EP1590832B1 - Storage cell, storage cell arrangement, and method for the production of a storage cell - Google Patents

Storage cell, storage cell arrangement, and method for the production of a storage cell Download PDF

Info

Publication number
EP1590832B1
EP1590832B1 EP04707864A EP04707864A EP1590832B1 EP 1590832 B1 EP1590832 B1 EP 1590832B1 EP 04707864 A EP04707864 A EP 04707864A EP 04707864 A EP04707864 A EP 04707864A EP 1590832 B1 EP1590832 B1 EP 1590832B1
Authority
EP
European Patent Office
Prior art keywords
region
substrate
trench
storage cell
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04707864A
Other languages
German (de)
French (fr)
Other versions
EP1590832A2 (en
Inventor
Franz Schuler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1590832A2 publication Critical patent/EP1590832A2/en
Application granted granted Critical
Publication of EP1590832B1 publication Critical patent/EP1590832B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the invention relates to a memory cell, a memory cell arrangement and a method for producing a memory cell.
  • CHE Choannel Hot Electron
  • CHE Choannel Hot Electron
  • FIG.1 A floating gate memory cell 100 known in the art is described.
  • the floating gate memory cell 100 is integrated in a p-doped silicon substrate 101.
  • an n-type well 102 is formed in the p-type silicon substrate 101.
  • a p-doped well 103 is formed in the n-doped well 102.
  • a first source / drain region 104 is formed as an n + -doped region.
  • a second source / drain region 105 is formed in a second surface region of the p-doped well 103 as an n + -doped region.
  • a channel region 106 is formed in the surface area of the p-type well 103 between the source / drain regions 104, 105.
  • a floating gate region 108 arranged above the channel region 106 is electrically insulated from the channel region 106, and a control gate 109, which is arranged above the floating gate region 108, is separated from the floating gate. Section 108 electrically isolated.
  • the floating gate memory cell 100 of adjacent memory cells (not shown in FIG Fig.1 ) is electrically decoupled from a memory cell array.
  • a predeterminable electrical potential can be applied to the source / drain regions 104, 105 and to the control gate 109 by means of contacting elements 111.
  • a pn junction 112 is formed.
  • the in Fig.1 shown floating gate memory cell 100 has the disadvantage that the entire pn junction 112 must be biased over a large lateral width. This leads to a high energy consumption during programming, erasing and reading of the memory cell 100, which is disadvantageous in particular for low-power applications.
  • test arrangement 200 which is known for investigations of the reliability of components.
  • the test arrangement 200 serves to improve the quality or reliability of a gate-insulating Check layer in a previously formed field effect transistor.
  • the test arrangement 200 is integrated on and in a p-doped silicon substrate 201.
  • a field-effect transistor 202 is integrated in the test arrangement 200.
  • This includes a first source / drain region 203 formed in a first surface region of the p-doped silicon substrate 201 and a second source / drain region 204 formed in a second surface region of the p-doped silicon substrate 201.
  • Both source / Drain regions 203, 204 are n + doped regions. Between the two source / drain regions 203, 204, a channel region 208 is formed.
  • a gate region 206 is formed, which is electrically separated from the channel region 208 by means of a gate-insulating layer, which is part of an electrically insulating region 205. Furthermore, contacting elements 207 are provided for applying defined electrical potentials to the source / drain regions 203, 204 or to the gate region 206. On the side of the field-effect transistor 202, an additional n + -doped region 209 is provided in another surface region of the silicon substrate 201, which region can be electrically driven by means of another contacting element 210.
  • Fig.2 can be indicated schematically by means of applying 0V or a positive electrical potential to the source / drain regions 203, 204 and a positive electric potential to the gate region 206 which is stronger in comparison with this positive potential and a negative electrical potential to the n + -doped region 209 electrical charge carriers, namely electrons, from the n + -doped region 209 via the p-doped silicon substrate 201 and the channel region 208 through the gate insulating layer until possibly injected into the gate region 206.
  • the invention is based in particular on the problem of providing a memory cell and a memory cell arrangement in which programming with reduced energy requirement is made possible.
  • the memory cell according to the invention contains a substrate which contains charge carriers of a first conductivity type. Furthermore, the memory cell includes a first source / drain region in a first surface region of the substrate and a second source / drain region in a second surface region of the substrate. A channel region is formed in a surface region of the substrate between the first and second source / drain regions. Further, a charge storage region is formed over the channel region and a control gate is formed over the charge storage region, which control gate is electrically isolated from the charge storage region.
  • a trench structure is formed, comprising charge carrier material having carriers of a second conductivity type and an isolation region between the substrate and at least a portion of the charge generating material.
  • the first conductivity type is different from the second conductivity type, so that between the substrate and the charge-carrying material of the trench structure, a diode junction, when using a semiconductor material as a charge-carrier material depending on the doping a pn junction or np junction, when used For example, a metal such as tungsten, a Schottky diode is formed.
  • the memory cell is set up in such a way that, by applying predeterminable electrical potentials to the memory cell, electrical charge carriers from the charge carrier-supplying material of the trench structure can be introduced into the charge storage region.
  • the memory cell arrangement according to the invention contains a plurality of memory cells integrated in the substrate with the features mentioned above.
  • a first source / drain region is formed in a first surface region of a substrate containing charge carriers of a first conductivity type and a second source / drain region in a second surface region of the substrate. Further, a channel region is formed in the surface region of the substrate between the first and second source / drain regions. A charge storage area is formed over the channel area. A control gate is formed over the charge storage region, which is electrically isolated from the charge storage region.
  • a trench structure arranged in the substrate is formed, which has charge-generating material with charge carriers of a second conductivity type and an isolation region between the substrate and at least part of the charge-generating material.
  • the first conductivity type is set differently from the second conductivity type, so that a diode junction is formed between the substrate and the charge carrier-supplying material of the trench structure.
  • the memory cell is furthermore set up in such a way that, by applying predeterminable electrical potentials to the memory cell, electrical charge carriers from the charge carrier-supplying material of the trench structure can be introduced into the charge storage area.
  • a basic idea of the invention is to be seen in that in an integrated memory cell, a trench with increased charge carrier concentration as a supplier of charge carriers for injecting into a charge storage region of the memory cell.
  • the injection can be done by applying presettable electrical potentials to the terminals of the memory cell, in particular to the trench structure and / or the substrate layer and the control gate.
  • the memory cell according to the invention can be implemented in a very space-saving manner since the shallow STI isolation for decoupling adjacent memory cells of a memory cell arrangement can be eroded and can be eroded with an electrically conductive material (for example in n + -doped) Polysilicon) can be filled.
  • the trench structure formed thereby can be used, on the one hand, as insulation for adjacent components in the substrate and, on the other hand, as a charge carrier emitter sufficiently deep in a substrate, without increasing the space requirement.
  • the small space requirement of the memory cell according to the invention represents an important advantage.
  • the memory cell according to the invention is designed for injecting hot electrical charge carriers (electrons or holes) from the trench structure via a substrate into the charged-material storage layer.
  • the emitter for emitting electrical charge carriers is embedded in a trench with at least partial sidewall insulation.
  • the memory cell according to the invention can be realized as an n-channel memory cell or as a p-channel memory cell.
  • the type of conduction (in the case of a p-type or n-type semiconductor material) of charge carriers (dopant atoms in the case of a semiconductor material) is different in the substrate on the one hand and in the trench structure of the trench structure on the other hand. complementary to one another (for example, p-type substrate and n-type or metallic carrier material of the trench structure or n-type substrate and p-type carrier of the trench structure).
  • a diode junction pn-junction or Schottky junction
  • the memory cell according to the invention has the advantage that a uniform charge carrier injection into a charge storage layer is made possible, which leads to a lower degradation of the charge storage layer.
  • a local injection is made possible directly in a neighboring area of a memory cell, since the current paths of the charge carriers in the substrate can be predetermined by applying suitable potentials to the terminals of the memory cell.
  • the local injection of charge carriers in a memory cell leads to a low energy requirement and the ability to address individual cells.
  • the emitter of the electrical charge carriers is embedded in a trench, resulting in a small footprint.
  • the trench structure preferably extends deeper into the substrate than the first and second source / drain regions. This ensures that electrical charge carriers can be introduced very homogeneously into the charge storage layer. As a result, the service life of the memory cell, in particular the charge storage layer, is increased.
  • the vertical depth of the trench structure must not exceed the depth of the well region in the substrate.
  • the trench structure preferably extends in a substantially vertical direction to the surface of the substrate.
  • the trench structure may be formed laterally of at least one of the source / drain regions and outside the channel region.
  • the memory cell according to the invention may comprise two (or more) trench structures in the substrate, one of which is arranged laterally of the first source / drain region and outside the channel region and the other laterally of the second source / drain region and outside Channel area is arranged.
  • This configuration is symmetrical, giving a particularly homogeneous. Injecting of electric charge carriers in the charge storage layer is made possible.
  • the memory cell can be electrically decoupled from both sides of possibly arranged in adjacent areas of the substrate components to avoid unwanted electrical interaction between such components and the memory cell.
  • other integrations are also conceivable (e.g., NAND architectures)
  • the trench structure can have an electrically insulating jacket region on at least part of the side wall of the trench and an electrically conductive core region filled in the trench such that electrical charge carriers can emerge from the trench structure only from those regions into which the core region of a jacket is free with the cladding region, or of such regions in which the cladding region has a sufficiently small thickness to allow a tunneling current of charge carriers from the charge carrier material through the cladding region into the substrate.
  • the trench structure may be fabricated by first forming a trench in the substrate. Thereafter, e.g. formed in a deposition method or by thermal oxidation, an insulating layer on the side wall of the trench and the bottom thereof. Thereafter, for example, with a unisotropic etching step (e.g., by reactive ion etching (RIE)), the insulating layer is at least partially removed from the bottom of the trench and / or its sidewall at the bottom. Subsequently, the trench is filled with the carrier-emitting material, whereby a diode junction is formed in the contact region. Then, starting from the bottom region of the trench, charge carriers can be introduced from the trench structure into the substrate. For example, in-situ doped polysilicon material or a metal is filled into the cavity introduced in the trench, thereby forming the trench structure.
  • RIE reactive ion etching
  • a partial region of the charge carrier-supplying material of the trench structure directly adjoins material of the substrate.
  • insulation material typically less than 2 nm to remain or be formed or introduced between the substrate and the charge-supplying material of the trench structure. In this case, upon application of suitable electrical potentials to the trench structure and the control gate, electrical charge carriers can tunnel through the thin electrically insulating layer.
  • the charge storage region may be a floating gate.
  • a trained as a floating gate Charge storage region polysilicon have.
  • a gate insulating layer for electrically insulating the channel region from the floating gate is provided between the substrate and the floating gate.
  • the charge storage region may be an electrically insulating charge storage region.
  • a silicon oxide-silicon nitride-silicon oxide layer sequence O layer sequence
  • the silicon nitride layer may be replaced by another material such as alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), lanthana (LaO 2 ), hafnia (HfO 2 ), and / or zirconia (ZrO 2 ).
  • Such an electrically insulating charge storage region is also referred to as a charge trapping layer.
  • electrical charge carriers are injected into the silicon nitride layer of the ONO layer sequence, where they are permanently stored, in particular, in imperfections.
  • the substrate may have a well region that has the charge carriers, in particular doping atoms, of the first conductivity type, and may have a charge carrier, in particular dopant atoms, of the region having the second conductivity type, wherein the components of the storage cell are formed in the well region.
  • the substrate of the memory cell of the present invention it is not necessary to use a homogeneous substrate become. It is possible, for example, to form an n-doped well region in a p-doped substrate and to form the memory cell according to the invention therein. Also, a multiple well structure of vividly interleaved well regions of different conductivity types is possible (eg, an n-well in a p-substrate and a p-well in the n-well).
  • the memory cell can have a plurality of spatially separated control gates which can be controlled separately, such that by applying predeterminable electrical potentials to at least one selected one of the control gates, electrical charge carriers can be introduced from the trench structure into an area of the charge storage area adjacent to the at least one selected control gate.
  • control gates which can be controlled separately, such that by applying predeterminable electrical potentials to at least one selected one of the control gates, electrical charge carriers can be introduced from the trench structure into an area of the charge storage area adjacent to the at least one selected control gate.
  • a plurality of field-effect transistors in the memory cell according to the invention can illustratively be formed next to one another in the substrate.
  • Each of the transistors is assigned its own control gate.
  • a common charge storage layer can be provided for all the field-effect transistors; alternatively, each transistor can have its own charge storage layer.
  • a memory cell of the invention may comprise only one field effect transistor, in the charge storage area in each of two spatially separated sections charge carriers can be introduced, each of the sections may be associated with a separately controllable control gate.
  • information of one bit may be stored in each of the sections, so that a plurality of bits can be stored in a field effect transistor.
  • the memory cell according to the invention can be set up such that several bits of information can be stored in the memory cell.
  • n bit information can be stored in the charge storage layer using n control gates.
  • Such a multi-bit memory cell may be programmed, for example, as follows. First of all, by means of the inventive injection of hot charge carriers, all information can be deleted from the charge storage layer or the charge storage layers of the at least one field-effect transistor, which clearly corresponds to resetting the memory contents. This can be done, for example, by the fact that hot electrons can be introduced into the entire charge storage layer. Subsequently, each portion of the charge storage layer associated with a respective control gate may be fowled, for example, by Fowler-Nordheim tunneling, i. with particularly good spatial resolution and thus limited to a specific selected area of the charge storage layer, be programmed separately. Thus, the memory cell of the invention is set up as a high-density storage medium.
  • the charge carriers of the first conductivity type and / or the charge carriers of the second conductivity type can be doping atoms.
  • This refinement relates in particular to realizations of the memory cell using a semiconductor material for the substrate and / or the charge-supplying material.
  • the memory cell arrangement may be designed such that different memory cells are electrically decoupled from one another by means of the electrically insulating jacket regions.
  • This refinement corresponds to the realization of the trench structure using a clearly hollowed-out STI structure which, apart from its isolation function, additionally fulfills the function of a charge carrier feed structure for injecting electrical charge carriers into the substrate.
  • the trench structure may be formed by forming at least one trench in the substrate, forming an electrically insulating cladding region at least on at least a part of the surface of the at least one trench, and forming an electrically conductive core region in the at least one trench.
  • first a trench in the substrate are introduced and subsequently formed an electrically insulating jacket area. This can be done, for example, by generating an electrically insulating layer by means of thermal oxidation of the side wall of the trench.
  • charge carrier-supplying material for example doped polysilicon, can be introduced into the obtained arrangement, whereby the trench structure is formed.
  • the trench may be filled with electrically insulating material and partially removed from the trench using a lithography and an etching process.
  • the trench structure can thus be formed by forming at least one trench in the substrate and filling the trench with electrically insulating material. A part of the electrically insulating material is removed from the trench, whereby the electrically insulating cladding region is formed. An electrically conductive core region is formed in the at least one trench.
  • FIG. 3 a memory cell 300 according to a first embodiment of the invention described.
  • the memory cell 300 is formed on and in a p-doped silicon substrate 301.
  • a first source / drain region 302 is formed as an n + -doped region.
  • a second source / drain region 303 is formed as an n + -doped region.
  • a channel region 304 of the floating gate arrangement 300 is formed in the surface region between the first and second source / drain regions 302, 303.
  • a first trench structure 305 is formed, which comprises a first n + -doped polysilicon core 307 and a first silicon oxide partially formed around it. Sheath 308 contains.
  • a second trench structure 306 is formed in the substrate 301, laterally of the second source / drain region 303 and outside of the channel region 304. This includes a second n + -doped polysilicon core 309 and second silicon oxide cladding 310 surrounding the core 309.
  • an electrical insulation region 311 made of silicon oxide material the channel region 304 is electrically separated from a floating gate 312 made of polysilicon material.
  • the control gate 313 formed over the floating gate 312 is electrically isolated from the floating gate 312.
  • Contacting elements 314 are realized as vias and make it possible to provide the trench structures 305, 306 with a predeterminable electrical potential.
  • a first pn junction 315 that is, a first diode junction is provided.
  • a second pn junction 316 is realized between the second n + -doped polysilicon core 309 and the p-doped silicon substrate 301.
  • the trench structures 305, 306 have due to the Siliziumoxid-coats 308, 310, an electrical insulation of in Figure 3 shown memory cell of possibly formed in adjacent portions of the substrate 301 other components, such as other memory cells on.
  • a p-substrate a p-substrate
  • n-substrate reverse doping for substrate, wells, trench filling, source / drain
  • a metallic filling for example of tungsten material, can also be used ,
  • Figure 9 describes how electrical charge carriers can be introduced into the n + -type floating gate 312 made of polysilicon as a charge storage region, that is, how information can be programmed into the storage cell 300.
  • the first and second n + -doped polysilicon cores 307, 309 brought to a negative electrical potential (eg of -2 volts).
  • the source / drain regions 302, 303 are held at the potential of the substrate.
  • To the control gate 313 (which may or may not be doped n +, for example) a positive electrical potential of eg + 8 volts is applied.
  • the doping of the gate regions is of no particular importance, so that no definition of a specific doping type is given.
  • the p-doped silicon substrate 301 can be held at the electrical ground potential.
  • first electrons 902 are injected into the silicon substrate 201 due to the forward biased diodes 315, 316, as indicated by first current paths 900. Due to the strong positive bias of the control gate 313, the injected negatively charged first electron 902 accelerates toward the channel region 304 of the p-doped substrate 301, which is illustrated by means of second current paths 901. The accelerated, "hot" second electrons 903 can then pass through the gate insulating layer of the electrical isolation region 311, that is to say between the channel region 304 and the floating gate 312, and be injected into the floating gate 312 and remain there permanently.
  • the floating gate memory cell 300 In a first operating state, in which the floating gate 312 is ideally free of electrical charge carriers, the floating gate memory cell 300 has a different threshold voltage than in a scenario in which electrical charge carriers are injected in the floating gate 312.
  • electrons contained within the floating gate 312 act similarly to an external electrical voltage applied to the control gate 313, so that the amount of current flow between the source / drain regions 302, 303 is dependent upon a fixed voltage applied therebetween. whether electric charge carriers are injected in the floating gate 312 or not.
  • the magnitude of such a read current includes information having a logical value "1" (e.g., floating gate electrodes 312) or a logic "0" (e.g., floating gate 312 electrons).
  • the memory cell 400 differs from the memory cell 300 essentially in that the conductivity types of the doped regions are designed differently in the memory cell 400 than in the memory cell 300.
  • the memory cell 400 also has a p-doped silicon substrate 301. However, in the p-doped silicon substrate 301, an n-doped well region 401 is formed, which may also be referred to as a high-voltage n-well region. As the first and second source / drain regions 402, 403, p + -doped regions are formed in the first and second surface regions of the n-well region 401.
  • first and second trench structures 404, 405 are provided which extend from the first and second trench structures 305, 306 Figure 3 in that first and second p + doped polysilicon cores 406, 407 of the trench structures 404, 405 are made of p + doped polysilicon, rather than of nu doped polysilicon as in FIG Figure 3 , are made.
  • This in Figure 4 provided n + -doped control gate can alternatively be realized as a p + -doped control gate.
  • the junction between the first p + -doped polysilicon core 406 and the n-well region 401 forms a first diode 315
  • the junction between the second n + -doped polysilicon core 407 and the n-well region 401 forms a second diode 316.
  • Figure 10 the functionality of memory cell 400 is described.
  • Figure 10 2 shows what potentials are to be applied to the terminals of the memory cell 400 in order to inject hot holes (designated h + in the figures) into the floating gate 312.
  • the first and second p + -doped polysilicon cores 406, 407 are brought to a potential of, for example, + 2 volts.
  • the source / drain terminals 402, 403 are held at the potential of the n-well 401.
  • the terminals of the p-doped substrate 301 and the n-well region 401 are preferably maintained at the electrical ground potential.
  • the control gate 408, however, is brought to a negative potential of, for example, -8 volts. It should be noted that the n-well can be set to a positive potential.
  • the diodes 315, 316 are according to Figure 10 operated in the forward direction. Due to the forward-biased diodes 315, 316, first holes 1002 h + are injected into the n-well region 401, as illustrated by first current paths 1000. Due to the high negative potential at the control gate 408, the positively charged first 1002 holes are accelerated toward the channel region 304, thereby converting the first holes 1002 into "hot" second holes 1003. The second holes 1003, due to their sufficiently high kinetic energy, can reach the floating gate region 312 into which they are injected.
  • a read current at a high voltage at a constant voltage between the source / drain regions 402, 403 may be assigned to information of logical value "1" and "0", respectively.
  • FIG. 5 a memory cell 500 according to a third embodiment of the invention described.
  • memory cell 500 differs from that in Figure 3 shown memory cell 300 substantially in that the memory cell is not formed directly in the p-doped substrate 301, but in a p-doped small well region 502, which in turn is formed within an n-doped large well region 501.
  • the memory cell according to the invention directly in a.
  • Substrate is integrated, but it can also be formed in an introduced into the substrate well area.
  • a negative potential can be applied to the (inner) p-well. This means that the voltages applied to other areas must always be seen in relation to this negative well potential.
  • memory cell 600 differs from that in Figure 3 shown memory cell 300 substantially in that instead of the floating gate 312 as a charge storage region, a silicon nitride layer (Si 3 N 4 ) 601 sandwiched between two silica partial layers of the electrical insulation region 311, whereby between the channel region 304 and the control gate 313, an ONO layer sequence (silicon oxide-silicon nitride-silicon oxide) is formed.
  • the silicon nitride layer 601 of the ONO layer sequence is used as a charge trapping layer, that is, as an electrically insulating charge storage region.
  • the injection of electrons into the silicon nitride layer 601 is similar to the injection of electrons into the floating gate 312 in the memory cell 300, due to the electrical insulating property of silicon nitride material, the charge carriers placed in the silicon nitride layer 601 remain at the respective injection site within the silicon nitride layer 601 and are not distributed freely in the charge storage region.
  • FIG. 7 a memory cell 700 according to a fifth embodiment of the invention described.
  • the memory cell 700 differs from that in FIG Figure 4 1, that the floating gate 312 from Figure 4 is replaced by the silicon nitride layer 601.
  • FIG. 8 a memory cell 800 according to a sixth embodiment of the invention described.
  • the memory cell 800 differs from the one in FIG Figure 5 shown memory cell 500 in that the floating gate 312 is replaced by the silicon nitride layer 601.
  • FIG. 11 a memory cell 1100 according to a seventh embodiment of the invention described.
  • the memory cell 1100 differs from that in Figure 6 shown memory cell 600 substantially by, 1 that instead of only one memory field effect transistor in Figure 6 according to fig.11 a first memory field effect transistor 1101 and at least one second memory field effect transistor 1102 are formed.
  • the Control gates 313 of the first and second memory field effect transistors 1101, 1102 can be controlled separately.
  • the control gates 313 of the two memory field-effect transistors 1101, 1102 are spatially separated from one another and can be driven separately electrically.
  • the memory cell 1100 has an ONO layer sequence 1103, which is formed from a first silicon oxide layer 1104, a silicon nitride layer 1105 as a "charge trapping layer" and a second silicon oxide layer 1106.
  • a negative electrical potential of, for example, -2 volts is applied to the n + -doped polysilicon cores 307, 309 of the trench structures 305, 306.
  • a positive electrical potential of, for example, + 8 volts is applied to the control gates 313 of the first and the second memory field effect transistor 1101, 1102, in each case a positive electrical potential of, for example, + 8 volts is applied. Due to the potential relationships, the electrons emerging from the diodes 315, 316 are accelerated towards the channel regions 304 of the memory field effect transistors 1101, 1102 and injected in a first charge storage region 1107 and in a second charge storage region 1108 of the ONO layer sequence 1103. This process step may be referred to as resetting the memory contents of the field effect transistors 1101, 1102.
  • Fowler-Nordheim tunneling selectively removes the electrons introduced into the respective charge storage region 1107 or 1108 by injecting hot electrons.
  • the very good spatial resolution of Fowler-Nordheim programming can be used to advantage in the introduction / removal of charge carriers.
  • the memory cell 1100 can separately describe different memory field effect transistors of the memory cell.
  • the memory cell of the invention can be used as a multi-bit memory cell such as a 2-bit memory cell as in FIG fig.11 , be realized.
  • different areas of the ONO layer sequence 1103 can be operated as a charge storage layer for the separate introduction / removal of electrical charge carriers and thus as separate information bit storage areas.
  • An advantageous mode of operation of such a memory cell 1100 is that first all memory cells are reset by injecting charge carriers (for example by means of hot carrier tunnels) into the entire charge storage layer 1103. The programming of information is then performed using location-specific removal of charge carriers from a selected region of the charge storage layer, e.g. using Fowler-Nordheim tunnels.
  • hot carrier injection may be selective by applying the one control gate as described puts a positive potential, leaves the other control gate to substrate or well potential. As a result, the charge carriers are selectively accelerated only to a gate, whereby a selective programming is achieved.
  • Figure 12 a schematic layout view (top view) of a memory cell array 1200 according to an embodiment of the invention described.
  • the memory cell array 1200 includes a plurality of memory cells, such as those shown in FIG Figure 3 are shown. For clarity are in Figure 12 Reference number from Figure 3 inserted.
  • the memory cell array 1200 is realized SNOR architecture.
  • the control gate 313 is in Figure 12 for a row of memory cells running together and is thus realized similar to a conductor track.
  • a substrate contacting (not in Fig. 12 drawn)
  • a defined electrical potential can be provided to the substrate 301.
  • printed conductors 1202 and printed circuit vias 1203 or contact holes 1201 are shown, by means of which the source / drain regions can be contacted.
  • FIG. 13 a memory cell 1300 according to an eighth embodiment of the invention described.
  • the memory cell 1300 differs from the memory cell 1100 essentially in that of FIG fig.11 right, ie the second source / drain region 303 of the first memory field effect transistor 1101 with the according to fig.11 left, ie second source / drain region 302 of the second memory field effect transistor 1102 is designed as a common source / drain region 1301.
  • the common source / drain region 1301 thus represents a coherent implantation region.
  • Such a combination of two source / drain regions of two adjacent memory cells can also be realized for a memory cell arrangement having a multiplicity of memory cells. If you put the source / drain regions 303/302 together, you will clearly get a kind of NAND structure.
  • Figure 14 a schematic layout view (top view) of a memory cell array 1400 according to another embodiment of the invention described, wherein in the memory cell array tracks 1401 are provided.
  • FIG. 12 illustrates a schematic layout from which it can be seen how memory cells according to the invention can be integrated into a NAND structure. Integration into other arrangements (eg NOR, ...) is also possible. Therefore, the examples shown are for illustrative purposes only, without being limited to any particular memory arrangement.

Description

Die Erfindung betrifft eine Speicherzelle, eine Speicherzellen-Anordnung und ein Verfahren zum Herstellen einer Speicherzelle.The invention relates to a memory cell, a memory cell arrangement and a method for producing a memory cell.

Angesichts der schnellen Entwicklung in der Computertechnologie besteht ein Bedarf an immer schnelleren, dichteren und besser programmierbaren, löschbaren und lesbaren Speicherzellen.With the rapid development in computer technology, there is a demand for ever faster, denser and more programmable, erasable and readable memory cells.

Aus dem Stand der Technik ist eine nichtflüchtige sogenannte CHE-Speicherzelle ("Channel Hot Electron") bekannt, die einen Feldeffekttransistor mit einer elektrisch leitfähigen Floating-Gate-Schicht zwischen Gate-isolierender Schicht und Steuergate aufweist. Mittels Injizierens heißer Kanal-Elektronen werden in diese Speicherzelle elektrische Ladungsträger eingebracht. In der Anwesenheit/Abwesenheit von Ladungsträgern in der Floating-Gate-Schicht ist die in der Speicherzelle speicherbare Information kodiert. Bei einer CHE-Speicherzelle können "heiße", das heißt ausreichend stark beschleunigte, Elektronen oder Löcher in der Nähe eines Drain-Bereichs durch die Gate-isolierende Schicht hindurch in die Floating-Gate-Schicht gelangen. Aufgrund eines das Floating-Gate umgebenden elektrisch isolierenden Bereichs sind die eingebrachten elektrischen Ladungsträger vor einem Abfließen aus der Floating-Gate-Schicht geschützt und verbleiben somit dauerhaft in der Floating-Gate-Schicht.From the prior art, a non-volatile so-called CHE ("Channel Hot Electron") memory cell is known, which has a field-effect transistor with an electrically conductive floating gate layer between the gate-insulating layer and the control gate. By injecting hot channel electrons, electrical charge carriers are introduced into this memory cell. In the presence / absence of carriers in the floating gate layer, the information storable in the memory cell is coded. In a CHE memory cell, "hot", that is, sufficiently accelerated, electrons or holes in the vicinity of a drain region can pass through the gate insulating layer into the floating gate layer. Due to an electrically insulating region surrounding the floating gate, the introduced electrical charge carriers are protected from flowing out of the floating gate layer and thus remain permanently in the floating gate layer.

Im Weiteren wird bezugnehmend auf Fig.1 eine aus dem Stand der Technik bekannte Floating-Gate-Speicherzelle 100 beschrieben.In the following, reference is made to Fig.1 A floating gate memory cell 100 known in the art is described.

Die Floating-Gate-Speicherzelle 100 ist in einem p-dotierten Silizium-Substrat 101 integriert. In dem p-dotierten Silizium-Substrat 101 ist eine n-dotierte Wanne 102 gebildet. In der n-dotierten Wanne 102 ist eine p-dotierte Wanne 103 gebildet. In einem ersten Oberflächenbereich der p-dotierten Wanne 103 ist ein erster Source-/Drain-Bereich 104 als n+-dotierter Bereich gebildet. Ferner ist in einem zweiten Oberflächenbereich der p-dotierten Wanne 103 ein zweiter Source-/Drain-Bereich 105 als n+-dotierter Bereich gebildet. In dem Oberflächenbereich der p-dotierten Wanne 103 zwischen den Source-/Drain-Bereichen 104, 105 ist ein Kanal-Bereich 106 gebildet. Mittels eines elektrisch isolierenden Bereichs 107 ist ein über dem Kanal-Bereich 106 angeordneter Floating-Gate-Bereich 108 von dem Kanal-Bereich 106 elektrisch isoliert, und ist ein über dem Floating-Gate-Bereich 108 angeordnetes Steuergate 109 von dem Floating-Gate-Bereich 108 elektrisch isoliert. Mittels seitlich der Floating-Gate-Speicherzelle 101 angeordneter STI-Bereiche 110 ("Shallow Trench Isolation") ist die Floating-Gate-Speicherzelle 100 von benachbarten Speicherzellen (nicht gezeigt in Fig.1) einer Speicherzellen-Anordnung elektrisch entkoppelt. Mittels Kontaktierungselementen 111 kann an die Source-/Drain-Bereiche 104, 105 und an das Steuergate 109 jeweils ein vorgebbares elektrisches Potential angelegt werden.The floating gate memory cell 100 is integrated in a p-doped silicon substrate 101. In the p-type silicon substrate 101, an n-type well 102 is formed. In the n-doped well 102, a p-doped well 103 is formed. In a first surface region of the p-doped well 103, a first source / drain region 104 is formed as an n + -doped region. Furthermore, in a second surface region of the p-doped well 103, a second source / drain region 105 is formed as an n + -doped region. In the surface area of the p-type well 103 between the source / drain regions 104, 105, a channel region 106 is formed. By means of an electrically insulating region 107, a floating gate region 108 arranged above the channel region 106 is electrically insulated from the channel region 106, and a control gate 109, which is arranged above the floating gate region 108, is separated from the floating gate. Section 108 electrically isolated. By means of the Shallow Trench Isolation (STI) regions 110 arranged laterally of the floating gate memory cell 101, the floating gate memory cell 100 of adjacent memory cells (not shown in FIG Fig.1 ) is electrically decoupled from a memory cell array. A predeterminable electrical potential can be applied to the source / drain regions 104, 105 and to the control gate 109 by means of contacting elements 111.

Zwischen der n-dotierten Wanne 102 und der p-dotierten Wanne 103 ist ein pn-Übergang 112 gebildet.Between the n-doped well 102 and the p-doped well 103, a pn junction 112 is formed.

Zum Einbringen von elektrischen Ladungsträgern in das Floating-Gate 108 der nichtflüchtigen Floating-Gate-Speicherzelle 100 werden heiße Elektronen aus dem Substrat unter Verwendung eines elektrisch in Vorwärtsrichtung vorgespannten pn-Übergangs 112 injiziert. Hierfür wird das Steuergate 109 auf ein positives elektrisches Potential ausreichend großen Betrags gebracht. Aufgrund der (kapazitiven) Kopplung des Floating Gates 108 and das SteuerGate 109 wirkt dieses elektrische Potential auch auf das Floating-Gate 108. Der pn-Übergang 112 zwischen der n-dotierten Wanne 102 und der p-dotierten Wanne 103 wird derart elektrisch vorgespannt, dass Elektronen aus der n-dotierten Wanne 102 in die p-dotierte Wanne 103 injiziert werden. Aufgrund des positiven Potentials an dem Floating-Gate 108 werden Elektronen zu dem Kanal-Bereich 106 beschleunigt und können durch die mittels des elektrisch isolierenden Bereichs 107 gebildete Gate-isolierende Schicht in das Floating-Gate 108 injiziert werden. Dadurch kann eine Information in die Speicherzelle 100 programmiert werden.To introduce electrical charge carriers into the floating gate 108 of the non-volatile floating gate memory cell 100, hot electrons are injected from the substrate using an electrically forward biased pn junction 112. For this purpose, the control gate 109 is brought to a positive electric potential of a sufficiently large amount. Due to the (capacitive) coupling of the floating gate 108 and the control gate 109, this electrical potential also acts on the floating gate 108. The pn junction 112 between the n-doped well 102 and the p-doped well 103 is thus electrically biased, that electrons are injected from the n-doped well 102 into the p-doped well 103. Due to the positive potential at the floating gate 108, electrons are accelerated to the channel region 106 and can be injected into the floating gate 108 through the gate insulating layer formed by the electrically insulating region 107. As a result, information can be programmed into the memory cell 100.

Allerdings weist die in Fig.1 gezeigte Floating-Gate-Speicherzelle 100 den Nachteil auf, dass der gesamte pn-Übergang 112 über eine große laterale Breite hinweg vorgespannt werden muss. Dies führt zu einem hohen Energieverbrauch beim Programmieren, Löschen und Lesen der Speicherzelle 100, was insbesondere für Low-Power-Anwendungen nachteilhaft ist.However, the in Fig.1 shown floating gate memory cell 100 has the disadvantage that the entire pn junction 112 must be biased over a large lateral width. This leads to a high energy consumption during programming, erasing and reading of the memory cell 100, which is disadvantageous in particular for low-power applications.

Im Weiteren wird bezugnehmend auf Fig.2 eine Test-Anordnung 200 beschrieben, die für Untersuchungen der Zuverlässigkeit von Bauelementen bekannt ist. Insbesondere dient die Test-Anordnung 200 dazu, die Güte bzw. Zuverlässigkeit einer Gate-isolierenden Schicht in einem zuvor ausgebildeten Feldeffekttransistor zu überprüfen.In the following, reference is made to Fig.2 a test arrangement 200 is known which is known for investigations of the reliability of components. In particular, the test arrangement 200 serves to improve the quality or reliability of a gate-insulating Check layer in a previously formed field effect transistor.

Die Test-Anordnung 200 ist auf und in einem p-dotierten Silizium-Substrat 201 integriert. Insbesondere ist in der Test-Anordnung 200 ein Feldeffekttransistor 202 integriert. Dieser enthält einen in einem ersten Oberflächenbereich des p-dotierten Silizium-Substrats 201 gebildeten ersten Source-/Drain-Bereich 203 und einen in einem zweiten Oberflächenbereich des p-dotierten Silizium-Substrats 201 gebildeten zweiten Source-/Drain-Bereich 204. Beide Source-/Drain-Bereiche 203, 204 sind n+-dotierte Bereiche. Zwischen den beiden Source-/Drain-Bereichen 203, 204 ist ein Kanal-Bereich 208 gebildet. Oberhalb des Kanal-Bereichs 208 ist ein Gate-Bereich 206 gebildet, der von dem Kanal-Bereich 208 mittels einer Gate-isolierenden Schicht, die Teil eines elektrisch isolierenden Bereichs 205 ist, elektrisch getrennt ist. Ferner sind Kontaktierungselemente 207 zum Anlegen definierter elektrischer Potentiale an die Source-/Drain-Bereiche 203, 204 bzw. an den Gate Bereich 206 vorgesehen. Seitlich des Feldeffekttransistors 202 ist in einem anderen Oberflächenbereich des Silizium-Substrats 201 ein zusätzlicher n+-dotierter Bereich 209 vorgesehen, welcher mittels eines anderen Kontaktierungselements 210 elektrisch ansteuerbar ist. Wie in Fig.2 schematisch angedeutet, .können mittels Anlegens von 0V oder eines positiven elektrischen Potentials an die Source-/Drain-Bereiche 203, 204 und eines im Vergleich mit diesem positiven Potential stärkeren positiven elektrischen Potentials an den Gate-Bereich 206 sowie eines negativen elektrischen Potentials an den n+-dotierten Bereich 209 elektrische Ladungsträger, nämlich Elektronen, von dem n+-dotierten Bereich 209 über das p-dotierte Silizium-Substrat 201 und den Kanal-Bereich 208 durch die Gate-isolierende Schicht bis möglicherweise in den Gate-Bereich 206 hinein injiziert werden.The test arrangement 200 is integrated on and in a p-doped silicon substrate 201. In particular, a field-effect transistor 202 is integrated in the test arrangement 200. This includes a first source / drain region 203 formed in a first surface region of the p-doped silicon substrate 201 and a second source / drain region 204 formed in a second surface region of the p-doped silicon substrate 201. Both source / Drain regions 203, 204 are n + doped regions. Between the two source / drain regions 203, 204, a channel region 208 is formed. Above the channel region 208, a gate region 206 is formed, which is electrically separated from the channel region 208 by means of a gate-insulating layer, which is part of an electrically insulating region 205. Furthermore, contacting elements 207 are provided for applying defined electrical potentials to the source / drain regions 203, 204 or to the gate region 206. On the side of the field-effect transistor 202, an additional n + -doped region 209 is provided in another surface region of the silicon substrate 201, which region can be electrically driven by means of another contacting element 210. As in Fig.2 can be indicated schematically by means of applying 0V or a positive electrical potential to the source / drain regions 203, 204 and a positive electric potential to the gate region 206 which is stronger in comparison with this positive potential and a negative electrical potential to the n + -doped region 209 electrical charge carriers, namely electrons, from the n + -doped region 209 via the p-doped silicon substrate 201 and the channel region 208 through the gate insulating layer until possibly injected into the gate region 206.

Allerdings ist die in Fig.2 gezeigte Test-Anordnung nur für das Testen der Funktionsfähigkeit eines unter Verwendung einer halbleitertechnologischen Prozessierung ausgebildeten Feldeffekttransistors 202, insbesondere zum Testen der Funktionsfähigkeit der Gate-isolierenden Schicht des Feldeffekttransistors, geeignet. Es ist ferner anzumerken, dass die Test-Anordnung 200 zu einem sehr großen Flächenverbrauch auf einem Silizium-Substrat 201 führt.

  1. [1] offenbart eine Flash-Speicherarray-Struktur und ein Verfahren zum Herstellen einer Flash-Speicherarray-Struktur, welche Struktur eine vergrabene Silizidleitung aufweist.
  2. [2] offenbart ein Verfahren zum Herstellen und Betreiben einer nichtflüchtigen Flash-Speicherzellen-Struktur mit einem in einem Graben gebildeten Hilfs-Gate.
  3. [3] offenbart ein Verfahren zum Programmieren einer elektrisch programmierbaren Speicherzelle, bei der ein n-Well und ein p-Well in einem Substrat separat kontaktierbar sind.
  4. [4] offenbart ein Verfahren zum Herstellen einer Flash-Speicherzelle, bei der in einem Substrat ein Bipolartransistor gebildet ist.
However, the in Fig.2 shown test arrangement only for testing the operability of a trained using a semiconductor technology processing field effect transistor 202, in particular for testing the operation of the gate insulating layer of the field effect transistor suitable. It should also be noted that the test arrangement 200 leads to a very large area consumption on a silicon substrate 201.
  1. [1] discloses a flash memory array structure and method of fabricating a flash memory array structure having a buried silicide line structure.
  2. [2] discloses a method of manufacturing and operating a nonvolatile flash memory cell structure having a trench formed auxiliary gate.
  3. [3] discloses a method of programming an electrically programmable memory cell in which an n-well and a p-well are separately contactable in a substrate.
  4. [4] discloses a method of manufacturing a flash memory cell in which a bipolar transistor is formed in a substrate.

Der Erfindung liegt insbesondere das Problem zugrunde, eine Speicherzelle und eine Speicherzellen-Anordnung bereitzustellen, bei denen ein Programmieren mit verringertem Energiebedarf ermöglicht ist.The invention is based in particular on the problem of providing a memory cell and a memory cell arrangement in which programming with reduced energy requirement is made possible.

Das Problem wird durch eine Speicherzelle, durch eine Speicherzellen-Anordnung und durch ein Verfahren zum Herstellen einer Speicherzelle mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.The problem is solved by a memory cell, by a memory cell arrangement and by a method for producing a memory cell having the features according to the independent patent claims.

Die erfindungsgemäße Speicherzelle enthält ein Substrat, das Ladungsträger eines ersten Leitungstyps enthält. Ferner enthält die Speicherzelle einen ersten Source-/Drain-Bereich in einem ersten Oberflächenbereich des Substrats und einen zweiten Source-/Drain-Bereich in einem zweiten Oberflächenbereichs des Substrats. Ein Kanal-Bereich ist in einem Oberflächenbereich des Substrats zwischen dem ersten und dem zweiten Source-/Drain-Bereich gebildet. Ferner ist ein Ladungsspeicherbereich über dem Kanal-Bereich und ein Steuergate über dem Ladungsspeicherbereich gebildet, welches Steuergate von dem Ladungsspeicherbereich elektrisch isoliert ist. In dem Substrat ist eine Grabenstruktur gebildet, die Ladungsträger lieferndes Material mit Ladungsträgern eines zweiten Leitungstyps und einen Isolationsbereich zwischen dem Substrat und zumindest einem Teil des Ladungsträger liefernden Materials aufweist. Der erste Leitungstyp ist von dem zweiten Leitungstyp unterschiedlich, so dass zwischen dem Substrat und dem Ladungsträger liefernden Material der Grabenstruktur ein Dioden-Übergang, bei Verwendung eines Halbleitermaterials als Ladungsträger lieferndes Material je nach Dotierung ein pn-Übergang oder ein np-Übergang, bei Verwendung z.B. eines Metalls wie Wolfram eine Schottky-Diode, gebildet ist. Ferner ist die Speicherzelle derart eingerichtet, dass mittels Anlegens vorgebbarer elektrischer Potentiale an die Speicherzelle elektrische Ladungsträger aus dem Ladungsträger liefernden Material der Grabenstruktur in den Ladungsspeicherbereich einbringbar sind.The memory cell according to the invention contains a substrate which contains charge carriers of a first conductivity type. Furthermore, the memory cell includes a first source / drain region in a first surface region of the substrate and a second source / drain region in a second surface region of the substrate. A channel region is formed in a surface region of the substrate between the first and second source / drain regions. Further, a charge storage region is formed over the channel region and a control gate is formed over the charge storage region, which control gate is electrically isolated from the charge storage region. In the substrate, a trench structure is formed, comprising charge carrier material having carriers of a second conductivity type and an isolation region between the substrate and at least a portion of the charge generating material. The first conductivity type is different from the second conductivity type, so that between the substrate and the charge-carrying material of the trench structure, a diode junction, when using a semiconductor material as a charge-carrier material depending on the doping a pn junction or np junction, when used For example, a metal such as tungsten, a Schottky diode is formed. Furthermore, the memory cell is set up in such a way that, by applying predeterminable electrical potentials to the memory cell, electrical charge carriers from the charge carrier-supplying material of the trench structure can be introduced into the charge storage region.

Die erfindungsgemäße Speicherzellen-Anordnung enthält eine Mehrzahl von in dem Substrat integrierten Speicherzellen mit den oben genannten Merkmalen.The memory cell arrangement according to the invention contains a plurality of memory cells integrated in the substrate with the features mentioned above.

Bei dem erfindungsgemäßen Verfahren zum Herstellen einer Speicherzelle wird ein erster Source-/Drain-Bereich in einem ersten Oberflächenbereichs eines Substrats, das Ladungsträger eines ersten Leitungstyps enthält, und ein zweiter Source-/Drain-Bereich in einem zweiten Oberflächenbereich des Substrats gebildet. Ferner wird ein Kanal-Bereich in dem Oberflächenbereich des Substrats zwischen dem ersten und dem zweiten Source-/Drain-Bereich gebildet. Ein Ladungsspeicherbereich wird über dem Kanal-Bereich gebildet. Eine Steuergate wird über dem Ladungsspeicherbereich gebildet, welches von dem Ladungsspeicherbereich elektrisch isoliert wird. Darüber hinaus wird eine in dem Substrat angeordnete Grabenstruktur gebildet, die Ladungsträger lieferndes Material mit Ladungsträgern eines zweiten Leitungstyps und einem Isolationsbereich zwischen dem Substrat und zumindest einem Teil des Ladungsträger liefernden Materials aufweist. Der erste Leitungstyp wird von dem zweiten Leitungstyp unterschiedlich eingestellt, so dass zwischen dem Substrat und dem Ladungsträger liefernden Material der Grabenstruktur ein Dioden-Übergang gebildet wird. Die Speicherzelle wird ferner derart eingerichtet, dass mittels Anlegens vorgebbarer elektrischer Potentiale an die Speicherzelle elektrische Ladungsträger aus dem Ladungsträger liefernden Material der Grabenstruktur in den Ladungsspeicherbereich einbringbar sind.In the inventive method for manufacturing a memory cell, a first source / drain region is formed in a first surface region of a substrate containing charge carriers of a first conductivity type and a second source / drain region in a second surface region of the substrate. Further, a channel region is formed in the surface region of the substrate between the first and second source / drain regions. A charge storage area is formed over the channel area. A control gate is formed over the charge storage region, which is electrically isolated from the charge storage region. In addition, a trench structure arranged in the substrate is formed, which has charge-generating material with charge carriers of a second conductivity type and an isolation region between the substrate and at least part of the charge-generating material. The first conductivity type is set differently from the second conductivity type, so that a diode junction is formed between the substrate and the charge carrier-supplying material of the trench structure. The memory cell is furthermore set up in such a way that, by applying predeterminable electrical potentials to the memory cell, electrical charge carriers from the charge carrier-supplying material of the trench structure can be introduced into the charge storage area.

Eine Grundidee der Erfindung ist darin zu sehen, dass bei einer integrierten Speicherzelle ein Graben mit erhöhter Ladungsträger-Konzentration als Lieferant für Ladungsträger zum Injizieren in einen Ladungsspeicherbereich der Speicherzelle geschaffen ist. Das Injizieren kann mittels Anlegens vorgebbarer elektrischer Potentiale an die Anschlüsse der Speicherzelle, insbesondere an die Grabenstruktur und/oder die Substrat-Schicht und das Steuergate, erfolgen. Ferner ist die erfindungsgemäße Speicherzelle sehr platzsparend implementierbar, da die üblicherweise in Speicherzellen auftretende STI-Isolation ("Shallow Trench Isolation") zum Entkoppeln benachbarter Speicherzellen einer Speicherzellen-Anordnung anschaulich ausgehöhlt werden kann und mit einem elektrisch leitfähigen Material (beispielsweise in n+-dotierten Polysilizium) gefüllt werden können. Die dadurch gebildete Grabenstruktur kann dann einerseits als Isolation zu benachbarten Bauelementen in dem Substrat und andererseits als ausreichend tief in einem Substrat integrierter Ladungsträger-Emitter verwendet werden, ohne dass der Platzbedarf dadurch erhöht wird. Angesichts des Bedarfs an hochdichten und sicher programmierbaren Speicherzellen stellt der geringe Platzbedarf der erfindungsgemäßen Speicherzelle einen wichtigen Vorteil dar. Die erfindungsgemäße Speicherzelle ist zum Injizieren heißer elektrischer Ladungsträger (Elektronen oder Löcher) von der Grabenstruktur über ein Substrat bis hin in die Ladurigsspeicherschicht eingerichtet. Anschaulich ist der Emitter zum Emittieren elektrischer Ladungsträger in einen Graben mit zumindest teilweiser Seitenwandisolation eingebettet.A basic idea of the invention is to be seen in that in an integrated memory cell, a trench with increased charge carrier concentration as a supplier of charge carriers for injecting into a charge storage region of the memory cell. The injection can be done by applying presettable electrical potentials to the terminals of the memory cell, in particular to the trench structure and / or the substrate layer and the control gate. Furthermore, the memory cell according to the invention can be implemented in a very space-saving manner since the shallow STI isolation for decoupling adjacent memory cells of a memory cell arrangement can be eroded and can be eroded with an electrically conductive material (for example in n + -doped) Polysilicon) can be filled. The trench structure formed thereby can be used, on the one hand, as insulation for adjacent components in the substrate and, on the other hand, as a charge carrier emitter sufficiently deep in a substrate, without increasing the space requirement. In view of the need for high-density and securely programmable memory cells, the small space requirement of the memory cell according to the invention represents an important advantage. The memory cell according to the invention is designed for injecting hot electrical charge carriers (electrons or holes) from the trench structure via a substrate into the charged-material storage layer. Clearly, the emitter for emitting electrical charge carriers is embedded in a trench with at least partial sidewall insulation.

Die erfindungsgemäße Speicherzelle kann als n-Kanal-Speicherzelle oder als p-Kanal-Speicherzelle realisiert sein.The memory cell according to the invention can be realized as an n-channel memory cell or as a p-channel memory cell.

Das Mitverwenden einer mit elektrisch leitfähigem Material gefüllten STI-Isolation als Zuführstruktur von Ladungsträgern zum Injizieren in einen Ladungsspeicherbereich ist eine besonders platzsparende Lösung.The co-use of filled with electrically conductive material STI insulation as a feed structure of charge carriers for injecting into a charge storage area is a particularly space-saving solution.

Es ist anzumerken, dass der Leitungstyp (im Falle eines Halbleiter-Materials p-leitend oder n-leitend) der Ladungsträger (Dotieratome im Falle eines Halbleiter-Materials) in dem Substrat einerseits und in dem Ladungsträger liefernden Material der Grabenstruktur andererseits unterschiedlich ist, d.h. komplementär zueinander (beispielsweise p-leitendes Substrat und n-leitendes oder metallisches Ladungsträger lieferndes Material der Grabenstruktur oder n-leitendes Substrat und p-leitendes Ladungsträger lieferndes Material der Grabenstruktur). Folglich ist in einem Übergangsbereich bzw. Grenzbereich zwischen dem Substrat und dem Ladungsträger liefernden Material der Grabenstruktur ein Dioden-Übergang (pn-Übergang oder Schottky-Übergang) gebildet.It should be noted that the type of conduction (in the case of a p-type or n-type semiconductor material) of charge carriers (dopant atoms in the case of a semiconductor material) is different in the substrate on the one hand and in the trench structure of the trench structure on the other hand. complementary to one another (for example, p-type substrate and n-type or metallic carrier material of the trench structure or n-type substrate and p-type carrier of the trench structure). As a result, a diode junction (pn-junction or Schottky junction) is formed in a junction region between the substrate and the charge carrier-supplying material of the trench structure.

Mittels Anlegens geeignet gewählter elektrischer Potentiale an die Grabenstruktur bzw. das Steuergate ist es dann ermöglicht, die Diode in dem Grenzbereich in Durchlassrichtung zu betreiben, und somit elektrische Ladungsträger des Ladungsträger liefernden Materials in das Substrat hin zu dem Ladungsspeicherbereich zu injizierenwelche Ladungsträger beim Durchlaufen des Substrats aufgrund einer an das Steuergate angelegten elektrischen Spannung beschleunigt werden und somit in den Ladungsspeicherbereich dauerhaft einbringbar sind.By applying suitably selected electrical potentials to the trench structure or the control gate, it is then possible to operate the diode in the boundary region in the forward direction, and thus to inject electrical charge carriers of the charge carrier material into the substrate towards the charge storage region, which charge carriers pass through the substrate be accelerated due to an applied to the control gate voltage and thus are permanently introduced into the charge storage area.

Die erfindungsgemäße Speicherzelle weist insbesondere den Vorteil auf, dass eine gleichmäßige Ladungsträgerinjektion in eine Ladungsspeicherschicht ermöglicht ist, was zu einer geringeren Degradation der Ladungsspeicherschicht führt.In particular, the memory cell according to the invention has the advantage that a uniform charge carrier injection into a charge storage layer is made possible, which leads to a lower degradation of the charge storage layer.

Ferner ist ein lokales Injizieren unmittelbar in einem Nachbarbereich einer Speicherzelle ermöglicht, da mittels Anlegens geeigneter Potentiale an die Anschlüsse der Speicherzelle die Strompfade der Ladungsträger in dem Substrat vorgebbar sind. Das lokale Injizieren von Ladungsträgern bei einer Speicherzelle führt zu einem geringen Energiebedarf und der Möglichkeit, einzelne Zellen zu adressieren. Ferner ist der Emitter der elektrischen Ladungsträger in einem Graben eingebettet, was zu einem geringen Platzbedarf führt.Furthermore, a local injection is made possible directly in a neighboring area of a memory cell, since the current paths of the charge carriers in the substrate can be predetermined by applying suitable potentials to the terminals of the memory cell. The local injection of charge carriers in a memory cell leads to a low energy requirement and the ability to address individual cells. Furthermore, the emitter of the electrical charge carriers is embedded in a trench, resulting in a small footprint.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Preferred developments of the invention will become apparent from the dependent claims.

Die Grabenstruktur erstreckt sich vorzugsweise tiefer in das Substrat hinein als der erste und der zweite Source-/Drain-Bereich. Dadurch ist sichergestellt, dass elektrische Ladungsträger sehr homogen in die Ladungsspeicherschicht eingebracht werden können. Dadurch ist die Lebensdauer der Speicherzelle, insbesondere der Ladungsspeicherschicht, erhöht.The trench structure preferably extends deeper into the substrate than the first and second source / drain regions. This ensures that electrical charge carriers can be introduced very homogeneously into the charge storage layer. As a result, the service life of the memory cell, in particular the charge storage layer, is increased.

Ferner ist anzumerken, dass für den Fall, dass die Komponenten der erfindungsgemäßen Speicherzelle in einer in dem Substrat ausgebildeten Wanne eines vorgegebenen Leitungstyps integriert sind, die vertikale Tiefe der Grabenstruktur nicht die Tiefe des Wannenbereichs in dem Substrat überschreiten darf.It should also be noted that in the case where the components of the memory cell of the invention are integrated in a well of a given conductivity type formed in the substrate, the vertical depth of the trench structure must not exceed the depth of the well region in the substrate.

Die Grabenstruktur erstreckt sich vorzugsweise im Wesentlichen in vertikaler Richtung zu der Oberfläche des Substrats.The trench structure preferably extends in a substantially vertical direction to the surface of the substrate.

Bei der Speicherzelle kann die Grabenstruktur seitlich von zumindest einem der Source-/Drain-Bereiche und außerhalb des Kanal-Bereichs gebildet sein.In the memory cell, the trench structure may be formed laterally of at least one of the source / drain regions and outside the channel region.

Die erfindungsgemäße Speicherzelle kann zwei (oder mehr) Grabenstrukturen in dem Substrat aufweisen, von denen eine seitlich des ersten Source-/Drain-Bereichs und außerhalb des Kanal-Bereichs angeordnet ist und die andere seitlich des zweiten Source-/Drain-Bereichs und außerhalb des Kanal-Bereichs angeordnet ist. Diese Konfiguration ist symmetrisch, so dass ein besonders homogenes. Injizieren von elektrischen Ladungsträgern in die Ladungsspeicherschicht ermöglicht ist. Ferner kann mittels zweier symmetrisch angeordneter Grabenstrukturen mittels ihrer Isolationsbereiche die Speicherzelle nach beiden Seiten hin von möglicherweise in benachbarten Bereichen des Substrats angeordneten Komponenten elektrisch entkoppelt werden, um eine unerwünschte elektrische Wechselwirkung zwischen solchen Komponenten und der Speicherzelle zu vermeiden. Allerdings sind auch andere Integrationen denkbar (z.B. NAND-Architekturen)The memory cell according to the invention may comprise two (or more) trench structures in the substrate, one of which is arranged laterally of the first source / drain region and outside the channel region and the other laterally of the second source / drain region and outside Channel area is arranged. This configuration is symmetrical, giving a particularly homogeneous. Injecting of electric charge carriers in the charge storage layer is made possible. Furthermore, by means of two symmetrically arranged trench structures by means of their isolation regions, the memory cell can be electrically decoupled from both sides of possibly arranged in adjacent areas of the substrate components to avoid unwanted electrical interaction between such components and the memory cell. However, other integrations are also conceivable (e.g., NAND architectures)

Die Grabenstruktur kann einen elektrisch isolierenden Mantelbereich an zumindest einem Teil der Seitenwand des Grabens und einen in den Graben eingefüllten elektrisch leitfähigen Kernbereich aufweisen derart, dass elektrische Ladungsträger aus der Grabenstruktur nur von solchen Bereichen in das Substrat austreten können, in welchen der Kernbereich von einer Ummantelung mit dem Mantelbereich frei ist, oder von solchen Bereichen, in welchen der Mantelbereich eine ausreichend geringe Dicke aufweist, um einen Tunnelstrom von Ladungsträgern aus dem Ladungsträger liefernden Material durch den Mantelbereich in das Substrat hinein zu ermöglichen.The trench structure can have an electrically insulating jacket region on at least part of the side wall of the trench and an electrically conductive core region filled in the trench such that electrical charge carriers can emerge from the trench structure only from those regions into which the core region of a jacket is free with the cladding region, or of such regions in which the cladding region has a sufficiently small thickness to allow a tunneling current of charge carriers from the charge carrier material through the cladding region into the substrate.

Die Grabenstruktur kann zum Beispiel hergestellt werden, indem zunächst ein Graben in dem Substrat ausgebildet wird. Danach wird z.B. in einem Abscheideverfahren oder durch thermische Oxidation eine Isolationsschicht an der Seitenwand des Grabens und dessen Boden ausgebildet. Danach wird beispielsweise mit einem unisotropen Ätzschritt (z.B. durch reactive ion etching (RIE)) die Isolationsschicht zumindest teilweise vom Boden des Grabens und/oder von dessen Seitenwand im unteren Bereich entfernt. Nachfolgend wird der Graben mit dem Ladungsträger emittierenden Material gefüllt, wodurch ein Dioden-Übergang in dem Kontaktbereich gebildet ist. Dann können ausgehend von dem Bodenbereich des Grabens Ladungsträger von der Grabenstruktur in das Substrat eingebracht werden. Es wird beispielsweise in situ dotiertes Polysilizium-Material oder ein Metall in den in dem Graben eingebrachten Hohlraum eingefüllt, wodurch die Grabenstruktur gebildet wird.For example, the trench structure may be fabricated by first forming a trench in the substrate. Thereafter, e.g. formed in a deposition method or by thermal oxidation, an insulating layer on the side wall of the trench and the bottom thereof. Thereafter, for example, with a unisotropic etching step (e.g., by reactive ion etching (RIE)), the insulating layer is at least partially removed from the bottom of the trench and / or its sidewall at the bottom. Subsequently, the trench is filled with the carrier-emitting material, whereby a diode junction is formed in the contact region. Then, starting from the bottom region of the trench, charge carriers can be introduced from the trench structure into the substrate. For example, in-situ doped polysilicon material or a metal is filled into the cavity introduced in the trench, thereby forming the trench structure.

Vorzugsweise grenzt ein Teilbereich des Ladungsträger liefernden Materials der Grabenstruktur direkt an Material des Substrats an. Es ist jedoch auch möglich, dass Isolationsmaterial einer ausreichend geringen Dicke (typischerweise kleiner 2nm) zwischen dem Substrat und dem Ladungsträger liefernden Material der Grabenstruktur verbleibt bzw. ausgebildet oder eingebracht wird. In diesem Falle können bei Anlegen geeigneter elektrischer Potentiale an die Grabenstruktur und das Steuergate.elektrische Ladungsträger durch die dünne elektrisch isolierende Schicht hindurchtunneln.Preferably, a partial region of the charge carrier-supplying material of the trench structure directly adjoins material of the substrate. However, it is also possible for insulation material of a sufficiently small thickness (typically less than 2 nm) to remain or be formed or introduced between the substrate and the charge-supplying material of the trench structure. In this case, upon application of suitable electrical potentials to the trench structure and the control gate, electrical charge carriers can tunnel through the thin electrically insulating layer.

Der Ladungsspeicherbereich kann ein Floating-Gate sein. Insbesondere kann ein als Floating-Gate ausgebildeter Ladungsspeicherbereich Polysilizium aufweisen. Bei dieser Ausgestaltung ist zwischen dem Substrat und dem Floating-Gate eine Gate-isolierende Schicht zum elektrischen Isolieren des Kanal-Bereichs von dem Floating-Gate vorzusehen.The charge storage region may be a floating gate. In particular, a trained as a floating gate Charge storage region polysilicon have. In this embodiment, a gate insulating layer for electrically insulating the channel region from the floating gate is provided between the substrate and the floating gate.

Alternativ kann der Ladungsspeicherbereich ein elektrisch isolierender Ladungsspeicherbereich sein. Als elektrisch isolierender Ladungsspeicherbereich kann eine Siliziumoxid-Siliziumnitrid-Siliziumoxid-Schichtenfolge (ONO-Schichtenfolge)verwendet werden. Alternativ kann die Siliziumnitrid-Schicht durch ein anderes Material ersetzt werden wie z.B. Aluminiumoxid (Al2O3), Yttriumoxid (Y2O3), Lanthanoxid (LaO2), Hafniumoxid (HfO2) und/oder Zirkoniumoxid (ZrO2). Insbesondere ist eine Siliziumoxid-Aluminiumoxid-Siliziumoxid-Schichtenfolge, eine Siliziumoxid-Yttriumoxid-Siliziumoxid-Schichtenfolge, eine Siliziumoxid-Lanthanoxid-Siliziumoxid-Schichtenfolge, eine Siliziumoxid-Hafniumoxid-Siliziumoxid-Schichtenfolge, eine Siliziumoxid-Zirkoniumoxid-Schichtenfolge und/oder eine andere Schichtenfolge möglich, die eine dauerhafte Ladungsspeicherung ermöglicht. Ein solcher elektrisch isolierender Ladungsspeicherbereich wird auch als Charge Trapping Layer bezeichnet. Beispielsweise werden bei Verwendung einer ONO-Schichtenfolge elektrische Ladungsträger in die Siliziumnitrid-Schicht der ONO-Schichtenfolge injiziert und dort dauerhaft insbesondere in Fehlstellen gespeichert.Alternatively, the charge storage region may be an electrically insulating charge storage region. As the electrically insulating charge storage region, a silicon oxide-silicon nitride-silicon oxide layer sequence (ONO layer sequence) can be used. Alternatively, the silicon nitride layer may be replaced by another material such as alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), lanthana (LaO 2 ), hafnia (HfO 2 ), and / or zirconia (ZrO 2 ). In particular, a silicon oxide-aluminum oxide-silicon oxide layer sequence, a silicon oxide-yttrium-silicon oxide layer sequence, a silicon oxide-lanthanum oxide-silicon oxide layer sequence, a silicon oxide-hafnium oxide-silicon oxide layer sequence, a silicon oxide-zirconium oxide layer sequence and / or another layer sequence possible, which allows a permanent charge storage. Such an electrically insulating charge storage region is also referred to as a charge trapping layer. For example, when using an ONO layer sequence, electrical charge carriers are injected into the silicon nitride layer of the ONO layer sequence, where they are permanently stored, in particular, in imperfections.

Das Substrat kann einen die Ladungsträger, insbesondere Dotieratome, des ersten Leitungstyps aufweisenden Wannenbereich aufweisen und kann einen Ladungsträger, insbesondere Dotieratome, des zweiten Leitungstyps aufweisenden Bereich aufweisen, wobei in dem Wannenbereich die Komponenten der Speicherzelle gebildet sind. Mit anderen Worten muss als Substrat der erfindungsgemäßen Speicherzelle nicht notwendigerweise ein homogenes Substrat verwendet werden. Es ist beispielsweise möglich, in einem p-dotierten Substrat einen n-dotierten Wannenbereich auszubilden und in diesem die erfindungsgemäße Speicherzelle auszubilden. Auch ist eine Mehrfachwannenstruktur aus anschaulich ineinander verschachtelten Wannenbereichen unterschiedlicher Leitungstypen möglich (beispielsweise eine n-Wanne in einem p-Substrat und eine p-Wanne in der n-Wanne).The substrate may have a well region that has the charge carriers, in particular doping atoms, of the first conductivity type, and may have a charge carrier, in particular dopant atoms, of the region having the second conductivity type, wherein the components of the storage cell are formed in the well region. In other words, as the substrate of the memory cell of the present invention, it is not necessary to use a homogeneous substrate become. It is possible, for example, to form an n-doped well region in a p-doped substrate and to form the memory cell according to the invention therein. Also, a multiple well structure of vividly interleaved well regions of different conductivity types is possible (eg, an n-well in a p-substrate and a p-well in the n-well).

Die Speicherzelle kann eine Mehrzahl von räumlich getrennten und elektrisch separat ansteuerbaren Steuergates aufweisen, derart, dass mittels Anlegens vorgebbarer elektrischer Potentiale an mindestens ein ausgewähltes der Steuergates elektrische Ladungsträger von der Grabenstruktur in einen an das mindestens eine ausgewählte Steuergate benachbarten Bereich des Ladungsspeicherbereichs einbringbar sind. Eine solche Ausgestaltung ist beispielsweise in Fig.11 gezeigt.The memory cell can have a plurality of spatially separated control gates which can be controlled separately, such that by applying predeterminable electrical potentials to at least one selected one of the control gates, electrical charge carriers can be introduced from the trench structure into an area of the charge storage area adjacent to the at least one selected control gate. Such an embodiment is for example in fig.11 shown.

Gemäß einem Aspekt dieser Ausgestaltung können anschaulich mehrere Feldeffekttransistoren in der erfindungsgemäßen Speicherzelle nebeneinander in dem Substrat ausgebildet sein. Jedem der Transistoren ist ein eigenes Steuergate zugeordnet. Ferner kann für alle Feldeffekttransistoren eine gemeinsame Ladungsspeicherschicht vorgesehen sein, alternativ kann jeder Transistor eine eigene Ladungsspeicherschicht aufweisen.According to one aspect of this embodiment, a plurality of field-effect transistors in the memory cell according to the invention can illustratively be formed next to one another in the substrate. Each of the transistors is assigned its own control gate. Furthermore, a common charge storage layer can be provided for all the field-effect transistors; alternatively, each transistor can have its own charge storage layer.

Gemäß einem anderen Aspekt der betrachteten Ausgestaltung kann eine Speicherzelle der Erfindung nur einen Feldeffekttransistor aufweisen, in dessen Ladungsspeicherbereich in zwei räumlich getrennte Abschnitte jeweils Ladungsträger eingebracht werden können, wobei jedem der Abschnitte ein separat ansteuerbares Steuergate zugeordnet sein kann. In einem solchen Fall kann in jedem der Abschnitte eine Information von einem Bit gespeichert sein, so dass in einem Feldeffekttransistor eine Mehrzahl von Bits gespeichert sein kann.According to another aspect of the considered embodiment, a memory cell of the invention may comprise only one field effect transistor, in the charge storage area in each of two spatially separated sections charge carriers can be introduced, each of the sections may be associated with a separately controllable control gate. In such a case, information of one bit may be stored in each of the sections, so that a plurality of bits can be stored in a field effect transistor.

Somit kann die erfindungsgemäße Speicherzelle derart eingerichtet werden, dass mehrere Bits Information in der Speicherzelle speicherbar sind. Anschaulich können bei Verwendung von n Steuergates in der Ladungsspeicherschicht n Bit Information gespeichert werden.Thus, the memory cell according to the invention can be set up such that several bits of information can be stored in the memory cell. Clearly n bit information can be stored in the charge storage layer using n control gates.

Eine solche Mehrfach-Bit-Speicherzelle kann zum Beispiel wie folgt beschrieben programmiert werden. Zunächst kann beispielsweise mittels des erfindungsgemäßen Injizierens heißer Ladungsträger alle Information aus der Ladungsspeicherschicht bzw. den Ladungsspeicherschichten des mindestens einen Feldeffekttransistors gelöscht werden, was anschaulich einem Rücksetzen der Speicherinhalte entspricht. Dies kann zum Beispiel dadurch erfolgen, dass in die gesamte Ladungsspeicherschicht heiße Elektronen eingebracht werden können. Nachfolgend kann jeder, einem jeweiligen Steuergate zugeordneter Bereich der Ladungsspeicherschicht beispielsweise mittels Fowler-Nordheim-Tunnelns, d.h. mit besonders guter räumlicher Auflösung und somit auf einen ganz bestimmten ausgewählten Bereich der Ladungsspeicherschicht beschränkt, separat programmiert werden. Somit ist die Speicherzelle der Erfindung als hochdichtes Speichermedium eingerichtet.Such a multi-bit memory cell may be programmed, for example, as follows. First of all, by means of the inventive injection of hot charge carriers, all information can be deleted from the charge storage layer or the charge storage layers of the at least one field-effect transistor, which clearly corresponds to resetting the memory contents. This can be done, for example, by the fact that hot electrons can be introduced into the entire charge storage layer. Subsequently, each portion of the charge storage layer associated with a respective control gate may be fowled, for example, by Fowler-Nordheim tunneling, i. with particularly good spatial resolution and thus limited to a specific selected area of the charge storage layer, be programmed separately. Thus, the memory cell of the invention is set up as a high-density storage medium.

Bei der Speicherzelle können die Ladungsträger des ersten Leitungstyps und/oder die Ladungsträger des zweiten Leitungtyps Dotieratome sein. Diese Ausgestaltung betrifft insbesondere Realisierungen der Speicherzelle unter Verwendung eines Halbleitermaterials für das Substrat und/oder das Ladungsträger liefernde Material.In the memory cell, the charge carriers of the first conductivity type and / or the charge carriers of the second conductivity type can be doping atoms. This refinement relates in particular to realizations of the memory cell using a semiconductor material for the substrate and / or the charge-supplying material.

Im Weiteren wird die erfindungsgemäße Speicherzellen-Anordnung, die erfindungsgemäße Speicherzellen aufweist, näher beschrieben. Ausgestaltungen der Speicherzelle gelten auch für die Speicherzellen aufweisende Speicherzellen-Anordnung.In the following, the memory cell arrangement according to the invention, which has memory cells according to the invention, will be described in more detail. Embodiments of the memory cell also apply to the memory cell having memory cell arrangement.

Die Speicherzellen-Anordnung kann derart ausgebildet sein, dass mittels der elektrisch isolierenden Mantelbereiche unterschiedliche Speicherzellen voneinander elektrisch entkoppelt sind. Diese Ausgestaltung entspricht der Realisierung der Grabenstruktur unter Verwendung einer anschaulich ausgehöhlten STI-Struktur, welche abgesehen von ihrer Isolations-Funktion zusätzlich die Funktion einer Ladungsträger-Zuführstruktur zum Injizieren von elektrischen Ladungsträgern in das Substrat erfüllt.The memory cell arrangement may be designed such that different memory cells are electrically decoupled from one another by means of the electrically insulating jacket regions. This refinement corresponds to the realization of the trench structure using a clearly hollowed-out STI structure which, apart from its isolation function, additionally fulfills the function of a charge carrier feed structure for injecting electrical charge carriers into the substrate.

Im Weiteren wird das erfindungsgemäße Verfahren zum Herstellen der erfindungsgemäßen Speicherzelle näher beschrieben. Ausgestaltungen der Speicherzelle gelten auch für das Verfahren zum Herstellen der Speicherzelle und umgekehrt.In the following, the inventive method for producing the memory cell according to the invention will be described in more detail. Embodiments of the memory cell also apply to the method for producing the memory cell and vice versa.

Es ist möglich, zuerst die Grabenstruktur herzustellen und danach die Source/Drain-Bereiche sowie die Gatestruktur (d.h. Ladungsspeicherbereich und Steuergate) herzustellen.It is possible to first make the trench structure and then fabricate the source / drain regions and the gate structure (i.e., charge storage region and control gate).

Die Grabenstruktur kann gebildet werden, indem zumindest ein Graben in dem Substrat gebildet wird, ein elektrisch isolierender Mantelbereich zumindest an zumindest einem Teil der Oberfläche des mindestens einen Grabens gebildet wird und ein elektrisch leitfähiger Kernbereich in dem mindestens ein Graben gebildet wird. Gemäß dieser Ausgestaltung kann beispielsweise zunächst ein Graben in das Substrat eingebracht werden und nachfolgend ein elektrisch isolierender Mantelbereich ausgebildet werden. Dies kann beispielsweise dadurch erfolgen, dass mittels thermischen Oxidierens der Seitenwand des Grabens eine elektrisch isolierende Schicht generiert wird. Nachfolgend kann in die erhaltene Anordnung Ladungsträger lieferndes Material, z.B. dotiertes Polysilizium, eingebracht werden, wodurch die Grabenstruktur gebildet wird.The trench structure may be formed by forming at least one trench in the substrate, forming an electrically insulating cladding region at least on at least a part of the surface of the at least one trench, and forming an electrically conductive core region in the at least one trench. According to this embodiment, for example, first a trench in the substrate are introduced and subsequently formed an electrically insulating jacket area. This can be done, for example, by generating an electrically insulating layer by means of thermal oxidation of the side wall of the trench. Subsequently, charge carrier-supplying material, for example doped polysilicon, can be introduced into the obtained arrangement, whereby the trench structure is formed.

Alternativ kann der Graben mit elektrisch isolierendem Material aufgefüllt werden und dieses unter Verwendung eines Lithographie- und eines Ätzverfahrens teilweise aus dem Graben entfernt werden. Bei dem Verfahren kann die Grabenstruktur somit gebildet werden, indem zumindest ein Graben in dem Substrat gebildet wird und der Graben mit elektrisch isolierendem Material gefüllt wird. Ein Teil des elektrisch isolierenden Materials wird aus dem Graben entfernt, wodurch der elektrisch isolierende Mantelbereich gebildet wird. Ein elektrisch leitfähiger Kernbereich wird in dem mindestens einen Graben gebildet.Alternatively, the trench may be filled with electrically insulating material and partially removed from the trench using a lithography and an etching process. In the method, the trench structure can thus be formed by forming at least one trench in the substrate and filling the trench with electrically insulating material. A part of the electrically insulating material is removed from the trench, whereby the electrically insulating cladding region is formed. An electrically conductive core region is formed in the at least one trench.

Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Weiteren näher erläutert.Embodiments of the invention are illustrated in the figures and are explained in more detail below.

Es zeigen:

Figur 1
eine Speicherzelle gemäß dem Stand der Technik,
Figur 2
eine Test-Anordnung gemäß dem Stand der Technik,
Figur 3
eine Speicherzelle gemäß einem ersten Ausführungsbeispiel der Erfindung,
Figur 4
eine Speicherzelle gemäß einem zweiten Ausführungsbeispiel der Erfindung,
Figur 5
eine Speicherzelle gemäß einem dritten Ausführungsbeispiel der Erfindung,
Figur 6
eine Speicherzelle gemäß einem vierten Ausführungsbeispiel der Erfindung,
Figur 7
eine Speicherzelle gemäß einem fünften Ausführungsbeispiel der Erfindung,
Figur 8
eine Speicherzelle gemäß-einem sechsten Ausführungsbeispiel der Erfindung,
Figur 9
die in Figur 3 gezeigte Speicherzelle in einem Betriebszustand zum Einbringen von Elektronen in den Ladungsspeicherbereich,
Figur 10
die in Figur 4 gezeigte Speicherzelle in einem Betriebszustand zum Einbringen von Löchern in die Ladungsspeicherschicht,
Figur 11
eine Speicherzelle gemäß einem siebten Ausführungsbeispiel der Erfindung,
Figur 12
eine Layout-Ansicht einer Speicherzellen-Anordnung gemäß einem Ausführungsbeispiel der Erfindung,
Figur 13
eine Speicherzelle gemäß einem achten Ausführungsbeispiel der Erfindung,
Figur 14
eine Layout-Ansicht einer Speicherzellen-Anordnung gemäß einem anderen Ausführungsbeispiel der Erfindung.
Show it:
FIG. 1
a memory cell according to the prior art,
FIG. 2
a test arrangement according to the prior art,
FIG. 3
a memory cell according to a first embodiment of the invention,
FIG. 4
a memory cell according to a second embodiment of the invention,
FIG. 5
a memory cell according to a third embodiment of the invention,
FIG. 6
a memory cell according to a fourth embodiment of the invention,
FIG. 7
a memory cell according to a fifth embodiment of the invention,
FIG. 8
a memory cell according to a sixth embodiment of the invention,
FIG. 9
in the FIG. 3 shown memory cell in an operating state for introducing electrons in the charge storage area,
FIG. 10
in the FIG. 4 shown memory cell in an operating state for introducing holes in the charge storage layer,
FIG. 11
a memory cell according to a seventh embodiment of the invention,
FIG. 12
a layout view of a memory cell array according to an embodiment of the invention,
FIG. 13
a memory cell according to an eighth embodiment of the invention,
FIG. 14
a layout view of a memory cell array according to another embodiment of the invention.

Gleiche oder ähnliche Komponenten in unterschiedlichen Figuren sind mit gleichen Bezugsziffern versehen.The same or similar components in different figures are provided with the same reference numerals.

Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.The illustrations in the figures are schematic and not to scale.

Im Weiteren wird bezugnehmend auf Fig.3 eine Speicherzelle 300 gemäß einem ersten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 3 a memory cell 300 according to a first embodiment of the invention described.

Die Speicherzelle 300 ist auf und in einem p-dotierten Silizium-Substrat 301 ausgebildet. In einem ersten Oberflächenbereich des p-dotierten Silizium-Substrats 301 ist ein erster Source-/Drain-Bereich 302 als n+-dotierter Bereich gebildet. In einem zweiten Oberflächenbereich des p-dotierten Silizium-Substrats 301 ist ein zweiter Source-/Drain-Bereich 303 als n+-dotierter Bereich gebildet. In dem Oberflächenbereich zwischen dem ersten und zweiten Source/Drain-Bereich 302, 303 ist ein Kanal-Bereich 304 der Floating-Gate-Anordnung 300 gebildet. In dem Substrat 301, seitlich von dem ersten Source-/Drain-Bereich 302 und außerhalb des Kanal-Bereichs 304 ist eine erste Grabenstruktur 305 gebildet, welche einen ersten n+-dotierten Polysilizium-Kern 307 und einen teilweise darum herum ausgebildeten ersten Siliziumoxid-Mantel 308 enthält. In dem Substrat 301, seitlich von dem zweiten Source-/Drain-Bereich 303 und außerhalb des Kanal-Bereichs 304 ist eine zweite Grabenstruktur 306 gebildet. Diese enthält einen zweiten n+-dotierten Polysilizium-Kern 309 und zweiten Siliziumoxid-Mantel 310, welcher den Kern 309 umgibt. Mittels eines elektrischen Isolationsbereichs 311 aus Siliziumoxid-Material ist der Kanal-Bereich 304 von einem Floating-Gate 312 aus Polysilizium-Material elektrisch getrennt. Ferner ist mittels des elektrischen Isolationsbereichs 311 das über dem Floating-Gate 312 ausgebildete Steuergate 313 von dem Floating-Gate 312 elektrisch getrennt. Kontaktierungselemente 314 sind als Vias realisiert und ermöglichen es, den Grabenstrukturen 305, 306 ein vorgebbares elektrisches Potential bereitzustellen. Zwischen dem ersten n+-dotierten Polysilizium-Kern 307 und dem p-dotierten Substrat 301 ist ein erster pn-Übergang 315, das heißt ein erster Dioden-Übergang geschaffen. Ferner ist zwischen dem zweiten n+-dotierten Polysilizium-Kern 309 und dem p-dotierten Silizium-Substrat 301 ein zweiter pn-Übergang 316 realisiert.The memory cell 300 is formed on and in a p-doped silicon substrate 301. In a first surface region of the p-doped silicon substrate 301, a first source / drain region 302 is formed as an n + -doped region. In a second surface region of the p-doped silicon substrate 301, a second source / drain region 303 is formed as an n + -doped region. In the surface region between the first and second source / drain regions 302, 303, a channel region 304 of the floating gate arrangement 300 is formed. In the substrate 301, laterally from the first source / drain region 302 and outside the channel region 304, a first trench structure 305 is formed, which comprises a first n + -doped polysilicon core 307 and a first silicon oxide partially formed around it. Sheath 308 contains. In the substrate 301, laterally of the second source / drain region 303 and outside of the channel region 304, a second trench structure 306 is formed. This includes a second n + -doped polysilicon core 309 and second silicon oxide cladding 310 surrounding the core 309. By means of an electrical insulation region 311 made of silicon oxide material, the channel region 304 is electrically separated from a floating gate 312 made of polysilicon material. Furthermore, means of the electrical isolation region 311, the control gate 313 formed over the floating gate 312 is electrically isolated from the floating gate 312. Contacting elements 314 are realized as vias and make it possible to provide the trench structures 305, 306 with a predeterminable electrical potential. Between the first n + -doped polysilicon core 307 and the p-doped substrate 301, a first pn junction 315, that is, a first diode junction is provided. Furthermore, a second pn junction 316 is realized between the second n + -doped polysilicon core 309 and the p-doped silicon substrate 301.

Die Grabenstrukturen 305, 306 weisen aufgrund der Siliziumoxid-Mäntel 308, 310 eine elektrische Isolation der in Fig.3 gezeigten Speicherzelle von möglicherweise in benachbarten Teilbereichen des Substrats 301 ausgebildeten anderen Komponenten, beispielsweise anderer Speicherzellen, auf.
In Fig.3 bis Fig.8 sind Realisierungsmöglichkeiten basierend auf einem p-Substrat beschrieben. Die gleichen Realisierungsvarianten sind auch auf einem n-Substrat möglich (umgekehrte Dotierungen für Substrat, Wannen, Trench-Füllung, Source/Drain).Anstelle einer n+-Fuellung des Trenches kann auch eine metallische Füllung, z.B. aus Wolfram-Material, verwendet werden.
The trench structures 305, 306 have due to the Siliziumoxid-coats 308, 310, an electrical insulation of in Figure 3 shown memory cell of possibly formed in adjacent portions of the substrate 301 other components, such as other memory cells on.
In 3 to Fig.8 Implementation possibilities are described based on a p-substrate. The same implementation variants are also possible on an n-substrate (reverse doping for substrate, wells, trench filling, source / drain). Instead of an n + filling of the trench, a metallic filling, for example of tungsten material, can also be used ,

Im Weiteren wird bezugnehmend auf Fig.3, Fig.9 beschrieben, wie elektrische Ladungsträger in das n+-dotierte Floating-Gate 312 aus Polysilizium als Ladungsspeicherbereich eingebracht werden können, dass heißt wie eine Information in die Speicherzelle 300 programmiert werden kann.In the following, reference is made to Figure 3 . Figure 9 describes how electrical charge carriers can be introduced into the n + -type floating gate 312 made of polysilicon as a charge storage region, that is, how information can be programmed into the storage cell 300.

Zum Einschreiben einer Speicherinformation in die nichtflüchtige Speicherzelle 300, das heißt zum dauerhaften Einbringen von Elektronen in das Floating-Gate 312, werden, wie in Fig.9 gezeigt, die ersten und zweiten n+-dotierten Polysilizium-Kerne 307, 309 auf ein negatives elektrisches Potential (z.B. von -2Volt) gebracht. Die Source-/Drain-Bereiche 302, 303 werden auf dem Potential des Substrates gehalten. An das Steuergate 313 (das zum Beispiel n+ dotiert sein kann, aber nicht muss) wird ein positives elektrisches Potential von z.B. +8Volt angelegt. Die Dotierung der Gate-Bereiche ist von keiner sonderlichen Bedeutung, so dass keine Festlegung auf einen bestimmten Dotierungstyp gegeben ist. Das p-dotierte Silizium-Substrat 301 kann auf dem elektrischen Massepotential gehalten werden. Bei den beschriebenen Potentialverhältnissen können Elektronen aus dem ersten n+-dotierten Polysilizium-Kern 307 der Grabenstruktur 305 bzw. aus dem zweiten n+-dotierten Polysilizium-Kern 309 der zweiten Grabenstruktur 306 an den pn-Übergängen 315, 316 zu dem p-dotierten Substrat 301 in das Substrat 301 austreten. Es ist anzumerken, dass in solchen Bereichen, in welchen das p-dotierte Substrat 301 von den n+-dotierten Polysilizium-Kernen 307, 308 mittels der Siliziumoxid-Mantelbereiche 308, 310 getrennt ist, ein Austreten von elektrischen Ladungsträgern vermieden ist, es sei denn, die Dicke der elektrisch isolierenden Mantelbereiche 308, 310 ist derart dünn, dass ein elektrischer Tunnelstrom ermöglicht ist. Anschaulich werden erste Elektronen 902 aufgrund der in Durchlassrichtung vorgespannten Dioden 315, 316 in das Silizium-Substrat 201 injiziert, wie mittels erster Strompfade 900 angedeutet ist. Aufgrund der starken positiven Vorspannung des Steuergates 313 erfolgt eine Beschleunigung der injizierten negativ geladenen ersten Elektronen 902 hin zu dem Kanal-Bereich 304 des p-dotierten Substrats 301, was mittels zweiter Strompfade 901 veranschaulicht ist. Die beschleunigten, "heißen" zweiten Elektronen 903 können dann durch die Gate-isolierende Schicht des elektrischen Isolationsbereichs 311, das heißt zwischen Kanal-Bereich 304 und Floating-Gate 312 gelangen und in das Floating-Gate 312 injiziert werden und verbleiben dort dauerhaft.For writing memory information into the nonvolatile memory cell 300, that is, permanently introducing electrons into the floating gate 312, as shown in FIG Figure 9 shown, the first and second n + -doped polysilicon cores 307, 309 brought to a negative electrical potential (eg of -2 volts). The source / drain regions 302, 303 are held at the potential of the substrate. To the control gate 313 (which may or may not be doped n +, for example) a positive electrical potential of eg + 8 volts is applied. The doping of the gate regions is of no particular importance, so that no definition of a specific doping type is given. The p-doped silicon substrate 301 can be held at the electrical ground potential. At the described potential ratios, electrons from the first n + -doped polysilicon core 307 of the trench structure 305 and from the second n + -doped polysilicon core 309 of the second trench structure 306 at the pn junctions 315, 316 to the p-doped Substrate 301 exit into the substrate 301. It should be noted that in those areas where the p-doped substrate 301 is separated from the n + doped polysilicon cores 307, 308 by the silicon oxide cladding regions 308, 310, leakage of electrical charge carriers is avoided because, the thickness of the electrically insulating jacket portions 308, 310 is so thin that an electrical tunneling current is made possible. Illustratively, first electrons 902 are injected into the silicon substrate 201 due to the forward biased diodes 315, 316, as indicated by first current paths 900. Due to the strong positive bias of the control gate 313, the injected negatively charged first electron 902 accelerates toward the channel region 304 of the p-doped substrate 301, which is illustrated by means of second current paths 901. The accelerated, "hot" second electrons 903 can then pass through the gate insulating layer of the electrical isolation region 311, that is to say between the channel region 304 and the floating gate 312, and be injected into the floating gate 312 and remain there permanently.

Die Floating-Gate-Speicherzelle 300 weist in einem ersten Betriebszustand, in welchem das Floating-Gate 312 idealerweise von elektrischen Ladungsträgern frei ist, eine andere Schwellenspannung auf als in einem Szenario, in dem elektrische Ladungsträger in dem Floating-Gate 312 injiziert sind. Anschaulich wirken in dem Floating-Gate 312 enthaltene Elektronen ähnlich wie eine an das Steuergate 313 angelegte externe elektrische Spannung, so dass die Stärke eines Stromflusses zwischen den Source-/Drain-Bereichen 302, 303 bei einer zwischen diesen angelegten festen Spannung davon abhängig ist, ob in dem Floating-Gate 312 elektrische Ladungsträger injiziert sind oder nicht. In der Stärke eines solchen Lesestroms ist Information mit einem logischen Wert "1" (z.B. Elektronen in Floating-Gate 312 vorhanden) oder einem logischen Wert "0" (z.B. Elektronen in Floating-Gate 312 nicht vorhanden) enthalten.In a first operating state, in which the floating gate 312 is ideally free of electrical charge carriers, the floating gate memory cell 300 has a different threshold voltage than in a scenario in which electrical charge carriers are injected in the floating gate 312. Illustratively, electrons contained within the floating gate 312 act similarly to an external electrical voltage applied to the control gate 313, so that the amount of current flow between the source / drain regions 302, 303 is dependent upon a fixed voltage applied therebetween. whether electric charge carriers are injected in the floating gate 312 or not. The magnitude of such a read current includes information having a logical value "1" (e.g., floating gate electrodes 312) or a logic "0" (e.g., floating gate 312 electrons).

Im Weiteren wird bezugnehmend auf Fig.4 eine Speicherzelle 400 gemäß einem zweiten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 4 a memory cell 400 according to a second embodiment of the invention described.

Die Speicherzelle 400 unterscheidet sich von der Speicherzelle 300 im Wesentlichen dadurch, dass die Leitungstypen der dotierten Bereiche bei der Speicherzelle 400 anders ausgebildet sind als bei der Speicherzelle 300.The memory cell 400 differs from the memory cell 300 essentially in that the conductivity types of the doped regions are designed differently in the memory cell 400 than in the memory cell 300.

Die Speicherzelle 400 weist ebenfalls ein p-dotiertes Silizium-Substrat 301 auf. Allerdings ist in dem p-dotierten Silizium-Substrat 301 ein n-dotierter Wannenbereich 401 gebildet, der auch als Hochvolt-n-Wannenbereich bezeichnet werden kann. Als erster und zweiter Source-/Drain-Bereich 402, 403 sind p+-dotierte Bereiche im ersten und zweiten Oberflächenbereichen des n-Wannenbereichs 401 gebildet. Ferner sind erste und zweite Grabenstrukturen 404, 405 vorgesehen, welche sich von den ersten und zweiten Grabenstrukturen 305, 306 aus Fig.3 dahingehend unterscheiden, dass erste und zweite p+-dotierte Polysilizium-Kerne 406, 407 der Grabenstrukturen 404, 405 aus p+-dotiertem Polysilizium, statt aus nu-dotiertem Polysilizium wie in Fig.3, hergestellt sind. Das in Fig.4 vorgesehene n+-dotierte Steuergate kann alternativ auch als p+-dotiertes Steuergate realisiert werden. Auch bei der Speicherzelle 400 bildet der Übergang zwischen dem ersten p+-dotierten Polysilizium-Kern 406 und dem n-Wannenbereich 401 eine erste Diode 315, und der Übergang zwischen dem zweiten n+-dotierten Polysilizium-Kern 407 und dem n-Wannenbereich 401 bildet eine zweite Diode 316.The memory cell 400 also has a p-doped silicon substrate 301. However, in the p-doped silicon substrate 301, an n-doped well region 401 is formed, which may also be referred to as a high-voltage n-well region. As the first and second source / drain regions 402, 403, p + -doped regions are formed in the first and second surface regions of the n-well region 401. Furthermore, first and second trench structures 404, 405 are provided which extend from the first and second trench structures 305, 306 Figure 3 in that first and second p + doped polysilicon cores 406, 407 of the trench structures 404, 405 are made of p + doped polysilicon, rather than of nu doped polysilicon as in FIG Figure 3 , are made. This in Figure 4 provided n + -doped control gate can alternatively be realized as a p + -doped control gate. Also in the memory cell 400, the junction between the first p + -doped polysilicon core 406 and the n-well region 401 forms a first diode 315, and the junction between the second n + -doped polysilicon core 407 and the n-well region 401 forms a second diode 316.

Im Weiteren wird bezugnehmend auf Fig.4, Fig.10 die Funktionalität der Speicherzelle 400 beschrieben.In the following, reference is made to Figure 4 . Figure 10 the functionality of memory cell 400 is described.

In Fig.10 ist gezeigt, welche Potentiale an die Anschlüsse der Speicherzelle 400 anzulegen sind, um heiße Löcher (in den Figuren mit h+ bezeichnet) in das Floating-Gate 312 zu injizieren. Hierfür werden die ersten und zweiten p+-dotierten Polysilizium-Kerne 406, 407 auf ein Potential von z.B. +2Volt gebracht. Die Source-/Drain-Anschlüsse 402, 403 werden auf dem Potential der n-Wanne 401 gehalten. Die Anschlüsse des p-dotierten Substrats 301 und des n-Wannenbereichs 401 werden vorzugsweise auf dem elektrischen Massenpotential gehalten. Das Steuergate 408 wird dagegen auf ein negatives Potential von z.B. -8Volt gebracht. Es sei darauf hingewiesen, dass die n-Wanne auf ein positives Potential gelegt werden kann. Dadurch sind alle anderen angelegten Potentiale in Bezug zu diesem positiven n-WannenPotential zu sehen. Die Dioden 315, 316 werden gemäß Fig.10 in Durchlassrichtung betrieben. Aufgrund der in Durchlassrichtung betriebenen Dioden, 315, 316 werden erste Löcher 1002 h+ in den n-Wannenbereich 401 injiziert, was mittels erster Strompfade 1000 veranschaulicht ist. Aufgrund des stark negativen Potentials an dem Steuergate 408 werden die positiv geladenen ersten 1002 Löcher hin zu dem Kanal-Bereich 304 beschleunigt, wodurch die ersten Löcher 1002 in "heiße" zweite Löcher 1003 umgewandelt werden. Die zweiten Löcher 1003 können aufgrund ihrer ausreichend hohen kinetischen Energie bis in den Floating-Gate-Bereich 312 gelangen, in welchen sie injiziert werden. Wiederum kann mittels einer Verschiebung der Schwellenspannung der transistorähnlichen Anordnung 400 ermittelt werden, ob in dem Floating-Gate 312 der Speicherzelle 400 elektrische Ladungsträger (nämlich Löcher) injiziert sind oder nicht. Ein Lesestrom mit einem hohen bzw. niedrigen Wert bei konstanter Spannung zwischen den Source-/Drain-Bereichen 402, 403 kann einer Information mit dem logischen Wert "1" bzw. "0" zugeordnet werden.In Figure 10 2 shows what potentials are to be applied to the terminals of the memory cell 400 in order to inject hot holes (designated h + in the figures) into the floating gate 312. For this purpose, the first and second p + -doped polysilicon cores 406, 407 are brought to a potential of, for example, + 2 volts. The source / drain terminals 402, 403 are held at the potential of the n-well 401. The terminals of the p-doped substrate 301 and the n-well region 401 are preferably maintained at the electrical ground potential. The control gate 408, however, is brought to a negative potential of, for example, -8 volts. It should be noted that the n-well can be set to a positive potential. As a result, all other applied potentials are to be seen in relation to this positive n-well potential. The diodes 315, 316 are according to Figure 10 operated in the forward direction. Due to the forward-biased diodes 315, 316, first holes 1002 h + are injected into the n-well region 401, as illustrated by first current paths 1000. Due to the high negative potential at the control gate 408, the positively charged first 1002 holes are accelerated toward the channel region 304, thereby converting the first holes 1002 into "hot" second holes 1003. The second holes 1003, due to their sufficiently high kinetic energy, can reach the floating gate region 312 into which they are injected. Again, by means of a shift of the threshold voltage of the transistor-like arrangement 400, it can be determined whether or not electrical charge carriers (namely, holes) are injected in the floating gate 312 of the memory cell 400. A read current at a high voltage at a constant voltage between the source / drain regions 402, 403 may be assigned to information of logical value "1" and "0", respectively.

Im Weiteren-wird bezugnehmend auf Fig.5 eine Speicherzelle 500 gemäß einem dritten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 5 a memory cell 500 according to a third embodiment of the invention described.

Die in Fig.5 gezeigte Speicherzelle 500 unterscheidet sich von der in Fig.3 gezeigten Speicherzelle 300 im Wesentlichen dadurch, dass die Speicherzelle nicht direkt in dem p-dotierten Substrat 301 ausgebildet ist, sondern in einem p-dotierten kleinen Wannenbereich 502, welcher wiederum innerhalb eines n-dotierten großen Wannenbereichs 501 gebildet ist. Mit anderen Worten ist es nicht erforderlich, dass die erfindungsgemäße Speicherzelle direkt in ein. Substrat integriert ist, vielmehr kann sie auch in einem in dem Substrat eingebrachten Wannenbereich ausgebildet sein. Insbesondere kann in einer solchen Wannenkonstruktion ein negatives Potential an die (innere) p-Wanne angelegt werden. Dies bedeutet, 1 dass die an andere Bereiche angelegten Spannungen immer in Bezug zu diesem negativen Wannenpotential zu sehen sind.In the Figure 5 shown memory cell 500 differs from that in Figure 3 shown memory cell 300 substantially in that the memory cell is not formed directly in the p-doped substrate 301, but in a p-doped small well region 502, which in turn is formed within an n-doped large well region 501. In other words, it is not necessary that the memory cell according to the invention directly in a. Substrate is integrated, but it can also be formed in an introduced into the substrate well area. In particular, in such a well construction, a negative potential can be applied to the (inner) p-well. This means that the voltages applied to other areas must always be seen in relation to this negative well potential.

Im Weiteren wird bezugnehmend auf Fig.6 eine Speicherzelle 600 gemäß einem vierten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 6 a memory cell 600 according to a fourth embodiment of the invention described.

Die in Fig.6 gezeigte Speicherzelle 600 unterscheidet sich von der in Fig.3 gezeigten Speicherzelle 300 im Wesentlichen dadurch, dass anstelle des Floating-Gates 312 als Ladungsspeicherbereich eine Siliziumnitrid-Schicht (Si3N4) 601 zwischen zwei Siliziumoxid-Teilschichten des elektrischen Isolationsbereichs 311 sandwichartig eingebettet ist, wodurch zwischen dem Kanal-Bereich 304 und dem Steuergate 313 eine ONO-Schichtenfolge (Siliziumoxid-Siliziumnitrid-Siliziumoxid) gebildet ist. Bei der Speicherzelle 600 wird die Siliziumnitrid-Schicht 601 der ONO-Schichtenfolge als "Charge Trapping Layer", das heißt als elektrisch isolierender Ladungsspeicherbereich verwendet. Das Injizieren von Elektronen in die Siliziumnitrid-Schicht 601 erfolgt ähnlich wie das Injizieren von Elektronen in das Floating-Gate 312 bei der Speicherzelle 300, wobei aufgrund der elektrisch isolierenden Eigenschaft von Siliziumnitrid-Material die in die Siliziumnitrid-Schicht 601 eingebrachten elektrischen Ladungsträger an dem jeweiligen Injektionsort innerhalb der Siliziumnitrid-Schicht 601 verbleiben und sich nicht frei auf dem Ladungsspeicherbereich verteilen.In the Figure 6 shown memory cell 600 differs from that in Figure 3 shown memory cell 300 substantially in that instead of the floating gate 312 as a charge storage region, a silicon nitride layer (Si 3 N 4 ) 601 sandwiched between two silica partial layers of the electrical insulation region 311, whereby between the channel region 304 and the control gate 313, an ONO layer sequence (silicon oxide-silicon nitride-silicon oxide) is formed. In the memory cell 600, the silicon nitride layer 601 of the ONO layer sequence is used as a charge trapping layer, that is, as an electrically insulating charge storage region. The injection of electrons into the silicon nitride layer 601 is similar to the injection of electrons into the floating gate 312 in the memory cell 300, due to the electrical insulating property of silicon nitride material, the charge carriers placed in the silicon nitride layer 601 remain at the respective injection site within the silicon nitride layer 601 and are not distributed freely in the charge storage region.

Im Weiteren wird bezugnehmend auf Fig.7 eine Speicherzelle 700 gemäß einem fünften Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 7 a memory cell 700 according to a fifth embodiment of the invention described.

Die Speicherzelle 700 unterscheidet sich von der in Fig.4 gezeigten Speicherzelle 400 dadurch, 1 dass das Floating-Gate 312 aus Fig.4 durch die Siliziumnitrid-Schicht 601 ersetzt ist.The memory cell 700 differs from that in FIG Figure 4 1, that the floating gate 312 from Figure 4 is replaced by the silicon nitride layer 601.

Im Weiteren wird bezugnehmend auf Fig.8 eine Speicherzelle 800 gemäß einem sechsten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 8 a memory cell 800 according to a sixth embodiment of the invention described.

Die Speicherzelle 800 unterscheidet sich von der in Fig.5 gezeigten Speicherzelle 500 dadurch, dass das Floating-Gate 312 durch die Siliziumnitrid-Schicht 601 ersetzt ist.The memory cell 800 differs from the one in FIG Figure 5 shown memory cell 500 in that the floating gate 312 is replaced by the silicon nitride layer 601.

Im Weiteren wird bezugnehmend auf Fig.11 eine Speicherzelle 1100 gemäß einem siebten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 11 a memory cell 1100 according to a seventh embodiment of the invention described.

Die in Fig.11 gezeigte Speicherzelle 1100 unterscheidet sich von der in Fig.6 gezeigten Speicherzelle 600 im Wesentlichen dadurch, 1 dass anstelle nur eines Speicher-Feldeffekttransistors in Fig.6 gemäß Fig.11 ein erster Speicher-Feldeffekttransistor 1101 und mindestens ein zweiter Speicher-Feldeffekttransistor 1102 ausgebildet sind. Die Steuergates 313 des ersten bzw. des zweiten Speicher-Feldeffekttransistors 1101, 1102 sind separat ansteuerbar. Die Steuergates 313 der beiden Speicher-Feldeffekttransistoren 1101, 1102 sind voneinander räumlich getrennt und elektrisch separat ansteuerbar. Als Ladungsspeicherbereich weist die Speicherzelle 1100 eine ONO-Schichtenfolge 1103 auf, die gebildet ist aus einer ersten Siliziumoxid-Schicht 1104, einer Siliziumnitrid-Schicht 1105 als "Charge Trapping Layer" und einer zweiten Siliziumoxid-Schicht 1106.In the fig.11 shown memory cell 1100 differs from that in Figure 6 shown memory cell 600 substantially by, 1 that instead of only one memory field effect transistor in Figure 6 according to fig.11 a first memory field effect transistor 1101 and at least one second memory field effect transistor 1102 are formed. The Control gates 313 of the first and second memory field effect transistors 1101, 1102 can be controlled separately. The control gates 313 of the two memory field-effect transistors 1101, 1102 are spatially separated from one another and can be driven separately electrically. As a charge storage region, the memory cell 1100 has an ONO layer sequence 1103, which is formed from a first silicon oxide layer 1104, a silicon nitride layer 1105 as a "charge trapping layer" and a second silicon oxide layer 1106.

Wie im Weiteren beschrieben, können mittels Anlegens vorgebbarer elektrischer Potentiale an die Anschlüsse der Speicherzelle 1100 Elektronen aus den Grabenstrukturen 305, 306 in die ONO-Schichtenfolge 1103 eingebracht werden können.As described below, by applying predeterminable electrical potentials to the terminals of the memory cell 1100, electrons from the trench structures 305, 306 can be introduced into the ONO layer sequence 1103.

Gemäß dem in Fig.11 gezeigten Szenario ist an die n+-dotierten Polysilizium-Kerne 307, 309 der Grabenstrukturen 305, 306 jeweils ein negatives elektrisches Potential von z.B. -2Volt angelegt. An die Steuergates 313 des ersten und des zweiten Speicher-Feldeffekttransistors 1101, 1102, ist jeweils ein positives elektrisches Potential von z.B. +8Volt angelegt. Aufgrund der Potentialverhältnisse werden die aus den Dioden 315, 316 austretenden Elektronen zu den Kanal-Bereichen 304 der Speicher-Feldeffekttransistoren 1101, 1102 hin beschleunigt und in einem ersten Ladungsspeicherbereich 1107 und in einem zweiten Ladungsspeicherbereich 1108 der ONO-Schichtenfolge 1103 injiziert. Dieser Verfahrensschritt kann als ein Rücksetzen der Speicherinhalte der Feldeffekttransistoren 1101, 1102 bezeichnet werden.According to the in fig.11 In the scenario shown, a negative electrical potential of, for example, -2 volts is applied to the n + -doped polysilicon cores 307, 309 of the trench structures 305, 306. To the control gates 313 of the first and the second memory field effect transistor 1101, 1102, in each case a positive electrical potential of, for example, + 8 volts is applied. Due to the potential relationships, the electrons emerging from the diodes 315, 316 are accelerated towards the channel regions 304 of the memory field effect transistors 1101, 1102 and injected in a first charge storage region 1107 and in a second charge storage region 1108 of the ONO layer sequence 1103. This process step may be referred to as resetting the memory contents of the field effect transistors 1101, 1102.

Um in einen ausgewählten der ersten und zweiten Ladungsspeicherbereiche 1107 oder 1108 selektiv eine Speicherinformation von einem Bit zu programmieren, werden mittels Fowler-Nordheim-Tunnelns die in den jeweiligen Ladungsspeicherbereich 1107 oder 1108 mittels Injizierens heißer Elektronen eingebrachte Elektronen selektiv entfernt. Hierbei kann die sehr gute räumliche Auflösung des Fowler-Nordheim-Programmierens beim Einbringen/Entfernen von Ladungsträgern vorteilhaft genutzt werden.To selectively select into a selected one of the first and second charge storage regions 1107 or 1108 Programming memory information of one bit, Fowler-Nordheim tunneling selectively removes the electrons introduced into the respective charge storage region 1107 or 1108 by injecting hot electrons. In this case, the very good spatial resolution of Fowler-Nordheim programming can be used to advantage in the introduction / removal of charge carriers.

Somit ist es bei der Speicherzelle 1100 möglich, unterschiedliche Speicher-Feldeffekttransistoren der Speicherzelle voneinander separat zu beschreiben. Dadurch kann die Speicherzelle der Erfindung als Mehrfach-Bit-Speicherzelle, beispielsweise als 2-Bit-Speicherzelle wie in Fig.11, realisiert sein.Thus, it is possible for the memory cell 1100 to separately describe different memory field effect transistors of the memory cell. Thereby, the memory cell of the invention can be used as a multi-bit memory cell such as a 2-bit memory cell as in FIG fig.11 , be realized.

Anschaulich können unterschiedliche Bereiche der ONO-Schichtenfolge 1103 als Ladungsspeicherschicht zum separaten Einbringen/Entfernen von elektrischen Ladungsträgern und somit als separate Informations-Bit-Speicherbereiche betrieben werden.Clearly, different areas of the ONO layer sequence 1103 can be operated as a charge storage layer for the separate introduction / removal of electrical charge carriers and thus as separate information bit storage areas.

Eine vorteilhafte Betriebsweise einer solchen Speicherzelle 1100 besteht darin, dass zunächst alle Speicherzellen zurückgesetzt werden, indem Ladungsträger (z.B. mittels Tunnels heißer Ladungsträger) in die gesamte Ladungsspeicherschicht 1103 injiziert werden. Das Programmieren von Information erfolgt dann unter Verwendung eines ortsspezifischen Entfernens von Ladungsträgern aus einem ausgewählten Bereich der Ladungsspeicherschicht, z.B. mittels Fowler-Nordheim-Tunnelns.An advantageous mode of operation of such a memory cell 1100 is that first all memory cells are reset by injecting charge carriers (for example by means of hot carrier tunnels) into the entire charge storage layer 1103. The programming of information is then performed using location-specific removal of charge carriers from a selected region of the charge storage layer, e.g. using Fowler-Nordheim tunnels.

Alternativ kann die Injektion heißer Ladungsträger selektiv erfolgen, indem man das eine Steuergate wie beschrieben auf ein positives Potential legt, das andere Steuergate auf Substrat- bzw. Wannenpotential belässt. Hierdurch werden die Ladungsträger selektiv nur zu einem Gate beschleunigt, wodurch eine selektive Programmierung erzielt wird.Alternatively, hot carrier injection may be selective by applying the one control gate as described puts a positive potential, leaves the other control gate to substrate or well potential. As a result, the charge carriers are selectively accelerated only to a gate, whereby a selective programming is achieved.

Desweiteren sei angemerkt, dass die in Fig.11 beschriebene Implementierung ebenfalls mit den in Fig.7 und Fig.8 vorgestellten Wannenkonstruktionen analog möglich ist.Furthermore, it should be noted that the in fig.11 described implementation also with the in Fig.7 and Fig.8 featured tub construction is analogous possible.

Im Weiteren wird bezugnehmend auf Fig.12 eine schematische Layout-Ansicht (Draufsicht) einer Speicherzellen-Anordnung 1200 gemäß einem Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 12 a schematic layout view (top view) of a memory cell array 1200 according to an embodiment of the invention described.

Die Speicherzellen-Anordnung 1200 enthält eine Vielzahl von Speicherzellen, wie sie zum Beispiel in Fig.3 gezeigt sind. Zur Übersichtlichkeit sind in Fig.12 Bezugszeichen aus Fig.3 eingefügt. Die Speicherzellen-Anordnung 1200 ist SNOR-Architektur realisiert.The memory cell array 1200 includes a plurality of memory cells, such as those shown in FIG Figure 3 are shown. For clarity are in Figure 12 Reference number from Figure 3 inserted. The memory cell array 1200 is realized SNOR architecture.

Das Steuergate 313 ist in Fig.12 für eine Zeile von Speicherzellen gemeinsam ausgeführt und ist somit ähnlich wie eine Leiterbahn realisiert. Mittels einer Substrat-Kontaktierung (nicht in Fig. 12 gezeichnet)kann dem Substrat 301 ein definiertes elektrisches Potential bereitgestellt werden. Ferner sind Leiterbahnen 1202 und Leiterbahn-Vias 1203 bzw. Kontaktlöcher 1201 gezeigt, mittels welcher die Source-/Drain-Bereiche kontaktierbar sind.The control gate 313 is in Figure 12 for a row of memory cells running together and is thus realized similar to a conductor track. By means of a substrate contacting (not in Fig. 12 drawn), a defined electrical potential can be provided to the substrate 301. Furthermore, printed conductors 1202 and printed circuit vias 1203 or contact holes 1201 are shown, by means of which the source / drain regions can be contacted.

Im Weiteren wird bezugnehmend auf Fig.13 eine Speicherzelle 1300 gemäß einem achten Ausführungsbeispiel der Erfindung beschrieben.In the following, reference is made to Figure 13 a memory cell 1300 according to an eighth embodiment of the invention described.

Die Speicherzelle 1300 unterscheidet sich von der Speicherzelle 1100 im Wesentlichen dadurch, dass der gemäß Fig.11 rechte, d.h. der zweite Source-/Drain-Bereich 303 des ersten Speicher-Feldeffekttransistors 1101 mit dem gemäß Fig.11 linken, d.h. zweiten Source-/Drain-Bereich 302 des zweiten Speicher-Feldeffekttransistors 1102 als gemeinsamer Source-/Drain-Bereich 1301 ausgeführt ist. Der gemeinsame Source-/Drain-Bereich 1301 stellt somit ein zusammenhängendes Implantationsgebiet dar. Eine solche Zusammenlegung zweier Source-/Drain-Bereiche zweier benachbarter Speicherzellen kann auch für eine Speicherzellen-Anordnung mit einer Vielzahl von Speicherzellen realisiert werden. Legt man die Source/Drain-Gebiete 303/302 zusammen, erhält man anschaulich eine Art NAND-Struktur.The memory cell 1300 differs from the memory cell 1100 essentially in that of FIG fig.11 right, ie the second source / drain region 303 of the first memory field effect transistor 1101 with the according to fig.11 left, ie second source / drain region 302 of the second memory field effect transistor 1102 is designed as a common source / drain region 1301. The common source / drain region 1301 thus represents a coherent implantation region. Such a combination of two source / drain regions of two adjacent memory cells can also be realized for a memory cell arrangement having a multiplicity of memory cells. If you put the source / drain regions 303/302 together, you will clearly get a kind of NAND structure.

Im Weiteren wird bezugnehmend auf Fig.14 eine schematische Layout-Ansicht (Draufsicht) einer Speicherzellen-Anordnung 1400 gemäß einem anderen Ausführungsbeispiel der Erfindung beschrieben, wobei in der Speicherzellen-Anordnung Leiterbahnen 1401 vorgesehen sind.In the following, reference is made to Figure 14 a schematic layout view (top view) of a memory cell array 1400 according to another embodiment of the invention described, wherein in the memory cell array tracks 1401 are provided.

Die Speicherzellen-Anordnung 1400 aus Fig.14 stellt ein schematisches Layout dar, aus dem ersichtlich ist, wie erfindungsgemäße Speicherzellen in eine NAND-Struktur integriert werden können. Eine Integration in andere Anordnungen (z.B. NOR,...) ist auch möglich. Daher sollen die gezeigten Beispiele nur zur Veranschaulichung dienen, 1 ohne dass eine Beschränkung auf eine spezielle Speicheranordnung vorgenommen ist.The memory cell array 1400 Figure 14 FIG. 12 illustrates a schematic layout from which it can be seen how memory cells according to the invention can be integrated into a NAND structure. Integration into other arrangements (eg NOR, ...) is also possible. Therefore, the examples shown are for illustrative purposes only, without being limited to any particular memory arrangement.

In diesem Dokument sind folgende Veröffentlichungen zitiert:

  • [1] US 2003/0006448 A1
  • [2] US 6,518,126 B2
  • [3] US 6,366,499 B1
  • [4] US 6, 329, 246 B1
This document cites the following publications:
  • [1] US 2003/0006448 A1
  • [2] US 6,518,126 B2
  • [3] US 6,366,499 B1
  • [4] US Pat. No. 6,329,246 B1

BezugszeichenlisteLIST OF REFERENCE NUMBERS

  • 100 Floating-Gate-Speicherzelle100 floating gate memory cell
  • 101 p-dotiertes Silizium-Substrat101 p-doped silicon substrate
  • 102 n-dotierte Wanne102 n-doped tub
  • 103 p-dotierte Wanne103 p-doped tub
  • 104 erster Source-/Drain-Bereich104 first source / drain region
  • 105 zweiter Source-/Drain-Bereich105 second source / drain region
  • 106 Kanal-Bereich106 channel area
  • 107 elektrisch isolierender Bereich107 electrically insulating area
  • 108 Floating-Gate-Bereich108 floating gate area
  • 109 Steuergate109 control gate
  • 110 STI-Bereich110 STI area
  • 111 Kontaktierungselemente111 contacting elements
  • 112 pn-Übergang112 pn junction
  • 200 Test-Ariordnung200 test aria order
  • 201 p-dotiertes Silizium-Substrat201 p-doped silicon substrate
  • 202 Feldeffekttransistor202 field effect transistor
  • 203 erster Source-/Drain-Bereich203 first source / drain region
  • 204 zweiter Source-/Drain-Bereich204 second source / drain region
  • 205 elektrisch isolierender Bereich205 electrically insulating area
  • 206 Gate-Bereich206 gate area
  • 207 Kontaktierungselemente207 contacting elements
  • 208 Kanal-Bereich208 channel area
  • 209 n+-dotierter Bereich209 n + doped area
  • 210 anderes Kontaktierungselement210 other contacting element
  • 300 Speicherzelle300 memory cell
  • 301 p-dotiertes Substrat301 p-doped substrate
  • 302 erster n+-dotierter Source-/Drain-Bereich302 first n + doped source / drain region
  • 303 zweiter n+-dotierter Source-/Drain-Bereich303 second n + doped source / drain region
  • 304 Kanal-Bereich304 channel area
  • 305 erste Grabenstruktur305 first trench structure
  • 306 zweite Grabenstruktur306 second trench structure
  • 307 erster n+-dotierter Polysilizium-Kern307 first n + -doped polysilicon core
  • 308 erster Siliziumoxid-Mantel308 first silicon oxide jacket
  • 309 zweiter n+-dotierter Polysilizium-Kern309 second n + -doped polysilicon core
  • 310 zweiter Siliziumoxid-Mantel310 second silica shell
  • 311 elektrischer Isolationsbereich311 electrical insulation area
  • 312 Floating-Gate312 floating gate
  • 313 n+-Steuergate313 n + control gate
  • 314 Kontaktierungselemente314 contacting elements
  • 315 erster pn-Übergang315 first pn junction
  • 316 zweiter pn-Übergang316 second pn junction
  • 400 Speicherzelle400 memory cell
  • 401 n-Wannenbereich401 n-tub area
  • 402 erster p+-dotierter Source-/Drain-Bereich402 first p + doped source / drain region
  • 403 zweiter p+-dotierter Source-/Drain-Bereich403 second p + doped source / drain region
  • 404 erste Grabenstruktur404 first trench structure
  • 405 zweite Grabenstruktur405 second trench structure
  • 406 erster p+-dotierter Polysilizium-Kern406 first p + -doped polysilicon core
  • 407 zweiter n+-dotierter Polysilizium-Kern407 second n + -doped polysilicon core
  • 408 p+-Steuergate408 p + control gate
  • 500 Speicherzelle500 memory cell
  • 501 n-dotierter großer Wannenbereich501 n-doped large well area
  • 502 p-dotierter kleiner Wannenbereich502 p-doped small well area
  • 600 Speicherzelle600 memory cell
  • 601 Siliziumnitrid-Schicht601 silicon nitride layer
  • 700 Speicherzelle700 memory cell
  • 800 Speicherzelle800 memory cell
  • 900 erste Strompfade900 first current paths
  • 901 zweite Strompfade901 second current paths
  • 902 erste Elektronen902 first electrons
  • 903 zweite Elektronen903 second electrons
  • 1000 erste Strompfade1000 first current paths
  • 1001 zweite Strompfade1001 second current paths
  • 1002 erste Löcher1002 first holes
  • 1003 zweite Löcher1003 second holes
  • 1100 Speicherzelle1100 memory cell
  • 1101 erster Speicher-Feldeffekttransistor1101 first memory field effect transistor
  • 1102 zweiter Speicher-Feldeffekttransistor1102 second memory field effect transistor
  • 1103 ONO-Schichtenfolge1103 ONO layer sequence
  • 1104 erste Siliziumoxid-Schicht1104 first silicon oxide layer
  • 1105 Siliziumnitrid-Schicht1105 silicon nitride layer
  • 1106 zweite Siliziumoxid-Schicht1106 second silicon oxide layer
  • 1107 erster Ladungsspeicherbereich1107 first charge storage area
  • 1108 zweiter Ladungsspeicherbereich1108 second charge storage area
  • 1200 Speicherzellen-Anordnung1200 memory cell arrangement
  • 1202 Leiterbahnen1202 tracks
  • 1203 Leiterbahn-Via1203 Track via
  • 1300 Speicherzelle1300 memory cell
  • 1301 gemeinsamer Source-/Drain-Bereich1301 common source / drain region
  • 1400 Speicherzellen-Anordnung1400 memory cell arrangement
  • 1401 Leiterbahnen1401 tracks

Claims (20)

  1. Storage cell, comprising
    - a substrate (301), containing charge carriers of a first conduction type;
    - a first source-/drain region (302) in a first surface region of the substrate and a second source-/drain-region (303) in a second surface region of the substrate;
    - a channel region (304) in a surface region of the substrate between the first and the second source/drain region;
    - a charge storage region (312) above the channel region;
    - a control gate (313) above the charge storage region, which is electrically insulated from the charge storage region;
    - a trench structure (305, 306) formed in the substrate, comprising material (307, 309) providing charge carriers having charge carriers of a second conduction type and an insulating region (308) between the substrate and between at least a part of the material providing charge carriers, wherein the trench structure is at least partially provided with a shallow trench side wall insulation;
    - wherein the first conduction type is different from the second conduction type such that a diode junction (315, 316) is formed between the substrate and the charge carriers providing material of the trench structure;
    - wherein the storage cell is configured such that electrical charge carriers from the charge carrier providing material of the trench structure are insertable into the charge storage region by applying presettable electrical potentials to the storage cell.
  2. Storage cell according to claim 1,
    wherein the trench structure extends deeper into the substrate than the first and the second source-/drain region.
  3. Storage cell according to claim 2,
    wherein the trench structure extends into the substrate at least by a factor 3 deeper than the first and the second source-/drain region.
  4. Storage cell according to one of the claims 1 to 3,
    wherein the trench structure extends in an essentially vertical direction relative to the surface structure of the substrate.
  5. Storage cell according to one of the claims 1 to 4,
    wherein the trench structure is formed on a side of at least one of the source-/drain regions and outside the channel region.
  6. Storage cell according to one of the claims 1 to 5,
    having two trench structures, one of which is arranged on a side of the first source-/drain region and outside the channel region und the other one of which is arranged on a side of the second source-/drain region and outside the channel region.
  7. Storage cell according to one of the claims 1 to 6,
    wherein the trench structure comprises an electrically insulating coating region on at least a part of the sidewall of the trench and an electrically conductive core region filled into the trench such that electrical charge carriers from the trench structure are only allowed to leak from such regions into the substrate, in which the core region is free from a coating by the coating region, or in such regions, in which the coating region comprises a sufficient small thickness for enabling a tunnel current.
  8. Storage cell according to one of the claims 1 to 7,
    wherein the charge storage region is a floating-gate.
  9. Storage cell according to claim 8,
    wherein the floating-gate comprises polysilicon.
  10. Storage cell according to claim 8 or 9,
    wherein a gate-insulating layer is arranged between the substrate and the floating-gate.
  11. Storage cell according to one of the claims 1 to 7,
    wherein the charge storage region is an electrically insulating charge storage region.
  12. Storage cell according to claim 11,
    wherein the electrically insulating charge storage region comprises or consists of
    - a silicon oxide - silicon nitride - silicon oxide layer sequence;
    - silicon nitride;
    - aluminium oxide;
    - yttrium oxide;
    - lanthanum oxide;
    - hafnium oxide;
    - zirconium oxide;
    - a silicon oxide - aluminium oxide - silicon oxide layer sequence;
    - a silicon oxide - yttrium oxide - silicon oxide layer sequence;
    - a silicon oxide - lanthanum oxide - silicon oxide layer sequence;
    - a silicon oxide - hafnium oxide - silicon oxide layer sequence;
    - a silicon oxide - zirconium oxide layer sequence; and/or
    - another layer sequence, which enables a permanent charge storage.
  13. Storage cell according to one of the claims 1 to 12,
    wherein the substrate comprises a well region comprising the charge carriers of the first conduction type and a region comprising the charge carriers of the second conduction type,
    wherein the components of the storage cell are formed in the well region.
  14. Storage cell according to one of the claims 1 to 13,
    comprising a plurality of spatially separated and electrically separately controllable control gates such that electrical charge carriers from the trench structure are insertable into a region adjacent to the at least one selected control gate by applying presettable electrical potentials to at least selected one of the control gates.
  15. Storage cell according to one of the claims 1 to 14,
    wherein the charge carriers of the first conduction type and/or the charge carriers of the second conduction type are doping atoms.
  16. Storage cell arrangement,
    comprising a plurality of storage cells integrated in the substrate according to one of the claims 1 to 15.
  17. Storage cell arrangement according to claim 16,
    which is formed in such a manner that different storage cells are electrically decoupled from each other by the electrically insulating coating regions.
  18. Method for manufacturing a storage cell,
    wherein
    - a first source-/drain region (302) is formed in a first surface region of a substrate, which contains charge carriers of a first conduction type, and a second source-/drain-region (303) is formed in a second surface region of the substrate;
    - a channel region (304) is formed in a surface region of the substrate between the first and the second source-/drain region;
    - a charge storage region (312) is formed above the channel region;
    - a control gate (313), which is electrically insulated from the charge storage region, is formed above the charge storage region;
    - a trench structure (305, 306) arranged in the substrate is formed, which comprises material (307, 309) providing charge carriers having charge carriers of a second conduction type and an insulating region (308) between the substrate and between at least a part of the material providing charge carriers,
    wherein the trench structure is at least partially provided with a shallow trench side wall insulation;
    - wherein the first conduction type is adjusted differently from the second conduction type such that a diode-junction (315, 316) is formed between the substrate and the charge carriers providing material of the trench structure;
    - wherein the storage cell is configured such that electrical charge carriers from the charge carrier providing material of the trench structure are insertable into the charge storage region by applying presettable electrical potentials to the storage cell.
  19. Method according to claim 18,
    wherein the trench structure is formed by
    - forming at least one trench in the substrate;
    - forming an electrically insulating coating region on at least one part of the surface of the at least one trench;
    - forming an electrically conductive core region in the at least one trench.
  20. Method according to claim 18,
    wherein the trench structure is formed by
    - forming at least one trench in the substrate;
    - filling the trench with electrically insulating material;
    - removing a part of the electrically insulating material from the trench, whereby the electrically insulating coating region is formed;
    - forming an electrically conductive core region in the at least one trench.
EP04707864A 2003-02-05 2004-02-04 Storage cell, storage cell arrangement, and method for the production of a storage cell Expired - Fee Related EP1590832B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10304654 2003-02-05
DE10304654A DE10304654A1 (en) 2003-02-05 2003-02-05 Memory cell, memory cell arrangement and method for producing a memory cell
PCT/DE2004/000186 WO2004070841A2 (en) 2003-02-05 2004-02-04 Storage cell and method for the production thereof

Publications (2)

Publication Number Publication Date
EP1590832A2 EP1590832A2 (en) 2005-11-02
EP1590832B1 true EP1590832B1 (en) 2009-11-18

Family

ID=32730771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04707864A Expired - Fee Related EP1590832B1 (en) 2003-02-05 2004-02-04 Storage cell, storage cell arrangement, and method for the production of a storage cell

Country Status (5)

Country Link
US (1) US7176519B2 (en)
EP (1) EP1590832B1 (en)
CN (1) CN100382324C (en)
DE (2) DE10304654A1 (en)
WO (1) WO2004070841A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277171A (en) * 2004-03-25 2005-10-06 Toshiba Corp Semiconductor device, and its manufacturing method
JP2007194259A (en) * 2006-01-17 2007-08-02 Toshiba Corp Semiconductor device, and method of manufacturing same
US7982284B2 (en) * 2006-06-28 2011-07-19 Infineon Technologies Ag Semiconductor component including an isolation structure and a contact to the substrate
US8330186B2 (en) * 2008-07-30 2012-12-11 Maxpower Semiconductor, Inc. Lateral devices containing permanent charge
US7911021B2 (en) * 2008-06-02 2011-03-22 Maxpower Semiconductor Inc. Edge termination for semiconductor devices
US7960783B2 (en) * 2008-08-25 2011-06-14 Maxpower Semiconductor Inc. Devices containing permanent charge
WO2010065428A2 (en) * 2008-12-01 2010-06-10 Maxpower Semiconductor Inc. Mos-gated power devices, methods, and integrated circuits
US9000527B2 (en) 2012-05-15 2015-04-07 Apple Inc. Gate stack with electrical shunt in end portion of gate stack
US8912584B2 (en) 2012-10-23 2014-12-16 Apple Inc. PFET polysilicon layer with N-type end cap for electrical shunt

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454646A (en) * 1981-08-27 1984-06-19 International Business Machines Corporation Isolation for high density integrated circuits
US5515319A (en) * 1993-10-12 1996-05-07 Texas Instruments Incorporated Non-volatile memory cell and level shifter
DE19600307C1 (en) * 1996-01-05 1998-01-08 Siemens Ag Highly integrated semiconductor memory and method for producing the semiconductor memory
US6330190B1 (en) * 1996-05-30 2001-12-11 Hyundai Electronics America Semiconductor structure for flash memory enabling low operating potentials
JPH10173157A (en) * 1996-12-06 1998-06-26 Toshiba Corp Semiconductor device
JPH1187664A (en) * 1997-04-28 1999-03-30 Nippon Steel Corp Semiconductor device and its production
TW428287B (en) * 1998-12-21 2001-04-01 United Microelectronics Corp Manufacturing method for flash memory and the operation method for its erasure
TW484213B (en) * 2001-04-24 2002-04-21 Ememory Technology Inc Forming method and operation method of trench type separation gate nonvolatile flash memory cell structure
US6566200B2 (en) * 2001-07-03 2003-05-20 Texas Instruments Incorporated Flash memory array structure and method of forming

Also Published As

Publication number Publication date
US7176519B2 (en) 2007-02-13
WO2004070841A2 (en) 2004-08-19
WO2004070841A3 (en) 2004-11-04
US20050285182A1 (en) 2005-12-29
CN1774808A (en) 2006-05-17
CN100382324C (en) 2008-04-16
EP1590832A2 (en) 2005-11-02
DE10304654A1 (en) 2004-08-19
DE502004010394D1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
DE69733630T2 (en) EEPROM and NVRAM low voltage transistors and methods of manufacture
DE3002493C2 (en)
DE4219854C2 (en) Electrically erasable and programmable semiconductor memory device and a method for producing the same
DE102006062403B4 (en) Integrated circuit component as well as manufacturing and operating methods
DE60023247T2 (en) METHOD AND APPARATUS FOR PRODUCING EMBEDDED INTEGRATED FLAT MEMORIES
DE3203516A1 (en) NON-VOLATILE, ELECTRICALLY REPROGRAMMABLE FLOATING GATE STORAGE ARRANGEMENT
DE60316449T2 (en) NON-VOLATILE STORAGE ARRAY ARCHITECTURE WITH CONTACTLESS SEPARATE P-MULD WITH SAME TUNNELING (CUSP), MANUFACTURING AND OPERATION
DE102004006505A1 (en) Charge trapping memory cell and manufacturing process
DE102007052217A1 (en) Integrated circuit with NAND memory cell strings
WO2004059738A1 (en) Fin field effect transistor memory cell, fin field effect transistor memory cell arrangement, and method for the production of a fin field effect transistor memory cell
EP1590832B1 (en) Storage cell, storage cell arrangement, and method for the production of a storage cell
EP1532689B1 (en) Non-volatile semiconductor memory element and corresponding production and operation method
DE19807010A1 (en) Non-volatile memory e.g. EEPROM production
DE19949805C2 (en) Nonvolatile random access memory element formed in silicon on insulator
EP1374308B1 (en) Memory cell array with individually addressable memory cells and method for the production thereof
DE19958144A1 (en) Programmable interconnect cell for selectively connecting circuit nodes in an integrated circuit
EP1399973A2 (en) Transistor-arrangement, method for operating a transistor-arrangement as a data storage element and method for producing a transistor-arrangement
EP1330845B1 (en) Semiconductor memory cell and method for producing the same
EP1723669A1 (en) Eeprom memory cell for high temperatures
DE10146978A1 (en) Flash memory cell with a buried floating gate and method for operating such a flash memory cell
DE19929618B4 (en) Method for producing a non-volatile semiconductor memory cell with a separate tunnel window
DE102006024121B4 (en) Nonvolatile memory cell of a circuit integrated in a semiconductor chip, method for its production and use of a nonvolatile memory cell
EP1466370B1 (en) Method of forming non-volatile dual bit semiconductor memory cell
DE19939092B4 (en) Memory area of an EEPROM and area-specific programming and erasing procedures
DE10231202A1 (en) Vertical transistor memory cell comprises a substrate containing a trench, electrically insulated storage regions side walls of the trench, gates region arranged in the trench, and source/drain regions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050704

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULER, FRANZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 502004010394

Country of ref document: DE

Date of ref document: 20091231

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INFINEON TECHNOLOGIES AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170425

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901