EP1529637A1 - Laser-engravable element for use in flexographic printing plates and hand or coding stamps - Google Patents

Laser-engravable element for use in flexographic printing plates and hand or coding stamps Download PDF

Info

Publication number
EP1529637A1
EP1529637A1 EP03104032A EP03104032A EP1529637A1 EP 1529637 A1 EP1529637 A1 EP 1529637A1 EP 03104032 A EP03104032 A EP 03104032A EP 03104032 A EP03104032 A EP 03104032A EP 1529637 A1 EP1529637 A1 EP 1529637A1
Authority
EP
European Patent Office
Prior art keywords
laser
meth
coding
stamp
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03104032A
Other languages
German (de)
French (fr)
Inventor
Martijn Hessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Houtstra Management & Beheer Bv
Original Assignee
Houtstra Management & Beheer Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Houtstra Management & Beheer Bv filed Critical Houtstra Management & Beheer Bv
Priority to EP03104032A priority Critical patent/EP1529637A1/en
Priority to EP04817397A priority patent/EP1684975A1/en
Priority to PCT/EP2004/052745 priority patent/WO2005042253A1/en
Priority to RU2006118693/12A priority patent/RU2006118693A/en
Publication of EP1529637A1 publication Critical patent/EP1529637A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam

Definitions

  • the present invention relates to a laser-engravable element for use in a flexographic printing plate or a hand or coding stamp, to a stamp die made of the same by laser engraving, to a flexographic and hand or coding stamp comprising said stamp die, and to a method of laser engraving the element.
  • Laser-engravable elements for flexographic printing plates are known in the art. For instance in US 5,259,311 a method is disclosed for laser engraving of photopolymer printing plates. This method relates to the making of patterned flexographic printing plates only. The only material disclosed is CYREL® , which is a material of unknown composition obtainable by the E.I. DuPont Company, USA.
  • EP 1,228,864 laser-engravable plates for use in flexographic printing comprising a layer consisting of cured (meth)acrylate polymer.
  • acrylamides, styrene, vinyl acetate, and their partially hydrogenated derivatives, including amphoteric interpolymers were generically disclosed.
  • Gelatin- and cellulose-esters and -ethers and elastomeric materials such as polymers and copolymers of butadiene and isoprene were also disclosed as suitable polymers.
  • Laser-engravable elements for hand and coding stamps are known in the art. Common materials for such elements are selected from natural and synthetic rubbers, as well as the hereinbefore-mentioned elastomers, and combinations thereof.
  • the making of hand or coding stamps requires that no hazardous, toxic, flammable and/or bad-smelling gas comes free during the engraving process. It is further of importance that particles that are formed or come free during the engraving process do not adhere to the layer and to prevent damage of the printing image, can easily be removed by a simple washing process. It is also an advantage when materials for making hand or coding stamps can also be used for making flexographic printing plates, i.e. it is also an objective of the invention to use materials that can equally well be used for hand stamps and flexographic printing plates. It is also important to use materials that enable fast engraving process times.
  • the materials should satisfy the usual other requirements, such as being tack- and dust-free, ozone resistant, having good ink absorption and transfer of ink, showing no desiccation, and having long life times. There is thus a need for plates than can easily be used for hand or coding stamps, without having the disadvantages of the prior art materials of printing plates.
  • a laser-engravable element for use in a hand or coding stamp could be used comprising a thermoset crosslinked copolymer obtainable from polyether urethane (meth)acrylate pre-polymer and (meth)acrylic monomer, oligomer and/or polymer.
  • a thermoset crosslinked copolymer obtainable from polyether urethane (meth)acrylate pre-polymer and (meth)acrylic monomer, oligomer and/or polymer.
  • Such element which is usually in the form of a plate, sheet, or film is particularly suitable for making hand or coding stamps.
  • a copolymer that is obtained from 10 to 65 wt.%, preferably 20 to 35 wt.% of (meth)acrylic compounds, including monomers and oligomers, wherein the well-known terms "(meth)acrylic” and “(meth)acrylate” stand for “acrylic or methacrylic” and “acrylate or methacrylate,” respectively, and 35 to 95 wt%, preferably 65 to 80 wt.% of a polyether urethane (meth)acrylate pre-polymer, up to a total of 100 wt.% of polymerized and polymerizable compounds.
  • the (meth)acrylic compound is selected from at least one of mono- or polyfunctional (meth)acrylate alkyl esters, (meth)acrylate hydroxyalkyl esters, polyethylene glycol (meth)acrylate, and unsubstituted or N-alkyl, N-hydroxyalkyl, or N-alkylene substituted (meth)acrylamide.
  • Examples are 2-ethylhexyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)-acrylate, polyethylene glycol di(meth)acrylate, neopentylglycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol penta- or hexa(meth)acrylate, or wethoxylated or propoxylated derivatives thereof, (meth)acrylamide, N-methylol(meth)acrylamide,methylene bis(meth)acrylamide, and the like.
  • methacrylate derivatives such as methacrylate esters including methyl methacrylate (MMA), hydroxymethyl methacrylate (HMMA), hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), polyether acrylate compounds such as dialcohol derivatives like 1,6-hexanediol diacrylate (1,6-HDDA), tetraethyleneglycol diacrylate (TEGDA), and other polyethylene glycol acrylate derivatives, methacrylate oligomers, and the like, and mixtures thereof. Up to 100 wt.% of these (meth)acrylic compounds may be monomers.
  • the polyether urethane (meth)acrylate pre-polymer compound is preferably a pre-polymer, such as unsaturated polyester resin, unsaturated polyurethane resin, unsaturated polyamide resin, unsaturated polyacrylate/methacrylate resin, polyether urethane acrylate/methacrylate polymer, polyether polyester urethane acrylate copolymer, and hydroxy-terminated hydrogenated polybutadiene resin.
  • Particularly suitable are polyether urethane or polyester urethane based photopolymer compositions, such as those commercially available as Verbatim® liquid photopolymers from Chemence Ltd.
  • additives such as photo-initiators, stabilizers, such as thermal polymerization stabilizers, light absorbers, dyes, pigments, and the like.
  • Suitable photo-initiator systems include benzil and derivatives thereof, benzoin and derivatives thereof, such as methyl, ethyl, isopropyl, or n-butyl ether of benzoin; acetophenone and derivatives of acetophenone, such as 2,2-diethoxy-acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone; ketoxime esters of benzoin; triazines; and diimidazoles, anthraquinones such as 2-ethylanthraquinone, and a hydrogen donor; benzophenone and derivatives thereof, such as 2-methylbenzophenone, 2-methoxy-benzophenone, and tertiary amines; Michler's ketone alone and with benzophenone; thioxanthones; and 3-ketocoumarins, 1-hydroxy-cyclohexylphenylketone, xanthone,
  • Sensitizing agents can also be included with the photo-initiator systems discussed above.
  • sensitizing agents are those materials that absorb radiation at a wavelength different than that of the reaction-initiating component, and are capable of transferring the absorbed energy to that component.
  • the wavelength of the activating radiation can be adjusted.
  • Stabilizers may be used, particularly thermal polymerization inhibitors, such as phenol derivatives including p-methoxyphenol, hydroquinone and derivatives thereof, benzoquinone and derivatives thereof, 2,6-di-t.butyl-p-cresol, nitroso compounds, and the like.
  • thermal polymerization inhibitors such as phenol derivatives including p-methoxyphenol, hydroquinone and derivatives thereof, benzoquinone and derivatives thereof, 2,6-di-t.butyl-p-cresol, nitroso compounds, and the like.
  • the composition of the invention typically contains about 20 to 95 wt.% of polyether urethane (meth)-acrylate pre-polymer and about 20 to 95 wt.% of (meth)-acrylic monomer, both based the total weight of the photopolymer composition.
  • the photo-initiator is typically used in a quantity of from about 0.0001 wt.% to about 10 wt.%, preferably about 0.1 wt.% - 7 wt.%, based the total weight of the photopolymer composition.
  • a thermal stabilizer can be used in a quantity of from 0 - 1 wt.%, preferably from 0.005 to 0.5 wt.%, based the total weight of the photopolymer composition.
  • the copolymers of the present invention are crosslinked.
  • the crosslinking makes the polymers of the invention solvent resistant, which makes the stamps therefore very suitable for solvent-based inks, for instance inks containing up to 10 wt.% of alcohol.
  • the polymers are also resistant to water-based inks, oil-based inks, and UV-inks.
  • the laser engraving comprises engraving a pattern into the surface of the element, the pattern being formed by decomposing and/or evaporating part of the cured polymer of the element by means of irradiating with a laser beam, optionally followed by a wash step to remove remains of decomposed copolymer.
  • the element composed of the above copolymer may be converted to a stamp die by laser engraving a pattern into the element.
  • a plate can be made of the element as such or of the stamp die obtained thereof, which both may be provided with a backing layer.
  • the plates such obtained is a basic plate, which in accordance with the patent is used for making hand or coding stamps and which can be mounted in a stamp holder.
  • the plates can also be used for making flexographic printing plates.
  • the basic plate may contain additional layers, which array of layers may optionally be applied onto a backing layer.
  • a desired printing pattern is formed on the plate, so that the exposed parts will be heated, resulting in evaporation, decomposition or both of the polymer(s).
  • the entire plate may be washed or rinsed, preferably with water, to remove remains of the polymer(s) that are formed as particles in the heated parts of the plate.
  • Other cleaning methods such as brushing may also be used.
  • the parts not treated with the laser remain as printing image on the plate.
  • the polymers of the invention are liquid polymers that can be cured, preferably with UV light, and can be polymerized to form plates of different degrees of hardness by changing the components in the mixture.
  • Example of such a mixture are verbatim® (ex Chemence), APR® (ex Asahi, Japan), and similar materials for example obtainable by McDermid Inc., USA.
  • the method according to the invention is carried out on a completely cured photopolymeric plate fabricated in one step, and which is immediately ready for laser treatment.
  • the backing layer is preferably provided with an adhesive that adheres very well to the cured polymer.
  • this treatment may be performed by applying pressure.
  • the polymer layer according to the invention can be used as a top layer provided to one or more other layers.
  • Such other layer may be a polymeric layer including rubber, but also textile, paper, carton, metal, adhesive and metal foil, and the like may be used. Such embodiment is known in the art as cupping.
  • a traditional and known laser suitable for carrying out the present method a CO2 or YAG laser, is able to achieve a Didot screen of 60.
  • a Didot screen of 40-60 is usual (a Didot screen of 56 corresponds with a raster of 150 lpi (lines per inch)).
  • a YAG laser can be used.
  • the power consumed will generally range from 10-3000 watt, preferably from 20-1000 watt, more preferably from 25-500 watt.
  • a CO2 laser With a photopolymeric plate of A2 size, a CO2 laser will generally have a power consumption ranging from 25-250 watt. These lasers are generally known in the art.
  • Hand and coding stamps as such are known in the art.
  • the stamping layer is fixed to a wooden, plastic, or metal stamp holder or platen, directly or via a backing layer, for instance with glue or with double-sided adhesive tape, and the platen is mounted in the stamp holder.
  • Hand and coding stamps may be executed as self-inking stamps, for instance by using a rotating stamp base.
  • laser-engravable refers to reinforced materials capable of absorbing laser radiation such that those areas of the materials, which are exposed to a laser beam of sufficient intensity, become physically detached with sufficient resolution and relief depth. It will be understood that if the laser radiation is not absorbed by the reinforced material directly, then it may be necessary to add a laser radiation absorbing component as described below.
  • physically detached means that the material so exposed is either removed or is capable of being removed by any means such as by vacuum cleaning or washing or by directing a stream of gas across the surface to remove the loosened particles, or by infra-red laser irradiation of non-printing parts on the stamp, followed by removal thereof by spraying, centrifuging, and/or suction techniques.
  • the element composed of the above copolymer can be made by any method for making such elements. For instance, a method is pouring the liquid photopolymer composition, together with optional photo-initiator, stabilizers, dyes, and the like, into a mold, for instance a glass mold optionally provided with a backing foil. After having poured the polymer into the mold the upper side may be protected by a protective foil. Exposing the liquid polymer to UV light then cures it to a thermoplastic polymer and simultaneous exposure to UVC light eliminates possible tackiness. The mold has a pre-determined thickness to provide polymer layers of a desired thickness. The elements thus obtained are ready for laser engraving. Other methods lead to similar results, but may have advantages in terms of processability, fastness, reproducibility, etc.
  • a common procedure for making stamps according to the invention is a process comprising a first step of preparing a mold for the liquid photopolymer to be poured into, followed by exposure to UV light by irradiating with actinic light.
  • a removable transparent plastic foil is placed over a horizontal glass support of an exposure unit (i.e. a device for irradiating the photopolymer with curing radiation),
  • a mould is formed with a foam tape, laid onto the cover foil.
  • the containment wall has the desired thickness of the cured photopolymer sheet. Liquid photopolymer is then poured into the mould.
  • a plate which exhibits a difference in height between the printing and the non-printing parts.
  • This height (or relief) may be adapted as desired, the height being determined mainly by the type of material to be stamped or printed, as well as by the type of plate material.
  • the plate thickness will vary from 0.5 to 10 mm.
  • a plate thickness from 0.76 to 6.35 mm is preferred.
  • the height of the relief may vary from 0.4 to 9.9 mm.
  • a height of 0.66 to 6.15 mm is preferred.
  • a stamp can be formed with a laser, wherein the laser removes the non-printing parts from the surface of the plate.
  • the height of the relief can be easily controlled.
  • the laser can very simply be controlled directly by means of a digital system in which it is possible to have a simple coupling between a program for designing a pattern for the plate, and the laser. A person skilled in the art of computer programming is capable of doing this.
  • the invention is illustrated by the following example.
  • Hand stamps were made of A: Verbatim® (mixture according to the invention), B: polyamide-based material according to the prior art (Nyloflex® , ex BASF), and C: rubber according to the prior art (Trodat® , ex Frans Just & Söhne, Austria or Swing® , ex Schmidt Kunststoffwarenfabrik, Germany).
  • Verbatim® is a material obtainable by Chemence Ltd. United Kingdom with the composition (in wt.%): high MW urethane methacrylate pre-polymer about 40 methacrylate ester about 30 2-hydroxypropyl methacrylate about 10 triethylene glycol dimethacrylate about 10 polyethylene glycol methacrylate derivative about 10 tetradecanoic acid ⁇ 5 acrylated oligomer ⁇ 3 benzophenone derivative ⁇ 1

Abstract

The invention relates to a laser-engravable element for use in a flexographic printing plate or a hand or coding stamp comprising a thermoset crosslinked copolymer obtainable from polyether urethane (meth)acrylate pre-polymer and (meth)acrylic monomer, oligomer and/or polymer. Such element is preferably used for making hand or coding stamps. The invention further pertains to a method of laser engraving comprising engraving a pattern into the surface of the element, the pattern being formed by decomposing and/or evaporating part of the copolymer of the element by means of irradiating with a laser beam, optionally followed by a wash step to remove remains of decomposed copolymer.

Description

  • The present invention relates to a laser-engravable element for use in a flexographic printing plate or a hand or coding stamp, to a stamp die made of the same by laser engraving, to a flexographic and hand or coding stamp comprising said stamp die, and to a method of laser engraving the element.
  • Laser-engravable elements for flexographic printing plates are known in the art. For instance in US 5,259,311 a method is disclosed for laser engraving of photopolymer printing plates. This method relates to the making of patterned flexographic printing plates only. The only material disclosed is CYREL® , which is a material of unknown composition obtainable by the E.I. DuPont Company, USA.
  • In US 5,798,202 laser engraving of flexographic printing plates was disclosed, using a large number of elastomeric layers for making the printing plate. Particularly, copolymers of butadiene and styrene, copolymers of isoprene and styrene, styrene-diene-styrene triblock copolymers, such as polystyrene-polybutadiene-polystyrene (SBS), polystyrene-polyisoprene-polystyrene (SIS), or polystyrene-poly(ethylenebutylene)-polystyrene (SEES), and non-crosslinked polybutadiene and polyisoprene; nitrile elastomers; polychloroprene; polyisobutylene and other butyl elastomers; chlorosulfonated polyethylene; polysulfide; polyalkylene oxides; polyphosphazenes; elastomeric polymers and copolymers of acrylates and methacrylates; elastomeric polyurethanes and polyesters; elastomeric polymers and copolymers of olefins such as ethylene-propylene copolymers and non-crosslinked EPDM; elastomeric copolymers of vinyl acetate and its partially hydrogenated derivatives were disclosed.
  • In EP 1,228,864 laser-engravable plates for use in flexographic printing were disclosed comprising a layer consisting of cured (meth)acrylate polymer. The use of acrylamides, styrene, vinyl acetate, and their partially hydrogenated derivatives, including amphoteric interpolymers were generically disclosed. Gelatin- and cellulose-esters and -ethers and elastomeric materials such as polymers and copolymers of butadiene and isoprene were also disclosed as suitable polymers.
  • Laser-engravable elements for hand and coding stamps are known in the art. Common materials for such elements are selected from natural and synthetic rubbers, as well as the hereinbefore-mentioned elastomers, and combinations thereof.
  • The making of hand or coding stamps requires that no hazardous, toxic, flammable and/or bad-smelling gas comes free during the engraving process. It is further of importance that particles that are formed or come free during the engraving process do not adhere to the layer and to prevent damage of the printing image, can easily be removed by a simple washing process. It is also an advantage when materials for making hand or coding stamps can also be used for making flexographic printing plates, i.e. it is also an objective of the invention to use materials that can equally well be used for hand stamps and flexographic printing plates. It is also important to use materials that enable fast engraving process times. Finally, the materials should satisfy the usual other requirements, such as being tack- and dust-free, ozone resistant, having good ink absorption and transfer of ink, showing no desiccation, and having long life times. There is thus a need for plates than can easily be used for hand or coding stamps, without having the disadvantages of the prior art materials of printing plates.
  • It was found that materials that are known for making flexographic printing plates are less suitable for making laser-engravable hand or coding stamps, in that they do not satisfy all, or at least most, of the hereinabove-mentioned requirements. It is the object of the invention to provide suitable materials that satisfy at least most of these requirements and which can be used for both making hand and coding stamps.
  • To this end it was found that a laser-engravable element for use in a hand or coding stamp could be used comprising a thermoset crosslinked copolymer obtainable from polyether urethane (meth)acrylate pre-polymer and (meth)acrylic monomer, oligomer and/or polymer. Such element, which is usually in the form of a plate, sheet, or film is particularly suitable for making hand or coding stamps.
  • According to the invention it is preferred to use a copolymer that is obtained from 10 to 65 wt.%, preferably 20 to 35 wt.% of (meth)acrylic compounds, including monomers and oligomers, wherein the well-known terms "(meth)acrylic" and "(meth)acrylate" stand for "acrylic or methacrylic" and "acrylate or methacrylate," respectively, and 35 to 95 wt%, preferably 65 to 80 wt.% of a polyether urethane (meth)acrylate pre-polymer, up to a total of 100 wt.% of polymerized and polymerizable compounds.
  • The (meth)acrylic compound is selected from at least one of mono- or polyfunctional (meth)acrylate alkyl esters, (meth)acrylate hydroxyalkyl esters, polyethylene glycol (meth)acrylate, and unsubstituted or N-alkyl, N-hydroxyalkyl, or N-alkylene substituted (meth)acrylamide. Examples are 2-ethylhexyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)-acrylate, polyethylene glycol di(meth)acrylate, neopentylglycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol penta- or hexa(meth)acrylate, or wethoxylated or propoxylated derivatives thereof, (meth)acrylamide, N-methylol(meth)acrylamide,methylene bis(meth)acrylamide, and the like.
  • Particular useful are mixtures of these (meth)-acrylic compounds. Most suitable are the methacrylate derivatives such as methacrylate esters including methyl methacrylate (MMA), hydroxymethyl methacrylate (HMMA), hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), polyether acrylate compounds such as dialcohol derivatives like 1,6-hexanediol diacrylate (1,6-HDDA), tetraethyleneglycol diacrylate (TEGDA), and other polyethylene glycol acrylate derivatives, methacrylate oligomers, and the like, and mixtures thereof. Up to 100 wt.% of these (meth)acrylic compounds may be monomers.
  • The polyether urethane (meth)acrylate pre-polymer compound is preferably a pre-polymer, such as unsaturated polyester resin, unsaturated polyurethane resin, unsaturated polyamide resin, unsaturated polyacrylate/methacrylate resin, polyether urethane acrylate/methacrylate polymer, polyether polyester urethane acrylate copolymer, and hydroxy-terminated hydrogenated polybutadiene resin. Particularly suitable are polyether urethane or polyester urethane based photopolymer compositions, such as those commercially available as Verbatim® liquid photopolymers from Chemence Ltd.
  • To the polymerizing mixture additives may be added, such as photo-initiators, stabilizers, such as thermal polymerization stabilizers, light absorbers, dyes, pigments, and the like.
  • Suitable photo-initiator systems include benzil and derivatives thereof, benzoin and derivatives thereof, such as methyl, ethyl, isopropyl, or n-butyl ether of benzoin; acetophenone and derivatives of acetophenone, such as 2,2-diethoxy-acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone; ketoxime esters of benzoin; triazines; and diimidazoles, anthraquinones such as 2-ethylanthraquinone, and a hydrogen donor; benzophenone and derivatives thereof, such as 2-methylbenzophenone, 2-methoxy-benzophenone, and tertiary amines; Michler's ketone alone and with benzophenone; thioxanthones; and 3-ketocoumarins, 1-hydroxy-cyclohexylphenylketone, xanthone, thioxanthone, 2-chloroxanthone, and 2-isopropylxanthone, and the like, or mixtures thereof.
  • Sensitizing agents (light absorbers) can also be included with the photo-initiator systems discussed above. In general, sensitizing agents are those materials that absorb radiation at a wavelength different than that of the reaction-initiating component, and are capable of transferring the absorbed energy to that component. Thus, the wavelength of the activating radiation can be adjusted.
  • Stabilizers may be used, particularly thermal polymerization inhibitors, such as phenol derivatives including p-methoxyphenol, hydroquinone and derivatives thereof, benzoquinone and derivatives thereof, 2,6-di-t.butyl-p-cresol, nitroso compounds, and the like.
  • The composition of the invention typically contains about 20 to 95 wt.% of polyether urethane (meth)-acrylate pre-polymer and about 20 to 95 wt.% of (meth)-acrylic monomer, both based the total weight of the photopolymer composition. The photo-initiator is typically used in a quantity of from about 0.0001 wt.% to about 10 wt.%, preferably about 0.1 wt.% - 7 wt.%, based the total weight of the photopolymer composition. A thermal stabilizer can be used in a quantity of from 0 - 1 wt.%, preferably from 0.005 to 0.5 wt.%, based the total weight of the photopolymer composition.
  • The copolymers of the present invention are crosslinked. The crosslinking makes the polymers of the invention solvent resistant, which makes the stamps therefore very suitable for solvent-based inks, for instance inks containing up to 10 wt.% of alcohol. The polymers are also resistant to water-based inks, oil-based inks, and UV-inks.
  • The laser engraving comprises engraving a pattern into the surface of the element, the pattern being formed by decomposing and/or evaporating part of the cured polymer of the element by means of irradiating with a laser beam, optionally followed by a wash step to remove remains of decomposed copolymer.
  • Thus the element composed of the above copolymer may be converted to a stamp die by laser engraving a pattern into the element. A plate can be made of the element as such or of the stamp die obtained thereof, which both may be provided with a backing layer. The plates such obtained is a basic plate, which in accordance with the patent is used for making hand or coding stamps and which can be mounted in a stamp holder. The plates can also be used for making flexographic printing plates. The basic plate may contain additional layers, which array of layers may optionally be applied onto a backing layer. With the aid of a laser, such as an CO2 laser or a YAG laser, a desired printing pattern (image) is formed on the plate, so that the exposed parts will be heated, resulting in evaporation, decomposition or both of the polymer(s). In a subsequent processing step the entire plate may be washed or rinsed, preferably with water, to remove remains of the polymer(s) that are formed as particles in the heated parts of the plate. Other cleaning methods such as brushing may also be used. The parts not treated with the laser remain as printing image on the plate.
  • The polymers of the invention are liquid polymers that can be cured, preferably with UV light, and can be polymerized to form plates of different degrees of hardness by changing the components in the mixture. Example of such a mixture are verbatim® (ex Chemence), APR® (ex Asahi, Japan), and similar materials for example obtainable by McDermid Inc., USA.
  • In accordance with a preferred embodiment, the method according to the invention is carried out on a completely cured photopolymeric plate fabricated in one step, and which is immediately ready for laser treatment.
  • The backing layer is preferably provided with an adhesive that adheres very well to the cured polymer. In order to provide a good contact between the backing layer and the photopolymer, and in order to adjust to the required plate thickness, this treatment may be performed by applying pressure.
  • Generally, the polymer layer according to the invention can be used as a top layer provided to one or more other layers. Such other layer may be a polymeric layer including rubber, but also textile, paper, carton, metal, adhesive and metal foil, and the like may be used. Such embodiment is known in the art as cupping.
  • It has been shown that the method according to the invention makes it is possible to produce very fine patterns on the plate. A traditional and known laser suitable for carrying out the present method, a CO2 or YAG laser, is able to achieve a Didot screen of 60. In practice a Didot screen of 40-60 is usual (a Didot screen of 56 corresponds with a raster of 150 lpi (lines per inch)). When the element is black, for instance by mixing dyes or pigments in the polymer mixture, also a YAG laser can be used. The power consumed will generally range from 10-3000 watt, preferably from 20-1000 watt, more preferably from 25-500 watt. With a photopolymeric plate of A2 size, a CO2 laser will generally have a power consumption ranging from 25-250 watt. These lasers are generally known in the art.
  • Hand and coding stamps as such are known in the art. Usually, the stamping layer is fixed to a wooden, plastic, or metal stamp holder or platen, directly or via a backing layer, for instance with glue or with double-sided adhesive tape, and the platen is mounted in the stamp holder. Hand and coding stamps may be executed as self-inking stamps, for instance by using a rotating stamp base.
  • The term "laser-engravable" as used herein refers to reinforced materials capable of absorbing laser radiation such that those areas of the materials, which are exposed to a laser beam of sufficient intensity, become physically detached with sufficient resolution and relief depth. It will be understood that if the laser radiation is not absorbed by the reinforced material directly, then it may be necessary to add a laser radiation absorbing component as described below. The term "physically detached" means that the material so exposed is either removed or is capable of being removed by any means such as by vacuum cleaning or washing or by directing a stream of gas across the surface to remove the loosened particles, or by infra-red laser irradiation of non-printing parts on the stamp, followed by removal thereof by spraying, centrifuging, and/or suction techniques.
  • The element composed of the above copolymer can be made by any method for making such elements. For instance, a method is pouring the liquid photopolymer composition, together with optional photo-initiator, stabilizers, dyes, and the like, into a mold, for instance a glass mold optionally provided with a backing foil. After having poured the polymer into the mold the upper side may be protected by a protective foil. Exposing the liquid polymer to UV light then cures it to a thermoplastic polymer and simultaneous exposure to UVC light eliminates possible tackiness. The mold has a pre-determined thickness to provide polymer layers of a desired thickness. The elements thus obtained are ready for laser engraving. Other methods lead to similar results, but may have advantages in terms of processability, fastness, reproducibility, etc.
  • More particularly, a common procedure for making stamps according to the invention is a process comprising a first step of preparing a mold for the liquid photopolymer to be poured into, followed by exposure to UV light by irradiating with actinic light. Usually a removable transparent plastic foil is placed over a horizontal glass support of an exposure unit (i.e. a device for irradiating the photopolymer with curing radiation), A mould is formed with a foam tape, laid onto the cover foil. The containment wall has the desired thickness of the cured photopolymer sheet. Liquid photopolymer is then poured into the mould. Any entrapped air bubbles are then removed and a semi-rigid backing sheet, which is coated to adhere to the cured polymer, is then carefully placed over the liquid. In practice air is completely excluded from the front and back surfaces of the liquid photopolymer by having the photopolymer layer positioned between plastic foils. The cured photopolymer sheet thus obtained is the laser-engravable element, which is ready for laser engraving to a stamp die.
  • It will be obvious that a plate is used which exhibits a difference in height between the printing and the non-printing parts. This height (or relief) may be adapted as desired, the height being determined mainly by the type of material to be stamped or printed, as well as by the type of plate material. In general, the plate thickness will vary from 0.5 to 10 mm. A plate thickness from 0.76 to 6.35 mm is preferred. The height of the relief may vary from 0.4 to 9.9 mm. A height of 0.66 to 6.15 mm is preferred.
  • According to the invention, a stamp can be formed with a laser, wherein the laser removes the non-printing parts from the surface of the plate. The height of the relief can be easily controlled. The laser can very simply be controlled directly by means of a digital system in which it is possible to have a simple coupling between a program for designing a pattern for the plate, and the laser. A person skilled in the art of computer programming is capable of doing this.
  • The invention is illustrated by the following example.
  • Hand stamps were made of A: Verbatim® (mixture according to the invention), B: polyamide-based material according to the prior art (Nyloflex® , ex BASF), and C: rubber according to the prior art (Trodat® , ex Frans Just & Söhne, Austria or Swing® , ex Schmidt Gummiwarenfabrik, Germany).
  • Verbatim® is a material obtainable by Chemence Ltd. United Kingdom with the composition (in wt.%):
    high MW urethane methacrylate pre-polymer about 40
    methacrylate ester about 30
    2-hydroxypropyl methacrylate about 10
    triethylene glycol dimethacrylate about 10
    polyethylene glycol methacrylate derivative about 10
    tetradecanoic acid <5
    acrylated oligomer <3
    benzophenone derivative <1
  • The properties of A, B, and C were compared (see Table) showing an overall improvement of composition A with regard to B and C.
    Property A B C
    Engraving process time Short Short Long
    Release of toxic gas during the engraving process No Yes No
    Adherence of particles after the engraving process No
    (liquid residue)
    Yes
    (hard particles)
    No
    (dust)
    Water removable residues Yes No Yes
    Smell during the engraving process No Yes Yes
    Flash point (inflammability) Very high
    (inflamm able)
    Low Very low
    Air assist device required on the laser engraver No No Yes
    Prefiltered active charcoal-type device required in combination with the laser engraver No Yes Yes

Claims (5)

  1. A laser-engravable element for use in a flexographic printing plate or a hand or coding stamp comprising a thermoset crosslinked copolymer obtainable from polyether urethane (meth)acrylate pre-polymer and (meth)acrylic monomer, oligomer, and/or polymer.
  2. A stamp die obtainable by laser engraving a pattern into the element of claim 1.
  3. A plate comprising the element of claim 1 or the stamp die of claim 2 and optionally a backing layer.
  4. A hand or coding stamp comprising the element of claim 1 or the stamp die of claim 2, which is directly or through a backing layer secured to a platen which is mounted in a stamp holder, or directly secured in the stamp holder.
  5. A method of laser engraving the element of claim 1 comprising engraving a pattern into the surface of the element, the pattern being formed by decomposing and/or evaporating part of the copolymer of the element by means of irradiating with a laser beam, optionally followed by a wash step to remove remains of decomposed copolymer.
EP03104032A 2003-10-30 2003-10-30 Laser-engravable element for use in flexographic printing plates and hand or coding stamps Withdrawn EP1529637A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03104032A EP1529637A1 (en) 2003-10-30 2003-10-30 Laser-engravable element for use in flexographic printing plates and hand or coding stamps
EP04817397A EP1684975A1 (en) 2003-10-30 2004-11-01 Laser-engravable element for use in hand or coding stamps
PCT/EP2004/052745 WO2005042253A1 (en) 2003-10-30 2004-11-01 Laser-engravable element for use in hand or coding stamps
RU2006118693/12A RU2006118693A (en) 2003-10-30 2004-11-01 LASER-ENGRAVED ELEMENT FOR USE IN MANUAL OR LABELING STAMPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03104032A EP1529637A1 (en) 2003-10-30 2003-10-30 Laser-engravable element for use in flexographic printing plates and hand or coding stamps

Publications (1)

Publication Number Publication Date
EP1529637A1 true EP1529637A1 (en) 2005-05-11

Family

ID=34429490

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03104032A Withdrawn EP1529637A1 (en) 2003-10-30 2003-10-30 Laser-engravable element for use in flexographic printing plates and hand or coding stamps
EP04817397A Withdrawn EP1684975A1 (en) 2003-10-30 2004-11-01 Laser-engravable element for use in hand or coding stamps

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04817397A Withdrawn EP1684975A1 (en) 2003-10-30 2004-11-01 Laser-engravable element for use in hand or coding stamps

Country Status (3)

Country Link
EP (2) EP1529637A1 (en)
RU (1) RU2006118693A (en)
WO (1) WO2005042253A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094966A1 (en) * 2006-02-13 2007-08-23 Eastman Kodak Company Flexographic printing plate precursor and imaging method
EP2119527A1 (en) * 2008-05-16 2009-11-18 Kba-Giori S.A. Method and system for manufacturing intaglio printing plates for the production of security papers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068945B (en) 2010-08-18 2015-04-08 汉高知识产权控股有限责任公司 Radiation curable temporary laminating adhesive for use in high temperature applications
JP5618845B2 (en) * 2011-01-19 2014-11-05 株式会社タイヨートマー Synthetic resin stamp manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167025A2 (en) * 2000-06-20 2002-01-02 JSR Corporation Polymeric material for laser processing
WO2002049842A1 (en) * 2000-12-19 2002-06-27 Basf Drucksysteme Gmbh Method for producing flexographic printing forms by means of laser gravure
EP1228864A1 (en) * 2000-05-12 2002-08-07 Houtstra Polimero Deutschland GmbH Method for making a printing plate
US20030039915A1 (en) * 2001-08-10 2003-02-27 Paul Mayo Holt Photopolymer sachet
US20030180636A1 (en) * 2002-03-25 2003-09-25 Kanga Rustom Sam Processless digitally imaged printing plate using microspheres

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049432B1 (en) * 1985-09-11 1995-06-20 Porelon Method for preparing a marking structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228864A1 (en) * 2000-05-12 2002-08-07 Houtstra Polimero Deutschland GmbH Method for making a printing plate
EP1167025A2 (en) * 2000-06-20 2002-01-02 JSR Corporation Polymeric material for laser processing
WO2002049842A1 (en) * 2000-12-19 2002-06-27 Basf Drucksysteme Gmbh Method for producing flexographic printing forms by means of laser gravure
US20030039915A1 (en) * 2001-08-10 2003-02-27 Paul Mayo Holt Photopolymer sachet
US20030180636A1 (en) * 2002-03-25 2003-09-25 Kanga Rustom Sam Processless digitally imaged printing plate using microspheres

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094966A1 (en) * 2006-02-13 2007-08-23 Eastman Kodak Company Flexographic printing plate precursor and imaging method
US7419766B2 (en) 2006-02-13 2008-09-02 Eastman Kodak Company Flexographic printing plate precursor and imaging method
EP2119527A1 (en) * 2008-05-16 2009-11-18 Kba-Giori S.A. Method and system for manufacturing intaglio printing plates for the production of security papers
WO2009138901A1 (en) * 2008-05-16 2009-11-19 Kba-Giori S.A. Method and system for manufacturing intaglio printing plates for the production of security papers
US9796202B2 (en) 2008-05-16 2017-10-24 Kba-Notasys Sa Method and system for manufacturing intaglio printing plates for the production of security papers

Also Published As

Publication number Publication date
RU2006118693A (en) 2007-12-10
EP1684975A1 (en) 2006-08-02
WO2005042253A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP5898344B2 (en) Clear flexographic printing plate and method for producing the same
EP2153991B1 (en) Imaging apparatus and method for making flexographic printing masters
US6844142B2 (en) Production of flexographic printing plates by thermal development
EP1710094A1 (en) Process for producing laser engravable printing substrate
JP2006002061A (en) Crosslinkable resin composition for laser engraving and original plate of crosslinkable resin printing plate for laser engraving and method for producing relief printing plate and relief printing plate
EP2466380B1 (en) A method of preparing a flexographic printing master
JP2009078467A (en) Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and manufacturing method of relief printing plate
JP2005534524A (en) A method for producing flexographic printing plates by direct laser engraving.
US20130029267A1 (en) Flexographic printing plate precursor for thermal development, and process for making a flexographic printing plate
EP2960066B1 (en) Use of a resin printing plate precursor for laser engraving and method of manufacturing a printing plate
CN109641444B (en) Improved method for making flexographic printing plates
EP3311223B1 (en) Flexographic printing precursor and magnetic development of the same
EP1529637A1 (en) Laser-engravable element for use in flexographic printing plates and hand or coding stamps
CN112269301B (en) Improved method for making flexographic printing plates
JP2009083417A (en) Resin composition for laser engraving, original plate for resin printing plate for laser engraving, relief printing plate, and manufacturing method for relief printing plate
EP1228864B1 (en) Method for making a printing plate
CN106605173A (en) Clean flexographic printing plates and method of making the same
JP5137661B2 (en) Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
JP2009006652A (en) Resin composition for laser engraving, original lithographic resin printing plate for laser engraving, relief printing plate, and manufacturing method of relief printing plate
JP2015509132A (en) Laser engraveable composition for relief image printing elements
JP2019042984A (en) Printing plate original plate for laser engraving
JP2008207419A (en) Manufacturing method of printing plate
JP5297619B2 (en) Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
JP2023049236A (en) Photosensitive flexographic printing original plate
JP2023049238A (en) Photosensitive flexographic printing original plate, flexographic printing plate using the same, and method for manufacturing printed matter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051112