EP1434300B1 - Broadband antenna with a 3-dimensional casting part - Google Patents

Broadband antenna with a 3-dimensional casting part Download PDF

Info

Publication number
EP1434300B1
EP1434300B1 EP03028038A EP03028038A EP1434300B1 EP 1434300 B1 EP1434300 B1 EP 1434300B1 EP 03028038 A EP03028038 A EP 03028038A EP 03028038 A EP03028038 A EP 03028038A EP 1434300 B1 EP1434300 B1 EP 1434300B1
Authority
EP
European Patent Office
Prior art keywords
antenna
reflector
supply
emitter element
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03028038A
Other languages
German (de)
French (fr)
Other versions
EP1434300A3 (en
EP1434300A2 (en
Inventor
Uhland Goebel
Mischa Gräni
Jan Hesselbarth
Peter Nüchter
Martin Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huber and Suhner AG
Original Assignee
Huber and Suhner AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huber and Suhner AG filed Critical Huber and Suhner AG
Publication of EP1434300A2 publication Critical patent/EP1434300A2/en
Publication of EP1434300A3 publication Critical patent/EP1434300A3/en
Application granted granted Critical
Publication of EP1434300B1 publication Critical patent/EP1434300B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/265Open ring dipoles; Circular dipoles

Definitions

  • the present invention relates to antennas comprising a radiating element disposed in front of a reflector surface.
  • Crossed dipole antennas for generating linear or circular polarizations are known.
  • a crossed dipole antenna is known from the article "A wide-band aerial system for circularly polarized waves, suitable for ionospheric research", G.J. Phillips, IEE Proc., Vol. 98 III, 1951, pp. 237-239.
  • Turnstile antennas are described in various US patents. An example is shown in U.S. Patent No. 2,086,976, issued in 1935. The antenna shown comprises a mast on which a plurality of crossed antennas are arranged. There are also numerous textbooks dealing with turnstile antennas.
  • the antenna elements are often arranged in front of a metallic reflector surface. This approach is known and applies to the following two antennas.
  • polarized dipole antenna is the United States Patent US 6,313,809 (substantially corresponds to the German Patent Application DE 198 60 121 A1) of the company Kathrein refer.
  • This dipole antenna is characterized in that it consists of a number of individual dipole elements, which are arranged in front of a reflector. The dipole elements are arranged in the plan view as a dipole square and each dipole element is fed individually via a symmetrical line.
  • a doubly polarized multi-range dipole antenna can be found in US Pat. No. 6,333,720 from Kathrein.
  • the bandwidth of a dipole antenna can be improved by using thick dipoles or so-called bow-tie dipole structures.
  • Such a broadband dipole antenna is known from the article "Broadband half-wave dipole", M.C. Bailey, IEEE Trans. Antennas Prop., Vol. 32, 1984, pages 410-412.
  • a broadband antenna with a thick dipole structure is described in the Antenna Engineering Handbook, R.C. Johnson and H. Jasik, editors, 2nd Ed., McGraw Hill, 1984, pp. 28-11.
  • the object is to provide a broadband dipole antenna, which is simple and inexpensive.
  • an antenna is provided with a radiation element, with the technical features of claim 1.
  • the fasteners are symmetrical with respect to the planes of symmetry or, in the limit, in the planes of symmetry.
  • the fastening elements are connected to the conductive reflector, wherein at least one of the fastening elements for electrically exciting the radiation element is used.
  • a multi-beam array antenna as claimed in claim 14 is provided. Further embodiments of the invention can be found in the dependent claims 15 and 16.
  • casting is to be understood as meaning moldings which have been produced by the (automatic) injection molding process.
  • thermoplastically processable plastics are processed by means of an injection molding process.
  • plastics are listed below: PA (polyamide); POM (polyacetal); PET (polyethylene terephthalate); PS (polystyrene); TPE (thermoplastic polyester elastomer); LCP (Liquid Crystal Polymer); PBT (polybutylene terephthalate); SB (styrene / butadiene); SAN (styrene-acrylonitrile); ABS (acrylic-Buadiene-styrene); PPE (modified polyethers); PVC (polyvinyl chloride); CA (cellulose acetate); CAB (cellulose acetate butyrate); CP (cellulose propionate); PE (polyethylene); PP (polypropylene); PMMA (polymethyl methacrylate); PC (polycarbonate); PSO (polyarylsulfone); PES (polyethersulfone); PEI (polyetherimide
  • Blending is a process, mixture, or reaction of two or more polymers to obtain improved product properties.
  • the filler particles may be made of electrically conductive metals (eg, palladium) or of electrically non-conductive metal pigments, such as those used in electromagnetic-shield spray paints. These metal pigments serve as a catalyst for electrodeless deposition of a metallic Start layer, which can then be galvanically reinforced.
  • the spray paint achieves only a limited and highly dependent on the plastic material adhesive strength. By embedding the particles in the plastic mass, a substantial improvement in the adhesive strength is achieved by exposing the particles only superficially through a short pickling process, but otherwise remaining enclosed by the plastic compound.
  • metals can also be used to make the castings.
  • metals can also be used to make the castings.
  • aluminum which can be processed by the aluminum injection molding process.
  • molded parts made of zinc, magnesium (for example producible by means of Thixos injection molding), or of titanium aluminum.
  • Plastic injection molded parts containing one or more metals may also be used.
  • the moldings are characterized by the fact that a minimum of post-processing effort is necessary. In addition, the dimensions of the moldings are very precise.
  • It can reflectors are used, which preferably have a conductive surface.
  • This conductive surface can be grounded.
  • the reflector surface can be flat or curved.
  • An antenna 10 according to the invention comprises a three-dimensional beam element, which is arranged in front of a conductive reflector 13.
  • the radiating element is a casting.
  • the casting is designed to be conductive so that it can be used as an antenna.
  • the casting may either be provided with a metallic layer which completely or partially covers the casting.
  • the casting may comprise electrically conductive particles embedded in a guest material such that the casting is electrically conductive at least in the surface region.
  • the casting can also be made Be made of material that is conductive in itself. Well suited metals or metal alloys.
  • the casting comprises a closed circulation structure 11 with alternating constrictions and bulges.
  • the orbital structure 11, in the example shown, is in the shape of a cross that spans an imaginary surface 14 that is intersected by at least two planes of symmetry.
  • the planes of symmetry intersect the imaginary surface 14 and thus form cutting lines 15.1 and 15.3, as shown in FIG. 1B by dashed lines.
  • the actual circulating structure 11, in addition to the two intersecting lines 15.1 and 15.3, also has two axes of symmetry, which are designated by 15.2 and 15.4 in FIG. 1B.
  • At least two fastening elements 12.1, 12.2 are provided, which extend substantially perpendicular to the surface of the conductive reflector 13.
  • the fastening elements 12.1, 12.2 are connected to the two circulation points - which lie in the embodiment shown on the cutting line 15.1 - with the circulating structure 11.
  • the at least two fastening elements 12.1, 12.2 extend substantially parallel to one another and lie in the cylindrical surface of an imaginary cylinder 9 whose cylinder longitudinal axis 8 is perpendicular to the surface of the conductive reflector 13.
  • Said symmetry planes 15.1 and 15.3 intersect each other in a common cut line which coincides with the cylinder longitudinal axis 8.
  • the fastening elements 12. 1, 12. 2 are connected to the circulating structure 11 at two interpolation points lying on the intersection line 15. 1 and carry the circulating structure 11. At their other ends 16, the fastening elements 12. 1, 12. 2 are connected to the reflector 13. In addition to the support function, at least one of the fastening elements 12.1, 12.2 serves for electrically exciting the radiation element.
  • the jet element has a mushroom-like shape, in which the area 14 spanned by the circulating structure 11 forms the mushroom hatch and the imaginary cylinder 9 forms the foot of the mushroom.
  • the comparison of Blasting element with a mushroom-like shape is merely a better illustration of the invention.
  • fasteners that have a columnar structure.
  • the fasteners are an integral part of the circulation structure 11.
  • both the circulation structure 11 and the fasteners can be made in one piece and thus without additional assembly steps and assembly tolerances.
  • the fastening elements preferably have a cylindrical shape with a round cross-section, but may also have other cross-sectional shapes.
  • the fastening elements have fastening means at the lower end, which allow the circulating structure 11 together with the fastening elements 12.1, 12.2 to be fastened to the reflector 13.
  • the fastening elements 12.1, 12.2 may be provided, for example, with a snap mechanism or a plug-in connection, which make it possible to insert the fastening elements 12.1, 12.2 into holes of the reflector 13 and to lock them there.
  • solder or other - connections can be provided. Ideal are connections that produce not only a mechanical connection but also an electrically conductive connection.
  • the reflector 13 on the front side 17.2 ie on the side of the reflector 13, which faces the circulating structure 11
  • the reflector 13 on the front side 17.2 is made conductive, as in FIG. 1C indicated.
  • At least one of the fastening elements 12. 1 must therefore be fastenable in the reflector 13 so that it does not form a conductive connection to the conductive side 17. 2 of the reflector 13. Otherwise, both fastening elements 12.1, 12.2 would be short-circuited via the conductive reflector 13 and the antenna could not be activated.
  • the fastening element 12. 1 comprises a cylinder whose wall 19. 1 is provided with a conductive layer 18.
  • the reflector 13 is formed from an electrically conductive layer 17.4 on the front 17.2 of a dielectric plate 17.5.
  • the reflector 13 has a hole in which the lower end 16 of the fastener 12.1 is guided. Falling out of the fastener 12.1 is prevented by nose-like projections 19.2, which allow the assembly process by compression.
  • a distance between the conductive surface 17.4 and the fastener 12.1 prevents a short circuit of the supply signal.
  • the feed signal is applied, for example, by a stripline on the back side of the reflector 13, which is in electrically conductive connection with the conductive layer 18.
  • the fastening element 12. 1 comprises a cylinder whose wall 19. 1 is provided with a conductive layer 18.
  • the reflector 13 is formed from an electrically conductive layer 17.4 on the front 17.2 of a dielectric plate 17.5.
  • the reflector 13 has a hole in which the lower end 16 of the fastener 12.1 is guided, wherein a mechanical stop is formed by a step 19.3 of the cylinder diameter. Falling out of the fastener 12.1 is prevented by nose-like projections 19.2, which allow the assembly process by compression.
  • An annular recess 17.7 of the electrically conductive layer 17.4 prevents a short circuit of the supply signal.
  • the feed signal is formed by a stripline 17.6 on the back of the reflector 13, which is in electrically conductive connection with the conductive layer 18.
  • the stripline 17.6 and the region 17.8 separated by the annular recess 17.7 from the electrically conductive layer 17.4 are connected to one another by an electrically conductive layer 17.9 passing through the reflector 13, a so-called through-connection.
  • the side facing the casting 17.2 of the reflector 13 is designed to be conductive. It can also be carried out the rear side 17.1 conductive.
  • the conductive side of the reflector 13 may be completely or partially covered with a non-conductive layer in order to protect the reflector 13 from environmental influences. This non-conductive layer may be a plastic layer that is transparent to the electromagnetic fields.
  • Some of the antennas according to the invention are characterized in that the imaginary surface 14 spanned by the circulating structure 11 extends substantially parallel to the reflector 13.
  • the imaginary surface 14 may be flat or curved.
  • the reflector 13 may be slightly curved.
  • the advantages of the invention are particularly effective when the reflector 13 on the side 17.1, which faces away from the casting, has a supply circuit.
  • This supply circuit can be used to power the antenna.
  • the supply circuit may comprise a network which connects a supply input with the two fastening elements 12.1, 12.2 so that they can be driven in opposite phase.
  • FIG. 2A Such an antiphase drive is shown schematically in FIG. 2A.
  • the antenna 20 comprises a circulation structure 21 similar to that in FIGS. 1A and 1B, but with four attachment elements 22.1 to 22.4 provided. Both the two fastening elements 22.1 and 22.3 and the two fastening elements 22.2 and 22.4 are each actuated in opposite phase. The two fastening elements 22.1 and 22.2 are excited in phase. As indicated by the three arrows in Fig. 2A, due to the symmetrical design of the radiating element 21, an E-field is formed, which is linearly polarized in the x-direction (vertical polarization).
  • FIG. 2B Another control is shown schematically in FIG. 2B. Again, both the two fasteners 22.1 and 22.3 and the two fasteners 22.2 and 22.4 are each driven in opposite phase. Now, however, the two fasteners 22.1 and 22.4 excited in-phase. As indicated by the three arrows in Fig. 2B, due to the symmetrical design of the radiating element 21, an E-field is formed, which is linearly polarized in the y-direction (horizontal polarization).
  • FIG. 2C A simplified control is shown schematically in FIG. 2C.
  • the fastening element 22.4 is excited in opposite phase to the fastening element 22.2, as indicated by the arrow in Fig. 2C.
  • the symmetrical design of the radiation element 21 produces an E field which is -45 ° linearly polarized (-45 ° slant polarization).
  • the fastening elements 22.1 and 22.3 can be omitted without significant effects on the antenna function, which, however, possibly suffers from the mechanical stability.
  • the fasteners 22.1 and 22.3 may be electrically connected to the reflector 13 and 23 in a further modification of the excitation.
  • An excitation variation which likewise involves small restrictions (this time the electrical properties of the antenna), provides for the exclusive excitation of one of the fastening elements 22.2, 22.4, wherein the respective other fastening element is electrically connected to the reflector 13 or 23.
  • the associated deviation from the ideal-symmetrical directional characteristic is permissible, in particular when used as a radiation element in a group antenna.
  • a network 30 according to the invention is shown in FIG. 3A as an example.
  • the network shown is located on the back of a reflector surface and has two power inputs 32.1 and 32.2.
  • a 180 ° hybrid 33.1 is arranged between the power input 32.1 and the two ports 31.4 and 31.2 .
  • a 180 ° hybrid 33.1 is arranged between the power input 32.2 and the two ports 31.3 and 31.1 another 180 ° hybrid 33.2 is arranged.
  • the 180 ° hybrid 33.2 comprises a ⁇ / 4 delay line between points A and C and a 3 ⁇ / 4 delay line between points A and B.
  • the line between B and C represents a ⁇ / 2 delay line.
  • the delay lines are on the center frequency of the feed signals designed.
  • the ports 31.1 to 31.4 are connected via line pieces with the two 180 ° hybrids 33.1 and 33.2, each causing the same phase shift.
  • the network 30 ensures that the respectively diagonally opposite ports are 180 ° out of phase, that is, in phase opposition, are driven, whereby the other two ports each lie in a virtual short-circuiting level.
  • the power inputs 32.1 and 32.2 thus have a high degree of mutual decoupling. This gives a particularly pure polarization of the radiated wave, or a strongly suppressed cross-polarization component.
  • connection point B on the given by the power inputs 31.1 and 31.4 line.
  • the position of the connection point C can be chosen freely.
  • the network input corresponding to the connection point A of the 180 ° hybrid in FIG. 3A can be positioned arbitrarily.
  • the strip line layout of the second 180 ° power divider is now obtained by two mirror images: in the first step, the layout of the first 180 ° power divider is mirrored on the symmetry axis, which converts feed points 31.1 and 31.2 into the feed points 31.4 and 31.3. In the second step, only the layout of the connecting line between the feed point 31.4 and connection point B of the second 180 ° power divider is mirrored about the axis 31.1 - 31.4.
  • a signal with the phase position 0 ° is present at the gate 31.2 , at the gate 31.3 a signal with the phase position 0 °, at the gate 31.4 a signal with the phase position 180 ° and at the gate 31.1 a signal with the phase position 180 °.
  • the radiating element builds up a horizontal polarization in the described feed.
  • the two supply inputs 32.1 and 32.2 are controlled such that S1 (t) is phase-shifted by + 90 ° or -90 ° with respect to S2 (t).
  • elliptical polarizations can be generated when at + 90 ° or - 90 ° phase shift the Amplitude of S1 (t) is different from the amplitude of S2 (t) or / and the phase shift of 0 °, + 90 °, -90 ° and 180 ° deviates.
  • the polarization properties of the antenna can be adjusted without changing the radiating element only by suitable control. Depending on the supply to the supply inputs, the polarization of the signals radiated by the radiation element can thus be influenced.
  • the activation of the beam element can also be effected by other supply circuits, for example (combination) networks and delay lines.
  • the supply circuit may be implemented in planar, coaxial or waveguide line technology.
  • the supply circuit may be arranged to generate from a signal (e.g., S1 (t)) up to four different drive signals for driving the radiating element.
  • a signal e.g., S1 (t)
  • FIG. 3B Another example of a supply circuit is shown in FIG. 3B.
  • the supply circuit has a supply input 34, to which a signal S1 (t) is supplied. This is followed by a divider 35 whose first output signal is applied to a gate 37.4. The second output signal of the divider 35 is phase-shifted via a 180 ° phase shifter 36 and then fed to a gate 37.2. The two ports 37.1 and 37.3 are grounded.
  • the supply circuit in Fig. 3B enables a single linear polarization.
  • FIG. 3C A third example of a supply circuit is shown in Fig. 3C.
  • the supply circuit has a supply input 34, to which a signal S1 (t) is supplied.
  • a 180 ° hybrid 39 feeds two connecting lines 40a, 40b in push-pull.
  • Connecting line 40a connects the adjacent gates 38.1 and 38.2, connecting line 40b the adjacent gates 38.3 and 38.4.
  • the connecting lines 40a and 40b preferably each consist of two identical, mirror-symmetrically arranged to the connection point of the 180 ° hybrid 39 arms and are identical.
  • a particularly advantageous embodiment of the circulation structure has four wing elements, which are arranged symmetrically. If the most distant points (bulges) of the circulation structure are about half a wavelength apart, it acts as two crossed dipole elements. Preferably, the two planes of symmetry of the casting are perpendicular to each other.
  • Each dipole element of the crossed dipole antenna is preferably fed symmetrically.
  • FIGS. 4A to 4D Various regular circulation structures are schematically indicated in FIGS. 4A to 4D, wherein it should be noted that there are numerous other forms which are also suitable as a circulation structure. These regular circulation structures have four planes of symmetry.
  • FIGS. 4E and 4F Further circulating structures according to the invention, now with three planes of symmetry, are shown in FIGS. 4E and 4F.
  • the circulation structure of Fig. 4E has three wing elements, which are arranged rotated by 120 ° to each other. If signals of the same amplitude and with 0 °, 120 ° and 240 ° phase shift are fed in at the three constrictions, one obtains right or left circularly polarized radiation.
  • 4F shows a circulation structure likewise suitable for generating circularly polarized radiation.
  • FIGS. 5A and 5B Various irregular circulation structures are schematically indicated in FIGS. 5A and 5B. These irregular circulation structures have at least two planes of symmetry and are preferably driven by a circuit according to FIG. 3C.
  • a further advantageous application of the circulation structures in FIGS. 5A and 5B is the simplified generation of circular polarization by applying opposite-phase feed signals to two opposite constrictions.
  • the circulation structure is designed so that wing elements are present, which result in at least one resonant circuit, which is loaded by the radiation.
  • the fasteners are preferably designed so that transformers result from the excitation impedances on the resonator impedances.
  • the fastening elements constructed as a transformer have, in an advantageous design, a diameter that is so large that they represent a disturbing capacitive load against the conductive reflector surface.
  • fastening elements which taper towards the reflector such that an inductive initial stage results.
  • An example of such a fastener is shown in Fig. 6 in a schematic side view.
  • a fastener is shown having a first cylindrical portion 62 having a first diameter.
  • a second cylindrical region 61 is provided whose diameter is smaller than the diameter of the first region 62.
  • the first region does not necessarily have to be arranged centrically to the second region.
  • the fastener shown is designed so that it is easily demoulded after casting the molding.
  • the emission characteristic is essentially determined by the distance of the radiation element from the reflector.
  • Distance of the radiating element with respect to the reflector is preferably selected between 1/10 and 1/3 of the radiated wavelength in air.
  • a metallic shield arrangement can be provided which is completely, partially or not at all connected to the conductive reflector surface.
  • the shield arrangement preferably has the same planes of symmetry as the beam element surrounded by it. It may be in one piece or constructed from a corresponding number of individual elements, taking into account the planes of symmetry.
  • a particularly advantageous arrangement consists of a circumferential electrically conductive wall, which ends depending on the desired beam bundling below or above the farthest from the reflector surface 23 point of the jet element.
  • the shield assembly may also be used to reduce mutual coupling between adjacent radiating elements in a array antenna.
  • a group antenna according to the invention is characterized in that a plurality of antennas are arranged in rows and columns.
  • An exemplary array antenna 70 is shown in FIG.
  • the array antenna 70 comprises two columns each with three antennas 71.
  • the radiating elements of the antennas 71 are arranged rotated by 45 degrees in the example shown. However, the radiating elements can also assume any other orientation. In addition, it may be necessary or useful to choose the horizontal distance between the individual antennas other than the vertical distance.
  • a reflector surface 73 is arranged.
  • each antenna 71 comprises a radiating element and an individual supply circuit.
  • Said supply matrix then establishes the necessary connections between the total inputs of the array antenna and the supply inputs of the supply circuits.
  • the supply matrix, the supply circuit and the supply signal are designed such that a linear polarization results in the vertical direction, as indicated by the E fields.
  • the described and shown antennas are particularly suitable for operation in the gigahertz frequency range, wherein the power inputs are supplied with signals having a center frequency which is greater than 1 GHz.
  • Particularly suitable are the antennas for mobile and other communication systems.
  • the upper frequency limit may be about 25 GHz, where the diameter of the beam elements according to the invention assumes about 5 millimeters and the distance between the circulating structure and the reflector plane may be less than 3 millimeters.
  • SMD Surface Mounted Device
  • the lower ends 16 of the fastening elements 12.1 to 12.4 are preferably provided with a galvanic surface which is readily wettable by the solder used, whereas the remaining three-dimensional structure of the radiation element is preferably covered by a solder-repellent layer.
  • a galvanic surface which is readily wettable by the solder used
  • the remaining three-dimensional structure of the radiation element is preferably covered by a solder-repellent layer.
  • This can be produced, for example, by dip coating, plasma coating with a dielectric layer or by selective deposition of a metal which is not wettable by the solder used.
  • the reflector surface is preferably formed by a large-area conductive layer on the side facing away from the beam elements of the dielectric plate.
  • a particularly advantageous method for solder assembly is the use of solder balls of low mechanical tolerances, which cause a reliable self-centering of the beam element with professional, known from the ball grid array (BGA) technology dimensioning.
  • BGA ball grid array
  • the radiating elements can be produced in large numbers, with a high dimensional accuracy being granted.
  • the term true to form expresses that a low-tolerance imaging of the mold cavity can be achieved by the molded part.
  • the advantageous one-piece design of the casting forming the jet element guarantees, in particular, the exact observance of the mirror symmetries necessary for achieving a high cross-polarization decoupling. If the radiating element of several (preferably identical) parts compound, this property is harder to achieve due to mounting tolerances.
  • the weight of a radiating element is very low. Depending on the material and frequency range, a weight can be achieved that is below 20 g for use at mobile radio frequencies.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Details Of Aerials (AREA)

Abstract

The device has a radiator element with as three-dimensional cast part arranged in front of a conducting reflector (13). The cast part has at least two planes of symmetry (15.1,15.3), is conducting and has a closed peripheral structure (11) with alternating constrictions and expansions and at least two attachment elements (12.1,12.2) connected to the reflector. At least one attachment element is used to electrically stimulate the radiator element. AN Independent claim is also included for the following: (a) a group antenna with several inventive antennas.

Description

Die vorliegende Erfindung bezieht sich auf Antennen, die ein Abstrahlelement umfassen, das vor einer Reflektorfläche angeordnet ist.The present invention relates to antennas comprising a radiating element disposed in front of a reflector surface.

Gekreuzte Dipolantennen zum Erzeugen linearer oder zirkularer Polarisierungen sind bekannt. Eine gekreuzte Dipolantenne ist aus dem Artikel "A wide-band aerial system for circularly polarized waves, suitable for ionospheric research", G.J. Phillips, IEE Proc., Vol. 98 III, 1951, S. 237 - 239 bekannt. Drehkreuzantennen sind in verschiedenen US-Patenten beschrieben. Ein Beispiel ist in dem US-Patent US 2,086,976 aus dem Jahr 1935 gezeigt. Die gezeigte Antenne umfasst einen Mast an dem mehrere gekreuzte Antennen angeordnet sind. Es gibt auch zahlreiche Lehrbücher, die sich mit Drehkreuzantennen befassen.Crossed dipole antennas for generating linear or circular polarizations are known. A crossed dipole antenna is known from the article "A wide-band aerial system for circularly polarized waves, suitable for ionospheric research", G.J. Phillips, IEE Proc., Vol. 98 III, 1951, pp. 237-239. Turnstile antennas are described in various US patents. An example is shown in U.S. Patent No. 2,086,976, issued in 1935. The antenna shown comprises a mast on which a plurality of crossed antennas are arranged. There are also numerous textbooks dealing with turnstile antennas.

Um die Richtwirkung zu verbessern, werden die Antennenelemente häufig vor einer metallischen Reflektorfläche angeordnet. Dieser Ansatz ist bekannt und findet bei den folgenden beiden Antennen Anwendung. Eine dual-In order to improve the directivity, the antenna elements are often arranged in front of a metallic reflector surface. This approach is known and applies to the following two antennas. A dual

polarisierte Dipolantenne ist dem US-Patent US 6,313,809 (entspricht im Wesentlichen der Deutschen Offenlegungsschrift DE 198 60 121 A1) der Firma Kathrein zu entnehmen. Diese Dipolantenne zeichnet sich dadurch aus, dass sie aus einer Anzahl von einzelnen Dipolelementen besteht, die vor einem Reflektor angeordnet sind. Die Dipolelemente sind in der Draufsicht als Dipolquadrat angeordnet und jedes Dipolelement wird über eine symmetrische Leitung individuell gespeist.polarized dipole antenna is the United States Patent US 6,313,809 (substantially corresponds to the German Patent Application DE 198 60 121 A1) of the company Kathrein refer. This dipole antenna is characterized in that it consists of a number of individual dipole elements, which are arranged in front of a reflector. The dipole elements are arranged in the plan view as a dipole square and each dipole element is fed individually via a symmetrical line.

Eine zweifach polarisierte multi-range Dipolantenne ist dem US-Patent US 6,333,720 der Firma Kathrein zu entnehmen.A doubly polarized multi-range dipole antenna can be found in US Pat. No. 6,333,720 from Kathrein.

Die Bandbreite einer Dipolantenne kann verbessert werden indem man dicke Dipole oder sogenannte fliegenförmige (bow-tie) Dipolstrukturen verwendet. Eine solche breitbandige Dipolantenne ist aus dem Artikel "Broadband half-wave dipole", M.C. Bailey, IEEE Trans. Antennas Prop., Vol. 32, 1984, S. 410 - 412 bekannt. Eine breitbandige Antenne mit dicker Dipolstruktur ist in dem Antenna Engineering Handbook, R.C. Johnson und H. Jasik, editors, 2. Auflage, McGraw Hill, 1984, auf S. 28-11 erwähnt.The bandwidth of a dipole antenna can be improved by using thick dipoles or so-called bow-tie dipole structures. Such a broadband dipole antenna is known from the article "Broadband half-wave dipole", M.C. Bailey, IEEE Trans. Antennas Prop., Vol. 32, 1984, pages 410-412. A broadband antenna with a thick dipole structure is described in the Antenna Engineering Handbook, R.C. Johnson and H. Jasik, editors, 2nd Ed., McGraw Hill, 1984, pp. 28-11.

Es ist ein Problem der bekannten Antennenanordnungen, die im Bereich der Kommunikation und insbesondere der Mobilfunkkommunikation eingesetzt werden, dass die Antennen kostspielig und schwer sind. Das führt zu teuren und komplizierten Gruppenantennen.It is a problem of the known antenna arrangements used in the field of communication and in particular mobile radio communication that the antennas are expensive and heavy. This leads to expensive and complicated group antennas.

Ausgehend von dem eingangs genannten Stand der Technik stellt sich die Aufgabe, eine breitbandige Dipolantenne zu schaffen, die einfach und kostengünstig ist.Based on the above-mentioned prior art, the object is to provide a broadband dipole antenna, which is simple and inexpensive.

Es ist eine weitere Aufgabe der Erfindung, eine Dipolantenne bereit zu stellen, die sich für den Einbau in eine Gruppenantenne eignet.It is a further object of the invention to provide a dipole antenna suitable for incorporation into an array antenna.

Gemäss Erfindung wird eine Antenne mit einem Strahlelement bereit gestellt, mit den technischen Merkmalen des Anspruchs 1.According to the invention, an antenna is provided with a radiation element, with the technical features of claim 1.

Eine ähnliche Antenne wie beansprucht im Anspruch 1 ist der US 6034645 zu entnehmen.A similar antenna as claimed in claim 1 can be found in US 6034645.

Vorzugsweise liegen die Befestigungselemente symmetrisch in Bezug auf die Symmetrieebenen, oder im Grenzfall in den Symmetrieebenen. An ihren (unteren) Enden sind die Befestigungselemente mit dem leitenden Reflektor verbunden, wobei zumindest eines der Befestigungselemente zum elektrischen Anregen des Strahlelements dient.Preferably, the fasteners are symmetrical with respect to the planes of symmetry or, in the limit, in the planes of symmetry. At their (lower) ends, the fastening elements are connected to the conductive reflector, wherein at least one of the fastening elements for electrically exciting the radiation element is used.

Weitere erfindungsgemässe Ausführungsformen sind den abhängigen Patentansprüchen 2 bis 13 zu entnehmen.Further embodiments of the invention can be found in the dependent claims 2 to 13.

Gemäss Erfindung wird eine Gruppenantenne mit mehreren Strahlelementen bereit gestellt, wie in Anspruch 14 beansprucht. Weitere erfindungsgemässe Ausführungsformen sind den abhängigen Patentansprüchen 15 und 16 zu entnehmen.According to the invention, a multi-beam array antenna as claimed in claim 14 is provided. Further embodiments of the invention can be found in the dependent claims 15 and 16.

Die Erfindung ist im Folgenden anhand in den Zeichnungen dargestellter Ausführungsbeispiele ausführlich beschrieben. Symmetrieebenen werden in den Zeichnungen durch gestrichelten Linien und imaginäre Flächen durch gepunktete Linien angedeutet, wo dies zur deutlicheren Darstellung der Erfindung notwendig ist. Es zeigen:

Fig. 1A
eine Antenne gemäss Erfindung in einer schematischen Seitenansicht;
Fig. 1B
die Antenne gemäss Fig. 1A in einer schematischen Draufsicht;
Fig. 1C
einen Ausschnitt der Antenne gemäss Fig. 1A in einer schematischen Schnittansicht;
Fig. 1D
einen Ausschnitt eines weiteren Befestigungselements gemäss Erfindung in einer schematischen Schnittansicht;
Fig. 2A
eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung vertikal linear polarisiert ist;
Fig. 2B
eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung horizontal linear polarisiert ist;
Fig. 2C
eine weitere Antenne gemäss Erfindung in einer schematischen Draufsicht, wobei die Abstrahlung 45° linear polarisiert ist;
Fig. 3A
eine Versorgungsschaltung gemäss Erfindung, die sich auf der Rückseite eines Reflektors befindet;
Fig. 3B
eine weitere Versorgungsschaltung gemäss Erfindung, in schematischer Blockansicht;
Fig. 3C
eine weitere Versorgungsschaltung gemäss Erfindung, in schematischer Blockansicht;
Fig. 4A-4F
verschiedene regelmässige Umlaufstrukturen, gemäss Erfindung;
Fig. 5A-5B
verschiedene unregelmässige Umlaufstrukturen, gemäss Erfindung;
Fig. 6
einen Ausschnitt eines Befestigungselements gemäss Erfindung in einer schematischen Seitenansicht;
Fig. 7
eine Gruppenantenne gemäss Erfindung in einer schematischen Draufsicht.
The invention is described in detail below with reference to embodiments illustrated in the drawings. Symmetry planes are indicated in the drawings by dashed lines and imaginary areas by dotted lines, where this is necessary for a clearer presentation of the invention. Show it:
Fig. 1A
an antenna according to the invention in a schematic side view;
Fig. 1B
the antenna of Figure 1A in a schematic plan view.
Fig. 1C
a section of the antenna according to FIG. 1A in a schematic sectional view;
Fig. 1D
a detail of another fastener according to the invention in a schematic sectional view;
Fig. 2A
a further antenna according to the invention in a schematic plan view, wherein the radiation is vertically linearly polarized;
Fig. 2B
a further antenna according to the invention in a schematic plan view, wherein the radiation is horizontally linearly polarized;
Fig. 2C
a further antenna according to the invention in a schematic plan view, wherein the radiation is 45 ° linearly polarized;
Fig. 3A
a supply circuit according to the invention, which is located on the back of a reflector;
Fig. 3B
a further supply circuit according to the invention, in a schematic block diagram;
Fig. 3C
a further supply circuit according to the invention, in a schematic block diagram;
Figs. 4A-4F
various regular circulation structures, according to the invention;
Fig. 5A-5B
various irregular circulation structures according to the invention;
Fig. 6
a section of a fastener according to the invention in a schematic side view;
Fig. 7
a group antenna according to the invention in a schematic plan view.

Detaillierte Beschreibung:Detailed description:

Im Folgenden werden Begriffe erläutert und definiert, die in der Beschreibung und den Patentansprüchen mehrfach auftauchen.In the following, terms are explained and defined that appear several times in the description and the claims.

Im Folgenden Text ist von Gussteilen die Rede. Gemäss Erfindung sind unter dem Begriff Gussteil Formteile zu verstehen, die im (automatischen) Spritzgussverfahren hergestellt wurden. Dabei werden thermoplastisch verarbeitbare Kunststoffe mittels eines Spritzgießverfahrens verarbeitet.The following text refers to castings. According to the invention, the term casting is to be understood as meaning moldings which have been produced by the (automatic) injection molding process. In this case, thermoplastically processable plastics are processed by means of an injection molding process.

Es können gemäss Erfindung verschiedene Kunststoff-Spritzgussmassen verwendet werden, um die Formteile herzustellen. Einige Beispiele von Kunststoffen sind im Folgenden aufgeführt: PA (Polyamid); POM (Polyacetal); PET (Polyethylenterephthalat); PS (Polystyrol); TPE (thermoplastisches Polyester-Elastomer); LCP (Liquid Crystal Polymer); PBT (Polybutylenterephthalat); SB (Styrol/Butadien); SAN (Styrol-Acrylnitril); ABS (Acryl-Buadien-Styrol); PPE (modifizierte Polyether); PVC (Polyvinylchlorid); CA (Celluloseacetat); CAB (Celluloseacetatbutyrat); CP (Cellulosepropionat); PE (Polyethylen); PP (Polypropylen); PMMA (Polymethylmethacrylat); PC (Polycarbonat); PSO (Polyarylsulfon); PES (Polyethersulfon); PEI (Polyetherimid); PAI (Polyamidimid); PVDF (Polyvinylidenfluorid).It can be used according to the invention, various plastic injection molding compounds to produce the moldings. Some examples of plastics are listed below: PA (polyamide); POM (polyacetal); PET (polyethylene terephthalate); PS (polystyrene); TPE (thermoplastic polyester elastomer); LCP (Liquid Crystal Polymer); PBT (polybutylene terephthalate); SB (styrene / butadiene); SAN (styrene-acrylonitrile); ABS (acrylic-Buadiene-styrene); PPE (modified polyethers); PVC (polyvinyl chloride); CA (cellulose acetate); CAB (cellulose acetate butyrate); CP (cellulose propionate); PE (polyethylene); PP (polypropylene); PMMA (polymethyl methacrylate); PC (polycarbonate); PSO (polyarylsulfone); PES (polyethersulfone); PEI (polyetherimide); PAI (polyamideimide); PVDF (polyvinylidene fluoride).

Es können auch Polymerblends eingesetzt werden. Dabei handelt es sich um Kombinationen aus zwei oder mehreren mischbaren Polymeren. Blending ist ein Prozess, eine Mischung, oder eine Reaktion von zwei oder mehr Polymeren, um verbesserte Produkteigenschaften zu erhalten.It is also possible to use polymer blends. These are combinations of two or more miscible polymers. Blending is a process, mixture, or reaction of two or more polymers to obtain improved product properties.

Es können auch modifizierte Kunststoffe mit Füllstoffpartikeln verwendet werden, welche den Aufbau von haftfesten elektrodenlos oder galvanisch abgeschiedenen Metallschichten erleichtern. Die Füllstoffpartikel können aus elektrisch leitenden Metallen (z. B. Palladium) oder aus elektrisch nicht leitfähigen Metallpigmenten bestehen, wie sie in Spritzlacken für elektromagnetische Abschirmung verwendet werden. Diese Metallpigmente dienen als Katalysator zur elektrodenlosen Abscheidung einer metallischen Startschicht, welche anschliessend galvanisch verstärkt werden kann. Der Spritzlack erreicht nur eine begrenzte und stark vom Kunststoff-Material abhängige Haftfestigkeit. Durch Einbetten der Partikel in die Kunststoffmasse wird eine wesentliche Verbesserung der Haftfestigkeit erzielt, indem die Partikel durch einen kurzen Beizprozess nur oberflächlich freigelegt werden, ansonsten aber von der Kunststoffmasse umschlossen bleiben.It is also possible to use modified plastics with filler particles which facilitate the construction of adherent electrodeposited or electrodeposited metal layers. The filler particles may be made of electrically conductive metals (eg, palladium) or of electrically non-conductive metal pigments, such as those used in electromagnetic-shield spray paints. These metal pigments serve as a catalyst for electrodeless deposition of a metallic Start layer, which can then be galvanically reinforced. The spray paint achieves only a limited and highly dependent on the plastic material adhesive strength. By embedding the particles in the plastic mass, a substantial improvement in the adhesive strength is achieved by exposing the particles only superficially through a short pickling process, but otherwise remaining enclosed by the plastic compound.

Anstatt Kunststoff können auch Metalle zum Herstellen der Gussteile verwendet werden. Besonders geeignet ist Aluminium, das im Aluminiumspritzgussverfahren verarbeitet werden kann. Auch geeignet sind Formteile aus Zink, Magnesium (z.B. mittels Thixospritzgiessen herstellbar), oder aus Titan Aluminium.Instead of plastic, metals can also be used to make the castings. Particularly suitable is aluminum, which can be processed by the aluminum injection molding process. Also suitable are molded parts made of zinc, magnesium (for example producible by means of Thixos injection molding), or of titanium aluminum.

Es können auch Kunststoffspritzgussteile verwendet werden, die ein oder mehrere Metalle enthalten.Plastic injection molded parts containing one or more metals may also be used.

Die Formteile zeichnen sich dadurch aus, dass ein Minimum an Nachbearbeitungsaufwand notwendig ist. Ausserdem sind die Dimensionen der Formteile sehr präzise.The moldings are characterized by the fact that a minimum of post-processing effort is necessary. In addition, the dimensions of the moldings are very precise.

Es können Reflektoren eingesetzt werden, die vorzugsweise eine leitende Fläche aufweisen. Diese leitende Fläche kann auf Masse gelegt werden. Die Reflektorfläche kann eben oder gekrümmt ausgeführt sein.It can reflectors are used, which preferably have a conductive surface. This conductive surface can be grounded. The reflector surface can be flat or curved.

Eine erste Antenne 10 gemäss Erfindung ist in den Figuren 1A und 1B gezeigt. Eine erfindungsgemässe Antenne 10 umfasst ein drei-dimensionales Strahlelement, das vor einem leitenden Reflektor 13 angeordnet ist. Das Strahlelement ist ein Gussteil. Das Gussteil ist leitend ausgeführt, damit es als Antenne einsetzbar ist. Zu diesem Zweck kann das Gussteil entweder mit einer metallischen Schicht versehen sein, die das Gussteil ganz oder teilweise abdeckt. Alternativ kann das Gussteil elektrisch leitende Partikel umfassen, die so in ein Gastmaterial eingebettet sind, dass das Gussteil zumindest im Oberflächenbereich elektrisch leitend ist. Das Gussteil kann aber auch aus Material gefertigt sein, das an sich leitfähig ist. Gut geeignet sind Metalle oder Metalllegierungen.A first antenna 10 according to the invention is shown in FIGS. 1A and 1B. An antenna 10 according to the invention comprises a three-dimensional beam element, which is arranged in front of a conductive reflector 13. The radiating element is a casting. The casting is designed to be conductive so that it can be used as an antenna. For this purpose, the casting may either be provided with a metallic layer which completely or partially covers the casting. Alternatively, the casting may comprise electrically conductive particles embedded in a guest material such that the casting is electrically conductive at least in the surface region. The casting can also be made Be made of material that is conductive in itself. Well suited metals or metal alloys.

Das Gussteil umfasst eine geschlossene Umlaufstruktur 11 mit einander abwechselnden Einschnürungen und Ausbuchtungen. Die Umlaufstruktur 11 hat in dem gezeigten Beispiel die Form eines Kreuzes, das eine imaginäre Fläche 14 aufspannt, die von mindestens zwei Symmetrieebenen geschnitten wird. Die Symmetrieebenen schneiden die imaginäre Fläche 14 und bilden somit Schnittgeraden 15.1 und 15.3, wie in Fig. 1B anhand gestrichelter Linien dargestellt. Die eigentliche Umlaufstruktur 11 weist zusätzlich zu den beiden Schnittgeraden 15.1 und 15.3 auch noch zwei Symmetrieachsen auf, die in Fig. 1B mit 15.2 und 15.4 bezeichnet sind.The casting comprises a closed circulation structure 11 with alternating constrictions and bulges. The orbital structure 11, in the example shown, is in the shape of a cross that spans an imaginary surface 14 that is intersected by at least two planes of symmetry. The planes of symmetry intersect the imaginary surface 14 and thus form cutting lines 15.1 and 15.3, as shown in FIG. 1B by dashed lines. The actual circulating structure 11, in addition to the two intersecting lines 15.1 and 15.3, also has two axes of symmetry, which are designated by 15.2 and 15.4 in FIG. 1B.

Es sind mindestens zwei Befestigungselemente 12.1, 12.2 vorgesehen, die sich im Wesentlichen senkrecht zu der Fläche des leitenden Reflektors 13 erstrecken. Die Befestigungselemente 12.1, 12.2 sind an zwei Stützpunkten - die bei der gezeigten Ausführungsform auf der Schnittgeraden 15.1 liegen - mit der Umlaufstruktur 11 verbunden. Die mindestens zwei Befestigungselemente 12.1, 12.2 verlaufen im Wesentlichen parallel zueinander und liegen in der Zylinderfläche eines imaginären Zylinders 9, dessen Zylinderlängsachse 8 senkrecht auf der Fläche des leitenden Reflektors 13 steht. Die genannten Symmetrieebenen 15.1 und 15.3 schneiden einander in einer gemeinsamen Schnittgerade, die mit der Zylinderlängsachse 8 zusammen fällt.At least two fastening elements 12.1, 12.2 are provided, which extend substantially perpendicular to the surface of the conductive reflector 13. The fastening elements 12.1, 12.2 are connected to the two circulation points - which lie in the embodiment shown on the cutting line 15.1 - with the circulating structure 11. The at least two fastening elements 12.1, 12.2 extend substantially parallel to one another and lie in the cylindrical surface of an imaginary cylinder 9 whose cylinder longitudinal axis 8 is perpendicular to the surface of the conductive reflector 13. Said symmetry planes 15.1 and 15.3 intersect each other in a common cut line which coincides with the cylinder longitudinal axis 8.

Wie erwähnt, sind die Befestigungselemente 12.1, 12.2 an zwei Stützpunkten, die auf der Schnittgeraden 15.1 liegen, mit der Umlaufstruktur 11 verbunden und tragen die Umlaufstruktur 11. An ihren anderen Enden 16 sind die Befestigungselemente 12.1, 12.2 mit dem Reflektor 13 verbunden. Zusätzlich zu der Tragfunktion dient mindestens eines der Befestigungselemente 12.1, 12.2 zum elektrischen Anregen des Strahlelements.As mentioned, the fastening elements 12. 1, 12. 2 are connected to the circulating structure 11 at two interpolation points lying on the intersection line 15. 1 and carry the circulating structure 11. At their other ends 16, the fastening elements 12. 1, 12. 2 are connected to the reflector 13. In addition to the support function, at least one of the fastening elements 12.1, 12.2 serves for electrically exciting the radiation element.

Insgesamt weist das Strahlelement eine pilzartige Form auf, bei der die durch die Umlaufstruktur 11 aufgespannte Fläche 14 den Pilzhut und der imaginäre Zylinder 9 den Fuss des Pilzes bilden. Der Vergleich des Strahlelements mit einer pilzartige Form dient lediglich der besseren Veranschaulichung der Erfindung.Overall, the jet element has a mushroom-like shape, in which the area 14 spanned by the circulating structure 11 forms the mushroom hatch and the imaginary cylinder 9 forms the foot of the mushroom. The comparison of Blasting element with a mushroom-like shape is merely a better illustration of the invention.

Besonders geeignet sind Befestigungselemente, die eine säulenartige Struktur haben. Vorzugsweise sind die Befestigungselemente ein integraler Bestandteil der Umlaufstruktur 11. In diesem Fall können sowohl die Umlaufstruktur 11 als auch die Befestigungselemente einstückig und damit ohne zusätzliche Montageschritte und Montagetoleranzen hergestellt werden.Particularly suitable are fasteners that have a columnar structure. Preferably, the fasteners are an integral part of the circulation structure 11. In this case, both the circulation structure 11 and the fasteners can be made in one piece and thus without additional assembly steps and assembly tolerances.

Die Befestigungselemente haben vorzugsweise eine zylindrische Form mit rundem Querschnitt, können aber auch andere Querschnittformen aufweisen.The fastening elements preferably have a cylindrical shape with a round cross-section, but may also have other cross-sectional shapes.

In einer bevorzugten Ausführungsform weisen die Befestigungselemente am unteren Ende Befestigungsmittel auf, die es erlauben die Umlaufstruktur 11 samt den Befestigungselementen 12.1, 12.2 an dem Reflektor 13 zu befestigen. Zu diesem Zweck können die Befestigungselemente 12.1, 12.2 zum Beispiel mit einem Schnappmechanismus oder einer Steckverbindung versehen sein, die es ermöglichen, die Befestigungselemente 12.1, 12.2 in Löcher des Reflektors 13 einzusetzen und dort einrasten zu lassen. Statt einer Schnappverbindung können auch Schraub-, Löt- oder andere - verbindungen vorgesehen werden. Ideal sind Verbindungen, die neben einer mechanischen Verbindung auch eine elektrisch leitende Verbindung herstellen.In a preferred embodiment, the fastening elements have fastening means at the lower end, which allow the circulating structure 11 together with the fastening elements 12.1, 12.2 to be fastened to the reflector 13. For this purpose, the fastening elements 12.1, 12.2 may be provided, for example, with a snap mechanism or a plug-in connection, which make it possible to insert the fastening elements 12.1, 12.2 into holes of the reflector 13 and to lock them there. Instead of a snap connection and screw, solder or other - connections can be provided. Ideal are connections that produce not only a mechanical connection but also an electrically conductive connection.

Bei dem Verbinden der Befestigungselemente 12.1, 12.2 mit dem Reflektor 13 ist zu beachten, dass der Reflektor 13 auf der Vorderseite 17.2 (d.h. auf der Seite des Reflektors 13, die zu der Umlaufstruktur 11 hingewandt ist) leitfähig ausgeführt ist, wie in Fig. 1C angedeutet. Mindestens eines der Befestigungselemente 12.1 muss somit so in dem Reflektor 13 befestigbar sein, dass es keine leitende Verbindung zu der leitfähigen Seite 17.2 des Reflektors 13 bildet. Ansonsten wären beide Befestigungselemente 12.1, 12.2 über den leitenden Reflektor 13 kurzgeschlossen und die Antenne könnte nicht angesteuert werden.When connecting the fastening elements 12.1, 12.2 to the reflector 13, it should be noted that the reflector 13 on the front side 17.2 (ie on the side of the reflector 13, which faces the circulating structure 11) is made conductive, as in FIG. 1C indicated. At least one of the fastening elements 12. 1 must therefore be fastenable in the reflector 13 so that it does not form a conductive connection to the conductive side 17. 2 of the reflector 13. Otherwise, both fastening elements 12.1, 12.2 would be short-circuited via the conductive reflector 13 and the antenna could not be activated.

Ein Beispiel für die Befestigung und die elektrische Anregung eines der Befestigungselemente 12.1 ist in Fig. 1C gezeigt. Das Befestigungselement 12.1 umfasst einen Zylinder, dessen Wandung 19.1 mit einer leitenden Schicht 18 versehen ist. Der Reflektor 13 wird aus einer elektrisch leitfähigen Schicht 17.4 auf der Vorderseite 17.2 einer dielektrischen Platte 17.5 gebildet. Der Reflektor 13 weist ein Loch auf, in welchem das untere Ende 16 des Befestigungselementes 12.1 geführt wird. Ein Herausfallen des Befestigungselementes 12.1 wird durch nasenartige Vorsprünge 19.2 verhindert, welche den Montagevorgang durch Einfedern ermöglichen. Ein Abstand zwischen der leitenden Fläche 17.4 und dem Befestigungselement 12.1 verhindert einen Kurzschluss des Speisungssignals. Das Speisungssignal wird zum Beispiel durch eine Streifenleitung auf der Rückseite des Reflektors 13 angelegt, die in elektrisch leitender Verbindung mit der leitenden Schicht 18 steht.An example of the attachment and the electrical excitation of one of the fasteners 12.1 is shown in Fig. 1C. The fastening element 12. 1 comprises a cylinder whose wall 19. 1 is provided with a conductive layer 18. The reflector 13 is formed from an electrically conductive layer 17.4 on the front 17.2 of a dielectric plate 17.5. The reflector 13 has a hole in which the lower end 16 of the fastener 12.1 is guided. Falling out of the fastener 12.1 is prevented by nose-like projections 19.2, which allow the assembly process by compression. A distance between the conductive surface 17.4 and the fastener 12.1 prevents a short circuit of the supply signal. The feed signal is applied, for example, by a stripline on the back side of the reflector 13, which is in electrically conductive connection with the conductive layer 18.

Ein besonders vorteilhaftes Beispiel für die Befestigung und die elektrische Anregung eines der Befestigungselemente 12.1 ist in Fig. 1D gezeigt. Das Befestigungselement 12.1 umfasst einen Zylinder, dessen Wandung 19.1 mit einer leitenden Schicht 18 versehen ist. Der Reflektor 13 wird aus einer elektrisch leitfähigen Schicht 17.4 auf der Vorderseite 17.2 einer dielektrischen Platte 17.5 gebildet. Der Reflektor 13 weist ein Loch auf, in welchem das untere Ende 16 des Befestigungselementes 12.1 geführt wird, wobei ein mechanischer Anschlag durch eine Abstufung 19.3 des Zylinderdurchmessers gebildet wird. Ein Herausfallen des Befestigungselementes 12.1 wird durch nasenartige Vorsprünge 19.2 verhindert, welche den Montagevorgang durch Einfedern ermöglichen. Eine ringförmige Ausnehmung 17.7 der elektrisch leitfähigen Schicht 17.4 verhindert einen Kurzschluss des Speisungssignals. Das Speisungssignal wird durch eine Streifenleitung 17.6 auf der Rückseite des Reflektors 13 gebildet, welche in elektrisch leitender Verbindung mit der leitenden Schicht 18 steht. In der in Fig. 1D gezeigten besonders vorteilhaften Ausführung sind die Streifenleitung 17.6 und der durch die ringförmige Ausnehmung 17.7 von der elektrisch leitfähigen Schicht 17.4 abgetrennte Bereich 17.8 durch eine durch den Reflektor 13 hindurchgehende elektrisch leitende Schicht 17.9, eine sogenannte Durchkontaktierung, miteinander verbunden.A particularly advantageous example of the attachment and the electrical excitation of one of the fasteners 12.1 is shown in Fig. 1D. The fastening element 12. 1 comprises a cylinder whose wall 19. 1 is provided with a conductive layer 18. The reflector 13 is formed from an electrically conductive layer 17.4 on the front 17.2 of a dielectric plate 17.5. The reflector 13 has a hole in which the lower end 16 of the fastener 12.1 is guided, wherein a mechanical stop is formed by a step 19.3 of the cylinder diameter. Falling out of the fastener 12.1 is prevented by nose-like projections 19.2, which allow the assembly process by compression. An annular recess 17.7 of the electrically conductive layer 17.4 prevents a short circuit of the supply signal. The feed signal is formed by a stripline 17.6 on the back of the reflector 13, which is in electrically conductive connection with the conductive layer 18. In the particularly advantageous embodiment shown in FIG. 1D, the stripline 17.6 and the region 17.8 separated by the annular recess 17.7 from the electrically conductive layer 17.4 are connected to one another by an electrically conductive layer 17.9 passing through the reflector 13, a so-called through-connection.

Es sind zahlreiche andere Befestigungsformen denkbar (z.B. mittels ringförmigem Isolatoreinsatz oder Freiätzung der Bohrung), um einen Kontakt zwischen dem Befestigungselement und der leitfähigen Fläche des Reflektors zu vermeiden.Numerous other forms of attachment are contemplated (e.g., by means of annular insulator insert or free hole etch) to avoid contact between the fastener and the conductive surface of the reflector.

In einer speziellen Ausführungsform ist die dem Gussteil zugewandte Seite 17.2 des Reflektors 13 leitend ausgeführt. Es kann auch die rückwärtige Seite 17.1 leitend ausgeführt sein. Zusätzlich kann die leitende Seite des Reflektors 13 mit einer nichtleitenden Schicht ganz oder teilweise abgedeckt sein, um den Reflektor 13 vor Umwelteinflüssen zu schützen. Diese nichtleitende Schicht kann eine Kunststoffschicht sein, die für die elektromagnetischen Felder transparent ist.In a special embodiment, the side facing the casting 17.2 of the reflector 13 is designed to be conductive. It can also be carried out the rear side 17.1 conductive. In addition, the conductive side of the reflector 13 may be completely or partially covered with a non-conductive layer in order to protect the reflector 13 from environmental influences. This non-conductive layer may be a plastic layer that is transparent to the electromagnetic fields.

Einige der Antennen gemäss Erfindung zeichnen sich dadurch aus, dass sich die von der Umlaufstruktur 11 aufgespannte imaginäre Fläche 14 im Wesentlichen parallel zu dem Reflektor 13 erstreckt. Die imaginäre Fläche 14 kann eben oder gekrümmt sein.Some of the antennas according to the invention are characterized in that the imaginary surface 14 spanned by the circulating structure 11 extends substantially parallel to the reflector 13. The imaginary surface 14 may be flat or curved.

Der Reflektor 13 kann leicht gekrümmt sein.The reflector 13 may be slightly curved.

Die Vorzüge der Erfindung kommen besonders zur Geltung, wenn der Reflektor 13 auf der Seite 17.1, die von dem Gussteil abgewandt ist, eine Versorgungsschaltung aufweist. Diese Versorgungsschaltung kann zum Speisen der Antenne eingesetzt werden. Zu diesem Zweck kann die Versorgungsschaltung ein Netzwerk umfassen, welches einen Speisungseingang mit den beiden Befestigungselementen 12.1, 12.2 so verbindet, dass diese gegenphasig ansteuerbar sind .The advantages of the invention are particularly effective when the reflector 13 on the side 17.1, which faces away from the casting, has a supply circuit. This supply circuit can be used to power the antenna. For this purpose, the supply circuit may comprise a network which connects a supply input with the two fastening elements 12.1, 12.2 so that they can be driven in opposite phase.

Eine solche gegenphasige Ansteuerung ist in Fig. 2A schematisch dargestellt. Die Antenne 20 umfasst eine Umlaufstruktur 21 ähnlich der in Fig. 1A und 1B, wobei jedoch vier Befestigungselemente 22.1 bis 22.4 vorgesehen sind. Sowohl die beiden Befestigungselemente 22.1 und 22.3 als auch die beiden Befestigungselemente 22.2 und 22.4 werden jeweils gegenphasig angesteuert. Die beiden Befestigungselemente 22.1 und 22.2 werden gleichphasig angeregt. Wie durch die drei Pfeile in Fig. 2A angedeutet, entsteht aufgrund der symmetrischen Ausführung des Strahlelements 21 ein E-Feld, das in x-Richtung linear polarisiert ist (vertikale Polarisierung).Such an antiphase drive is shown schematically in FIG. 2A. The antenna 20 comprises a circulation structure 21 similar to that in FIGS. 1A and 1B, but with four attachment elements 22.1 to 22.4 provided. Both the two fastening elements 22.1 and 22.3 and the two fastening elements 22.2 and 22.4 are each actuated in opposite phase. The two fastening elements 22.1 and 22.2 are excited in phase. As indicated by the three arrows in Fig. 2A, due to the symmetrical design of the radiating element 21, an E-field is formed, which is linearly polarized in the x-direction (vertical polarization).

Eine andere Ansteuerung ist in Fig. 2B schematisch dargestellt. Wiederum werden sowohl die beiden Befestigungselemente 22.1 und 22.3 als auch die beiden Befestigungselemente 22.2 und 22.4 jeweils gegenphasig angesteuert. Nunmehr werden aber die beiden Befestigungselemente 22.1 und 22.4 gleichphasig angeregt. Wie durch die drei Pfeile in Fig. 2B angedeutet, entsteht aufgrund der symmetrischen Ausführung des Strahlelements 21 ein E-Feld, das in y-Richtung linear polarisiert ist (horizontale Polarisierung).Another control is shown schematically in FIG. 2B. Again, both the two fasteners 22.1 and 22.3 and the two fasteners 22.2 and 22.4 are each driven in opposite phase. Now, however, the two fasteners 22.1 and 22.4 excited in-phase. As indicated by the three arrows in Fig. 2B, due to the symmetrical design of the radiating element 21, an E-field is formed, which is linearly polarized in the y-direction (horizontal polarization).

Eine vereinfachte Ansteuerung ist in Fig. 2C schematisch dargestellt. Das Befestigungselement 22.4 wird gegenphasig zu dem Befestigungselement 22.2 angeregt, wie durch den Pfeil in Fig. 2C angedeutet. Durch die symmetrische Ausführung des Strahlelements 21 entsteht ein E-Feld, das -45° linear polarisiert ist (-45° Slant Polarisierung). In Analogie zu Fig. 1B können in diesem Anwendungsfall die Befestigungselemente 22.1 und 22.3 ohne wesentliche Auswirkungen auf die Antennenfunktion weggelassen werden, worunter jedoch eventuell die mechanische Stabilität leidet. Die Befestigungselemente 22.1 und 22.3 können in einer weiteren Abwandlung der Anregung elektrisch mit dem Reflektor 13 bzw. 23 verbunden sein. Eine ebenfalls mit geringen Einschränkungen (diesmal der elektrischen Eigenschaften der Antenne) einhergehende Anregungsvariante sieht die ausschliessliche Anregung eines der Befestigungselemente 22.2, 22.4 vor, wobei das jeweils andere Befestigungselement mit dem Reflektor 13 bzw. 23 elektrisch verbunden ist. Die hiermit einhergehende Abweichung von der ideal-symmetrischen Richtcharakteristik ist zulässig, insbesondere bei der Anwendung als Strahlelement in einer Gruppenantenne.A simplified control is shown schematically in FIG. 2C. The fastening element 22.4 is excited in opposite phase to the fastening element 22.2, as indicated by the arrow in Fig. 2C. The symmetrical design of the radiation element 21 produces an E field which is -45 ° linearly polarized (-45 ° slant polarization). In analogy to FIG. 1B, in this application, the fastening elements 22.1 and 22.3 can be omitted without significant effects on the antenna function, which, however, possibly suffers from the mechanical stability. The fasteners 22.1 and 22.3 may be electrically connected to the reflector 13 and 23 in a further modification of the excitation. An excitation variation, which likewise involves small restrictions (this time the electrical properties of the antenna), provides for the exclusive excitation of one of the fastening elements 22.2, 22.4, wherein the respective other fastening element is electrically connected to the reflector 13 or 23. The associated deviation from the ideal-symmetrical directional characteristic is permissible, in particular when used as a radiation element in a group antenna.

Je nach Ansteuerung können auch zirkulare oder elliptische Polarisierungen, zum Beispiel analog zu Fig. 2A oder 2B durch phasenverschobene Anregung der Befestigungselementpaare 22.1, 22.3 und 22.2, 22.4 erzielt werden.Depending on the control and circular or elliptical polarizations, for example, analogous to Fig. 2A or 2B by phase-shifted excitation of the fastener pairs 22.1, 22.3 and 22.2, 22.4 can be achieved.

Ein Netzwerk 30 gemäss Erfindung ist in Fig. 3A als Beispiel gezeigt. Das gezeigte Netzwerk befindet sich auf der Rückseite einer Reflektorfläche und hat zwei Speisungseingänge 32.1 und 32.2. Es sind vier Tore 31.1 bis 31.4 vorgesehen, die mit den Befestigungselementen (in Fig. 3A nicht zu sehen) des Strahlelements in Verbindung stehen. Zwischen dem Speisungseingang 32.1 und den beiden Ports 31.4 und 31.2 ist ein 180°-Hybrid 33.1 angeordnet. Zwischen dem Speisungseingang 32.2 und den beiden Ports 31.3 und 31.1 ist ein weiteres 180°-Hybrid 33.2 angeordnet. Das 180°-Hybrid 33.2 umfasst eine λ/4 Verzögerungsleitung zwischen den Punkten A und C sowie eine 3λ/4 Verzögerungsleitung zwischen den Punkten A und B. Die Leitung zwischen B und C wiederum stellt eine λ/2 Verzögerungsleitung dar. Die Verzögerungsleitungen sind auf die Mittenfrequenz der Speisesignale hin ausgelegt. Die Ports 31.1 bis 31.4 sind über Leitungstücke mit den beiden 180°-Hybriden 33.1 und 33.2 verbunden, die jeweils gleiche Phasenverschiebung verursachen. Das Netzwerk 30 stellt sicher, dass die jeweils diagonal gegenüberliegenden Ports 180° phasenverschoben, das heisst, gegenphasig, angesteuert werden, wodurch die beiden übrigen Ports jeweils in einer virtuellen Kurzschlussebene liegen. Die Speisungseingänge 32.1 und 32.2 weisen damit eine hohe gegenseitige Entkopplung auf. Man erhält so eine besonders reine Polarisation der abgestrahlten Welle, beziehungsweise eine stark unterdrückte Kreuzpolarisations-Komponente. Es sind auch andere Ausführungsformen von 180°-Leistungsteilern zur Speisung der auf den Ecken eines Quadrates liegenden Speisungseingänge 31.1 bis 31.4 der Fig. 3A möglich, deren Streifenleitungs-Layout nach folgender verallgemeinerter Regel erfolgen kann, um grösstmögliche elektrische Symmetrie zu erzielen: Beispielsweise beginnt man mit der Festlegung eines Anschlusspunktes B auf der durch die Speisungseingänge 31.1 und 31.4 gegebenen Geraden. Unter Beachtung der Einhaltung gleicher elektrischer Leitungslänge zwischen dem Speiseeingang 31.1 und Anschlusspunkt B einerseits und dem Speisepunkt 31.3 und dem Anschlusspunkt C andererseits, kann die Lage des Anschlusspunktes C frei gewählt werden. Der dem Anschlusspunkt A des 180°-Hybrides in Fig. 3A entsprechende Netzwerk-Eingang kann beliebig positioniert sein. Das Streifenleitungs-Layout des zweiten 180°-Leistungsteilers erhält man nun durch zwei Spiegelabbildungen: im ersten Schritt spiegelt man das Layout des ersten 180°-Leistungsteilers an der Symmetrieachse, welche Speisepunkte 31.1 und 31.2 in die Speisepunkte 31.4 und 31.3 überführt. Im zweiten Schritt spiegelt man lediglich das Layout der Verbindungsleitung zwischen dem Speisepunkt 31.4 und Anschlusspunkt B des zweiten 180°-Leistungsteilers um die Achse 31.1 - 31.4.A network 30 according to the invention is shown in FIG. 3A as an example. The network shown is located on the back of a reflector surface and has two power inputs 32.1 and 32.2. There are four gates 31.1 to 31.4 provided, which are in communication with the fastening elements (not visible in Fig. 3A) of the radiating element. Between the power input 32.1 and the two ports 31.4 and 31.2 a 180 ° hybrid 33.1 is arranged. Between the power input 32.2 and the two ports 31.3 and 31.1 another 180 ° hybrid 33.2 is arranged. The 180 ° hybrid 33.2 comprises a λ / 4 delay line between points A and C and a 3λ / 4 delay line between points A and B. The line between B and C, in turn, represents a λ / 2 delay line. The delay lines are on the center frequency of the feed signals designed. The ports 31.1 to 31.4 are connected via line pieces with the two 180 ° hybrids 33.1 and 33.2, each causing the same phase shift. The network 30 ensures that the respectively diagonally opposite ports are 180 ° out of phase, that is, in phase opposition, are driven, whereby the other two ports each lie in a virtual short-circuiting level. The power inputs 32.1 and 32.2 thus have a high degree of mutual decoupling. This gives a particularly pure polarization of the radiated wave, or a strongly suppressed cross-polarization component. There are also other embodiments of 180 ° power dividers for feeding the lying on the corners of a square power inputs 31.1 to 31.4 of Fig. 3A possible whose stripline layout can be made according to the following generalized rule to achieve the greatest possible electrical symmetry: For example, you start with the definition of a connection point B on the given by the power inputs 31.1 and 31.4 line. In compliance with the same electrical line length between the feed input 31.1 and connection point B on the one hand and the feed point 31.3 and the connection point C on the other hand, the position of the connection point C can be chosen freely. The network input corresponding to the connection point A of the 180 ° hybrid in FIG. 3A can be positioned arbitrarily. The strip line layout of the second 180 ° power divider is now obtained by two mirror images: in the first step, the layout of the first 180 ° power divider is mirrored on the symmetry axis, which converts feed points 31.1 and 31.2 into the feed points 31.4 and 31.3. In the second step, only the layout of the connecting line between the feed point 31.4 and connection point B of the second 180 ° power divider is mirrored about the axis 31.1 - 31.4.

Speist man nun den Speisungseingang 32.2 mit einem HF-Signal S2(t), so liegt an dem Port 31.3 ein Signal mit der Phasenlage 0° und an dem Port 31.1 ein Signal mit der Phasenlage 180° an. Mit dem gezeigten Netzwerk 30 kann man also aus einem HF-Signal S2(t) ein Gegentaktsignal erzeugen. Das Strahlelement baut bei der beschriebenen Speisung eine +45° Slant Polarisierung auf. Alternativ erzeugt die alleinige Speisung des Speisungseingang 32.1 am Strahlelement eine -45° Slant Polarisierung.If one then feeds the supply input 32.2 with an RF signal S2 (t), then a signal with the phase position 0 ° is present at the port 31.3 and a signal with the phase position 180 ° is present at the port 31.1. With the network 30 shown, it is therefore possible to generate a push-pull signal from an RF signal S2 (t). The beam element builds up a + 45 ° Slant polarization in the described supply. Alternatively, the sole supply of the power input 32.1 at the radiation element produces a -45 ° Slant polarization.

Speist man nun zum Beispiel den Speisungseingang 32.1 mit einem HF-Signal S1(t) und den Speisungseingang 32.2 mit einem HF-Signal S2(t), die beide zueinander gleichphasig sind, so liegt an dem Tor 31.2 ein Signal mit der Phasenlage 0°, an dem Tor 31.3 ein Signal mit der Phasenlage 0°, an dem Tor 31.4 ein Signal mit der Phasenlage 180° und an dem Tor 31.1 ein Signal mit der Phasenlage 180°. Mit dem gezeigten Netzwerk 30 kann man also aus zwei HF-Signalen S1(t) und S2(t) jeweils eine gegenphasige Anregung erzeugen. Das Strahlelement baut bei der beschriebenen Speisung eine horizontale Polarisierung auf.If one feeds, for example, the supply input 32.1 with an RF signal S1 (t) and the supply input 32.2 with an RF signal S2 (t), which are both in phase with one another, a signal with the phase position 0 ° is present at the gate 31.2 , at the gate 31.3 a signal with the phase position 0 °, at the gate 31.4 a signal with the phase position 180 ° and at the gate 31.1 a signal with the phase position 180 °. With the network 30 shown, it is thus possible to generate an out-of-phase excitation from two RF signals S1 (t) and S2 (t). The radiating element builds up a horizontal polarization in the described feed.

Steuert man die Speisungseingänge 32.1 und 32.2 gegenphasig an (d.h. S1(t) ist gegenüber S2(t) um 180° phasenverschoben), so baut sich eine vertikale Polarisierung auf.If the supply inputs 32.1 and 32.2 are controlled in antiphase (i.e., S1 (t) is 180 ° out of phase with S2 (t)), vertical polarization builds up.

Um eine zirkulare Polarisation zu erzielen, werden die beiden Speisungseingänge 32.1 und 32.2 so angesteuert, dass S1(t) gegenüber S2(t) um +90° oder -90° phasenverschoben ist. Darüber hinaus lassen sich elliptische Polarisationen erzeugen, wenn bei +90° oder - 90° Phasenverschiebung die Amplitude von S1(t) verschieden ist von der Amplitude von S2(t) oder / und die Phasenverschiebung von 0°, +90°, -90° und 180° abweicht.In order to achieve a circular polarization, the two supply inputs 32.1 and 32.2 are controlled such that S1 (t) is phase-shifted by + 90 ° or -90 ° with respect to S2 (t). In addition, elliptical polarizations can be generated when at + 90 ° or - 90 ° phase shift the Amplitude of S1 (t) is different from the amplitude of S2 (t) or / and the phase shift of 0 °, + 90 °, -90 ° and 180 ° deviates.

Es ist ein Vorteil des beispielhaft gezeigten Netzwerkes, dass die Polarisationseigenschaften der Antenne ohne Änderung des Abstrahlelements nur durch eine geeignete Ansteuerung einstellbar sind. Je nach Speisung an den Speisungseingängen ist somit die Polarisierung der von dem Strahlelement abgestrahlten Signale beeinflussbar.It is an advantage of the network shown by way of example that the polarization properties of the antenna can be adjusted without changing the radiating element only by suitable control. Depending on the supply to the supply inputs, the polarization of the signals radiated by the radiation element can thus be influenced.

Die Ansteuerung des Strahlelements kann auch durch andere Versorgungsschaltungen, zum Beispiel (Kombinations-) Netzwerke und Verzögerungsleitungen, erfolgen. Die Versorgungsschaltung kann in planarer, koaxialer oder Hohlleiter-Leitungstechnik ausgeführt sein.The activation of the beam element can also be effected by other supply circuits, for example (combination) networks and delay lines. The supply circuit may be implemented in planar, coaxial or waveguide line technology.

Die Versorgungsschaltung kann so ausgelegt sein, dass sie aus einem Signal (z.B. S1(t)) bis zu vier verschiedene Ansteuersignale zum Ansteuern des Abstrahlelements erzeugt.The supply circuit may be arranged to generate from a signal (e.g., S1 (t)) up to four different drive signals for driving the radiating element.

Ein anderes Beispiel einer Versorgungsschaltung ist in Fig. 3B gezeigt. Die Versorgungsschaltung weist einen Speisungseingang 34 auf, dem ein Signal S1(t) zugeführt wird. Es folgt ein Teiler (Divider) 35, dessen erstes Ausgangssignal an einen Tor 37.4 angelegt wird. Das zweite Ausgangssignal des Teilers 35 wird über einen 180°-Phasenschieber 36 phasenverschoben und dann einem Tor 37.2 zugeführt. Die beiden Ports 37.1 und 37.3 liegen auf Masse. Die Versorgungsschaltung in Fig. 3B ermöglicht eine einzelne lineare Polarisierung.Another example of a supply circuit is shown in FIG. 3B. The supply circuit has a supply input 34, to which a signal S1 (t) is supplied. This is followed by a divider 35 whose first output signal is applied to a gate 37.4. The second output signal of the divider 35 is phase-shifted via a 180 ° phase shifter 36 and then fed to a gate 37.2. The two ports 37.1 and 37.3 are grounded. The supply circuit in Fig. 3B enables a single linear polarization.

Ein drittes Beispiel einer Versorgungsschaltung ist in Fig. 3C dargestellt. Die Versorgungsschaltung weist einen Speisungseingang 34 auf, dem ein Signal S1(t) zugeführt wird. Ein 180°-Hybrid 39 speist zwei Verbindungsleitungen 40a, 40b im Gegentakt. Verbindungsleitung 40a verbindet die benachbarten Tore 38.1 und 38.2, Verbindungsleitung 40b die benachbarten Tore 38.3 und 38.4. Vorzugsweise bestehen die Verbindungsleitungen 40a und 40b aus jeweils zwei gleichen, spiegelsymmetrisch zum Anschlusspunkt des 180°-Hybrides 39 angeordneten Armen und sind identisch.A third example of a supply circuit is shown in Fig. 3C. The supply circuit has a supply input 34, to which a signal S1 (t) is supplied. A 180 ° hybrid 39 feeds two connecting lines 40a, 40b in push-pull. Connecting line 40a connects the adjacent gates 38.1 and 38.2, connecting line 40b the adjacent gates 38.3 and 38.4. The connecting lines 40a and 40b preferably each consist of two identical, mirror-symmetrically arranged to the connection point of the 180 ° hybrid 39 arms and are identical.

Gemäss Erfindung kann die Umlaufstruktur eine beliebige Form aufweisen, welche die folgenden Bedingungen erfüllt:

  • Die Umlaufstruktur ist eine geschlossene Umlaufstruktur mit einander abwechselnden Einschnürungen und Ausbuchtungen.
  • Die Umlaufstruktur spannt eine imaginäre Fläche auf, die durch mindestens zwei Symmetrieebenen des Gussteils geschnitten wird.
  • Die Symmetrieebenen schneiden sich in einer gemeinsamen Schnittgerade, die in etwa senkrecht zum Reflektor verläuft.
According to the invention, the circulation structure may have any shape which satisfies the following conditions:
  • The circulation structure is a closed circulation structure with alternating constrictions and bulges.
  • The orbital structure biases an imaginary surface which is cut through at least two planes of symmetry of the casting.
  • The planes of symmetry intersect in a common line of intersection, which runs approximately perpendicular to the reflector.

Eine besonders vorteilhafte Ausführungsform der Umlaufstruktur hat vier Flügelelemente, die symmetrisch angeordnet sind. Liegen die am weitesten voneinander entfernten Punkte (Ausbuchtungen) der Umlaufstruktur etwa eine halbe Wellenlänge auseinander, wirkt dieselbe wie zwei gekreuzte Dipolelemente. Vorzugsweise liegen die zwei Symmetrieebenen des Gussteiles senkrecht zueinander.A particularly advantageous embodiment of the circulation structure has four wing elements, which are arranged symmetrically. If the most distant points (bulges) of the circulation structure are about half a wavelength apart, it acts as two crossed dipole elements. Preferably, the two planes of symmetry of the casting are perpendicular to each other.

Jedes Dipolelement der gekreuzten Dipolantenne wird vorzugsweise symmetrisch gespeist.Each dipole element of the crossed dipole antenna is preferably fed symmetrically.

Verschiedene regelmässige Umlaufstrukturen sind in den Figuren 4A bis 4D schematisch angedeutet, wobei anzumerken ist, dass es zahlreiche andere Formen gibt, die auch als Umlaufstruktur geeignet sind. Diese regelmässigen Umlaufstrukturen weisen vier Symmetrieebenen auf.Various regular circulation structures are schematically indicated in FIGS. 4A to 4D, wherein it should be noted that there are numerous other forms which are also suitable as a circulation structure. These regular circulation structures have four planes of symmetry.

Weitere erfindungsgemässe Umlaufstrukturen, nunmehr mit drei Symmetrieebenen sind in Fig. 4E und 4F dargestellt. Die Umlaufstruktur von Fig. 4E besitzt drei Flügelelemente, welche um je 120° gegeneinander verdreht angeordnet sind. Werden an den drei Einschnürungen Signale gleicher Amplitude und mit 0°, 120° und 240° Phasenverschiebung eingespeist, erhält man rechts oder links zirkular polarisierte Abstrahlung. Fig. 4F zeigt eine ebenfalls zur Erzeugung zirkular polarisierter Abstrahlung geeignete Umlaufstruktur.Further circulating structures according to the invention, now with three planes of symmetry, are shown in FIGS. 4E and 4F. The circulation structure of Fig. 4E has three wing elements, which are arranged rotated by 120 ° to each other. If signals of the same amplitude and with 0 °, 120 ° and 240 ° phase shift are fed in at the three constrictions, one obtains right or left circularly polarized radiation. 4F shows a circulation structure likewise suitable for generating circularly polarized radiation.

Verschiedene unregelmässige Umlaufstrukturen sind in den Figuren 5A und 5B schematisch angedeutet. Diese unregelmässigen Umlaufstrukturen weisen mindestens zwei Symmetrieebenen auf und werden bevorzugt mit einer Schaltung entsprechend Fig. 3C angesteuert. Eine weitere vorteilhafte Anwendung der Umlaufstrukturen in den Figuren 5A und 5B ist die vereinfachte Erzeugung zirkularer Polarisation durch Anlegen gegenphasiger Speisesignale an zwei einander gegenüberliegenden Einschnürungen.Various irregular circulation structures are schematically indicated in FIGS. 5A and 5B. These irregular circulation structures have at least two planes of symmetry and are preferably driven by a circuit according to FIG. 3C. A further advantageous application of the circulation structures in FIGS. 5A and 5B is the simplified generation of circular polarization by applying opposite-phase feed signals to two opposite constrictions.

Vorzugsweise wird die Umlaufstruktur so konzipiert, dass Flügelelemente vorhanden sind, die mindestens einen Resonanzkreis ergeben, der durch die Abstrahlung belastet ist.Preferably, the circulation structure is designed so that wing elements are present, which result in at least one resonant circuit, which is loaded by the radiation.

Die Befestigungselemente sind vorzugsweise so ausgeführt, dass sich Transformatoren von den Anregungsimpedanzen auf die Resonatorimpedanzen ergeben.The fasteners are preferably designed so that transformers result from the excitation impedances on the resonator impedances.

Die als Transformator ausgebildeten Befestigungselemente weisen in einer vorteilhaften Auslegung einen so grossen Durchmesser auf, dass sie gegen die leitende Reflektorfläche eine störende kapazitive Belastung darstellen. Um die kapazitive Belastung der Ansteuerungsschaltung zu reduzieren, können zum Beispiel Befestigungselemente eingesetzt werden, die sich zum Reflektor hin so verjüngen, dass sich eine induktive Anfangsstufe ergibt. Ein Beispiel eines solchen Befestigungselements ist in Fig. 6 in einer schematischen Seitenansicht gezeigt. Es ist ein Befestigungselement gezeigt, das einen ersten zylindrischen Bereich 62 aufweist, der einen ersten Durchmesser hat. Am unteren Ende des ersten Bereichs 62 ist ein zweiter zylindrischen Bereich 61 vorgesehen dessen Durchmesser kleiner ist als der Durchmesser des ersten Bereichs 62. Der erste Bereich muss nicht zwingender weise zentrisch zu dem zweiten Bereich angeordnet sein. Das gezeigte Befestigungselement ist so ausgeführt, das es nach dem Giessen des Formteils leicht entformbar ist.The fastening elements constructed as a transformer have, in an advantageous design, a diameter that is so large that they represent a disturbing capacitive load against the conductive reflector surface. In order to reduce the capacitive loading of the drive circuit, it is possible, for example, to use fastening elements which taper towards the reflector such that an inductive initial stage results. An example of such a fastener is shown in Fig. 6 in a schematic side view. A fastener is shown having a first cylindrical portion 62 having a first diameter. At the lower end of the first region 62, a second cylindrical region 61 is provided whose diameter is smaller than the diameter of the first region 62. The first region does not necessarily have to be arranged centrically to the second region. The fastener shown is designed so that it is easily demoulded after casting the molding.

Gemäss Erfindung wird die Abstrahlcharakteristik im Wesentlichen durch den Abstand des Strahlelements gegenüber dem Reflektor bestimmt. Als Abstand des Strahlelements gegenüber dem Reflektor wird vorzugsweise zwischen 1/10 und 1/3 der abgestrahlten Wellenlänge in Luft gewählt.According to the invention, the emission characteristic is essentially determined by the distance of the radiation element from the reflector. When Distance of the radiating element with respect to the reflector is preferably selected between 1/10 and 1/3 of the radiated wavelength in air.

Gemäss Erfindung kann eine metallische Schirmanordnung vorgesehen werden, die ganz, teilweise oder gar nicht mit der leitenden Reflektorfläche verbunden ist. Die Schirmanordnung weist vorzugsweise die gleichen Symmetrieebenen auf wie das durch sie umgebene Strahlelement. Sie kann einstückig sein oder unter Beachtung der Symmetrieebenen aus einer entsprechenden Anzahl einzelner Elemente aufgebaut sein. Eine besonders vorteilhafte Anordnung besteht aus einer umlaufenden elektrisch leitenden Wand, welche je nach gewünschter Strahlbündelung unterhalb oder auch oberhalb des am weitesten von der Reflektorfläche 23 abgewandten Punktes des Strahlelementes endet. Die Schirmanordnung kann darüber hinaus eingesetzt werden, um die gegenseitige Verkopplung zwischen benachbarten Strahlelementen in einer Gruppenantenne zu reduzieren.According to the invention, a metallic shield arrangement can be provided which is completely, partially or not at all connected to the conductive reflector surface. The shield arrangement preferably has the same planes of symmetry as the beam element surrounded by it. It may be in one piece or constructed from a corresponding number of individual elements, taking into account the planes of symmetry. A particularly advantageous arrangement consists of a circumferential electrically conductive wall, which ends depending on the desired beam bundling below or above the farthest from the reflector surface 23 point of the jet element. The shield assembly may also be used to reduce mutual coupling between adjacent radiating elements in a array antenna.

Eine Gruppenantenne gemäss Erfindung zeichnet sich dadurch aus, dass mehrere Antennen in Zeilen und Spalten angeordnet sind. Eine beispielhafte Gruppenantenne 70 ist in Fig. 7 gezeigt. Die Gruppenantenne 70 umfasst zwei Spalten mit je drei Antennen 71. Die Strahlelemente der Antennen 71 sind in dem gezeigten Beispiel um 45 Grad gedreht angeordnet. Die Strahlelemente können aber auch jede andere Orientierung einnehmen. Darüber hinaus kann es erforderlich oder sinnvoll sein, den horizontalen Abstand zwischen den einzelnen Antennen anders als den vertikalen Abstand zu wählen. Hinter den Stahlelementen ist eine Reflektorfläche 73 angeordnet. Es ist eine Versorgungsmatrix (nicht in Fig. 7 sichtbar) vorhanden, die es erlaubt die Antennen zeilen- und/oder spaltenweise zusammenzufassen. Vorzugsweise umfasst jede Antenne 71 ein Strahlelement und eine individuelle Versorgungsschaltung. Die genannte Versorgungsmatrix stellt dann die notwendigen Verbindungen zwischen Gesamteingängen der Gruppenantenne und den Speisungseingängen der Versorgungsschaltungen her. Die Versorgungsmatrix, die Versorgungsschaltung und das Speisungssignal ist in dem gezeigten Beispiel so ausgelegt, dass sich eine lineare Polarisierung in vertikaler Richtung ergibt, wie durch die E-Felder angedeutet.A group antenna according to the invention is characterized in that a plurality of antennas are arranged in rows and columns. An exemplary array antenna 70 is shown in FIG. The array antenna 70 comprises two columns each with three antennas 71. The radiating elements of the antennas 71 are arranged rotated by 45 degrees in the example shown. However, the radiating elements can also assume any other orientation. In addition, it may be necessary or useful to choose the horizontal distance between the individual antennas other than the vertical distance. Behind the steel elements, a reflector surface 73 is arranged. There is a supply matrix (not visible in Figure 7) which allows the antennas to be grouped in rows and / or columns. Preferably, each antenna 71 comprises a radiating element and an individual supply circuit. Said supply matrix then establishes the necessary connections between the total inputs of the array antenna and the supply inputs of the supply circuits. In the example shown, the supply matrix, the supply circuit and the supply signal are designed such that a linear polarization results in the vertical direction, as indicated by the E fields.

Die beschriebenen und gezeigten Antennen eignen sich besonders für den Betrieb im Gigahertz-Frequenzbereich, wobei die Speisungseingänge mit Signalen beaufschlagt werden, die eine Mittenfrequenz aufweisen, die grösser als 1 GHz ist. Besonders geeignet sind die Antennen für Mobilfunk- und andere Kommunikationssysteme. Als obere Frequenzgrenze kann etwa 25 GHz gelten, wo der Durchmesser der erfindungsgemässen Strahlelemente etwa 5 Millimeter annimmt und der Abstand zwischen der Umlaufstruktur und der Reflektorebene kleiner als 3 Millimeter werden kann. Im Bereich zwischen etwa 10 GHz und 25 GHz bietet sich die Auslegung der Strahlelemente als SMD (Surface Mounted Device) an, welche unter Vermeidung von Durchkontaktierungen direkt auf eine die Versorgungsschaltungen tragende dielektrische Platte aufgelötet sind. Die unteren Enden 16 der Befestigungselemente 12.1 bis 12.4 sind dafür vorzugsweise mit einer leicht vom verwendeten Lot benetzbaren galvanischen Oberfläche versehen, wohingegen die restliche dreidimensionale Struktur des Strahlelementes vorzugsweise durch eine lotabweisende Schicht bedeckt ist. Diese kann zum Beispiel durch Tauchlackieren, Plasmabeschichtung mit einer dielektrischen Schicht oder durch selektives Abscheiden eines nicht vom verwendeten Lot benetzbaren Metalls erzeugt werden. Die Reflektorfläche wird vorzugsweise durch eine grossflächige leitende Schicht auf der den Strahlelementen abgewandten Seite der dielektrischen Platte gebildet. Eine besonders vorteilhafte Methode zur Lotmontage ist die Verwendung von Lotkugeln geringer mechanischer Toleranzen, welche bei fachgerechter, aus der Ball Grid Array (BGA) Technik bekannter Dimensionierung eine zuverlässige Selbstzentrierung des Strahlelementes bewirken.The described and shown antennas are particularly suitable for operation in the gigahertz frequency range, wherein the power inputs are supplied with signals having a center frequency which is greater than 1 GHz. Particularly suitable are the antennas for mobile and other communication systems. The upper frequency limit may be about 25 GHz, where the diameter of the beam elements according to the invention assumes about 5 millimeters and the distance between the circulating structure and the reflector plane may be less than 3 millimeters. In the range between about 10 GHz and 25 GHz, the design of the beam elements as SMD (Surface Mounted Device) offers, which are soldered directly to a dielectric plate supporting the supply circuits while avoiding vias. For this purpose, the lower ends 16 of the fastening elements 12.1 to 12.4 are preferably provided with a galvanic surface which is readily wettable by the solder used, whereas the remaining three-dimensional structure of the radiation element is preferably covered by a solder-repellent layer. This can be produced, for example, by dip coating, plasma coating with a dielectric layer or by selective deposition of a metal which is not wettable by the solder used. The reflector surface is preferably formed by a large-area conductive layer on the side facing away from the beam elements of the dielectric plate. A particularly advantageous method for solder assembly is the use of solder balls of low mechanical tolerances, which cause a reliable self-centering of the beam element with professional, known from the ball grid array (BGA) technology dimensioning.

Es ist ein Vorteil der Erfindung, dass die Strahlelemente in grosser Stückzahl herstellbar sind, wobei eine grosse Formtreue gewährt wird. Der Begriff Formtreue drückt aus, dass eine toleranzarme Abbildung der Werkzeugkavität durch das Formteil erzielt werden kann. Die vorteilhafte einstückige Ausführung des das Strahlelement bildenden Gussteils garantiert insbesondere die genaue Einhaltung der zur Erzielung einer hohen Kreuzpolarisations-Entkopplung notwendigen Spiegelsymmetrien. Wird das Strahlelement aus mehreren (vorzugsweise identischen) Teilen zusammengesetzt, ist diese Eigenschaft auf Grund der Montagetoleranzen schwerer zu erzielen. Typischerweise ist das Gewicht eines Abstrahlelements sehr gering. Je nach Material und Frequenzbereich kann ein Gewicht erzielt werden, dass für die Anwendung bei Mobilfunkfrequenzen unterhalb von 20g liegt.It is an advantage of the invention that the radiating elements can be produced in large numbers, with a high dimensional accuracy being granted. The term true to form expresses that a low-tolerance imaging of the mold cavity can be achieved by the molded part. The advantageous one-piece design of the casting forming the jet element guarantees, in particular, the exact observance of the mirror symmetries necessary for achieving a high cross-polarization decoupling. If the radiating element of several (preferably identical) parts compound, this property is harder to achieve due to mounting tolerances. Typically, the weight of a radiating element is very low. Depending on the material and frequency range, a weight can be achieved that is below 20 g for use at mobile radio frequencies.

Die beschriebenen Einzel - und Gruppenantennen sind sehr kompakt. Falls die Versorgungsschaltung auf dem Reflektor vorgesehen wird, reduziert sich der Beschaltungsaufwand erheblich.The described individual and group antennas are very compact. If the supply circuit is provided on the reflector, the Beschaltungsaufwand reduced considerably.

Claims (15)

  1. Antenna (10; 20; 70) with an emitter element arranged in front of a conductive reflector (13; 23; 73), the emitter element being a three-dimensional emitter element made of injection-moulded plastic, which:
    - comprises at least two planes of symmetry (15.1, 15.3)
    - is made so that it is conductive and comprises a closed circular structure (11; 21; 71) with alternating constrictions and projections, the circular structure (11; 21; 71) stretching over an imaginary surface (14) which is intersected by at least two planes of symmetry (15.1, 15.3),
    - comprises at least two fixing elements (12.1 to 12.4) which extend essentially perpendicular to the imaginary surface (14) and support the circular structure (11; 21; 71) at points lying on at least one of the planes of symmetry (15.1, 15.3) and are connected at their ends (16) to the reflector (13), at least one of the two fixing elements (12.1, 12.2), the wall (19.1) of which is provided with a conductive layer (18), serving for the electrical excitation of the emitter element,
    - is so constructed that it can be taken out of a tool cavity, and
    - that the circular structure and the fixing elements of the three-dimensional emitter element are all in one piece.
  2. Antenna (10; 20; 70) according to Claim 1, characterized in that the reflector (13; 23; 73) comprises a flat surface having a conductive side (17.2) facing towards the emitter element.
  3. Antenna (10; 20; 70) according to Claim 1 or 2, characterized in that the imaginary surface (14) stretching through the circular structure (11; 21; 71) extends essentially parallel to the reflector (13; 23; 73).
  4. Antenna (10; 20; 70) according to Claim 1 or 2, characterized in that the imaginary surface (14) stretching through the circular structure (11; 21; 71) is flat or curved.
  5. Antenna (10; 20; 70) according to any one of the preceding Claims, characterized in that the emitter element is provided wholly or partly with a conductive layer (18), or that the emitter element is metallized.
  6. Antenna (10; 20; 70) according to any one of the preceding Claims, characterized in that the reflector (13; 23; 73) comprises a supply circuit (30) on the side (17.1) that is turned away from the emitter element.
  7. Antenna (10; 20; 70) according to Claim 6, characterized in that the supply circuit comprises a network (30) for connecting two supply inputs to the two fixing elements (12.1, 12.2) so that the latter can be driven in antiphase.
  8. Antenna (10; 20; 70) according to Claim 7, characterized in that the supply circuit is so constructed that the polarization of the signals emitted by the emitter element can be influenced by the supply to the supply inputs (32).
  9. Antenna (10; 20; 70) according to Claim 6, characterized in that the supply circuit consists of two in-phase power splitters connecting adjacent pairs of fixing elements (22.1, 22.2 or alternatively 22.4, 22.3 or 22.1, 22.4 or alternatively 22.2 to 22.3), these power splitters themselves being able to be driven in antiphase by a balancing network (33.1, 33.2).
  10. Antenna (10; 20; 70) according to Claim 6, characterized in that the supply circuit is constructed using planar, coaxial or hollow conductor technology on the side (17.1).
  11. Antenna (10; 20; 70) according to any one of the preceding Claims, characterized in that the emitter element is surrounded by a shielding device, which is preferably metallized.
  12. Antenna (10; 20; 70) according to any one of the preceding Claims, characterized in that the at least two fixing elements (12, 22) are located in the surface of an imaginary cylinder (9) having its longitudinal axis (8) perpendicular to the conductive reflector (13; 23; 73).
  13. Group antenna (70) with a plurality of antennas (71) according to any one of the preceding Claims, characterized in that the antennas (70) are arranged in rows and columns and a supply matrix is present through which the antennas (71) can be combined by row or by column.
  14. Group antenna (70) according to Claim 13, characterized in that each of the antennas (71) comprises a supply circuit with supply inputs.
  15. Group antenna (70) according to Claim 14, characterized in that by means of the supply matrix, supply connections can be established between common inputs of the group antenna (70) and the supply inputs of the supply circuits.
EP03028038A 2002-12-23 2003-12-06 Broadband antenna with a 3-dimensional casting part Expired - Lifetime EP1434300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH22102002 2002-12-23
CH22102002 2002-12-23

Publications (3)

Publication Number Publication Date
EP1434300A2 EP1434300A2 (en) 2004-06-30
EP1434300A3 EP1434300A3 (en) 2004-09-22
EP1434300B1 true EP1434300B1 (en) 2007-04-18

Family

ID=32399982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03028038A Expired - Lifetime EP1434300B1 (en) 2002-12-23 2003-12-06 Broadband antenna with a 3-dimensional casting part

Country Status (5)

Country Link
US (1) US6995732B2 (en)
EP (1) EP1434300B1 (en)
AT (1) ATE360268T1 (en)
DE (1) DE50307071D1 (en)
HK (1) HK1067793A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333704B4 (en) * 2003-07-23 2009-12-17 Ovd Kinegram Ag Security element for RF identification
WO2006024516A1 (en) * 2004-08-31 2006-03-09 Fractus, S.A. Slim multi-band antenna array for cellular base stations
DE102004045707A1 (en) * 2004-09-21 2006-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. antenna
US8497814B2 (en) 2005-10-14 2013-07-30 Fractus, S.A. Slim triple band antenna array for cellular base stations
FI120522B (en) * 2006-03-02 2009-11-13 Filtronic Comtek Oy A new antenna structure and a method for its manufacture
KR100853670B1 (en) * 2006-04-03 2008-08-25 (주)에이스안테나 Dual Polarization Broadband Antenna having with single pattern
KR100826115B1 (en) * 2006-09-26 2008-04-29 (주)에이스안테나 Folded dipole antenna having bending shape for improving beam width tolerance
US20100321251A1 (en) * 2006-09-28 2010-12-23 Jan Hesselbarth Antenna elements, arrays and base stations including mast-mounted antenna arrays
FR2909486A1 (en) * 2006-12-01 2008-06-06 Thomson Licensing Sas MULTI-SECTOR ANTENNA
EP1983606B1 (en) * 2007-04-16 2016-03-16 BlackBerry Limited Dual-polarized, multiple strip-loop antenna and associated methodology, for radio device
JP5320635B2 (en) * 2007-05-31 2013-10-23 国立大学法人愛媛大学 antenna
CN102217064A (en) * 2008-11-19 2011-10-12 Nxp股份有限公司 Millimetre-wave radio antenna module
CN101465475A (en) * 2009-01-12 2009-06-24 京信通信系统(中国)有限公司 Dual polarization radiating element and plane vibrator thereof
JP4988017B2 (en) * 2010-07-23 2012-08-01 株式会社東芝 Coupler device and information processing device
ES2673127T3 (en) * 2012-01-13 2018-06-19 Comba Telecom System (China) Ltd. Multi-frequency common antenna and antenna control system
EP3236531B1 (en) * 2016-04-20 2019-01-30 Huawei Technologies Co., Ltd. Two-part antenna element
US10290930B2 (en) 2017-07-18 2019-05-14 Honeywell International Inc. Crossed dipole with enhanced gain at low elevation
WO2023025382A1 (en) 2021-08-25 2023-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication antenna
JP7331163B2 (en) * 2022-01-21 2023-08-22 電気興業株式会社 Bi-polarized folded dipole element and antenna

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086976A (en) 1935-09-20 1937-07-13 Rca Corp Antenna system
US2166750A (en) * 1936-02-15 1939-07-18 Rca Corp Antenna
US4510501A (en) * 1983-05-19 1985-04-09 Rca Corporation Broadband loop antenna with low wind resistance
FR2584872B1 (en) * 1985-07-09 1987-11-20 Europ Agence Spatiale BROADBAND FLAT ANTENNA WITH CIRCULAR POLARIZATION, USES OF SUCH ANTENNA, APPLICATIONS, AND MANUFACTURING METHOD
US5285210A (en) * 1990-05-08 1994-02-08 Nippon Sheet Glass Co., Ltd. Double loop antenna with reactance elements
AU723272B2 (en) * 1993-04-02 2000-08-24 Alcatel Australia Limited Low profile linear polarised antenna
US5563616A (en) * 1994-03-18 1996-10-08 California Microwave Antenna design using a high index, low loss material
FR2760134B1 (en) * 1997-02-24 1999-03-26 Alsthom Cge Alcatel RESONANT MINIATURE ANTENNA, MICRO-TAPE, ANNULAR SHAPE
DE19722742C2 (en) * 1997-05-30 2002-07-18 Kathrein Werke Kg Dual polarized antenna arrangement
US6057802A (en) * 1997-06-30 2000-05-02 Virginia Tech Intellectual Properties, Inc. Trimmed foursquare antenna radiating element
DE19823749C2 (en) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dual polarized multi-range antenna
DE19860121A1 (en) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dual polarized dipole emitter
US6275181B1 (en) * 1999-04-19 2001-08-14 Advantest Corporation Radio hologram observation apparatus and method therefor
DE19931907C2 (en) * 1999-07-08 2001-08-09 Kathrein Werke Kg antenna
EP1380069B1 (en) * 2001-04-16 2007-06-06 Fractus, S.A. Dual-band dual-polarized antenna array
US6762729B2 (en) * 2001-09-03 2004-07-13 Houkou Electric Co., Ltd. Slotted bow tie antenna with parasitic element, and slotted bow tie array antenna with parasitic element
US6583766B1 (en) * 2002-01-03 2003-06-24 Harris Corporation Suppression of mutual coupling in an array of planar antenna elements
US6697019B1 (en) * 2002-09-13 2004-02-24 Kiryung Electronics Co., Ltd. Low-profile dual-antenna system
DE10316564B4 (en) * 2003-04-10 2006-03-09 Kathrein-Werke Kg Antenna with at least one dipole or a dipole-like radiator arrangement

Also Published As

Publication number Publication date
HK1067793A1 (en) 2005-04-15
ATE360268T1 (en) 2007-05-15
US6995732B2 (en) 2006-02-07
DE50307071D1 (en) 2007-05-31
EP1434300A3 (en) 2004-09-22
EP1434300A2 (en) 2004-06-30
US20040155831A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP1434300B1 (en) Broadband antenna with a 3-dimensional casting part
DE69931663T2 (en) ACTIVE PHASE-CONTROLLED GROUP ANTENNA AND UNIT FOR CONTROLLING THE ANTENNA
EP3411921B1 (en) Dual-polarized antenna
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
EP1601046B1 (en) Array antenna equipped with a housing
DE69823591T2 (en) Layered aperture antenna and multilayer printed circuit board with it
DE102007003388A1 (en) Circular waveguide antenna, has radiation output surface at ends of waveguide, where diameter value of surface, wavelength value of center frequency of used frequency bands and value, satisfy given relationship
DE69828848T2 (en) Directional antenna system with crossed polarization
EP3465817B1 (en) Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector
EP1104587A2 (en) Wide band planar radiator
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
DE2610324A1 (en) PHASED ANTENNA LINE
DE102017113255A1 (en) Cross-shaped antenna array
DE4120521C2 (en) Microwave flat antenna for two orthogonal polarizations with a pair of orthogonal radiator slots
DE3042456A1 (en) ANTENNA WITH A DEVICE FOR ROTATING THE POLARIZATION LEVEL
DE69833070T2 (en) Group antennas with a large bandwidth
DE102020102791A1 (en) Slot array antenna
DE19951123A1 (en) Radar sensor and radar antenna for monitoring the surroundings of a motor vehicle
DE112020002163T5 (en) Apparatus for radiating and receiving microwaves with a physically preset radiation pattern, and radar apparatus comprising such apparatus
DE2802585A1 (en) ANTENNA
DE3840451C2 (en) Lens antenna
DE19600516A1 (en) Planar antenna system for automobile collision avoidance systems
EP2485329B1 (en) Array antenna
DE102016112581A1 (en) Phased array antenna
EP1006608B1 (en) Multi-layered antenna arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041202

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067793

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: LV

Payment date: 20041202

17Q First examination report despatched

Effective date: 20050603

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HUBER & SUHNER AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LV

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307071

Country of ref document: DE

Date of ref document: 20070531

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HUBER + SUHNER AG

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1067793

Country of ref document: HK

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070729

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070711

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HUBER + SUHNER AG

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070918

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

26N No opposition filed

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

BERE Be: lapsed

Owner name: HUBER & SUHNER A.G.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20131219

Year of fee payment: 11

Ref country code: GB

Payment date: 20131219

Year of fee payment: 11

Ref country code: DE

Payment date: 20131220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307071

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141207

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141206