EP1516445A4 - Procede de fourniture de services multimedia dans un systeme de radiocommunication mobile - Google Patents

Procede de fourniture de services multimedia dans un systeme de radiocommunication mobile

Info

Publication number
EP1516445A4
EP1516445A4 EP03760965A EP03760965A EP1516445A4 EP 1516445 A4 EP1516445 A4 EP 1516445A4 EP 03760965 A EP03760965 A EP 03760965A EP 03760965 A EP03760965 A EP 03760965A EP 1516445 A4 EP1516445 A4 EP 1516445A4
Authority
EP
European Patent Office
Prior art keywords
mbms
identifier
data unit
protocol data
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03760965A
Other languages
German (de)
English (en)
Other versions
EP1516445B1 (fr
EP1516445A1 (fr
Inventor
Seung-June Yi
Young-Dae Lee
So-Young Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP1516445A1 publication Critical patent/EP1516445A1/fr
Publication of EP1516445A4 publication Critical patent/EP1516445A4/fr
Application granted granted Critical
Publication of EP1516445B1 publication Critical patent/EP1516445B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/185Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with management of multicast group membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements

Definitions

  • the present invention relates to a multimedia broadcast/multicast service (MBMS) of a universal mobile telecommunications system (UMTS) and, more particularly, to a multimedia service providing method for providing an MBMS service by using a radio network temporary identifier (RNTI).
  • MBMS multimedia broadcast/multicast service
  • UMTS universal mobile telecommunications system
  • RNTI radio network temporary identifier
  • UMTS universal mobile telecommunications system
  • GSM Global System for Mobile communications
  • W-CDMA wideband code division multiple access
  • Figure 1 illustrates an example of the construction of a general UMTS network. As shown in Figure 1 , the UMTS is roughly divided into a terminal, a
  • the UTRAN includes one or more radio network sub-systems (RNS), each of RNSs includes one RNC and one or more Node Bs managed by the RNC. Each of Node Bs are managed by the RNC, receive information sent by the physical layer of the terminal through an uplink, and transmit data to the terminal through a downlink. Node Bs, thus, operate as access points of the UTRAN for terminal.
  • RNS radio network sub-systems
  • Each of Node Bs are managed by the RNC, receive information sent by the physical layer of the terminal through an uplink, and transmit data to the terminal through a downlink. Node Bs, thus, operate as access points of the UTRAN for terminal.
  • a primary function of the UTRAN is to constitute and maintain a radio access bearer (RAB) for a communication between the terminal and the core network.
  • RAB radio access bearer
  • the core network applies requirements for a quality of service of an end-to-end to the RAB, and the RAB supports the QoS requirement the core network 130 sets.
  • the UTRAN can satisfy the QoS requirement of the end-to-end.
  • the RAB service can be divided into lower conceptional lu Bearer service and Radio Bearer service.
  • the lu Bearer service handles a reliable transmission of a user data in the boundary node between the UTRAN and the core network, while the radio bearer service handles a reliable transmission of a user data between the terminal and the UTRAN.
  • Figure 2 shows a structure of a radio protocol between a terminal which operates based on a 3GPP RAN specification and a UTRAN.
  • the radio protocol is horizontally formed of a physical layer (PHY), a data link layer, and a network layer and is vertically divided into a control plane for transmitting a control information and a user plane for transmitting data information.
  • the user plane is a region to which traffic information of a user such as voice or an IP packet is transmitted.
  • the control plane is a region to which control information such as an interface of a network or maintenance and management of a call is transmitted.
  • protocol layers can be divided into a first layer (L1 ), a second layer (L2), and a third layer (L3) based on three lower layers of an open system interconnection (OSI) standard model well known in a communication system.
  • OSI open system interconnection
  • the first layer (L1 ) provides information transfer service to an upper layer by using various radio transmission techniques. It is connected to an MAC (Medium Access Control) layer at the upper position through a transport channel, and data between the MAC layer and a physical layer are moved through the transport channel.
  • MAC Medium Access Control
  • the MAC provides assignment service of an MAC parameter for assigning and re-assigning a radio resource. It is connected to a radio link control layer, an upper layer, by a logical channel, and various logical channels are provided according to the kind of transmitted information. In general, when information of the control plane is transmitted, a control channel is used. When information of the user plane is transmitted, a traffic channel is used.
  • the MAC is classified into MAC-b sublayer, MAC-d sublayer and MAC-c/sh sublayer according to the type of transport channel it manages.
  • the MAC-b sublayer manages a broadcast channel (BCH), a transport channel handling broadcast of system information.
  • BCH broadcast channel
  • the MAC-c/sh sublayer manages a common or shared transport channel such as the FACH or a DSCH (Downlink Shared Channel) shared by multiple terminals.
  • the MAC-c/sh sublayer is positioned in the CRNC. Since the MAC-c/sh sublayer manages channels shared by every terminal in a cell, one MAC-c/sh sublayer exists in each cell.
  • the MAC-d sublayer manages a dedicated channel (DCH), a dedicated transport channel for a specific terminal. Therefore, the MAC-d sublayer is positioned at the SRNC handling management of a corresponding terminal and one MAC-d sublayer exists in each terminal.
  • the RLC layer supports reliable data transmission and performs a function of segmentation and concatenation of RLC service data unit (SDU) coming down from an upper layer.
  • SDU RLC service data unit
  • the RLC SDU delivered from the upper layer is adjusted in its size suitable for a processing capacity in the RLC layer, to which header information is added and transmitted as a protocol data unit form to the MAC layer.
  • the RLC layer has an RLC buffer to store RLC SDU or PDUs coming down from the upper layer.
  • a broadcast/multicast control (BMC) layer schedules a cell broadcast
  • CB channel assignment message delivered from the core network and allows user equipments positioned in a specific cell to perform a broadcast function.
  • the CB message delivered from the upper layer is added with information such as a message ID, a serial number or a coding scheme and transmitted as the BMC message form to the RLC layer, and transmitted to the MAC layer through the logical channel CTCH (Common Traffic Channel).
  • CTCH Common Traffic Channel
  • the logical channel CTCH is mapped with the transport channel FACH and S-CCPCH.
  • a packet data convergence protocol (PDCP) layer is positioned at an upper side of the RLC layer and allows data to be transmitted through a network protocol such as an IPv4 or IPv6 to be effectively transmitted on the radio Interface with a relatively small bandwidth.
  • the PDCP layer performs a function of reducing unnecessary control information, which is called a header compression, and RFC2507 and RFC3095, a header compression technique defined in an Internet standardization group called IETF (Internet Engineering Task Force).
  • IETF Internet Engineering Task Force
  • the radio resource control (RRC) layer positioned in the lowest portion of the L3 is defined only in the control plane and controls the logical channels, the transport channels, and the physical channels in relation to the setup, the reconfiguration, and the release of the RBs.
  • the RB is a service provided by the second layer for data transmission between the terminal and the UTRAN. Setting up the RB means processes of stipulating the characteristics of a protocol layer and a channel, which are required for providing a specific service, and setting the respective detailed parameters and operation methods.
  • the multimedia broadcast/multicast service (MBMS) will now be described.
  • the MBMS is a service transmitting multimedia data such as an audio, a video or an image to a plurality of terminals by using a uni-directional point-to-multipoint bearer service.
  • UTRAN transmits the MBMS data over a downlink common transport channel such as FACH or DSCH in order to heighten an efficiency of a radio network.
  • the MBMS has two types of modes of a broadcast mode and a multicast mode. Namely, the MBMS service is divided into an MBMS broadcast service and an MBMS multicast service.
  • the MBMS broadcast mode is a service transmitting multimedia data to every user located in a broadcast area.
  • the broadcast area herein refers to an area where a broadcast service is available.
  • One or more broadcast areas can exist in one public land mobile network (PLMN), and one or more broadcast services can be provided in one broadcast area. Further, one broadcast service can be provided to several broadcast areas.
  • the MBMS multicast mode is a service for transmitting multimedia data only to a specific user group in a multicast area.
  • the multicast area refers to an area where a multicast service is available.
  • the multicast group refers to a user group receiving a specific multicast service
  • joining herein refers to a behavior of joining to the multicast group for receiving the specific multicast service.
  • the radio network temporary identifier (RNTI) will now be described.
  • the RNTI is used as identification information of a terminal while connection is maintained between the terminal and the UTRAN, including S- RNTI, D-RNTI, C-RNTI and U-RNTI.
  • S-RNTI (Serving RNC RNTI) is assigned by an SRNC (Serving RNC) when a connection is set up between the terminal and the UTRAN, and used as base information for the SRNC to identify a terminal.
  • SRNC Serving RNC
  • D-RNTI (Drift RNTI) is assigned by a DRNC (Drift RNC) when a handover occurs between radio network controllers according to a terminal's movement.
  • DRNC Drift RNC
  • C-RNTI Cell RNTI
  • Cell RNTI Cell RNTI
  • U-RNTI consists of an SRNC identity and an S-RNTI and provides absolute identification information of a terminal in case that identification information of an SRNC managing a terminal and identification information of a terminal in the corresponding terminal can not be recognized.
  • an MAC-c/sh layer When data is transmitted by using a common transport channel, an MAC-c/sh layer includes C-RNTI or U-RNTI in a header of an MAC PDU and transmits it. At this time, the header of the MAC PDU also includes a UE ID type indicator informing a type of the RNTI.
  • One or more physical channel S-CCPCH can be provided by a cell, so that a terminal desires to receive a transmission channel FACH (Forward Access Channel) or a PCH (Paging Channel), it first selects a mapped S-CCPCH channel. That is, the terminal selects a S-CCPCH channel to be received by itself by using the U-RNTI.
  • FACH Forward Access Channel
  • PCH Policy Channel
  • the conventional RNTIs are used only for the point-to-point radio service, they serve to identify only one terminal. Thus, when the terminal receives data through the downlink common transport channel, it recognizes whether the RNTI included in the header of the MAC PDU is the same as an RNTI assigned to itself and transfers only data including the same RNTI. However, the MBMS transmitting data to a plurality of terminal, that is, to a terminal group, by using the point-to-multipoint radio service on the radio, the conventional RNTI can not be used.
  • RNTIs of plural terminals for receiving a corresponding data should be all included in the header of the MAC PDU. Then, RNTIs as many as the receiving terminals are included in the header of the MAC PDU, the header becomes fat.
  • an object of the present invention is to provide a multimedia service providing method in a radio mobile telecommunication system that provides a radio network temporary identifier (RNTI) suitable for MBMS service.
  • Another object of the present invention is to provide a multimedia service providing method of an universal mobile telecommunication system capable of transmitting only a specific data to an upper layer by an MAC.
  • RNTI radio network temporary identifier
  • Still another object of the present invention is to provide a multimedia service providing method in an universal mobile telecommunication system capable of assigning a radio resource, configuration and control information through an RNTI.
  • a multimedia service providing method in an universal mobile telecommunication system in which multimedia broadcast/multicast service (MBMS) is provided to plural terminals, including: generating an identifier for a specific MBMS service; adding the generated identifier to every MBMS protocol data unit; and transferring the MBMS protocol data unit to a terminal.
  • MBMS multimedia broadcast/multicast service
  • the identifier is an MBMS radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the identifier is generated from a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC layer generates the identifier when a radio access bearer is established, and discards the identifier when the radio access bearer is released.
  • the identifier indicates a specific MBMS service or a multicast group.
  • the specific MBMS service is a broadcast service or a multicast service.
  • the identifier is included in header of an MBMS protocol data unit.
  • the MBMS protocol data unit is an MAC protocol data unit and the header is a header of the MAC protocol data unit.
  • the MBMS protocol data unit includes an indicator indicating a type of the identifier.
  • a multimedia service providing method in an universal mobile telecommunication system in which multimedia broadcast/multicast service (MBMS) is provided to a terminal group consisting of plural terminals, including: generating an identifier for an MBMS service and assigning it to a terminal group; adding an MBMS identifier in the MBMS protocol data unit and transmitting it to the terminal group; and comparing the MBMS identifier contained in the received MBMS protocol data unit and the assigned MBMS identifier and receiving the MBMS protocol data unit by each terminal.
  • MBMS multimedia broadcast/multicast service
  • the MBMS identifier is an MBMS radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the MBMS identifier is generated by an RRC (Radio Resource Control) layer of UTRAN.
  • RRC Radio Resource Control
  • the RRC layer generates the identifier when a radio access bearer is established, and discards the identifier when the radio access bearer is released.
  • the MBMS identifier is assigned by an RRC (Radio Resource Control) layer of UTRAN.
  • the MBMS identifier is assigned to the terminal group through an RRC message.
  • the MBMS identifier is included in the header of the MBMS protocol data unit.
  • the MBMS protocol data unit is an MAC protocol data unit and the header is a header of the MAC protocol data unit.
  • the MBMS protocol data unit includes an identifier type indicator indicating a type of the identifier.
  • the identifier type indicator is included in the header of the MBMS protocol data unit.
  • the MBMS protocol data unit is an MAC protocol data unit and the header is a header of the MAC protocol data unit.
  • the MBMS data receiving step includes: checking whether the MBMS identifier is included in the MBMS protocol data unit; checking whether the MBMS identifier included in the MBMS protocol data unit is identical to the previously assigned MBMS identifier if the MBMS identifier is included in the MBMS protocol data unit; removing a header from the MBMS protocol data unit if the two identifiers are identical; and transferring the header-removed MBMS protocol data unit to an upper layer of a terminal.
  • the terminal checks whether the MBMS identifier is included in the MBMS protocol data unit by checking whether an identifier type indicator of the MBMS protocol data unit indicates the MBMS identifier.
  • the identifier type indicator indicates a type of the identifier included in the MBMS protocol data unit.
  • the terminal discards the received MBMS protocol data unit.
  • the multimedia service providing method of a universal mobile telecommunication system of the present invention further includes: constructing feedback information on the received MBMS data; and adding the MBMS identifier to feedback information of the MBMS data and transferring it to UTRAN by each terminal.
  • a multimedia service providing method in an universal mobile telecommunication system in which multimedia broadcast/multicast service (MBMS) is provided to a terminal group consisting of plural terminals, including: transferring plural physical channel information to a terminal group; assigning an MBMS identifier to terminals which are to receive an MBMS data; and obtaining information of a specific physical channel indicated by the MBMS identifier from the plural physical channel information and receiving the MBMS data.
  • MBMS multimedia broadcast/multicast service
  • the MBMS identifier is an MBMS radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the MBMS identifier indicates the specific physical channel by indicating the number of the specific physical channel included in the plural physical channel information.
  • the physical channel is a secondary common control physical channel transmitting MBMS data.
  • information of the physical channel is a list of plural channels transmitting MBMS data and a parameter indicating a channel code of the physical channel, a scrambling code, a size of a data to be transmitted, a time interval at which data is transmitted, a channel coding, and a type of a transport channel mapped with a corresponding physical channel and a logical channel.
  • the MBMS data receiving step includes: selecting a specific physical channel indicated by the MBMS identifier among the plural physical channels included in the plural physical channel information; obtaining information on the selected physical channel from the plural physical channel information; establishing the selected physical channel by each terminal; and receiving the MBMS data through the selected physical channel.
  • Figure 1 illustrates a network structure of a general UMTS system
  • Figure 2 illustrates a structure of a radio protocol between a terminal and UTRAN on the basis of a 3GPP radio access network standard
  • Figure 3 is a signal flow chart showing a process of generating MBMS RNTI in UTRAN when an MBMS RAB is generated for an MBMS service in accordance with the present invention
  • Figure 4 is a signal flow chart showing a process of assigning MBMS RNTI to a terminal which is to receive an MBMS service after an MBMS RAB and an MBMS RNTI are generated in accordance with the present invention
  • Figure 5 is a signal flow chart showing a process of receiving a data of a corresponding MBMS service by a terminal which has been assigned the MBMS RNTI in accordance with the present invention
  • Figure 6 is a signal flow chart showing a process of discarding the MBMS RNTI assigned to a terminal by UTRAN in accordance with the present invention
  • Figure 7 is a signal flow chart showing a process of discarding the MBMS RNTI by UTRAN when the MBMS RAB for an MBMS service is discarded in accordance with the present invention
  • Figure 8 is a signal flow chart showing a process of selecting a physical channel for receiving a data of a corresponding MBMS service by a terminal through allocation of MBMS RNTI in accordance with the present invention.
  • the present invention is implemented in such a mobile communication system as the UMTS (universal mobile telecommunications system), which has been recently developed by 3GPP.
  • UMTS universal mobile telecommunications system
  • 3GPP 3rd Generation Partnership Project
  • the present invention can be also applied to a communication system operated with different standards. Preferred embodiments of the present invention will now be described.
  • the present invention proposes an MBMS RNTI (MBMS Radio Network Temporary Identifier) used when MBMS service-related information is given and taken between UTRAN and a terminal or between nodes in UTRAN in case that UTRAN provides an MBMS service, in which the MBMS RNTI serves as a identifier for a specific MBMS service or a multicast group.
  • MBMS RNTI MBMS Radio Network Temporary Identifier
  • the MBMS RNTI is added as header information of an MBMS data transmitted to a user plane of a radio protocol.
  • the MBMS RNTI can be included in an MAC header.
  • the MBMS RNTI is included in the MAC header so that the MAC layer that is responsible for MBMS can recognize whether the received MBMS data belongs to the MAC layer itself.
  • MBMS RNTI is used as an identifier indicating a specific MBMS service provided in one RNS.
  • MBMS RNTI is also used as an identifier for indicating a group of users receiving a specific multicast service in one RNS.
  • MBMS RNTI corresponds to an identifier indicating a set of users who receive a service from a specific RNS among users belonging to a multicast group.
  • MBMS RNTI is generated by the UTRAN when an MBMS RAB is set up for an MBMS service, and when the MBMS RAB is released, the MBMS RNTI is discarded.
  • the MBMS RAB refers to a radio access bearer set for a specific MBMS service.
  • MBMS RNTI is managed by the CRNC, and an arbitrary MBMS RNTI is used to identify a specific MBMS service only in a pertinent CRNC.
  • MBMS RNTI is included in the MAC header of an MBMS data when the data is transmitted, for which the RRC layer of UTRAN informs the MAC- c/sh sub-layer of the UTRAN, the MAC sub-layer that is responsible for MBMS in the UTRAN, of an MBMS RNTI value for a specific MBMS service.
  • the RRC layer of UTRAN informs the RRC layer of a terminal of the MBMS RNTI value by using an RRC message.
  • RRC layers of a plurality of terminals desired to receive the specific MBMS service are all assigned the MBMS RNTI value from the RRC layer of UTRAN. Thereafter, the RRC layers of the terminals desired to receive the specific MBMS service informs the MAC-c/sh sub-layer, the MAC sub-layer that is responsible for MBMS in the terminal, of the received MBMS RNTI value.
  • the MAC-c/sh sub-layer of UTRAN Upon receiving the MBMS RNTI value from the RRC layer of UTRAN, the MAC-c/sh sub-layer of UTRAN stores the received MBMS RNTI value. Thereafter, the MAC-c/sh sublayer of UTRAN includes the stored MBMS RNTI value in a header of an MAC PDU for a corresponding MBMS service. At this time, an identifier type indicator indicating that a type of the RNTI is the MBMS RNTI is also included in the header of the MAC PDU. The identifier type indicator informs what kind of RNTI is included in a corresponding MAC PDU.
  • the MAC-c/sh sub-layer of the terminal After receiving the MBMS RNTI value from the RRC layer of the terminal, the MAC-c/sh sub-layer of the terminal stores it. If the header of the received MAC PDU includes a terminal identifier type indicator, the MAC-c/sh sub-layer of the terminal recognizes what the terminal identifier type indicator indicates.
  • the MAC-c/sh sub-layer of the terminal compares MBMS RNTI stored in the MAC-c/sh sub-layer itself and MBMS RNTI included in the header of the received MAC PDU. If the two MBMS RNTI values are the same with each other, the MAC-c/sh sub-layer of the terminal transfers the corresponding data to the upper layer of the terminal.
  • Figure 3 shows a process of generating MBMS RNTI, in which UTRAN generates MBMS RNTI when MBMS RAB is generated for an arbitrary MBMS service.
  • UTRAN RRC generates MBMS RNTI for an MBMS service
  • UTRAN MAC-c/sh stores the MBMS RNTI (S3).
  • Figure 4 shows a process of assigning MBMS RNTI to a terminal, in which after MBMS RAB and MBMS RNTI are generated, MBMS RNTI is assigned to a terminal for receiving a corresponding MBMS service.
  • the UTRAN RRC transfers MBMS RNTI for an MBMS service to a terminal RRC through an RRC message (S4), the terminal RRC transfers MBMS RNTI to a terminal MAC-c/sh (S5).
  • the terminal MAC-c/sh stores the MBMS RNTI (S6), and then the terminal RRC informs the UTRAN RRC that MBMS RNTI has been completely assigned through an RRC message (S7). Thereafter, the terminal can receive MBMS data for the corresponding MBMS service.
  • Figure 5 shows a process of transmitting MBMS data, in which a terminal assigned MBMS RNTI receives data of a corresponding MBMS service. If an upper layer receives a data (MAC PDU) for a corresponding MBMS service.
  • MAC PDU data for a corresponding MBMS service.
  • UTRAN MAC-c/sh includes an identifier type indicator and the stored MBMS RNTI in a header of a corresponding MAC PDU (S10).
  • the identifier type indicator indicates that a type of included RNTI is MBMS RNTI.
  • UTRAN MAC-c/sh transfers an MAC PDU to a terminal MAC-c/sh by using a service of a lower layer (S11 ).
  • the terminal MAC-c/sh compares MBMS RNTI of the received MAC PDU with the stored MBMS RNTI (S12). If the two RNTI values are the same with each other, the terminal MAC-c/sh removes the MAC header from the received MAC PDU, and then transfers the MBMS data included in the MAC PDU to an upper layer (S13).
  • Figure 6 shows a process of discarding MBMS RNTI stored in a terminal, in which UTRAN discards MBMS RNTI which has been assigned to the terminal.
  • UTRAN RRC requests a terminal RRC through an RRC message to discard MBMS RNTI for a corresponding MBMS service (S14).
  • the terminal RRC requests the terminal MAC-c/sh to discard MTMS RNTI according to the discard request (S15).
  • the terminal MAC-c/sh discards the stored MBMS RNTI, and the terminal RRC informs the UTRAN RRC through an RRC message that the MBMS RNTI has been discarded (S17). Thereafter, the terminal can not receive MBMS data for the corresponding MBMS service.
  • Figure 7 shows a process of discarding MBMS RNTI, in which UTRAN discards MBMS RNTI when MBMS RAB for an arbitrary MBMS service is discarded.
  • UTRAN can proceed with the process of Figure 7 and the process of Figure 8 together.
  • UTRAN RRC determines discard of MBMS RNTI for a corresponding
  • MBMS service in case that MBMS RAB is released for an MBMS service (S20), and requests the UTRAN MAC-c/sh to discard MBMS RNTI for the corresponding MBMS service (S21 ).
  • UTRAN MAC-c/sh discards the MBMS RNTI according to the RNTI discard request.
  • MBMS RNTI performs a function of indicating a radio resource used for a specific MBMS service.
  • UTRAN RRC informs the terminal RRC of channel information through system information of BCH.
  • the channel information refers to a parameter such as the number of a physical channel being provided for service in a corresponding cell, a channel code of each physical channel, a scrambling code, a size of data to be transmitted, time interval for data transmission, a channel coding, a type of transport channel and a logical channel mapped with a corresponding physical channel, or the like.
  • a specific MBMS RNTI indicates the number of the physical channel transmitting a data of a specific MBMS service.
  • UTRAN selects an S- CCPCH channel for transmitting a data of the corresponding MBMS service through the following equation (1 ):
  • the number of S-CCPCH MBMS RNTI modulo K (1 ) wherein the value 'K' corresponds to the number of S-CCPCH with which FACH channel transmitting MBMS data in a corresponding cell is mapped and the number of S-CCPCH corresponds to a list order of S-CCPCH channels existing in system information of the corresponding cell.
  • the terminal can be aware of channel information corresponding to the number of S-CCPCH through the S-CCPCH channel list of the system information transferred through the BCH channel. Accordingly, the terminal calculates the number of S-CCPCH by substituting first assigned MBMS RNTI to equation (1 ) and obtains information of the calculated S-CCPCH channel from the system information, thereby receiving transmitted MBMS data.
  • Figure 8 shows a process of allocating a physical channel through MTMS RNTI, in which a terminal selects a physical channel for receiving a data of a corresponding MBMS service through MBMS RNTI assignment.
  • UTRAN RRC sets up a lower layer for transmission of MBMS data (S23). That is, UTRAN RRC allows a physical layer, MAC, RLC and PDCP layer of UTRAN to set a parameter such as the number of the physical channel S-CCPCH provided for service in a corresponding cell, a channel code and a scrambling code of each physical channel, a size of a data to be transmitted, a time interval for data transmission, a channel coding and a type of transport channel and a logical channel mapped with a corresponding physical channel. Through this process, the physical S-CCPCH transmitting a MBMS data is set up.
  • a parameter such as the number of the physical channel S-CCPCH provided for service in a corresponding cell, a channel code and a scrambling code of each physical channel, a size of a data to be transmitted, a time interval for data transmission, a channel coding and a type of transport channel and a logical channel mapped with a corresponding physical channel
  • the UTRAN RRC transmits channel information to the RRC of a terminal through system information of BCH (S24).
  • the channel information refers to the parameter such as the number of the physical channel provided for service in a corresponding cell, a channel code and a scrambling code of each physical channel, a size of a data to be transmitted, a time interval for data transmission, a channel coding and a type of transport channel and a logical channel mapped with a corresponding physical channel.
  • the terminal RRC stores the physical channel information (S25), and the UTRAN assigns MBMS RNTI to a corresponding terminal through the MBMS RNTI assignment process (S26).
  • the terminal RRC obtain information on the physical channel S- CCPCH indicated by the MBMS RNTI and a transport channel and a logical channel mapped with the channel form the physical channel information (S27). That is, the terminal RRC obtains the parameter such as a channel code and a scrambling code of the physical channel S-CCPCH transmitting a data of the specific MBMS service, a size of a data to be transmitted, a time interval for data transmission, a channel coding and a type of transport channel and a logical channel mapped with a corresponding physical channel. The terminal RRC sets a lower layer of the terminal by using the obtained channel information (S28).
  • a physical layer, MAC, RLC and PDCP layer of the terminal are set by using the obtained channel information.
  • the physical S-CCPCH for receiving a data of the corresponding MBMS service is set.
  • the terminal can receive the data of the MBMS service through the transport channel FACH.
  • the RRC layer of MBMS controls the transport channel and the physical channel with respect to set-up, re-set-up and release of RB to which MBMS RAB is mapped.
  • an RRC message is exchanged between RNC and UE. That is, MBMS RNTI is inserted into the RRC message for a specific MBMS service to identify a specific MBMS service.
  • MBMS RNTI is included in the feedback information to identify the corresponding feedback information.
  • the specific MBMS RNTI is included in the RRC message transmitting the feedback information.
  • the multimedia service providing method of universal mobile telecommunication system of the present invention has the following advantages. That is, when UTRAN provides an MBMS service, MBMS RNTI is used to give and take MBMS service-related information between UTRAN and the terminal or between nodes in UTRAN. Therefore, not only does a user group receiving an MBMS data can be easily recognized but also a data of a specific MBMS service can be easily recognized. In addition, when data is transmitted to a plurality of terminals, that is, to a terminal group, by using a point-to-multipoint radio service, specific groups receiving the data can be discernible. Thus, only MBMS data corresponding to a corresponding terminal can be transferred from the MAC layer to the upper layer. Moreover, MBMS RNTI indicates plural terminals with one identification information, so that the length of a header can be reduced compared with the use of RNTI as in the conventional art.
  • the use of an identifier temporarily assigned in UTRAN obtains an effect of protecting information of MBMS data compared with the use of a fixed message identifier.
  • MBMS RNTI indicates a specific radio resource
  • a radio resource can be automatically assigned to plural terminals even without an assignment control message, and thus, complexity of scheduling of MBMS data transmission can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

La présente invention concerne un service de diffusion/multidiffusion multimédia (MBMS) dans un système universel de télécommunication mobile (UMTS). Lorsque un UTRAN assure un MBMS, des informations associées à un service sont échangées entre l'UTRAN et un terminal ou entre des noeuds de l'UTRAN à l'aide d'un RNTI pour un MBMS, de sorte qu'un groupe d'utilisateurs recevant des données MBMS ou une donnée d'un MBMS spécifique peut être identifié.
EP03760965.8A 2002-06-22 2003-06-23 Procede de fourniture de services multimedia dans un systeme de radiocommunication mobile Expired - Lifetime EP1516445B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020020035179A KR20030097559A (ko) 2002-06-22 2002-06-22 무선이동통신 시스템의 멀티미디어 서비스 방법
KR2002035179 2002-06-22
PCT/KR2003/001228 WO2004002021A1 (fr) 2002-06-22 2003-06-23 Procede de fourniture de services multimedia dans un systeme de radiocommunication mobile

Publications (3)

Publication Number Publication Date
EP1516445A1 EP1516445A1 (fr) 2005-03-23
EP1516445A4 true EP1516445A4 (fr) 2006-12-13
EP1516445B1 EP1516445B1 (fr) 2013-12-25

Family

ID=29997374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03760965.8A Expired - Lifetime EP1516445B1 (fr) 2002-06-22 2003-06-23 Procede de fourniture de services multimedia dans un systeme de radiocommunication mobile

Country Status (12)

Country Link
US (3) US7606226B2 (fr)
EP (1) EP1516445B1 (fr)
JP (2) JP4217683B2 (fr)
KR (1) KR20030097559A (fr)
CN (2) CN101808283B (fr)
AU (1) AU2003244247B2 (fr)
HK (1) HK1077135A1 (fr)
MX (1) MXPA05000012A (fr)
RU (1) RU2305370C2 (fr)
UA (1) UA79118C2 (fr)
WO (1) WO2004002021A1 (fr)
ZA (1) ZA200410214B (fr)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654384B1 (en) 1999-12-30 2003-11-25 Aperto Networks, Inc. Integrated self-optimizing multi-parameter and multi-variable point to multipoint communication system
US7366133B1 (en) 1999-12-30 2008-04-29 Aperto Networks, Inc. Integrated, self-optimizing, multi-parameter/multi-variable point-to-multipoint communication system [II]
US6636488B1 (en) 2000-10-11 2003-10-21 Aperto Networks, Inc. Automatic retransmission and error recovery for packet oriented point-to-multipoint communication
DE10220184A1 (de) * 2002-05-06 2003-11-27 Siemens Ag Verfahren zur Übertragung mindestens einer Gruppennachricht, zugehöriges Funkkommunikations Netzwerk, Subsystem sowie Mobilfunkgerät
KR100860581B1 (ko) 2002-05-18 2008-09-26 엘지전자 주식회사 멀티캐스트 데이터 전송 방법
KR20030097559A (ko) 2002-06-22 2003-12-31 엘지전자 주식회사 무선이동통신 시스템의 멀티미디어 서비스 방법
CN100493238C (zh) * 2002-08-16 2009-05-27 北京三星通信技术研究有限公司 Mbms点对点信道和点对多点信道的转换方法
KR100936586B1 (ko) 2002-09-19 2010-01-13 엘지전자 주식회사 멀티미디어 방송 및 멀티캐스트 서비스에서의 데이터 전송 방법 및 시스템
KR100889865B1 (ko) * 2002-11-07 2009-03-24 엘지전자 주식회사 무선 이동통신 시스템의 통신방법
KR100651405B1 (ko) * 2003-07-24 2006-11-29 삼성전자주식회사 이동통신 시스템에서 멀티미디어 브로드캐스트/멀티캐스트 서비스의 제어 정보 송수신 장치 및 방법
JP2007502070A (ja) * 2003-08-08 2007-02-01 サムスン エレクトロニクス カンパニー リミテッド マルチメディアブロードキャスト/マルチキャストサービスのためのプロトコルを構成する方法及び装置
KR20050018050A (ko) * 2003-08-12 2005-02-23 삼성전자주식회사 이동통신시스템에서 방송 서비스를 위한 헤더 정보 설정방법
KR100996051B1 (ko) * 2003-08-14 2010-11-22 삼성전자주식회사 멀티미디어 방송 서비스를 지원하는 이동통신시스템에서 제어 정보를 송수신하는 방법
KR100975745B1 (ko) * 2003-10-02 2010-08-12 삼성전자주식회사 멀티캐스트/방송 서비스를 지원하는 이동통신 시스템에식별자 할당 장치 및 방법
US7436811B2 (en) * 2004-01-02 2008-10-14 Motorola Inc Multicasting data method in a radio communication system
GB0400255D0 (en) * 2004-01-07 2004-02-11 Samsung Electronics Co Ltd Radio messages
KR100595646B1 (ko) * 2004-01-09 2006-07-03 엘지전자 주식회사 Mbms서비스를 제공하는 무선통신 시스템
GB0406664D0 (en) * 2004-03-24 2004-04-28 Samsung Electronics Co Ltd Mobile communications
US7394778B2 (en) * 2004-04-12 2008-07-01 Lg Electronics Inc. Mapping of point of multipoint service identifications
US7636331B2 (en) 2004-04-19 2009-12-22 Lg Electronic Inc. Transmission of control information in wireless communication system
KR101000699B1 (ko) * 2004-04-19 2010-12-10 엘지전자 주식회사 무선링크 제어계층에서의 데이터 처리방법
US7546132B2 (en) 2004-04-19 2009-06-09 Lg Electronics, Inc. Communication of point to multipoint service information in wireless communication system
KR101049904B1 (ko) 2004-06-14 2011-07-15 엘지전자 주식회사 Mbms 서비스 수신방법
EP1610492B1 (fr) * 2004-06-21 2007-04-11 Matsushita Electric Industrial Co., Ltd. Architecture de QoS adaptative et scalaire pour des services de Multicast/Broadcast à porteuses multiples
CN100394827C (zh) * 2004-09-10 2008-06-11 上海贝尔阿尔卡特股份有限公司 多媒体广播多播业务的去激活方法及有关设备
WO2006030290A2 (fr) * 2004-09-17 2006-03-23 Nokia Corporation Procedure de prenotification amelioree pour services de diffusion/multidiffusion de multimedias a reseau d'acces radio d'environnement gsm
CN100440780C (zh) * 2004-09-27 2008-12-03 华为技术有限公司 一种用户加入多媒体广播/组播业务的方法
JP4130648B2 (ja) * 2004-10-19 2008-08-06 株式会社東芝 通信装置および通信方法
CN100366099C (zh) * 2005-01-13 2008-01-30 华为技术有限公司 使多个用户在同一信道下接收数据业务的方法
ATE463905T1 (de) 2005-02-07 2010-04-15 Lg Electronics Inc Übertragung von steuerungsdaten entsprechend der gruppierung von diensten in einem mobilen kommunikationssystem
US9112620B2 (en) * 2005-03-10 2015-08-18 Qualcomm Incorporated Method of enabling power savings when no data is being transmitted on a media logical channel
CN101160752A (zh) * 2005-04-15 2008-04-09 Lg电子株式会社 Mbms服务标识的映射
WO2006111785A1 (fr) * 2005-04-21 2006-10-26 Nokia Corporation Support de la transmission et de la reception de paquets de donnees
US20060264217A1 (en) * 2005-05-19 2006-11-23 Interdigital Technology Corporation Method and system for reporting evolved utran capabilities
KR101084142B1 (ko) 2005-08-25 2011-11-17 엘지전자 주식회사 하향공유채널의 데이터 송수신 방법
KR100660246B1 (ko) * 2005-08-31 2006-12-20 삼성전자주식회사 디지털 멀티미디어 방송의 시청을 권유하는 메시지를전송하는 방법과 그에 따른 이동통신 단말기
US8711829B2 (en) * 2005-10-05 2014-04-29 Electronics And Telecommunications Research Institute Method and apparatus for error correction in MBMS receipt system
KR101191721B1 (ko) * 2005-11-03 2012-10-16 삼성전자주식회사 IPv6 기반의 와이어리스 네트워크에서 그룹 별멀티캐스트 지원을 위한 연결 식별자 생성 및 관리 방법과이를 채용한 네트워크 인터페이스
US20070155390A1 (en) * 2006-01-04 2007-07-05 Ipwireless, Inc. Initial connection establishment in a wireless communication system
US7912471B2 (en) * 2006-01-04 2011-03-22 Wireless Technology Solutions Llc Initial connection establishment in a wireless communication system
CN105515736A (zh) 2006-01-05 2016-04-20 Lg电子株式会社 在移动通信系统中发送数据
KR101203841B1 (ko) * 2006-01-05 2012-11-21 엘지전자 주식회사 무선 통신 시스템에서의 페이징 메시지 전송 및 수신 방법
CN101682557A (zh) * 2006-01-05 2010-03-24 Lg电子株式会社 在移动通信系统中发送数据
US9456455B2 (en) * 2006-01-05 2016-09-27 Lg Electronics Inc. Method of transmitting feedback information in a wireless communication system
KR101268200B1 (ko) * 2006-01-05 2013-05-27 엘지전자 주식회사 이동통신 시스템에서의 무선자원 할당방법
KR100912784B1 (ko) * 2006-01-05 2009-08-18 엘지전자 주식회사 데이터 송신 방법 및 데이터 재전송 방법
KR101211807B1 (ko) * 2006-01-05 2012-12-12 엘지전자 주식회사 이동통신 시스템에서 무선단말의 동기상태 관리방법
JP2009521892A (ja) * 2006-01-05 2009-06-04 エルジー エレクトロニクス インコーポレイティド 移動通信システムにおける情報伝送
KR101187076B1 (ko) 2006-01-05 2012-09-27 엘지전자 주식회사 이동 통신 시스템에 있어서 신호 전송 방법
US8493854B2 (en) * 2006-02-07 2013-07-23 Lg Electronics Inc. Method for avoiding collision using identifier in mobile network
KR101358469B1 (ko) * 2006-02-07 2014-02-06 엘지전자 주식회사 무선 네트워크(network) 안에서 상향(uplink)및 하향(downlink) 대역폭(bandwidth)의선택 및 신호 방법
KR101216751B1 (ko) * 2006-02-07 2012-12-28 엘지전자 주식회사 이동 통신 시스템에서 식별자를 이용한 충돌 회피 방법
KR101387475B1 (ko) * 2006-03-22 2014-04-22 엘지전자 주식회사 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법
KR20070121505A (ko) * 2006-06-21 2007-12-27 엘지전자 주식회사 무선링크 재설정 방법
KR20070121513A (ko) * 2006-06-21 2007-12-27 엘지전자 주식회사 이동통신 시스템의 상향 접속 방법
WO2007148935A1 (fr) * 2006-06-21 2007-12-27 Lg Electronics Inc. procédé de transmission et de réception d'informations d'accès radio utilisant une séparation de messages dans un système de communication mobile sans fil
EP2030359B1 (fr) 2006-06-21 2017-12-20 LG Electronics Inc. -1- Procédé de prise en charge de retransmission de données dans un système de communication mobile
KR101369135B1 (ko) * 2006-06-21 2014-03-05 엘지전자 주식회사 이동통신 시스템에서의 멀티미디어 및 방송서비스의 품질보장 방법 및 그 단말
GB2439369A (en) * 2006-06-26 2007-12-27 Samsung Electronics Co Ltd Grouping and transmitting mobile television services available to a mobile device user
US8379646B2 (en) 2006-07-31 2013-02-19 Lg Electronics Inc. Method of processing control information in a mobile communication system
ES2883133T3 (es) * 2006-09-13 2021-12-07 Ericsson Telefon Ab L M Métodos y aparatos en un sistema de telecomunicaciones
JP4903033B2 (ja) * 2006-10-30 2012-03-21 パナソニック株式会社 無線通信基地局装置及び無線通信方法
KR100839599B1 (ko) * 2006-12-08 2008-06-19 한국전자통신연구원 이동통신단말기의 mbms 베어러 제어 방법
US20100080161A1 (en) 2007-01-30 2010-04-01 Nec Corporation Mobile communication system, multicast data distribution method, core network apparatus, and access network apparatus
EP1983767A1 (fr) * 2007-02-14 2008-10-22 Innovative Sonic Limited Procédé et appareil pour améliorer l'efficacité de transmission dans un système de communication sans fil
GB2447673A (en) 2007-03-21 2008-09-24 Siemens Ag Identification of multiplexed multimedia broadcast multicast service from a central node to a UMTS evolved Node B (eNB)
KR101341515B1 (ko) * 2007-06-18 2013-12-16 엘지전자 주식회사 무선 통신 시스템에서의 반복 전송 정보 갱신 방법
KR101470637B1 (ko) * 2007-06-18 2014-12-08 엘지전자 주식회사 이동통신 시스템에서의 무선자원 향상 방법, 상태정보 보고방법 및 수신장치
KR101486352B1 (ko) 2007-06-18 2015-01-26 엘지전자 주식회사 무선 통신 시스템의 단말에서의 상향링크 동기 상태 제어방법
WO2008156314A2 (fr) 2007-06-20 2008-12-24 Lg Electronics Inc. Procédé de réception d'information de système efficace
KR101490253B1 (ko) 2007-08-10 2015-02-05 엘지전자 주식회사 무선 통신 시스템에서의 제어정보 전송 및 수신 방법
KR101514841B1 (ko) 2007-08-10 2015-04-23 엘지전자 주식회사 효율적인 랜덤 액세스 재시도를 수행하는 방법
US8693409B2 (en) * 2007-08-10 2014-04-08 Interdigital Patent Holdings, Inc. Method and apparatus for supporting paging over an HS-DSCH in CELL—PCH and URA—PCH states
US8594030B2 (en) * 2007-08-10 2013-11-26 Lg Electronics Inc. Method for controlling HARQ operation in dynamic radio resource allocation
KR101461965B1 (ko) * 2007-08-14 2014-11-14 엘지전자 주식회사 무선 통신 시스템의 특정 프로토콜 계층에서의 데이터 블록전송 및 처리 방법
WO2009031827A2 (fr) 2007-09-06 2009-03-12 Samsung Electronics Co., Ltd. Appareil et procédé de prise en charge d'un service diffusé en mode multidiffusion/radiodiffusion dans un système d'accès sans fil à large bande (bwa)
KR101461970B1 (ko) * 2007-09-13 2014-11-14 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR100937432B1 (ko) * 2007-09-13 2010-01-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
KR101591824B1 (ko) 2007-09-18 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR101396062B1 (ko) * 2007-09-18 2014-05-26 엘지전자 주식회사 헤더 지시자를 이용한 효율적인 데이터 블록 전송방법
KR101513033B1 (ko) 2007-09-18 2015-04-17 엘지전자 주식회사 다중 계층 구조에서 QoS를 보장하기 위한 방법
KR101435844B1 (ko) 2007-09-18 2014-08-29 엘지전자 주식회사 무선 통신 시스템에서의 데이터 블록 전송 방법
US8687565B2 (en) * 2007-09-20 2014-04-01 Lg Electronics Inc. Method of effectively transmitting radio resource allocation request in mobile communication system
EP2193675B1 (fr) 2007-10-01 2011-03-23 Motorola Mobility, Inc. Procédé d'attribution d'un identifiant de demande de ressource temporaire pour accéder à une station de base cible
KR20090041323A (ko) * 2007-10-23 2009-04-28 엘지전자 주식회사 데이터 블록 구성함에 있어서 단말의 식별 정보를 효과적으로 전송하는 방법
KR101487557B1 (ko) * 2007-10-23 2015-01-29 엘지전자 주식회사 공통제어채널의 데이터를 전송하는 방법
EP2530858A3 (fr) * 2007-10-25 2013-05-15 Telefonaktiebolaget L M Ericsson AB (Publ) Procédé de transmission de données MBMS dans un système E-UTRAN
EP2208294B1 (fr) 2007-10-29 2019-07-31 LG Electronics Inc. Verfahren zur Behebung eines Sicherheitsfehlers
US7860107B2 (en) * 2007-11-30 2010-12-28 Ipwireless, Inc. Apparatus and method for determining timing for transmissions
CN101904198A (zh) * 2007-12-21 2010-12-01 爱立信电话股份有限公司 移动电信网络中的方法和布置
DK2248373T3 (da) 2008-02-04 2019-05-20 Ericsson Telefon Ab L M Fremgangsmåder og anordninger til et mobilt kommunikationsnetværk
WO2009116788A1 (fr) 2008-03-17 2009-09-24 Lg Electronics Inc. Procédé de transmission de données rlc
KR101163275B1 (ko) * 2008-03-17 2012-07-05 엘지전자 주식회사 Pdcp 상태 보고 전송 방법
US8588150B2 (en) * 2008-08-07 2013-11-19 Qualcomm Incorporated RNTI-dependent scrambling sequence initialization
US8791470B2 (en) * 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
CN101384011B (zh) * 2008-10-28 2011-12-07 中兴通讯股份有限公司 一种手机和手机电视播放过程中显示多媒体信息的方法
CN101771942B (zh) * 2008-12-26 2014-04-30 华为技术有限公司 多媒体广播组播业务分组的方法,设备及系统
CN101841773B (zh) * 2009-03-16 2014-12-10 中兴通讯股份有限公司 资源指示方法和终端
JP2012526488A (ja) * 2009-05-08 2012-10-25 インターデイジタル パテント ホールディングス インコーポレイテッド ダウンリンク専用ワイヤレスネットワークによる移動性管理
CN101931885B (zh) * 2009-06-19 2015-06-03 中兴通讯股份有限公司 多媒体广播和组播业务控制信道更新的通知方法及系统
CN101938697A (zh) * 2009-06-29 2011-01-05 大唐移动通信设备有限公司 一种同步调度方法、装置和系统
CN101998256B (zh) * 2009-08-12 2014-07-02 中兴通讯股份有限公司 一种mbms寻呼指示信息的传输方法及系统
GB2484922B (en) 2010-10-25 2014-10-08 Sca Ipla Holdings Inc Infrastructure equipment and method
US8867437B2 (en) * 2010-10-27 2014-10-21 Qualcomm Incorporated Cell site modem application message interface
KR101742321B1 (ko) * 2010-12-21 2017-06-01 한국전자통신연구원 멀티미디어 브로드캐스트 및 멀티캐스트 서비스 카운팅 방법 및 장치
US20120201151A1 (en) * 2011-02-08 2012-08-09 Renesas Mobile Corporation Layer 2 ACK And NACK Status Reporting
TWI459777B (zh) 2011-07-11 2014-11-01 Mediatek Inc 加強型傳呼的方法及其機器類型通訊裝置
WO2013145030A1 (fr) * 2012-03-30 2013-10-03 富士通株式会社 Système de communication sans fil, station d'émission, station de réception et procédé de communication sans fil
US9319851B2 (en) 2013-03-22 2016-04-19 Mediatek, Inc. Radio resource efficient transmission for group communication over LTE eMBMS
WO2016111589A1 (fr) * 2015-01-09 2016-07-14 엘지전자 주식회사 Procédé et appareil de commande de la réception d'un service scptm en utilisant des rnti scptm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097949A (en) * 1997-04-15 2000-08-01 Sk Telecom Co., Ltd. Method for providing closed user group service in mobile communication network
WO2001010146A1 (fr) * 1999-08-02 2001-02-08 Qualcomm Incorporated Radiodiffusion cellulaire dans un reseau hybride gsm/amrc
US6252874B1 (en) * 1998-07-20 2001-06-26 D-Link Corporation Ethernet card and ethernet card improvement methods
US20020124069A1 (en) * 2000-12-28 2002-09-05 Hatalkar Atul N. Broadcast communication system with dynamic client-group memberships

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219056A (ja) 1992-02-04 1993-08-27 Nec Corp 同報通信方式
CA2088753C (fr) 1992-02-04 1999-02-16 Tomoki Osawa Reseau de communication point-multipoint pouvant retransmettre un signal de diffusion simultane
US6041047A (en) 1992-10-05 2000-03-21 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels supporting broadcast SMS
US5459725A (en) 1994-03-22 1995-10-17 International Business Machines Corporation Reliable multicasting over spanning trees in packet communications networks
JPH07283782A (ja) 1994-04-08 1995-10-27 Matsushita Electric Ind Co Ltd 移動通信システム
JPH09270790A (ja) 1996-04-01 1997-10-14 N T T Data Tsushin Kk ファイル配信方法及び通信制御装置
KR100224852B1 (ko) 1997-06-14 1999-10-15 윤종용 화상형성장치의 감광벨트상의 노광 위치 정렬방법
US5928331A (en) 1997-10-30 1999-07-27 Matsushita Electric Industrial Co., Ltd. Distributed internet protocol-based real-time multimedia streaming architecture
KR100249503B1 (ko) 1997-12-23 2000-03-15 정선종 비동기전송모드 망에서의 멀티캐스트 연결 방법
KR100240645B1 (ko) 1997-12-23 2000-01-15 정선종 멀티캐스트 통신의 패킷 오류 제어기 및 이를 이용한패킷 오류제어 방법
FI109861B (fi) 1998-01-05 2002-10-15 Nokia Corp Menetelmä solun yleislähetyskapasiteetin tehokkaaksi hyödyntämiseksi
AU3254599A (en) 1998-02-27 1999-09-15 Siemens Aktiengesellschaft Telecommunications system with wireless code and time-division multiplex based telecommunication
US6104709A (en) 1998-07-17 2000-08-15 Motorola, Inc. Channel assignment within a broad-band communication system
US6614810B1 (en) * 1998-09-14 2003-09-02 Samsung Electronics Co., Ltd. Method for processing data to be transmitted over common channel
JP2000138676A (ja) 1998-10-29 2000-05-16 Mitsubishi Materials Corp 端末装置、コンピュータサーバ、通信方法及び記録媒体
KR100277826B1 (ko) 1998-11-17 2001-01-15 정선종 위성 채널을 이용한 멀티캐스트 서비스 운용시스템 및 운용방법
KR100577149B1 (ko) 1998-12-02 2006-07-25 엘지전자 주식회사 이동통신시스템에서의멀티캐스트서비스구현방법
JP3022530B1 (ja) * 1998-12-07 2000-03-21 日本電気株式会社 Cdma無線通信システムにおけるマルチキャスト通信方式
KR20000047263A (ko) 1998-12-31 2000-07-25 강병호 멀티미디어 위성통신시스템에서 서비스 가입자에대한 멀티캐스트 서비스 정보 제공시스템
JP3715533B2 (ja) * 1999-02-05 2005-11-09 株式会社東芝 ストリーム情報の情報記憶媒体、その記録方法、再生方法、記録装置および再生装置
KR100323770B1 (ko) 1999-03-08 2002-02-19 서평원 멀티캐스트 서비스를 위한 채널 구조 및 이를 이용한 서비스 운용 방법
FI107487B (fi) 1999-03-08 2001-08-15 Nokia Mobile Phones Ltd Datalähetyksen salausmenetelmä radiojärjestelmässä
WO2000054536A1 (fr) * 1999-03-08 2000-09-14 Nokia Networks Oy Procede permettant d'etablir une communication entre un appareil utilisateur et un reseau radio
FI114077B (fi) 1999-03-10 2004-07-30 Nokia Corp Tunnuksen varausmenetelmä
US6839348B2 (en) * 1999-04-30 2005-01-04 Cisco Technology, Inc. System and method for distributing multicasts in virtual local area networks
GB2389751B (en) 1999-05-28 2004-02-25 Nec Corp Mobile telecommunications system
AU776813B2 (en) 1999-07-13 2004-09-23 Sun Microsystems, Inc. Methods and apparatus for selecting multicast IP data transmitted in broadcast streams
JP3704003B2 (ja) * 1999-08-16 2005-10-05 株式会社東芝 無線基地局装置、無線端末装置及び情報通信方法
KR100305295B1 (ko) 1999-09-04 2001-11-05 정규석 이동통신망에서 매체접근제어계층 구현방법 및 이를 이용한 데이터 송수신방법
KR100311353B1 (ko) 1999-09-17 2001-10-18 박종섭 무선 이동 통신 시스템의 프로토콜 구조 및 이를 이용한 억세스처리방법
FI109320B (fi) 1999-11-02 2002-06-28 Nokia Corp Signalointimenetelmä
JP2001165032A (ja) 1999-12-07 2001-06-19 Mitsubishi Heavy Ind Ltd 風力発電装置
JP3683468B2 (ja) 2000-04-13 2005-08-17 株式会社エヌ・ティ・ティ・ドコモ マルチキャストサービス提供システムにおける再送制御方法、情報配信装置及び無線端末
JP3717748B2 (ja) 2000-04-20 2005-11-16 株式会社エヌ・ティ・ティ・ドコモ マルチキャストサービス提供方法及びシステム及び情報配信装置及び無線端末
WO2001080590A1 (fr) * 2000-04-14 2001-10-25 Ntt Docomo, Inc. Systeme et procede de prestation de services multidiffusion, distributeur d'informations, terminal radio et station radio fixe
EP1148687A1 (fr) 2000-04-20 2001-10-24 Telefonaktiebolaget L M Ericsson (Publ) Dispositif pour communication
JP3831202B2 (ja) 2000-06-05 2006-10-11 三菱電機株式会社 無線通信システム、無線基地局、無線端末、および無線マルチキャスト通信制御方法
KR100366018B1 (ko) 2000-07-25 2002-12-26 삼성전자 주식회사 데이터 통신 시스템 및 그 통신방법
KR100695830B1 (ko) 2000-09-05 2007-03-19 유티스타콤코리아 유한회사 무선통신 시스템에서 데이터 반복 전송 방법
JP3685783B2 (ja) 2000-10-19 2005-08-24 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムでのマルチメディアデータ送信装置及び方法
US6804528B1 (en) * 2000-11-03 2004-10-12 Lucent Technologies, Inc. Apparatus and method for use in the multicast of traffic data in wireless multiple access communications systems
US6847623B1 (en) 2000-11-15 2005-01-25 Qualcomm Incorporated Method and apparatus for allocating data streams onto a single channel
DE10107700A1 (de) 2001-02-19 2002-08-29 Siemens Ag Verfahren und Vorrichtung zum Multiplexen und/oder Demultiplexen sowie entsprechende Computerprogramme und ein entsprechendes Computerprogramm-Erzeugnis
CA2380039C (fr) 2001-04-03 2008-12-23 Samsung Electronics Co., Ltd. Methode de transmission de donnees de commande dans un systeme de communication mobile amrc
KR100446522B1 (ko) 2001-07-06 2004-09-04 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신시스템에서고속 매체 접속 제어 계층 엔터티 리셋 방법
US6810109B2 (en) 2001-07-13 2004-10-26 Medtronic Ave, Inc. X-ray emitting system and method
JP2003060699A (ja) 2001-08-14 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> ネットワークにおける再送制御方法
KR100811364B1 (ko) 2001-10-06 2008-03-07 엘지전자 주식회사 이동통신 시스템에서 하향공유채널에 대한 제어정보전송방법
DE60126998T2 (de) 2001-10-19 2007-12-13 Nokia Corp. Übertragung von multicast und broadcast multimedia diensten über eine funkschnittstelle
US7937118B2 (en) * 2001-10-30 2011-05-03 Unwired Technology Llc Wireless audio distribution system with range based slow muting
US6701155B2 (en) 2002-01-11 2004-03-02 Nokia Corporation Network initialized packet data protocol context activation for multicast/broadcast services
US6839565B2 (en) 2002-02-19 2005-01-04 Nokia Corporation Method and system for a multicast service announcement in a cell
KR20030069365A (ko) 2002-02-20 2003-08-27 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 방송 서비스 방법
JP4002204B2 (ja) 2002-04-09 2007-10-31 三星電子株式会社 移動通信システムにおけるマルチメディア放送/マルチキャストサービスのための制御情報伝送装置及びその方法
US7177658B2 (en) * 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
US6684081B2 (en) * 2002-05-10 2004-01-27 Nokia Corporation Method and system for separating control information and user data from multicast and broadcast services
KR100860581B1 (ko) 2002-05-18 2008-09-26 엘지전자 주식회사 멀티캐스트 데이터 전송 방법
US20030227934A1 (en) 2002-06-11 2003-12-11 White Eric D. System and method for multicast media access using broadcast transmissions with multiple acknowledgements in an Ad-Hoc communications network
KR20030097559A (ko) * 2002-06-22 2003-12-31 엘지전자 주식회사 무선이동통신 시스템의 멀티미디어 서비스 방법
KR100678181B1 (ko) 2002-07-31 2007-02-01 삼성전자주식회사 이동통신 시스템에서 멀티미디어 방송 멀티 캐스트 서비스 데이터를 제공하는 장치 및 방법
KR100917042B1 (ko) 2002-08-14 2009-09-10 엘지전자 주식회사 무선 이동통신 시스템의 방송 및 멀티캐스트 데이터의전송 방법
KR100936586B1 (ko) 2002-09-19 2010-01-13 엘지전자 주식회사 멀티미디어 방송 및 멀티캐스트 서비스에서의 데이터 전송 방법 및 시스템
KR100893070B1 (ko) 2002-09-19 2009-04-17 엘지전자 주식회사 무선통신 시스템의 멀티캐스트 서비스 제공 및 수신 방법, 그리고 그 장치
AU2002350456A1 (en) 2002-09-24 2004-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and devices for error tolerant data transmission, wherein retransmission of erroneous data is performed up to the point where the remaining number of errors is acceptable
FI20021755A0 (fi) 2002-10-02 2002-10-02 Nokia Corp Menetelmä ja järjestely yleislähetyksen vastaanottoedellytysten ilmaisemiseksi
KR100889865B1 (ko) 2002-11-07 2009-03-24 엘지전자 주식회사 무선 이동통신 시스템의 통신방법
KR100954560B1 (ko) 2003-01-10 2010-04-23 삼성전자주식회사 멀티미디어 브로드캐스트/멀티캐스트 서비스를 제공하는이동 통신 시스템에서 수신 데이터 오류 복구 방법
JP2004221760A (ja) 2003-01-10 2004-08-05 Nec Corp 移動通信システム、無線制御装置、無線端末及びそのデータ配信方法並びにそのプログラム
US7894468B2 (en) 2003-03-20 2011-02-22 Alcatel-Lucent Usa Inc. Transmission methods for communication systems supporting a multicast mode
KR20050014984A (ko) 2003-08-01 2005-02-21 삼성전자주식회사 멀티미디어 브로드캐스트/멀티캐스드 서비스를 제공하는이동통신시스템에서 무선 자원 연결을 요청하는 메시지를재전송하는 방법
AU2004263179B8 (en) 2003-08-08 2011-07-14 Vertex Pharmaceuticals Incorporated Heteroarylaminosulfonylphenyl derivatives for use as sodium or calcium channel blockers in the treatment of pain
US8694869B2 (en) 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
US20050076369A1 (en) 2003-10-06 2005-04-07 Zhijun Cai Method and apparatus for assigning temporary mobile group identity in a multimedia broadcast/multicast service
KR100595646B1 (ko) 2004-01-09 2006-07-03 엘지전자 주식회사 Mbms서비스를 제공하는 무선통신 시스템
US8521139B2 (en) 2004-02-11 2013-08-27 Qualcomm Incorporated Transmission of notifications for broadcast and multicast services
KR100983277B1 (ko) 2005-02-15 2010-09-24 엘지전자 주식회사 멀티미디어 방송/멀티캐스트 서비스 송수신 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097949A (en) * 1997-04-15 2000-08-01 Sk Telecom Co., Ltd. Method for providing closed user group service in mobile communication network
US6252874B1 (en) * 1998-07-20 2001-06-26 D-Link Corporation Ethernet card and ethernet card improvement methods
WO2001010146A1 (fr) * 1999-08-02 2001-02-08 Qualcomm Incorporated Radiodiffusion cellulaire dans un reseau hybride gsm/amrc
US20020124069A1 (en) * 2000-12-28 2002-09-05 Hatalkar Atul N. Broadcast communication system with dynamic client-group memberships

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Digital cellular telecommunications system (Phase 2+)", ETSI STANDARDS, EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE, SOPHIA-ANTIPO, FR, vol. 3-T2;SMG4, no. V740, September 2000 (2000-09-01), XP014005587, ISSN: 0000-0001 *
HARRI HOLMA AND ANTTI TOSKALA: "WCDMA for UMTS", WCDMA FOR UMTS: RADIO ACCESS FOR THIRD GENERATION MOBILE COMMUNICATIONS, 7 June 2000 (2000-06-07), pages 123 - 127, XP002278973 *
See also references of WO2004002021A1 *

Also Published As

Publication number Publication date
AU2003244247A1 (en) 2004-01-06
US20100142429A1 (en) 2010-06-10
US7606226B2 (en) 2009-10-20
ZA200410214B (en) 2006-09-27
WO2004002021A1 (fr) 2003-12-31
CN1663151A (zh) 2005-08-31
AU2003244247B2 (en) 2006-06-15
JP2009005384A (ja) 2009-01-08
EP1516445B1 (fr) 2013-12-25
CN1663151B (zh) 2010-08-25
US8077716B2 (en) 2011-12-13
MXPA05000012A (es) 2005-04-08
US20040057387A1 (en) 2004-03-25
JP2005530451A (ja) 2005-10-06
UA79118C2 (en) 2007-05-25
CN101808283A (zh) 2010-08-18
USRE45333E1 (en) 2015-01-13
CN101808283B (zh) 2012-12-12
EP1516445A1 (fr) 2005-03-23
JP4755675B2 (ja) 2011-08-24
KR20030097559A (ko) 2003-12-31
RU2005101200A (ru) 2006-01-20
JP4217683B2 (ja) 2009-02-04
HK1077135A1 (en) 2006-02-03
AU2003244247C1 (en) 2004-01-06
RU2305370C2 (ru) 2007-08-27

Similar Documents

Publication Publication Date Title
AU2003244247C1 (en) Multimedia service providing method in a radio mobile communication system
US8068843B2 (en) Method for increasing system capacity by transmitting control Signal for MBMS data by combining RLC and PDCP messages
KR100943901B1 (ko) 방송 및 멀티캐스트를 위한 무선 프로토콜 엔터티 공유방식
KR100959719B1 (ko) 이동통신시스템에서의 무선자원관리 방법
JP4982545B2 (ja) 移動通信システムのmbmsサービスのためのpdcp構造及び動作方法
EP1540851B1 (fr) Service mutlidiffusion fournissant un procede dans un systeme de communication mobile
KR100964684B1 (ko) 이동통신 시스템의 방송 및 멀티캐스트 서비스 제공방법
MXPA04007276A (es) Metodo para multiplexar canales logicos en un sistema de comunicacion movil y aparato del mismo.
AU2003252555A1 (en) Method for scheduling transmission of MBMS data UMTS
JP2005528865A5 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20061113

17Q First examination report despatched

Effective date: 20070131

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LG ELECTRONICS, INC.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60345508

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04B0007260000

Ipc: H04W0076000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 76/00 20090101AFI20130529BHEP

Ipc: H04L 12/18 20060101ALI20130529BHEP

INTG Intention to grant announced

Effective date: 20130628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60345508

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 647157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60345508

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60345508

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140623

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220506

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220506

Year of fee payment: 20

Ref country code: FR

Payment date: 20220512

Year of fee payment: 20

Ref country code: DE

Payment date: 20220506

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60345508

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230622

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230622