Technology Gmbh Method for pathogen isolation
US10928404B2 (en) 2014-02-26 2021-02-23 The Brigham And Women's Hospital, Inc. System and method for cell levitation and monitoring
US20150273231A1 (en) * 2014-03-31 2015-10-01 Electronics And Telecommunications Research Institute Plasma system
WO2015157217A1 (en) 2014-04-08 2015-10-15 Biological Dynamics, Inc. Improved devices for separation of biological materials
US10657869B2 (en) 2014-09-10 2020-05-19 E Ink Corporation Methods for driving color electrophoretic displays
EP3191892B1 (de) 2014-09-10 2020-01-01 E Ink Corporation Gefärbte elektrophoretische anzeigen
US20160327549A1 (en) * 2015-05-04 2016-11-10 Biological Dynamics, Inc. Particle based immunoassay with alternating current electrokinetics
AU2017237187B2 (en) 2016-03-24 2022-12-08 Biological Dynamics, Inc. Disposable fluidic cartridge and components
US10629833B2 (en) * 2016-11-21 2020-04-21 Northwestern University Flashing ratchets
CN106323727B (zh) * 2016-11-21 2023-07-14 大连海事大学 一种基于微通道内液体拉力效应的颗粒分离装置及方法
US10596567B2 (en) * 2017-03-27 2020-03-24 International Business Machines Corporation Microfluidic ratchets for displacing particles
IL270445B1 (en) 2017-05-08 2024-02-01 Biological dynamics inc Methods and systems for processing information on tested material
CN107262288B (zh) * 2017-07-27 2023-03-21 重庆科技学院 带有金属颗粒的静电式净化装置
CN107442285B (zh) * 2017-07-27 2023-03-24 重庆科技学院 静电式滤清装置
EP3727693A4 (de) 2017-12-19 2021-08-25 Biological Dynamics, Inc. Verfahren und vorrichtungen zum nachweis mehrerer analyten aus einer biologischen probe
WO2019195196A1 (en) 2018-04-02 2019-10-10 Biological Dynamics, Inc. Dielectric materials
US11454583B2 (en) 2019-12-27 2022-09-27 Imec Vzw Field-array free flow fractionation
EP3842146A1 (de) * 2019-12-27 2021-06-30 Imec VZW Verfahren zur kontinuierlichen trennung von bestandteilen aus einer probe
US11846863B2 (en) 2020-09-15 2023-12-19 E Ink Corporation Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
AU2021345023B2 (en) 2020-09-15 2023-12-21 E Ink Corporation Four particle electrophoretic medium providing fast, high-contrast optical state switching
WO2022060700A1 (en) 2020-09-15 2022-03-24 E Ink Corporation Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE339122B (de) * 1968-05-10 1971-09-27 Lkb Produkter Ab
DE4127405C2 (de) 1991-08-19 1996-02-29 Fraunhofer Ges Forschung Verfahren zur Trennung von Gemischen mikroskopisch kleiner, in einer Flüssigkeit oder einem Gel suspendierter dielektrischer Teilchen und Vorrichtung zur Durchführung des Verfahrens
DE19500683B4 (de) * 1994-12-10 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Trapping von Molekülen und Mikropartikeln in Feldkäfigen
DE19540683A1 (de) 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
US5993630A (en) * 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
DK0925494T3 (da) 1996-09-04 2002-07-01 Scandinavian Micro Biodevices Mikrostrømningssystem til partikelseparation og analyse
EP1089824B1 (de) * 1998-06-26 2003-11-05 Evotec OAI AG Elektrodenanordnung zur dielektrophoretischen partikelablenkung
JP2000061472A (ja) * 1998-08-18 2000-02-29 Kurita Water Ind Ltd 水中微粒子の除去方法および装置
DE19859459A1 (de) 1998-12-22 2000-06-29 Evotec Biosystems Ag Mikrosysteme zur Zellpermeation und Zellfusion
AU4773400A (en) * 1999-05-28 2000-12-18 Leisamon (Israel), Ltd. Methods and apparatus for nonlinear mobility electrophoresis separation
DE19952322C2 (de) 1999-10-29 2002-06-13 Evotec Ag Verfahren und Vorrichtung zur Partikeltrennung
DE60130052T2 (de) * 2000-04-13 2008-05-15 Wako Pure Chemical Industries, Ltd. Elektroden-Bau für dielektrophoretische Anordnung und dielektrophoretische Trennung
CA2413634A1 (en) * 2000-06-14 2001-12-20 Peter R. C. Gascoyne Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
US20020121443A1 (en) * 2000-11-13 2002-09-05 Genoptix Methods for the combined electrical and optical identification, characterization and/or sorting of particles
DE10136275C1 (de) 2001-07-25 2002-12-12 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Probentrennung
US6783647B2 (en) * 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
US7156970B2 (en) * 2003-06-12 2007-01-02 Palo Alto Research Center Incorporated Distributed multi-segmented reconfigurable traveling wave grids for separation of proteins in gel electrophoresis
WO2007102839A2 (en) * 2005-10-27 2007-09-13 Applera Corporation Optoelectronic separation of biomolecules

Also Published As

Publication number Publication date
DE502004000991D1 (de) 2006-08-31
DE10311716A1 (de) 2004-10-14
EP1603678A1 (de) 2005-12-14
US8262883B2 (en) 2012-09-11
ATE333323T1 (de) 2006-08-15
US9149813B2 (en) 2015-10-06
US20060289341A1 (en) 2006-12-28
WO2004082840A1 (de) 2004-09-30
US20120305398A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP1603678B1 (de) Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung
EP1089824B1 (de) Elektrodenanordnung zur dielektrophoretischen partikelablenkung
EP1141264B1 (de) Mikrosysteme zur zellpermeation und zellfusion
EP1069955B1 (de) Verfahren und vorrichtung zur manipulierung von mikropartikeln in fluidströmungen
EP0718038B1 (de) Vorrichtung zur Trennung von Gemischen mikroskopisch kleiner, in einer Flüssigkeit oder einem Gel suspendierter dielektrischer Teilchen
DE19544127C1 (de) Verfahren und Vorrichtung zur Erzeugung von Resonanzerscheinungen in Partikelsuspensionen und ihre Verwendung
DE60014391T2 (de) Beeinflussung von partikeln in flüssigen medien
EP1286774B1 (de) Vorrichtung und verfahren zur manipulation kleiner materiemengen
DE60019761T2 (de) Apparat und verfahren für dielektrophoresis
WO2002082053A2 (de) Verfahren und vorrichtung zur manipulation kleiner flüssigkeitsmengen und/oder darin enthaltener teilchen
EP1140343B1 (de) Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen
EP1335198A1 (de) Mikrofluidisches Bauelement und Verfahren für die Sortierung von Partikeln in einem Fluid
EP1089823A1 (de) Elektrodenanordnungen zur erzeugung funktioneller feldbarrieren in mikrosystemen
WO2007039209A1 (de) Verfahren und vorrichtung zur manipulation von sedimentierenden partikeln
DE102009028493A1 (de) Mikrofluidische Zelle
EP1525449A1 (de) Impedanzmessung in einem fluidischen mikrosystem
DE19860118C1 (de) Elektrodenanordnungen zur Erzeugung funktioneller Feldbarrieren in Mikrosystemen
DE102009028496A1 (de) Mikrofluidische Zelle
EP1744831B8 (de) Verfahren und vorrichtung zur sammlung von suspendierten partikeln
EP1858645A1 (de) Mikrofluidisches system und zugehöriges ansteuerverfahren
DE19500683B4 (de) Trapping von Molekülen und Mikropartikeln in Feldkäfigen
DE19860117A1 (de) Elektrodenanordnung zur dielektrophoretischen Partikelablenkung
EP1279953A2 (de) Verfahren und Vorrichtung zur Probentrennung
DE10117771A1 (de) Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen und/oder darin enthaltener Teilchen
DE102018210993A1 (de) Vorrichtung zum simultanen dielektrophoretischen Einfang von mehreren Teilchen verschiedener Art

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004000991

Country of ref document: DE

Date of ref document: 20060831

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061030

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVOTEC TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: EVOTEC TECHNOLOGIES GMBH

Free format text: EVOTEC OAI AG#SCHNACKENBURGALLEE 114#22525 HAMBURG (DE) -TRANSFER TO- EVOTEC TECHNOLOGIES GMBH#MEROWINGERPLATZ 1A#40225 DUESSELDORF (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061219

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVOTEC TECHNOLOGIES GMBH

Effective date: 20061108

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070420

BERE Be: lapsed

Owner name: EVOTEC TECHNOLOGIES GMBH

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100527

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100525

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100525

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004000991

Country of ref document: DE

Effective date: 20111001