EP1399527B1 - Method and device for the pyrolysis and gasification of material mixtures containing organic components - Google Patents

Method and device for the pyrolysis and gasification of material mixtures containing organic components Download PDF

Info

Publication number
EP1399527B1
EP1399527B1 EP02754763A EP02754763A EP1399527B1 EP 1399527 B1 EP1399527 B1 EP 1399527B1 EP 02754763 A EP02754763 A EP 02754763A EP 02754763 A EP02754763 A EP 02754763A EP 1399527 B1 EP1399527 B1 EP 1399527B1
Authority
EP
European Patent Office
Prior art keywords
reactor
pyrolysis
accordance
heat transfer
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02754763A
Other languages
German (de)
French (fr)
Other versions
EP1399527A2 (en
Inventor
Wolfgang Krumm
Günter Funk
Stefan Hamel
Christian Mertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herhof Verwaltungs GmbH
Original Assignee
Herhof Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10228100A external-priority patent/DE10228100B4/en
Application filed by Herhof Verwaltungs GmbH filed Critical Herhof Verwaltungs GmbH
Publication of EP1399527A2 publication Critical patent/EP1399527A2/en
Application granted granted Critical
Publication of EP1399527B1 publication Critical patent/EP1399527B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/008Reducing the tar content by cracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/301Treating pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/50Fluidised bed furnace
    • F23G2203/502Fluidised bed furnace with recirculation of bed material inside combustion chamber

Definitions

  • the invention relates to a process for the pyrolysis and gasification of mixtures containing organic constituents, and to an apparatus for carrying out such a process.
  • mixtures may be, in particular, household or household-type waste, as well as products derived from domestic or household waste.
  • the DE-PS 197 55 693 discloses a process for the gasification of organic substances, in which the organic substances are passed into a pyrolysis reactor, in which they are kept in contact with a heat transfer medium, whereby a pyrolysis takes place.
  • the pyrolysis reactor is a moving bed reactor or rotary drum.
  • the pyrolysis products consist of pyrolysis gases with condensables and a solid carbonaceous residue.
  • the solid carbonaceous residue and the heat transfer medium are fed to a furnace in which the carbonaceous residue is burned and the heat transfer medium is heated and returned to the pyrolysis reactor.
  • the tarry pyrolysis gases are reheated in a second reaction zone in such a way, that a purified synthesis gas with a high calorific value is obtained.
  • This is done in such a way that the tar pyrolysis gases are passed into an indirect heat exchanger in which they react with a reagent, such as water vapor.
  • the combustion exhaust gases are passed through the indirect heat exchanger in such a way that their heat content is used for the reaction of the pyrolysis gases with the reagent.
  • the ash of the solid carbonaceous residues withdrawn from the furnace and the heat transfer medium are returned to the entry end for the organic material in the pyrolysis reactor.
  • the DE-OS 199 30 071 discloses a method and apparatus for pyrolysis and gasification of organic matter in which the organics are introduced into a drying and pyrolysis reactor in which they are contacted with the fluidized bed material of a combustion fluidized bed, whereby drying and pyrolysis takes place, in which the organic substances are converted into water vapor from the drying and pyrolysis products.
  • the pyrolysis products consist of gases with condensable substances and solid carbonaceous residue.
  • the solid carbonaceous residue, optionally with portions of the water vapor and the pyrolysis gases with condensables, and the fluidized bed material are fed back into the combustion fluidized bed, where the carbonaceous residue of the organics is burned, the fluidized bed material is heated and recycled to the pyrolysis reactor.
  • the water vapor from the drying and the pyrolysis gases with condensable substances are aftertreated in a further reaction zone in such a way that a product gas having a high calorific value is formed.
  • the combustion fluidized bed, in which the pyrolysis residues are burned, is operated as a stationary fluidized bed.
  • the pyrolysis gases are passed to an indirect heat exchanger in which they optionally react with a reactant such as water vapor, oxygen or air or a mixture thereof.
  • a reactant such as water vapor, oxygen or air or a mixture thereof.
  • the combustion exhaust gases are brought into contact with the indirect heat exchanger in such a way that their heat content is used for the reaction of the pyrolysis gases with the reagent.
  • the prioritized, not previously published German patent application 100 33 453.9 relates to a method and apparatus for pyrolysis and gasification of mixtures containing organic constituents.
  • the present invention is particularly well suited for use in a method and / or apparatus according to this German patent application.
  • the organic substances or the substance mixture which contains organic constituents are brought into contact and pyrolyzed in a pyrolysis reactor with a heat transfer medium from a combustion reactor.
  • the pyrolysis reactor is preferably a shaft reactor.
  • a fluidized bed reactor is preferably used.
  • the heat transfer medium is preferably formed by the ash from the combustion reactor. But it is also possible to use another heat transfer material or fluidized bed material.
  • the heat transfer medium or the fluidized bed material may contain ash from the combustion reactor or consist exclusively or virtually exclusively of this ash. It is advantageous if the organic substances are brought into contact with the heat transfer medium in that they are mixed together.
  • the organic substances and the heat transfer medium are brought into contact or mixed in the pyrolysis reactor and dried and pyrolyzed.
  • the pyrolysis coke produced by the pyrolysis is burned in the combustion reactor or fluidized-bed reactor under air supply.
  • the crude gas or its condensable constituents produced by the pyrolysis are cleaned or cracked in a cracking reactor.
  • this purification or cracking is carried out by a catalyst which is provided in the cracking reactor.
  • This cleaning or catalytic purification or cracking is preferably carried out with the addition of water vapor.
  • the method according to the German patent application 100 33 453.9 is particularly suitable for the pyrolysis and gasification of a mixture of substances that has been obtained from household waste or household waste.
  • This is preferably a mixture of substances which has been produced from domestic waste or household waste similar to the following process:
  • the household waste or the household waste similar waste are first pretreated if necessary, in particular crushed. Then they are composted in closed containers under forced ventilation, whereby the organic components are degraded. After a period of time, for example, seven days - after which time the more readily biodegradable components are typically wholly or substantially degraded - the composting is halted by drying.
  • the material is dried to a residual moisture of at most 15%. It can then be retreated if necessary.
  • Such a material is marketed under the name Stommet ®.
  • a mechanical promotion of the heat transfer medium or the hot ash with moving machine parts is not preferable due to the high temperatures or ash temperatures of 900 to 950 ° C and the abrasive behavior of the heat transfer medium and the ash and because of the associated significant heat losses.
  • fluidized siphon In the field of circulating fluidized bed combustors, it is known to use a so-called fluidized siphon.
  • This consists of a downpipe and a container with overflow.
  • the hot heat transfer medium for example, ash
  • the container With the help of air, the container is flown over a nozzle bottom located on the nozzle bottom, so that a fluidization of the slipping from the downpipe heat transfer medium is achieved and the heat transfer medium can be withdrawn from the overflow of the container.
  • the desired sealing function is achieved.
  • the fluidization of the siphon the promotion of the hot medium is achieved in a subsequent reactor.
  • fluidized bed combustion oxidizing operating conditions exist in which air is added anyway, the air constituents of the fluidizing agent "air" do not disturb the process.
  • From the DE 24 48 354 A is a method for producing gas, tar and steam from coal known in which fine coal in a degassing zone with a heat transfer medium in contact and degassed. The remaining after degassing carbon is burned in a fluidized bed chamber with air. The resulting from the degassing raw gas is withdrawn and fed to a gas purification and gas separation. The heat transfer medium is fed via a siphon of the fluidized bed chamber, wherein steam is used as the siphon drive gas.
  • the DE 196 29 289 A discloses a siphon for conveying fine-grained solids into which a lance projects. A gas flow through the lance allows partial fluidization of the accumulated solid in the siphon.
  • From the GB-A-1 484 130 is a method for pyrolysis of sludge or waste is known, in which the heat transfer medium can be promoted by means of superheated steam.
  • the object of the invention is to propose an improved process for the pyrolysis and gasification of mixtures containing organic constituents, as well as an improved apparatus for carrying out a process for the pyrolysis and gasification of mixtures containing organic constituents.
  • the heat transfer medium is conveyed by means of superheated steam as a fluidizing agent. This is done by a fluidized siphon.
  • the transport of the heat transfer medium or the ash from the combustion reactor (fluidized bed reactor, fluidized bed furnace) to the pyrolysis reactor (shaft reactor) is carried out by or at least in cooperation with superheated steam as the fluidizing agent.
  • the steam is heated with energy from the combustion of the pyrolysis coke.
  • the water vapor can be heated with energy from the raw gas (pyrolysis gas). This energy can be taken from the hot raw gas, which cools the raw gas. It can instead or additionally be generated by a sub-firing with raw gas. Another or another option is to expose the water vapor to energy to heat the flue gases. Accordingly, the energy for the fluidizing agent can be provided in-process by various means.
  • the steam is used for the fluidization in the cracking reactor. It is thus possible first to use the superheated steam as a fluidizing agent and then to use the same steam in the cracking reactor / pyrolysis reactor for the cracking reactions.
  • the heat transfer medium is preferably formed by the ash from the combustion reactor. But it is also possible to use another heat transfer material or fluidized bed material.
  • the heat transfer medium or the fluidized bed material may contain ash from the combustion reactor or consist exclusively or virtually exclusively of this ash.
  • the ash from the combustion reactor in particular the ash from the fluidized bed, and / or the pyrolysis coke from the pyrolysis reactor is used as a catalyst for the raw gas.
  • the catalytic effect of the ash or the pyrolysis coke is used.
  • the ash and / or the pyrolysis coke can be used alone or with one or more further catalysts.
  • a further advantageous embodiment is characterized in that separated from the organic substances before pyrolysis, a fine fraction, in particular sieved.
  • the fine fraction can also be separated in other ways.
  • the sieved or otherwise separated fine fraction is fed to the combustion reactor.
  • the screening or other separation and / or the feeding of the fine fraction to the combustion reactor are particularly advantageous in the processing ofngerstabilat ® . Since the fine fraction of adjuststabilats ® contains an increased proportion of Inertien (ash) and pollutants, this is preferably screened off or otherwise separated. It is also preferably fed directly to the fluidized bed reactor for further treatment.
  • the advantage can be achieved that the Schadstoffracht the input material (Trockenstabilat ® ) via the fluidized bed reactor directly - ie without the detour through the shaft reactor and the cracking reactor - is led to the flue gas cleaning.
  • the flue gas cleaning is carried out according to the valid environmental protection regulations, in Germany at the time according to the 17th Federal Immission Control Ordinance (BImSchV). It prevents the pollutant load from entering the environment.
  • a further advantage is that the calorific value of the coarse fraction is increased compared to the original material, since the fine fraction of thezelstabilats ® contains an increased proportion of Inertien (ash).
  • a synthesis gas By cleaning or catalytic purification of the raw gas, a synthesis gas ("fuel gas”) can be generated.
  • the synthesis gas is preferably energetically utilized in a gas turbine or in another heat engine. It is advantageous if the exhaust gas from the energy recovery or the gas turbine or the other heat engine is supplied to the combustion reactor or fluidized bed reactor.
  • the combustion reactor or fluidized bed reactor in addition to this exhaust still air can be supplied. But it is also possible not to operate the combustion reactor or fluidized bed reactor with air, but only with the exhaust gas of the gas turbine or other heat engine. This is possible because the exhaust gas of the gas turbine or other heat engine still has a sufficient oxygen content, which may be about 17%. As a result, a particularly good energy recovery is possible.
  • the synthesis gas is first cooled and / or cleaned before it is used for the combustion chamber of the gas turbine or other heat engine.
  • the cooling and / or cleaning is preferably carried out in a quench.
  • the wastewater is evaporated from the cooling and / or purification, preferably in a dryer.
  • the remainder of the evaporation (the "thickened” residue) is preferably fed to the combustion reactor.
  • a further advantageous development is characterized in that a synthesis gas is generated by the purification or catalytic purification of the raw gas.
  • a synthesis gas is generated by the purification or catalytic purification of the raw gas.
  • hydrogen is separated from the synthesis gas.
  • the lean gas remaining in the hydrogen separation is preferably supplied to the combustion reactor. It can be used thermally there.
  • combustion reactor or fluidized bed reactor is operated in two stages. This is done in particular by the fact that less air is added at the lower end of the combustion reactor or fluidized-bed reactor than is required for a stoichiometric combustion.
  • the ash which is fed to the pyrolysis reactor or shaft reactor, still coke, which thus already in the upper part of the pyrolysis reactor (shaft reactor, degasser) has catalytic activity.
  • shaft reactor, degasser has catalytic activity.
  • additional air is added in order to achieve complete combustion and to be able to deliver the exhaust gas - cleaned - into the environment.
  • a further advantageous development is characterized in that a zone of the pyrolysis reactor or shaft reactor is used as a cracking reactor. This may be done by carrying out the pyrolysis reactor and cracking reactor as a "pyrolysis cracking reactor" component so that one zone of the pyrolysis reactor is used as the catalyst ( Figure 6). It can also be done in such a way that the cracking reactor is located above the pyrolysis reactor or shaft reactor or that the cracking reactor is in the upper region of the pyrolysis reactor or shaft reactor (FIG. 10).
  • a further advantageous development is characterized in that the raw gas purified in the cracking reactor is further purified in a further reactor with a catalyst bed (FIG. 7) or that the cracking reactor is designed as a reactor with a catalyst bed.
  • the catalyst bed in the further reactor may consist of one or more metal compounds (permanent catalyst). After the gas has left the cracking reactor, it will supplied to the other reactor.
  • the cracking reactor acts as a pre-catalyst in this case. The cracking reactor is then not necessary. It is also possible to dispense with the cracking reactor, so that the further reactor can act with the catalyst bed in this case as the actual cracking reactor for the catalytic purification of the raw gas produced by the pyrolysis.
  • the raw gas purified in the cracking reactor is further purified in a further reactor with a catalyst bed, that is to say if, in addition to the first further reactor with a catalyst bed, a second further catalyst with a catalyst bed is present. It is of particular advantage here if the first and second further reactors are activated alternately. The first and the second further reactor are thus operated so that they are alternately active. In this way, a further advantageous development is made possible, which consists in that the first and the second further reactor can be alternately regenerated, namely in each case when the other other reactor is activated. The regeneration is preferably carried out by hot exhaust gas from the combustion reactor or fluidized bed reactor. Even when using a first further reactor and a second further reactor can be dispensed with the cracking reactor. The first and the second further reactor then serve as actual cracking reactors for the catalytic purification of the raw gas produced by the pyrolysis.
  • a further advantageous development is characterized in that the catalyst is added together with the heat transfer medium or that the catalyst is effective together with the heat transfer medium.
  • the pyrolysis coke from the pyrolysis reactor can be used as a catalyst for the raw gas.
  • the catalytic effect of the pyrolysis coke produced in the pyrolysis reactor or shaft reactor is utilized.
  • the cracking reactor is integrated into the solids flow from the pyrolysis reactor or shaft reactor into the combustion reactor or fluidized bed reactor.
  • a gas treatment ie a catalytic purification of the raw gas, would be in that region of the pyrolysis reactor or shaft reactor desirable in which the ash from the combustion reactor or fluidized bed reactor is fed, since there the ash (heat transfer medium, fluidized bed material) has the highest temperature level.
  • the process is preferably carried out in such a way that the catalyst is added together with the heat transfer medium (ash) or that the catalyst is effective together with the heat transfer medium (ash).
  • the catalyst can be added at the top of the pyrolysis reactor or shaft reactor. This can be done together with the ashes. However, the catalyst can also be added otherwise. Further, the catalyst may be present in a cracking reactor to which the ash is fed.
  • a permanent catalyst for example metal oxide.
  • a cycle results through the combustion reactor or fluidized bed reactor, wherein takes place in the furnace, the thermal cleaning of the catalyst.
  • a lost catalyst for example coke or coal.
  • the inventive apparatus for pyrolysis and gasification of substance mixtures containing organic constituents which is particularly suitable for performing the method according to the invention, comprises a pyrolysis reactor, preferably a shaft reactor, the organic substances or the substance mixture containing organic constituents, preferably Stecuringt ® and a heat transfer medium can be supplied, a combustion reactor, preferably a fluidized bed reactor, for burning the pyrolysis coke from the pyrolysis reactor or shaft reactor and for producing the heat transfer medium, wherein preferably the ash from the combustion reactor is used as the heat transfer medium, and a cracking reactor for cleaning or cracking produced by the pyrolysis crude gas or its condensable constituents, in which a catalyst is preferably provided.
  • a fluidized siphon is provided to which superheated steam as fluidizing agent can be supplied.
  • the fluidized siphon may consist of a downcomer and a container with overflow.
  • the heat transfer medium or the hot ash is collected in the downpipe.
  • She trains a moving bed there and slips into the container.
  • the container can be flown over a nozzle bottom located at the bottom of the nozzle with superheated steam, so that a fluidization of slipping from the downpipe ash is achieved and the ash can be removed from the overflow of the container.
  • the desired sealing function is achieved, ie the sealing against gases (pyrolysis gases from the pyrolysis or the pyrolysis not allowed to enter the fluidized bed furnace, and flue gases from the fluidized bed furnace, which may not enter the pyrolysis).
  • gases pyrolysis gases from the pyrolysis or the pyrolysis not allowed to enter the fluidized bed furnace, and flue gases from the fluidized bed furnace, which may not enter the pyrolysis.
  • the fluidized siphon comprises a downcomer.
  • a moving bed is provided in the downpipe.
  • the downpipe is designed such that a moving bed can be formed therein.
  • design parameters and / or operating parameters are influenced in such a way that a moving bed is formed in the downpipe.
  • the downpipe or the moving bed can be traversed by water vapor.
  • the water vapor acts as a barrier gas.
  • the design parameters and / or operating parameters are preferably influenced in such a way that water flows through the downpipe or the moving bed as sealing gas.
  • a method and an apparatus are provided by which a pure gas can be produced from a fuel with a certain ash content and high volatile content, which is suitable both for use in gas turbine processes and internal combustion engines as well as for recycling, so that very high quality is.
  • the objective is achieved that no technical oxygen must be used and that the pyrolysis gas does not come into contact with inert gases.
  • the invention is particularly suitable for the processing ofngerstabilat ® . It can be assumed that the fine fraction ofdovstabilats ® on the one hand, above average levels of pollutants and on the other hand, a high inert content (about 50 wt .-%), the contribution of fine fraction to a high-quality gas so low and the negative impact on the effort of Pyrolysis gas cleaning are relatively high.
  • the heat transfer medium is generated from the pyrolysis coke by way of combustion.
  • the entire feed organic substances, especiallyvelstabilat ®
  • the fine fraction is fed directly to the combustion;
  • the heat transfer medium is generated from this fine fraction and the pyrolysis coke.
  • the volatile pollutants of the fine fraction can thereby be discharged in the combustion and separated in the flue gas cleaning. This prevents that pollutants from the fines get into the pyrolysis and gas purification can be unnecessarily complicated and expensive.
  • pyrolysis gas or synthesis gas can be used for material and energetic use, in particular for power generation, heat generation, for the production of methanol or for the production of hydrogen. It is possible to generate a hydrogen-rich gas.
  • the invention can be used to generate electricity, in particular in a gas turbine.
  • the gas turbine exhaust gas may be used as combustion and fluidizing air in the fluidized bed of the fluidized bed reactor. However, the system must then be operated under pressure or it is a fuel gas compressor provided.
  • the furnace in the combustion reactor delivers fluid to the pyrolysis reactor. Due to the fluidized bed, the heat transfer medium, namely ash, is further generated in-process.
  • coke or pyrolysis coke is used as the catalyst material, this can also be generated within the process by means of stepped air supply in the fluidized bed. A process with substoichiometric combustion is possible. It is also possible to carry out the aftertreatment of the pyrolysis gases directly in the degasser (pyrolysis reactor); Degassing and cracking can therefore take place in a reactor.
  • the basic configuration shown for carrying out the basic process consists of a shaft reactor 1, a fluidized bed reactor 2 and a cracking reactor 3.
  • the shaft reactor 1 the organic matter, preferablyurestabilat ® 4, and the heat transfer medium, preferably ash 5, from fed to the fluidized bed reactor 2.
  • the dry stabilizer 4 introduced into the shaft reactor 1 is mixed there with the hot ash 5 from the fluidized-bed reactor 2.
  • the dry stabilate heats up and degasifies (pyrolyzed).
  • the result is a gas, namely the raw gas 6, and a solid 7, namely pyrolysis and ash.
  • the crude gas 6 leaves the shaft reactor 1 at the top, the solid 7 leaves the shaft reactor 1 at the bottom. Crude gas 6 and solid 7 are fed to the cracking reactor 3.
  • the solid 7 namely the pyrolysis coke contained therein, acts as a catalyst for the gas purification
  • the crude gas 6 is passed in the cracking reactor 3 through the hot solid. Further, water vapor 8 is added here. As a result, a catalytically purified gas 9 (synthesis gas, fuel gas) is obtained.
  • the solid 10 from the cracking reactor 3 pyrolysis coke and ash
  • the exhaust gas 12 from the fluidized bed of the fluidized bed reactor 2 is cleaned. From the fluidized bed reactor 2 also not required ash 13 can be deducted.
  • the shaft reactor and the cracking reactor are designed as one component, namely as a pyrolysis-cracking reactor 30.
  • one zone, namely the lower zone, of the pyrolysis reactor 1 is used as the catalyst.
  • the catalytic effect of the pyrolysis coke produced in the shaft reactor 1 is utilized.
  • the cracking reactor 3 is integrated into the solids flow from the shaft reactor 1 into the fluidized bed reactor 2.
  • a gas treatment in that area of the shaft reactor 1 would be desirable, in which the ash 5 is supplied from the fluidized bed reactor 2, since there the solid (the ash) has the highest temperature level.
  • a catalyst 40 is added in the upper region of the shaft reactor 1.
  • the shaft reactor and the cracking reactor are also designed here as one component, namely as pyrolysis cracking reactor 30 '.
  • the addition of the catalyst 40 in the upper region of the shaft reactor 1 does not necessarily have to take place with the ash 5 from the fluidized-bed reactor 2.
  • the catalyst can also be added in other ways.
  • the catalyst can be present in the upper region of the shaft reactor 1, that is to say in the region of the pyrolysis cracking reactor 30 'designated 41.
  • a permanent catalyst such as metal oxide may be used.
  • a lost catalyst such as coke or coal may also be used.
  • a cycle through the fluidized bed reactor 2 results, wherein takes place in the furnace of the fluidized bed reactor 2, the thermal cleaning of the catalyst.
  • the cracking reactor is automatically integrated into the shaft reactor 1 so that it becomes the pyrolysis-cracking reactor 30 '.
  • FIG. 4 shows one in the embodiments according to FIGS. 1 to 3 Applicable plant part, can be promoted by the hot ash or other fluidized bed material from the fluidized bed reactor or fluidized bed furnace 2 to the pyrolysis reactor or shaft reactor 1 and the pyrolysis cracking reactor 30 and 30 '.
  • a fluidized bed 41 ' which consists of fluidized bed material, namely hot ash.
  • the bottom of the fluidized bed furnace 2 is formed as a nozzle bottom 42, through which the fluidized bed furnace 2 fluidizing air 43 is supplied.
  • the hot ash from the fluidized bed 41 ' is fed to a cracking reactor / pyrolysis reactor / shaft reactor / pyrolysis cracking reactor 1, 3, 30, 31, 30', 41 ', which in the Fig. 4 are not shown and lie in the direction of material flow behind the arrow 44.
  • the Indian Fig. 4 illustrated fluidized siphon 45 includes a downpipe 46, which may also be formed as a chute, and a container 47 with overflow.
  • the hot ash from the fluidized bed 41 'passes through the in the fluidized bed furnace second trained ash spill 48 into the downpipe 46, where it is collected.
  • This hot ash forms in the downpipe 46 from a moving bed and slips into the container 47.
  • the bottom of the container 47 is formed as a nozzle bottom 49 through which the container 47 superheated steam 50 is supplied.
  • the container 47 With the aid of the superheated steam 50, the container 47 is flowed over the bottom of the nozzle 49 located on the bottom of the container, so that a fluidization of the ash slipping out of the downpipe 46 is achieved and the ash from the overflow of the container 47 can be withdrawn into the further downpipe 51. It is guided by the further downpipe 51 in the direction of the arrow 44 to the shaft reactor 1 / pyrolysis-cracking reactor 30 / pyrolysis-cracking reactor 30 '.
  • the fluidized siphon according to Fig. 4 performs the functions of conveying a solid and sealing against gases. By the fluidization of the siphon, the promotion of the hot medium in a subsequent reactor 1, 30, 30 'is achieved.
  • the downcomer 46 in conjunction with the fluidized siphon 45, permits separation of oxidizing atmosphere in the combustion reactor or fluidized bed furnace and reducing atmosphere in the cracking reactor and in the pyrolysis reactor.
  • a defined, very small vapor stream penetrates through the moving bed in the downpipe 46 in the combustion reactor or fluidized bed furnace and thus acts as a sealing gas.
  • This sealing steam flow can be adjusted in a targeted manner by permanently setting a pressure drop across the moving bed in the downpipe 46.
  • This pressure drop can be influenced by the height of the moving bed (design parameters) and by the steam pre-pressure and the negative pressure in the combustion reactor or fluidized bed furnace (operating parameters). Influencing by other and / or further design parameters and / or operating parameters is possible.
  • the main stream of water vapor passes either together with the ash or in addition via a bypass in the cracking reactor and thus blocks the siphon against raw gas from the cracking reactor.
  • the energy for the provision of the steam at 1.5 bar and 800 to 850 ° C can be obtained from the cooling of the flue gases from the combustion of the pyrolysis coke.
  • the energy for providing the fluidizing agent can be generated or used in-process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention is used for the pyrolysis and gasification of material mixtures containing organic components. The organic materials or the material mixture containing organic components are brought into contact with a heat transfer medium, preferably the ash from a combustion reactor, and pyrolysed in a pyrolysis reactor, preferably a shaft reactor. The coke which is generated by pyrolysis is combusted with an air supply in a combustion reactor, preferably in a fluidized bed reactor. The condensable components of the crude gas which is generated by pyrolysis are cracked in a cracking reactor, preferably by means of a catalyst. In order to improve said method, the heat transfer medium is transported using overheated steam (50) as a fluidizing medium.

Description

Die Erfindung betrifft ein Verfahren zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, und eine Vorrichtung zur Durchführung eines derartige Verfahrens.The invention relates to a process for the pyrolysis and gasification of mixtures containing organic constituents, and to an apparatus for carrying out such a process.

Bei diesen Stoffgemischen kann es sich insbesondere um Hausmüll oder hausmüllähnliche Abfälle handeln sowie um Produkte, die aus Hausmüll oder hausmüllähnlichen Abfällen gewonnen worden sind.These mixtures may be, in particular, household or household-type waste, as well as products derived from domestic or household waste.

Verfahren und Vorrichtungen zur Pyrolyse und Vergasung von organischen Stoffen sind bereits bekannt. Die DE-PS 197 55 693 offenbart ein Verfahren zur Vergasung von organischen Stoffen, bei dem die organischen Stoffe in einen Pyrolysereaktor geleitet werden, in welchem sie mit einem Wärmeträgermedium in Kontakt gehalten werden, wodurch eine Pyrolyse stattfindet. Der Pyrolysereaktor ist ein Wanderbettreaktor oder eine Drehtrommel. Die Pyrolyseprodukte bestehen aus Pyrolysegasen mit kondensierbaren Stoffen und einem festen kohlenstoffhaltigen Rückstand. Der feste kohlenstoffhaltige Rückstand und das Wärmeträgermedium werden einer Feuerung zugeführt, in der der kohlenstoffhaltige Rückstand verbrannt und das Wärmeträgermedium aufgeheizt und wieder dem Pyrolysereaktor zugeführt wird. Die teerhaltigen Pyrolysegase werden in einer zweiten Reaktionszone derart nacherhitzt, daß ein gereinigtes Synthesegas mit hohem Heizwert erhalten wird. Dies geschieht in der Weise, daß die teerhaltigen Pyrolysegase in einen indirekten Wärmetauscher geleitet werden, in dem sie mit einem Reaktionsmittel, beispielsweise Wasserdampf, reagieren. Die Feuerungsabgase werden derart durch den indirekten Wärmetauscher geleitet, daß deren Wärmeinhalt für die Reaktion der Pyrolysegase mit dem Reaktionsmittel genutzt wird. Die aus der Feuerung abgezogene Asche der festen kohlenstoffhaltigen Rückstände und das Wärmeträgermedium werden am Eintragsende für den organischen Stoff in den Pyrolysereaktor zurückgeführt.Methods and apparatus for pyrolysis and gasification of organic substances are already known. The DE-PS 197 55 693 discloses a process for the gasification of organic substances, in which the organic substances are passed into a pyrolysis reactor, in which they are kept in contact with a heat transfer medium, whereby a pyrolysis takes place. The pyrolysis reactor is a moving bed reactor or rotary drum. The pyrolysis products consist of pyrolysis gases with condensables and a solid carbonaceous residue. The solid carbonaceous residue and the heat transfer medium are fed to a furnace in which the carbonaceous residue is burned and the heat transfer medium is heated and returned to the pyrolysis reactor. The tarry pyrolysis gases are reheated in a second reaction zone in such a way, that a purified synthesis gas with a high calorific value is obtained. This is done in such a way that the tar pyrolysis gases are passed into an indirect heat exchanger in which they react with a reagent, such as water vapor. The combustion exhaust gases are passed through the indirect heat exchanger in such a way that their heat content is used for the reaction of the pyrolysis gases with the reagent. The ash of the solid carbonaceous residues withdrawn from the furnace and the heat transfer medium are returned to the entry end for the organic material in the pyrolysis reactor.

Die DE-OS 199 30 071 offenbart ein Verfahren und eine Vorrichtung zur Pyrolyse und Vergasung von organischen Stoffen, bei dem die organischen Stoffe in einen Trocknungs- und Pyrolysereaktor eingebracht werden, in dem sie mit dem Wirbelbettmaterial einer Verbrennungswirbelschicht in Kontakt gebracht werden, wodurch eine Trocknung und Pyrolyse stattfindet, bei der die organischen Stoffe in Wasserdampf aus der Trocknung und Pyrolyseprodukte umgesetzt werden. Die Pyrolyseprodukte bestehen aus Gasen mit kondensierbaren Substanzen und festem kohlenstoffhaltigen Rückstand. Der feste kohlenstoffhaltige Rückstand, gegebenenfalls mit Anteilen des Wasserdampfs und der Pyrolysegase mit kondensierbaren Substanzen, und das Wirbelbettmaterial werden zurück in die Verbrennungswirbelschicht geführt, in der der kohlenstoffhaltige Rückstand der organischen Stoffe verbrannt, das Wirbelbettmaterial aufgeheizt und wieder in den Pyrolysereaktor geführt wird. Der Wasserdampf aus der Trocknung und die Pyrolysegase mit kondensierbaren Substanzen werden in einer weiteren Reaktionszone derart nachbehandelt, daß ein Produktgas mit hohem Heizwert entsteht. Die Verbrennungswirbelschicht, in der die Pyrolyserückstände verbrannt werden, wird als stationäre Wirbelschicht betrieben. Die Pyrolysegase werden in einen indirekten Wärmetauscher geleitet, in dem sie gegebenenfalls mit einem Reaktionsmittel wie Wasserdampf, Sauerstoff oder Luft oder einer Mischung daraus reagieren. Die Feuerungsabgase werden derart mit dem indirekten Wärmetauscher in Kontakt gebracht, daß deren Wärmeinhalt für die Reaktion der Pyrolysegase mit dem Reaktionsmittel genutzt wird.The DE-OS 199 30 071 discloses a method and apparatus for pyrolysis and gasification of organic matter in which the organics are introduced into a drying and pyrolysis reactor in which they are contacted with the fluidized bed material of a combustion fluidized bed, whereby drying and pyrolysis takes place, in which the organic substances are converted into water vapor from the drying and pyrolysis products. The pyrolysis products consist of gases with condensable substances and solid carbonaceous residue. The solid carbonaceous residue, optionally with portions of the water vapor and the pyrolysis gases with condensables, and the fluidized bed material are fed back into the combustion fluidized bed, where the carbonaceous residue of the organics is burned, the fluidized bed material is heated and recycled to the pyrolysis reactor. The water vapor from the drying and the pyrolysis gases with condensable substances are aftertreated in a further reaction zone in such a way that a product gas having a high calorific value is formed. The combustion fluidized bed, in which the pyrolysis residues are burned, is operated as a stationary fluidized bed. The pyrolysis gases are passed to an indirect heat exchanger in which they optionally react with a reactant such as water vapor, oxygen or air or a mixture thereof. The combustion exhaust gases are brought into contact with the indirect heat exchanger in such a way that their heat content is used for the reaction of the pyrolysis gases with the reagent.

Bei dem vorbekannten Verfahren nach der DE-PS 197 55 693 und auch bei dem Verfahren nach der prioritätsälteren deutschen Patentanmeldung 199 30 071.2 wird jeweils ein indirekter Wärmetauscher verwendet, dem die Wärme der Feuerungsabgase zugeführt wird und durch den die Pyrolysegase geleitet werden. Diese Verfahrensweise und die zur Durchführung eines derartigen Verfahrens erforderliche Vorrichtung sind allerdings mit Nachteilen behaftet.In the prior art method according to DE-PS 197 55 693 and also in the method according to the priority earlier German patent application 199 30 071.2 In each case, an indirect heat exchanger is used, to which the heat of the combustion exhaust gases is supplied and through which the pyrolysis gases are passed. However, this procedure and the apparatus required for carrying out such a method are disadvantageous.

Die prioritätsältere, nicht vorveröffentlichte deutsche Patentanmeldung 100 33 453.9 betrifft ein Verfahren und eine Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten. Die vorliegende Erfindung ist besonders gut zur Anwendung bei einem Verfahren und/oder einer Vorrichtung nach dieser deutschen Patentanmeldung geeignet.The prioritized, not previously published German patent application 100 33 453.9 relates to a method and apparatus for pyrolysis and gasification of mixtures containing organic constituents. The present invention is particularly well suited for use in a method and / or apparatus according to this German patent application.

Bei dem Verfahren nach der deutschen Patentanmeldung 100 33 453.9 werden die organischen Stoffe bzw. das Stoffgemisch, das organische Bestandteile enthält, in einem Pyrolysereaktor mit einem Wärmeträgermedium aus einem Verbrennungsreaktor in Kontakt gebracht und pyrolysiert. Bei dem Pyrolysereaktor handelt es sich vorzugsweise um einen Schachtreaktor. Als Verbrennungsreaktor wird vorzugsweise ein Wirbelschichtreaktor verwendet. Das Wärmeträgermedium wird vorzugsweise durch die Asche aus dem Verbrennungsreaktor gebildet. Es ist aber auch möglich, ein sonstiges Wärmeträgermaterial bzw. Wirbelbettmaterial zu verwenden. Der Wärmeträger bzw. das Wirbelbettmaterial kann Asche aus dem Verbrennungsreaktor enthalten oder ausschließlich oder praktisch ausschließlich aus dieser Asche bestehen. Vorteilhaft ist es, wenn die organischen Stoffe mit dem Wärmeträgermedium dadurch in Kontakt gebracht werden, daß sie miteinander vermischt werden. Die organischen Stoffe und das Wärmeträgermedium werden in dem Pyrolysereaktor in Kontakt gebracht bzw. vermischt und getrocknet und pyrolysiert. Der durch die Pyrolyse entstehende Pyrolysekoks wird in dem Verbrennungsreaktor bzw. Wirbelschichtreaktor unter Luftzufuhr verbrannt.In the method according to the German patent application 100 33 453.9 For example, the organic substances or the substance mixture which contains organic constituents are brought into contact and pyrolyzed in a pyrolysis reactor with a heat transfer medium from a combustion reactor. The pyrolysis reactor is preferably a shaft reactor. As a combustion reactor, a fluidized bed reactor is preferably used. The heat transfer medium is preferably formed by the ash from the combustion reactor. But it is also possible to use another heat transfer material or fluidized bed material. The heat transfer medium or the fluidized bed material may contain ash from the combustion reactor or consist exclusively or virtually exclusively of this ash. It is advantageous if the organic substances are brought into contact with the heat transfer medium in that they are mixed together. The organic substances and the heat transfer medium are brought into contact or mixed in the pyrolysis reactor and dried and pyrolyzed. The pyrolysis coke produced by the pyrolysis is burned in the combustion reactor or fluidized-bed reactor under air supply.

Das durch die Pyrolyse erzeugte Rohgas bzw. dessen kondensierbare Bestandteile werden in einem Crackreaktor gereinigt bzw. gecrackt. Vorzugsweise erfolgt diese Reinigung bzw. Crackung durch einen Katalysator, der im Crackreaktor vorgesehen ist. Diese Reinigung bzw. katalytische Reinigung bzw. Crackung erfolgt vorzugsweise unter Zugabe von Wasserdampf.The crude gas or its condensable constituents produced by the pyrolysis are cleaned or cracked in a cracking reactor. Preferably, this purification or cracking is carried out by a catalyst which is provided in the cracking reactor. This cleaning or catalytic purification or cracking is preferably carried out with the addition of water vapor.

Das Verfahren nach der deutschen Patentanmeldung 100 33 453.9 eignet sich insbesondere für die Pyrolyse und Vergasung eines Stoffgemischs, das aus Hausmüll oder hausmüllähnlichen Abfällen erhalten worden ist. Dabei handelt es sich vorzugsweise um ein Stoffgemisch, das aus Hausmüll oder hausmüllähnlichen Abfällen nach folgendem Verfahren hergestellt worden ist: Der Hausmüll bzw. die hausmüllähnlichen Abfälle werden erforderlichenfalls zunächst vorbehandelt, insbesondere zerkleinert. Anschließend werden sie in geschlossenen Behältern unter Zwangsbelüftung kompostiert, wobei die organischen Bestandteile abgebaut werden. Nach einer bestimmten Zeit von beispielsweise sieben Tagen - nach dieser Zeit sind die biologisch leichter zersetzbaren Bestandteile typischerweise ganz oder zu einem wesentlichen Teil abgebaut - wird die Kompostierung durch Trocknung zum Stillstand gebracht. Das Material wird auf eine Restfeuchte von höchstens 15 % getrocknet. Es kann dann erforderlichenfalls noch nachbehandelt werden. Ein derartiges Material wird unter dem Namen Trockenstabilat ® in Verkehr gebracht.The method according to the German patent application 100 33 453.9 is particularly suitable for the pyrolysis and gasification of a mixture of substances that has been obtained from household waste or household waste. This is preferably a mixture of substances which has been produced from domestic waste or household waste similar to the following process: The household waste or the household waste similar waste are first pretreated if necessary, in particular crushed. Then they are composted in closed containers under forced ventilation, whereby the organic components are degraded. After a period of time, for example, seven days - after which time the more readily biodegradable components are typically wholly or substantially degraded - the composting is halted by drying. The material is dried to a residual moisture of at most 15%. It can then be retreated if necessary. Such a material is marketed under the name Stabilat ®.

Bei einem Pyrolyseverfahren, insbesondere auch bei dem Verfahren nach der deutschen Patentanmeldung 100 33 453.9 , ist es im allgemeinen erforderlich, aus dem Verbrennungsreaktor bzw. Wirbelschichtreaktor bzw. Wirbelschichtofen das Wärmeträgermedium, insbesondere heiße Asche, abzuziehen und einem oder mehreren Pyrolysereaktoren zuzuführen. Dabei ist zu berücksichtigen, daß weder Pyrolysegase aus den Pyrolysereaktoren in den Verbrennungsreaktor (Wirbelschichtreaktor, Wirbelschichtofen) gelangen dürfen noch Rauchgase aus dem Verbrennungsreaktor (Wirbelschichtreaktor, Wirbelschichtofen) in den Pyrolysereaktor gelangen dürfen.In a pyrolysis, especially in the process according to the German patent application 100 33 453.9 , It is generally necessary to withdraw from the combustion reactor or fluidized bed reactor or fluidized bed furnace, the heat transfer medium, in particular hot ash, and supply one or more pyrolysis. It should be noted that neither pyrolysis gases from the pyrolysis in the combustion reactor (fluidized bed reactor, fluidized bed furnace) may still come flue gases from the Combustion reactor (fluidized bed reactor, fluidized bed furnace) may enter the pyrolysis reactor.

Eine mechanische Förderung des Wärmeträgermediums bzw. der heißen Asche mit bewegten Maschinenteilen ist aufgrund der hohen Temperaturen bzw. Aschetemperaturen von 900 bis 950°C und des abrasiven Verhaltens des Wärmeträgermediums bzw. der Asche sowie wegen der damit verbundenen erheblichen Wärmeverluste nicht vorzuziehen.A mechanical promotion of the heat transfer medium or the hot ash with moving machine parts is not preferable due to the high temperatures or ash temperatures of 900 to 950 ° C and the abrasive behavior of the heat transfer medium and the ash and because of the associated significant heat losses.

Im Bereich der zirkulierenden Wirbelschichtfeuerungen ist es bekannt, einen sogenannten fluidisierten Siphon einzusetzen. Dieser beteht aus einem Fallrohr und einem Behälter mit Überlauf. Das heiße Wärmeträgermedium (beispielsweise Asche) wird im Fallrohr aufgefangen, bildet dort ein Wanderbett aus und rutscht in den Behälter. Mit Hilfe von Luft wird der Behälter über einen am Behälterboden befindlichen Düsenboden angeströmt, so daß eine Fluidisierung des aus dem Fallrohr nachrutschenden Wärmeträgermediums erreicht wird und das Wärmeträgermedium aus dem Überlauf des Behälters abgezogen werden kann. Durch den Druckverlust des Festbetts im Fallrohr wird die gewünschte Dichtungsfunktion erreicht. Durch die Fluidisierung des Siphons wird die Förderung des heißen Mediums in einen nachfolgenden Reaktor erreicht. Da bei Wirbelschichtfeuerungen oxidierende Betriebsbedingungen bestehen, bei denen ohnehin Luft zugegeben wird, stören die Luftbestandteile des Fluidisierungsmittels "Luft" den Prozeß nicht.In the field of circulating fluidized bed combustors, it is known to use a so-called fluidized siphon. This consists of a downpipe and a container with overflow. The hot heat transfer medium (for example, ash) is collected in the downpipe, there forms a moving bed and slips into the container. With the help of air, the container is flown over a nozzle bottom located on the nozzle bottom, so that a fluidization of the slipping from the downpipe heat transfer medium is achieved and the heat transfer medium can be withdrawn from the overflow of the container. By the pressure loss of the fixed bed in the downpipe, the desired sealing function is achieved. The fluidization of the siphon, the promotion of the hot medium is achieved in a subsequent reactor. As in fluidized bed combustion oxidizing operating conditions exist in which air is added anyway, the air constituents of the fluidizing agent "air" do not disturb the process.

Bei der Anwendung des in der DE-A- 100 33 453 beschriebenen Verfahrens ist der Einsatz von Luft als Fluidisierungsmittel für den Transport des Wärmeträgermediums bzw. der Asche in den Crackreaktor oder in den Pyrolysereaktor nachteilhaft, weil in diesem Fall einerseits Sauerstoff und andererseits Luftstickstoff in den Prozeß eingeschleust werden würden. Dies steht im Gegensatz zu dem Zweck des in der DE-A- 100 33 453 beschriebenen Verfahrens, ein möglichst unverdünntes und möglichst heizwertreiches Synthesegas zu erzeugen. Der Einsatz von Luft und/oder von inerten Gasen als Fluidisierungsmittel ist unter diesen Umständen nicht sinnvoll.When using in the DE-A-100 33 453 described method is the use of air as a fluidizing agent for the transport of the heat transfer medium or the ash in the cracking reactor or in the pyrolysis reactor disadvantageous because in this case, on the one hand oxygen and on the other hand nitrogen in the process would be introduced. This is contrary to the purpose of the in the DE-A-100 33 453 to produce a synthesis gas as undiluted and as high as possible. The use of air and / or inert gases as a fluidizing agent is not useful under these circumstances.

Aus der DE 24 48 354 A ist ein Verfahren zur Erzeugung von Gas, Teer und Dampf aus Kohle bekannt, bei dem Feinkohle in einer Entgasungszone mit einem Wärmeträgermedium in Kontakt gebracht und entgast wird. Der nach der Entgasung verbleibende Schwelkoks wird in einer Wirbelschichtkammer mit Luft verbrannt. Das durch die Entgasung entstehende Rohgas wird abgezogen und einer Gasreinigung und Gaszerlegung zugeführt. Das Wärmeträgermedium wird über einen Siphon der Wirbelschichtkammer zugeführt, wobei als Siphon-Antriebsgas Dampf verwendet wird.From the DE 24 48 354 A is a method for producing gas, tar and steam from coal known in which fine coal in a degassing zone with a heat transfer medium in contact and degassed. The remaining after degassing carbon is burned in a fluidized bed chamber with air. The resulting from the degassing raw gas is withdrawn and fed to a gas purification and gas separation. The heat transfer medium is fed via a siphon of the fluidized bed chamber, wherein steam is used as the siphon drive gas.

Die DE 196 29 289 A offenbart einen Siphon zur Förderung feinkörniger Feststoffe, in den eine Lanze hineinragt. Eine durch die Lanze geführte Gasströmung ermöglicht eine teilweise Fluidisierung des angestauten Feststoffes in dem Siphon.The DE 196 29 289 A discloses a siphon for conveying fine-grained solids into which a lance projects. A gas flow through the lance allows partial fluidization of the accumulated solid in the siphon.

Aus der GB-A-1 484 130 ist ein Verfahren zur Pyrolyse von Festschlamm oder Abfall bekannt, bei dem das Wärmeträgermedium mittels überhitztem Wasserdampf gefördert werden kann.From the GB-A-1 484 130 is a method for pyrolysis of sludge or waste is known, in which the heat transfer medium can be promoted by means of superheated steam.

Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, sowie eine verbesserte Vorrichtung zur Duchführung eines Verfahrens zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, vorzuschlagen.The object of the invention is to propose an improved process for the pyrolysis and gasification of mixtures containing organic constituents, as well as an improved apparatus for carrying out a process for the pyrolysis and gasification of mixtures containing organic constituents.

Bei einem Verfahren zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Eine erfindungsgemäße Vorrichtung ist Gegenstand des Anspruchs 15. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung sind in den Unteransprüchen beschrieben.In a method for pyrolysis and gasification of mixtures containing organic constituents, this object is solved by the features of claim 1. A device according to the invention is the subject of claim 15. Advantageous developments of the method according to the invention and of the device according to the invention are described in the subclaims.

Gemäß der Erfindung wird das Wärmeträgermedium mittels überhitztem Wasserdampf als Fluidisierungsmittel gefördert. Dies erfolgt durch einen fluidisierten Siphon. Der Transport des Wärmeträgermediums bzw. der Asche vom Verbrennungsreaktor (Wirbelschichtreaktor, Wirbelschichtofen) zum Pyrolysereaktor (Schachtreaktor) erfolgt durch oder zumindest unter Mitwirkung von überhitztem Wasserdampf als Fluidisierungsmittel.According to the invention, the heat transfer medium is conveyed by means of superheated steam as a fluidizing agent. This is done by a fluidized siphon. The transport of the heat transfer medium or the ash from the combustion reactor (fluidized bed reactor, fluidized bed furnace) to the pyrolysis reactor (shaft reactor) is carried out by or at least in cooperation with superheated steam as the fluidizing agent.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.Advantageous developments are described in the subclaims.

Vorzugsweise wird der Wasserdampf mit Energie aus der Verbrennung des Pyrolysekokses erhitzt. Stattdessen oder zusätzlich kann der Wasserdampf mit Energie aus dem Rohgas (Pyrolysegas) erhitzt werden. Diese Energie kann dem heissen Rohgas entnommen werden, wodurch sich das Rohgas abkühlt. Sie kann stattdessen oder zusätzlich durch eine Unterfeuerung mit Rohgas erzeugt werden. Eine andere oder weitere Möglichkeit besteht darin, den Wasserdampf mit Energie aus den Rauchgasen zu erhitzen. Dementsprechend kann die Energie für das Fluidisierungsmittel durch verschiedene Möglichkeiten prozeßintern bereitgestellt werden.Preferably, the steam is heated with energy from the combustion of the pyrolysis coke. Instead or in addition, the water vapor can be heated with energy from the raw gas (pyrolysis gas). This energy can be taken from the hot raw gas, which cools the raw gas. It can instead or additionally be generated by a sub-firing with raw gas. Another or another option is to expose the water vapor to energy to heat the flue gases. Accordingly, the energy for the fluidizing agent can be provided in-process by various means.

Vorteilhaft ist es, wenn der Wasserdampf für die Fluidisierung in dem Crackreaktor eingesetzt wird. Es ist also möglich, den überhitzten Wasserdampf zunächst als Fluidisierungsmittel einzusetzen und denselben Wasserdampf danach im Crackreaktor/Pyrolysereaktor für die Crackreaktionen einzusetzen.It is advantageous if the steam is used for the fluidization in the cracking reactor. It is thus possible first to use the superheated steam as a fluidizing agent and then to use the same steam in the cracking reactor / pyrolysis reactor for the cracking reactions.

Das Wärmeträgermedium wird vorzugsweise durch die Asche aus dem Verbrennungsreaktor gebildet. Es ist aber auch möglich, ein sonstiges Wärmeträgermaterial bzw. Wirbelbettmaterial zu verwenden. Der Wärmeträger bzw. das Wirbelbettmaterial kann Asche aus dem Verbrennungsreaktor enthalten oder ausschließlich oder praktisch ausschließlich aus dieser Asche bestehen.The heat transfer medium is preferably formed by the ash from the combustion reactor. But it is also possible to use another heat transfer material or fluidized bed material. The heat transfer medium or the fluidized bed material may contain ash from the combustion reactor or consist exclusively or virtually exclusively of this ash.

Vorzugsweise wird die Asche aus dem Verbrennungsreaktor, insbesondere die Asche aus der Wirbelschicht, und/oder der Pyrolysekoks aus dem Pyrolysereaktor als Katalysator für das Rohgas verwendet. Hierdurch wird die katalytische Wirkung der Asche bzw. des Pyrolysekokses genutzt. Als Katalysator für das Rohgas kann die Asche und/oder der Pyrolysekoks allein oder mit einem oder mehreren weiteren Katalysatoren verwendet werden.Preferably, the ash from the combustion reactor, in particular the ash from the fluidized bed, and / or the pyrolysis coke from the pyrolysis reactor is used as a catalyst for the raw gas. As a result, the catalytic effect of the ash or the pyrolysis coke is used. As a catalyst for the raw gas, the ash and / or the pyrolysis coke can be used alone or with one or more further catalysts.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß aus den organischen Stoffen vor der Pyrolyse eine Feinfraktion abgetrennt, insbesondere abgesiebt wird. Die Feinfraktion kann auch auf andere Weise abgetrennt werden. Vorzugsweise wird die abgesiebte oder anderweitig abgetrennte Feinfraktion dem Verbrennungsreaktor zugeführt. Die Absiebung bzw. sonstige Abtrennung und/oder die Zuführung der Feinfraktion zum Verbrennungsreaktor sind insbesondere bei der Verarbeitung von Trockenstabilat ® von Vorteil. Da der Feinanteil des Trockenstabilats ® einen erhöhten Anteil an Inertien (Asche) und Schadstoffen enthält, wird dieser vorzugsweise abgesiebt bzw. anderweitig abgetrennt. Er wird ferner vorzugsweise direkt zur weiteren Behandlung dem Wirbelschichtreaktor zugeführt. Damit kann der Vorteil erreicht werden, daß die Schadstoffracht des Inputmaterials (Trockenstabilat ®) über den Wirbelschichtreaktor direkt - also ohne den Umweg durch den Schachtreaktor und den Crackreaktor - zur Rauchgasreinigung geführt wird. Die Rauchgasreinigung wird nach den gültigen Umweltschutzvorschriften ausgeführt, in Deutschland zur Zeit nach der 17. Bundesimmissionsschutzverordnung (BImSchV). Sie verhindert, daß die Schadstofffracht in die Umwelt gelangt. Ein weiterer Vorteil besteht darin, daß sich der Heizwert der Grobfraktion gegenüber dem ursprünglichen Material erhöht, da der Feinanteil des Trockenstabilats ® einen erhöhten Anteil an Inertien (Asche) enthält.A further advantageous embodiment is characterized in that separated from the organic substances before pyrolysis, a fine fraction, in particular sieved. The fine fraction can also be separated in other ways. Preferably, the sieved or otherwise separated fine fraction is fed to the combustion reactor. The screening or other separation and / or the feeding of the fine fraction to the combustion reactor are particularly advantageous in the processing of Trockenstabilat ® . Since the fine fraction of Trockenstabilats ® contains an increased proportion of Inertien (ash) and pollutants, this is preferably screened off or otherwise separated. It is also preferably fed directly to the fluidized bed reactor for further treatment. Thus, the advantage can be achieved that the Schadstoffracht the input material (Trockenstabilat ® ) via the fluidized bed reactor directly - ie without the detour through the shaft reactor and the cracking reactor - is led to the flue gas cleaning. The flue gas cleaning is carried out according to the valid environmental protection regulations, in Germany at the time according to the 17th Federal Immission Control Ordinance (BImSchV). It prevents the pollutant load from entering the environment. A further advantage is that the calorific value of the coarse fraction is increased compared to the original material, since the fine fraction of the Trockenstabilats ® contains an increased proportion of Inertien (ash).

Durch die Reinigung bzw. katalytische Reinigung des Rohgases kann ein Synthesegas ("Brenngas") erzeugt werden. Das Synthesegas wird vorzugsweise in einer Gasturbine oder in einer sonstigen Wärmekraftmaschine energetisch verwertet. Vorteilhaft ist es, wenn das Abgas aus der energetischen Verwertung bzw. der Gasturbine bzw. der sonstigen Wärmekraftmaschine dem Verbrennungsreaktor bzw. Wirbelschichtreaktor zugeführt wird. Dem Verbrennungsreaktor bzw. Wirbelschichtreaktor kann zusätzlich zu diesem Abgas noch Luft zugeführt werden. Es ist aber auch möglich, den Verbrennungsreaktor bzw. Wirbelschichtreaktor nicht mit Luft, sondern ausschließlich mit dem Abgas der Gasturbine oder der sonstigen Wärmekraftmaschine zu betreiben. Dies ist möglich, da das Abgas der Gasturbine bzw. sonstigen Wärmekraftmaschine immer noch einen ausreichenden Sauerstoffgehalt hat, der bei etwa 17 % liegen kann. Hierdurch ist eine besonders gute energetische Verwertung möglich.By cleaning or catalytic purification of the raw gas, a synthesis gas ("fuel gas") can be generated. The synthesis gas is preferably energetically utilized in a gas turbine or in another heat engine. It is advantageous if the exhaust gas from the energy recovery or the gas turbine or the other heat engine is supplied to the combustion reactor or fluidized bed reactor. The combustion reactor or fluidized bed reactor, in addition to this exhaust still air can be supplied. But it is also possible not to operate the combustion reactor or fluidized bed reactor with air, but only with the exhaust gas of the gas turbine or other heat engine. This is possible because the exhaust gas of the gas turbine or other heat engine still has a sufficient oxygen content, which may be about 17%. As a result, a particularly good energy recovery is possible.

Nach einer weiteren vorteilhaften Weiterbildung wird das Synthesegas zunächst gekühlt und/oder gereinigt, bevor es für die Brennkammer der Gasturbine oder sonstigen Wärmekraftmaschine verwendet wird. Die Kühlung und/oder Reinigung erfolgt vorzugsweise in einer Quenche. Vorzugsweise wird das Abwasser aus der Kühlung und/oder Reinigung eingedampft, vorzugsweise in einem Trockner. Der Rest aus der Eindampfung (der "eingedickte" Rest) wird vorzugsweise dem Verbrennungsreaktor zugeführt.According to a further advantageous development, the synthesis gas is first cooled and / or cleaned before it is used for the combustion chamber of the gas turbine or other heat engine. The cooling and / or cleaning is preferably carried out in a quench. Preferably, the wastewater is evaporated from the cooling and / or purification, preferably in a dryer. The remainder of the evaporation (the "thickened" residue) is preferably fed to the combustion reactor.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß durch die Reinigung bzw. katalytische Reinigung des Rohgases ein Synthesegas erzeugt wird. Vorzugsweise wird aus dem Synthesegas Wasserstoff abgetrennt. Das bei der Wasserstoffabtrennung verbleibende Schwachgas wird vorzugsweise dem Verbrennungsreaktor zugeführt. Es kann dort thermisch genutzt werden.A further advantageous development is characterized in that a synthesis gas is generated by the purification or catalytic purification of the raw gas. Preferably, hydrogen is separated from the synthesis gas. The lean gas remaining in the hydrogen separation is preferably supplied to the combustion reactor. It can be used thermally there.

Vorteilhaft ist es, wenn der Verbrennungsreaktor bzw. Wirbelschichtreaktor zweistufig betrieben wird. Dies geschieht insbesondere dadurch, daß am unteren Ende des Verbrennungsreaktors bzw. Wirbelschichtreaktors weniger Luft zugegeben wird als für eine stöchiometrische Verbrennung benötigt wird. Dadurch enthält die Asche, die dem Pyrolysereaktor bzw. Schachtreaktor zugeführt wird, noch Koks, der damit bereits im oberen Teil des Pyrolysereaktors (Schachtreaktors, Entgasers) katalytische Wirkung hat. Oberhalb der Ausförderung der Asche aus dem Verbrennungsreaktor bzw. Wirbelschichtreaktor wird weitere Luft zugegeben, um eine vollständige Verbrennung zu erreichen und das Abgas - gereinigt - in die Umgebung abgeben zu können.It is advantageous if the combustion reactor or fluidized bed reactor is operated in two stages. This is done in particular by the fact that less air is added at the lower end of the combustion reactor or fluidized-bed reactor than is required for a stoichiometric combustion. As a result, the ash, which is fed to the pyrolysis reactor or shaft reactor, still coke, which thus already in the upper part of the pyrolysis reactor (shaft reactor, degasser) has catalytic activity. Above the discharge of the ash from the combustion reactor or fluidized bed reactor, additional air is added in order to achieve complete combustion and to be able to deliver the exhaust gas - cleaned - into the environment.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß eine Zone des Pyrolysereaktors bzw. Schachtreaktors als Crackreaktor verwendet wird. Dies kann in der Weise geschehen, daß der Pyrolysereaktor bzw. Schachtreaktor und der Crackreaktor als ein Bauteil "Pyrolyse-Crack-Reaktor" ausgeführt werden, so daß eine Zone des Pyrolysereaktors als Katalysator verwendet wird (Fig. 6). Es kann ferner in der Weise geschehen, daß sich der Crackreaktor oberhalb des Pyrolysereaktors bzw. Schachtreaktors befindet bzw. daß sich der Crackreaktor im oberen Bereich des Pyrolysereaktors bzw. Schachtreaktors befindet (Fig. 10).A further advantageous development is characterized in that a zone of the pyrolysis reactor or shaft reactor is used as a cracking reactor. This may be done by carrying out the pyrolysis reactor and cracking reactor as a "pyrolysis cracking reactor" component so that one zone of the pyrolysis reactor is used as the catalyst (Figure 6). It can also be done in such a way that the cracking reactor is located above the pyrolysis reactor or shaft reactor or that the cracking reactor is in the upper region of the pyrolysis reactor or shaft reactor (FIG. 10).

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß das im Crackreaktor gereinigte Rohgas in einem weiteren Reaktor mit einer Katalysatorschüttung weiter gereinigt wird (Fig. 7) oder daß der Crackreaktor als Reaktor mit einer Katalysatorschüttung ausgebildet ist. Die Katalysatorschüttung in dem weiteren Reaktor kann aus einer oder mehreren Metallverbindungen bestehen (permanenter Katalysator). Nachdem das Gas den Crackreaktor verlassen hat, wird es dem weiteren Reaktor zugeführt. Der Crackreaktor fungiert in diesem Fall als Vor-Katalysator. Der Crackreaktor ist dann allerdings nicht unbedingt erforderlich. Es ist auch möglich, auf den Crackreaktor zu verzichten, so daß der weitere Reaktor mit der Katalysatorschüttung in diesem Fall als eigentlicher Crackreaktor für die katalytische Reinigung des durch die Pyrolyse erzeugten Rohgases fungieren kann.A further advantageous development is characterized in that the raw gas purified in the cracking reactor is further purified in a further reactor with a catalyst bed (FIG. 7) or that the cracking reactor is designed as a reactor with a catalyst bed. The catalyst bed in the further reactor may consist of one or more metal compounds (permanent catalyst). After the gas has left the cracking reactor, it will supplied to the other reactor. The cracking reactor acts as a pre-catalyst in this case. The cracking reactor is then not necessary. It is also possible to dispense with the cracking reactor, so that the further reactor can act with the catalyst bed in this case as the actual cracking reactor for the catalytic purification of the raw gas produced by the pyrolysis.

Von besonderem Vorteil ist es, wenn das im Crackreaktor gereinigte Rohgas in einem weiteren Reaktor mit einer Katalysatorschüttung weiter gereinigt wird, wenn also neben dem ersten weiteren Reaktor mit einer Katalysatorschüttung ein zweiter weiterer Katalysator mit einer Katalysatorschüttung vorhanden ist. Hierbei ist es von besonderem Vorteil, wenn der erste und der zweite weitere Reaktor abwechselnd aktiviert sind. Der erste und der zweite weitere Reaktor werden also derart betrieben, daß sie abwechselnd aktiv sind. Hierdurch wird eine weitere vorteilhafte Weiterbildung ermöglicht, die darin besteht, daß der erste und der zweite weitere Reaktor abwechselnd regeneriert werden können, nämlich jeweils dann, wenn der jeweils andere weitere Reaktor aktiviert ist. Die Regenerierung erfolgt vorzugsweise durch heißes Abgas aus dem Verbrennungsreaktor bzw. Wirbelschichtreaktor. Auch bei der Verwendung eines ersten weiteren Reaktors und eines zweiten weiteren Reaktors kann auf den Crackreaktor verzichtet werden. Der erste und der zweite weitere Reaktor dienen dann als eigentliche Crackreaktoren zum katalytischen Reinigen des durch die Pyrolyse erzeugten Rohgases.It is particularly advantageous if the raw gas purified in the cracking reactor is further purified in a further reactor with a catalyst bed, that is to say if, in addition to the first further reactor with a catalyst bed, a second further catalyst with a catalyst bed is present. It is of particular advantage here if the first and second further reactors are activated alternately. The first and the second further reactor are thus operated so that they are alternately active. In this way, a further advantageous development is made possible, which consists in that the first and the second further reactor can be alternately regenerated, namely in each case when the other other reactor is activated. The regeneration is preferably carried out by hot exhaust gas from the combustion reactor or fluidized bed reactor. Even when using a first further reactor and a second further reactor can be dispensed with the cracking reactor. The first and the second further reactor then serve as actual cracking reactors for the catalytic purification of the raw gas produced by the pyrolysis.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß der Katalysator zusammen mit dem Wärmeträgermedium zugegeben wird bzw. daß der Katalysator zusammen mit dem Wärmeträgermedium wirksam wird. Wie bereits beschrieben, kann der Pyrolysekoks aus dem Pyrolysereaktor als Katalysator für das Rohgas verwendet werden. Hierdurch wird die katalytische Wirkung des im Pyrolysereaktor bzw. Schachtreaktor entstehenden Pyrolysekokses genutzt. Um dies zu erreichen, wird der Crackreaktor in den Feststoffstrom vom Pyrolysereaktor bzw. Schachtreaktor in den Verbrennungsreaktor bzw. Wirbelschichtreaktor integriert. Bei Berücksichtigung des Temperaturniveaus wäre allerdings eine Gasbehandlung, also eine katalytische Reinigung des Rohgases, in demjenigen Bereich des Pyrolysereaktors bzw. Schachtreaktors wünschenswert, in dem die Asche aus dem Verbrennungsreaktor bzw. Wirbelschichtreaktor zugeführt wird, da dort die Asche (Wärmeträgermedium, Wirbelbettmaterial) das höchste Temperaturniveau hat.A further advantageous development is characterized in that the catalyst is added together with the heat transfer medium or that the catalyst is effective together with the heat transfer medium. As already described, the pyrolysis coke from the pyrolysis reactor can be used as a catalyst for the raw gas. As a result, the catalytic effect of the pyrolysis coke produced in the pyrolysis reactor or shaft reactor is utilized. To achieve this, the cracking reactor is integrated into the solids flow from the pyrolysis reactor or shaft reactor into the combustion reactor or fluidized bed reactor. Taking into account the temperature level, however, a gas treatment, ie a catalytic purification of the raw gas, would be in that region of the pyrolysis reactor or shaft reactor desirable in which the ash from the combustion reactor or fluidized bed reactor is fed, since there the ash (heat transfer medium, fluidized bed material) has the highest temperature level.

Um dies zu erreichen, wird das Verfahren vorzugsweise derart geführt, daß der Katalysator zusammen mit dem Wärmeträgermedium (Asche) zugegeben wird bzw. daß der Katalysator zusammen mit dem Wärmeträgermedium (Asche) wirksam wird. Beispielsweise kann der Katalysator im oberen Bereich des Pyrolysereaktors bzw. Schachtreaktors zugegeben werden. Dies kann zusammen mit der Asche erfolgen. Der Katalysator kann allerdings auch anderweitig zugegeben werden. Ferner kann der Katalysator in einem Crackreaktor vorhanden sein, dem die Asche zugeführt wird.To achieve this, the process is preferably carried out in such a way that the catalyst is added together with the heat transfer medium (ash) or that the catalyst is effective together with the heat transfer medium (ash). For example, the catalyst can be added at the top of the pyrolysis reactor or shaft reactor. This can be done together with the ashes. However, the catalyst can also be added otherwise. Further, the catalyst may be present in a cracking reactor to which the ash is fed.

Es ist möglich, einen permanenten Katalysator, beispielsweise Metalloxid, zu verwenden. Bei Einsatz eines permanenten Katalysators ergibt sich ein Kreislauf durch den Verbrennungsreaktor bzw. Wirbelschichtreaktor, wobei in der Feuerung die thermische Abreinigung des Katalysators stattfindet. Es kann allerdings auch ein verlorener Katalysator, beispielsweise Koks oder Kohle, verwendet werden.It is possible to use a permanent catalyst, for example metal oxide. When using a permanent catalyst, a cycle results through the combustion reactor or fluidized bed reactor, wherein takes place in the furnace, the thermal cleaning of the catalyst. However, it is also possible to use a lost catalyst, for example coke or coal.

Die erfindungsgemäße Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, die insbesondere zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist, umfaßt einen Pyrolysereaktor, vorzugsweise einen Schachtreaktor, dem die organischen Stoffe bzw. das Stoffgemisch, das organische Bestandteile enthält, vorzugsweise Trockenstabilat ® und ein Wärmeträgermedium zuführbar sind, einen Verbrennungsreaktor, vorzugsweise einen Wirbelschichtreaktor, zum Verbrennen des Pyrolysekokses aus dem Pyrolysereaktor bzw. Schachtreaktor und zum Erzeugen des Wärmeträgermediums, wobei als Wärmeträgermedium vorzugsweise die Asche aus dem Verbrennungsreaktor verwendet wird, und einen Crackreaktor zum Reinigen bzw. Cracken des durch die Pyrolyse erzeugten Rohgases bzw. dessen kondensierbarer Bestandteile, in dem vorzugsweise ein Katalysator vorgesehen ist.The inventive apparatus for pyrolysis and gasification of substance mixtures containing organic constituents, which is particularly suitable for performing the method according to the invention, comprises a pyrolysis reactor, preferably a shaft reactor, the organic substances or the substance mixture containing organic constituents, preferably Stabilat ® and a heat transfer medium can be supplied, a combustion reactor, preferably a fluidized bed reactor, for burning the pyrolysis coke from the pyrolysis reactor or shaft reactor and for producing the heat transfer medium, wherein preferably the ash from the combustion reactor is used as the heat transfer medium, and a cracking reactor for cleaning or cracking produced by the pyrolysis crude gas or its condensable constituents, in which a catalyst is preferably provided.

Gemäß der Erfindung ist ein fluidisierter Siphon vorgesehen, dem überhitzter Wasserdampf als Fluidisierungsmittel zuführbar ist. Der fluidisierte Siphon kann aus einem Fallrohr und einem Behälter mit Überlauf bestehen. In diesem Fall wird das Wärmeträgermedium bzw. die heiße Asche im Fallrohr aufgefangen. Sie bildet dort ein Wanderbett aus und rutscht in den Behälter. Der Behälter kann über einen am Behälterboden befindlichen Düsenboden mit überhitztem Wasserdampf angeströmt werden, so daß eine Fluidisierung der aus dem Fallrohr nachrutschenden Asche erreicht wird und die Asche aus dem Überlauf des Behälters abgezogen werden kann. Durch den Druckverlust des Wanderbetts im Fallrohr wird die gewünschte Dichtungsfunktion erreicht, also die Abdichtung gegenüber Gasen (Pyrolysegase aus dem oder den Pyrolysereaktoren, die nicht in den Wirbelschichtofen gelangen dürfen, und Rauchgase aus dem Wirbelschichtofen, die nicht in den Pyrolysereaktor gelangen dürfen). Durch die Fluidisierung des Siphons wird die Förderung des heißen Mediums (Wärmeträgermedium, heiße Asche) in einen nachfolgenden Reaktor (Pyrolysereaktor/Crackreaktor) erreicht. Ein kleiner Teil des Wasserdampfs kann durch das Wanderbett in den Verbrennungsreaktor bzw. Wirbelschichtofen dringen und somit als Sperrgas wirken.According to the invention, a fluidized siphon is provided to which superheated steam as fluidizing agent can be supplied. The fluidized siphon may consist of a downcomer and a container with overflow. In this case, the heat transfer medium or the hot ash is collected in the downpipe. She trains a moving bed there and slips into the container. The container can be flown over a nozzle bottom located at the bottom of the nozzle with superheated steam, so that a fluidization of slipping from the downpipe ash is achieved and the ash can be removed from the overflow of the container. Due to the pressure loss of the moving bed in the downpipe, the desired sealing function is achieved, ie the sealing against gases (pyrolysis gases from the pyrolysis or the pyrolysis not allowed to enter the fluidized bed furnace, and flue gases from the fluidized bed furnace, which may not enter the pyrolysis). By the fluidization of the siphon, the promotion of the hot medium (heat transfer medium, hot ash) in a subsequent reactor (pyrolysis reactor / cracking reactor) is achieved. A small part of the water vapor can penetrate through the moving bed in the combustion reactor or fluidized bed furnace and thus act as a barrier gas.

Vorteilhafte Weiterbildungen sind in den weiteren Unteransprüchen beschrieben.Advantageous developments are described in the further subclaims.

Der fluidisierte Siphon umfaßt ein Fallrohr.The fluidized siphon comprises a downcomer.

In dem Fallrohr ist ein Wanderbett vorgesehen. Das Fallrohr ist derart ausgestaltet, daß darin ein Wanderbett ausbildbar ist. Vorzugsweise werden Auslegungsparameter und/oder Betriebsparameter derart beeinflußt, daß sich in dem Fallrohr ein Wanderbett ausbildet.In the downpipe, a moving bed is provided. The downpipe is designed such that a moving bed can be formed therein. Preferably, design parameters and / or operating parameters are influenced in such a way that a moving bed is formed in the downpipe.

Das Fallrohr bzw. das Wanderbett ist von Wasserdampf durchströmbar. Der Wasserdampf wirkt als Sperrgas. Die Auslegungsparameter und/oder Betriebsparameter werden vorzugsweise derart beeinflußt, daß das Fallrohr bzw. das Wanderbett von Wasserdampf als Sperrgas durchströmt wird.The downpipe or the moving bed can be traversed by water vapor. The water vapor acts as a barrier gas. The design parameters and / or operating parameters are preferably influenced in such a way that water flows through the downpipe or the moving bed as sealing gas.

Durch die Erfindung werden ein Verfahren und eine Vorrichtung geschaffen, durch die aus einem Brennstoff mit einem bestimmten Aschegehalt und hohem flüchtigen Gehalt ein Reingas erzeugt werden kann, das sowohl zur Verwendung in Gasturbinenprozessen und Verbrennungsmotoren als auch zur stofflichen Verwertung geeignet ist, daß also sehr hochwertig ist. Dabei wird die Zielsetzung erreicht, daß kein technischer Sauerstoff verwendet werden muß und daß das Pyrolysegas nicht mit inerten Gasen in Kontakt kommt. Die Erfindung ist insbesondere für die Verarbeitung von Trockenstabilat ® geeignet. Dabei kann davon ausgegangen werden, daß der Feinanteil des Trockenstabilats ® einerseits überdurchschnittlich viele Schadstoffe und andererseits einen hohen Inertanteil (ca. 50 Gew.-%) enthält, der Beitrag des Feinanteils zu einem hochwertigen Gas also gering und die negativen Auswirkungen auf den Aufwand der Pyrolysegas-Reinigung verhältnismäßig hoch sind. Der Wärmeträger wird aus dem Pyrolysekoks auf dem Wege der Verbrennung erzeugt. Dabei durchläuft das gesamte Einsatzmaterial (organische Stoffe, insbesondere Trockenstabilat ®) mit dem Feinanteil die Pyrolyse und belastet die Gasreinigung. Vorzugsweise wird der Feinanteil direkt der Verbrennung zugeführt; in dem Verbrennungsreaktor wird der Wärmeträger aus diesem Feinanteil und dem Pyrolysekoks erzeugt. Die flüchtigen Schadstoffe des Feinanteils können dadurch in der Verbrennung ausgeschleust und in der Rauchgasreinigung abgeschieden werden. Dadurch wird ausgeschlossen, daß Schadstoffe aus dem Feinanteil in das Pyrolysegas gelangen und die Gasreinigung unnötig aufwendig und teuer werden lassen.By the invention, a method and an apparatus are provided by which a pure gas can be produced from a fuel with a certain ash content and high volatile content, which is suitable both for use in gas turbine processes and internal combustion engines as well as for recycling, so that very high quality is. The objective is achieved that no technical oxygen must be used and that the pyrolysis gas does not come into contact with inert gases. The invention is particularly suitable for the processing of Trockenstabilat ® . It can be assumed that the fine fraction of Trockenstabilats ® on the one hand, above average levels of pollutants and on the other hand, a high inert content (about 50 wt .-%), the contribution of fine fraction to a high-quality gas so low and the negative impact on the effort of Pyrolysis gas cleaning are relatively high. The heat transfer medium is generated from the pyrolysis coke by way of combustion. The entire feed (organic substances, especially Trockenstabilat ® ) passes through the pyrolysis with the fines and pollutes the gas cleaning. Preferably, the fine fraction is fed directly to the combustion; In the combustion reactor, the heat transfer medium is generated from this fine fraction and the pyrolysis coke. The volatile pollutants of the fine fraction can thereby be discharged in the combustion and separated in the flue gas cleaning. This prevents that pollutants from the fines get into the pyrolysis and gas purification can be unnecessarily complicated and expensive.

Das bei der Durchführung der Erfindung entstehende Pyrolysegas bzw. Synthesegas kann zur stofflichen und energetischen Verwendung eingesetzt werden, insbesondere zur Stromerzeugung, zur Wärmeerzeugung, zur Erzeugung von Methanol oder zur Erzeugung von Wasserstoff. Es ist möglich, ein wasserstoffreiches Gas zu erzeugen. Die Erfindung kann zur Stromerzeugung genutzt werden, insbesondere in einer Gasturbine. Das Gasturbinenabgas kann als Verbrennungs- und Fluidisierungsluft in der Wirbelschicht des Wirbelschichtreaktors verwendet werden. Die Anlage muß dann allerdings unter Druck betrieben werden oder es ist ein Brenngasverdichter vorzusehen. Die Feuerung in dem Verbrennungsreaktor bzw. Wirbelschichtreaktor liefert Wärme für den Pyrolysereaktor. Durch die Wirbelschicht wird ferner prozeßintern das Wärmeträgermedium, nämlich Asche, erzeugt. Sofern Koks bzw. Pyrolysekoks als Katalysatormaterial eingesetzt wird, kann dieser ebenfalls prozeßintern durch gestufte Luftzuführung in der Wirbelschicht erzeugt werden. Eine Verfahrensführung mit unterstöchiometrischer Verbrennung ist möglich. Es ist ferner möglich, die Nachbehandlung der Pyrolysegase direkt im Entgaser (Pyrolysereaktor) vorzunehmen; das Entgasen und das Cracken können also in einem Reaktor erfolgen.The resulting in the practice of the invention pyrolysis gas or synthesis gas can be used for material and energetic use, in particular for power generation, heat generation, for the production of methanol or for the production of hydrogen. It is possible to generate a hydrogen-rich gas. The invention can be used to generate electricity, in particular in a gas turbine. The gas turbine exhaust gas may be used as combustion and fluidizing air in the fluidized bed of the fluidized bed reactor. However, the system must then be operated under pressure or it is a fuel gas compressor provided. The furnace in the combustion reactor delivers fluid to the pyrolysis reactor. Due to the fluidized bed, the heat transfer medium, namely ash, is further generated in-process. If coke or pyrolysis coke is used as the catalyst material, this can also be generated within the process by means of stepped air supply in the fluidized bed. A process with substoichiometric combustion is possible. It is also possible to carry out the aftertreatment of the pyrolysis gases directly in the degasser (pyrolysis reactor); Degassing and cracking can therefore take place in a reactor.

Ausführungsbeispiele der Erfindung werden nachstehend anhand der beigefügten Zeichnung im einzelnen erläutert. In der Zeichnung zeigt

Fig 1
eine Vorrichtung zur Durchführung eines Verfahrens zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten, in einer schematischen Darstellung,
Fig. 2
die Vorrichtung gemäß Fig. 1, wobei der Schachtreaktor und der Crackreaktor als ein Bauteil "Pyrolyse-Crack-Reaktor" ausgeführt sind,
Fig. 3
eine weitere Ausführungsform, bei der der Katalysator zusammen mit dem Wärmeträgermedium zugegeben wird bzw. wirksam wird und
Fig. 4
einen fluidisierten Siphon, dem überhitzter Wasserdampf als Fluidisierungsmittel zuführbar ist, in einer schematischen Darstellung.
Embodiments of the invention are explained below with reference to the accompanying drawings in detail. In the drawing shows
Fig. 1
a device for carrying out a method for the pyrolysis and gasification of mixtures containing organic constituents, in a schematic representation,
Fig. 2
the device according to Fig. 1 wherein the shaft reactor and the cracking reactor are designed as a component "pyrolysis-cracking reactor",
Fig. 3
a further embodiment in which the catalyst is added or becomes effective together with the heat transfer medium and
Fig. 4
a fluidized siphon, the superheated steam can be supplied as a fluidizing agent, in a schematic representation.

Die in Fig. 1 gezeigte Grundkonfiguration zur Durchführung des Grundprozesses besteht aus einem Schachtreaktor 1, einem Wirbelschichtreaktor 2 und einem Crackreaktor 3. Dem Schachtreaktor 1 werden die organischen Stoffe, vorzugsweise Trockenstabilat ® 4, und das Wärmeträgermedium, vorzugsweise Asche 5, aus dem Wirbelschichtreaktor 2 zugeführt. Das in den Schachtreaktor 1 eingebrachte Trockenstabilat 4 wird dort mit der heißen Asche 5 aus dem Wirbelschichtreaktor 2 vermischt. Das Trockenstabilat erhitzt sich und entgast (pyrolysiert). Es entsteht ein Gas, nämlich das Rohgas 6, sowie ein Feststoff 7, nämlich Pyrolysekoks und Asche. Das Rohgas 6 verläßt den Schachtreaktor 1 am oberen Ende, der Feststoff 7 verläßt den Schachtreaktor 1 am unteren Ende. Rohgas 6 und Feststoff 7 werden dem Crackreaktor 3 zugeführt. Da der Feststoff 7, nämlich der darin enthaltene Pyrolysekoks, als Katalysator für die Gasreinigung wirkt, wird das Rohgas 6 im Crack-reaktor 3 durch den heißen Feststoff geleitet. Ferner wird hier Wasserdampf 8 zugegeben. Als Ergebnis wird ein katalytisch gereinigtes Gas 9 (Synthesegas, Brenngas) erhalten. Der Feststoff 10 aus dem Crackreaktor 3 (Pyrolysekoks und Asche) wird in den Wirbelschichtreaktor 2 eingebracht und dort mit Luft 11 verbrannt. Das Abgas 12 aus der Wirbelschicht des Wirbelschichtreaktors 2 wird gereinigt. Aus dem Wirbelschichtreaktor 2 kann ferner noch nicht benötigte Asche 13 abgezogen werden.In the Fig. 1 The basic configuration shown for carrying out the basic process consists of a shaft reactor 1, a fluidized bed reactor 2 and a cracking reactor 3. The shaft reactor 1, the organic matter, preferably Trockenstabilat ® 4, and the heat transfer medium, preferably ash 5, from fed to the fluidized bed reactor 2. The dry stabilizer 4 introduced into the shaft reactor 1 is mixed there with the hot ash 5 from the fluidized-bed reactor 2. The dry stabilate heats up and degasifies (pyrolyzed). The result is a gas, namely the raw gas 6, and a solid 7, namely pyrolysis and ash. The crude gas 6 leaves the shaft reactor 1 at the top, the solid 7 leaves the shaft reactor 1 at the bottom. Crude gas 6 and solid 7 are fed to the cracking reactor 3. Since the solid 7, namely the pyrolysis coke contained therein, acts as a catalyst for the gas purification, the crude gas 6 is passed in the cracking reactor 3 through the hot solid. Further, water vapor 8 is added here. As a result, a catalytically purified gas 9 (synthesis gas, fuel gas) is obtained. The solid 10 from the cracking reactor 3 (pyrolysis coke and ash) is introduced into the fluidized bed reactor 2 and burned there with air 11. The exhaust gas 12 from the fluidized bed of the fluidized bed reactor 2 is cleaned. From the fluidized bed reactor 2 also not required ash 13 can be deducted.

Bei der in Fig. 2 gezeigten Ausführungsform werden der Schachtreaktor und der Crackreaktor als ein Bauteil ausgeführt, nämlich als Pyrolyse-Crack-Reaktor 30. Dabei wird eine Zone, nämlich die untere Zone, des Pyrolysereaktors 1 als Katalysator verwendet.At the in Fig. 2 In the embodiment shown, the shaft reactor and the cracking reactor are designed as one component, namely as a pyrolysis-cracking reactor 30. Here, one zone, namely the lower zone, of the pyrolysis reactor 1 is used as the catalyst.

Bei den in den Figuren 1 und 2 gezeigten Ausführungsformen wird die katalytische Wirkung des im Schachtreaktor 1 entstehenden Pyrolysekokses genutzt. Bei diesen Ausführungsformen ist der Crackreaktor 3 in den Feststoffstrom vom Schachtreaktor 1 in den Wirbelschichtreaktor 2 integriert. Bei Berücksichtigung des Temperaturniveaus wäre allerdings eine Gasbehandlung in demjenigen Bereich des Schachtreaktors 1 wünschenswert, in dem die Asche 5 aus dem Wirbelschichtreaktor 2 zugeführt wird, da dort der Feststoff (die Asche) das höchste Temperaturniveau hat.In the in the FIGS. 1 and 2 In the embodiments shown, the catalytic effect of the pyrolysis coke produced in the shaft reactor 1 is utilized. In these embodiments, the cracking reactor 3 is integrated into the solids flow from the shaft reactor 1 into the fluidized bed reactor 2. In consideration of the temperature level, however, a gas treatment in that area of the shaft reactor 1 would be desirable, in which the ash 5 is supplied from the fluidized bed reactor 2, since there the solid (the ash) has the highest temperature level.

Um dies zu realisieren kann die Verfahrensführung nach Fig. 3 vorgesehen werden. Hier wird ein Katalysator 40 im oberen Bereich des Schachtreaktors 1 zugegeben. Der Schachtreaktor und der Crackreaktor sind auch hier als ein Bauteil ausgeführt, nämlich als Pyrolyse-Crack-Reaktor 30'. Die Zugabe des Katalysators 40 im oberen Bereich des Schachtreaktors 1 muß allerdings nicht zwangsläufig mit der Asche 5 aus dem Wirbelschichtreaktor 2 erfolgen. Der Katalysator kann auch auf andere Weise zugegeben werden. Ferner kann der Katalysator in dem oberen Bereich des Schachtreaktors 1 vorhanden sein, also in dem mit 41 bezeichneten Bereich des Pyrolyse-Crack-Reaktors 30'. Bei der Ausführungsform nach Fig. 10 kann ein permanenter Katalysator wie beispielsweise Metalloxid verwendet werden. Es kann allerdings auch ein verlorener Katalysator wie beispielsweise Koks oder Kohle verwendet werden. Bei Einsatz eines permanenten Katalysators ergibt sich ein Kreislauf durch den Wirbelschichtreaktor 2, wobei in der Feuerung des Wirbelschichtreaktors 2 die thermische Abreinigung des Katalysators stattfindet. Der Crackreaktor wird automatisch in den Schachtreaktor 1 integriert, so daß dieser zum Pyrolyse-Crack-Reaktor 30' wird.To realize this, the process can be after Fig. 3 be provided. Here, a catalyst 40 is added in the upper region of the shaft reactor 1. The shaft reactor and the cracking reactor are also designed here as one component, namely as pyrolysis cracking reactor 30 '. However, the addition of the catalyst 40 in the upper region of the shaft reactor 1 does not necessarily have to take place with the ash 5 from the fluidized-bed reactor 2. The catalyst can also be added in other ways. Furthermore, the catalyst can be present in the upper region of the shaft reactor 1, that is to say in the region of the pyrolysis cracking reactor 30 'designated 41. In the embodiment of Fig. 10, a permanent catalyst such as metal oxide may be used. However, a lost catalyst such as coke or coal may also be used. When using a permanent catalyst, a cycle through the fluidized bed reactor 2 results, wherein takes place in the furnace of the fluidized bed reactor 2, the thermal cleaning of the catalyst. The cracking reactor is automatically integrated into the shaft reactor 1 so that it becomes the pyrolysis-cracking reactor 30 '.

Die Figur 4 zeigt einen bei den Ausführungsformen gemäß Figuren 1 bis 3 anwendbaren Anlagenteil, durch den heiße Asche oder ein sonstiges Wirbelbettmaterial aus dem Wirbelschichtreaktor bzw. Wirbelschichtofen 2 zum Pyrolysereaktor bzw. Schachtreaktor 1 bzw. zum Pyrolyse-Crack-Reaktor 30 bzw. 30' gefördert werden kann. In dem Wirbelschichtofen 2 befindet sich ein Wirbelbett 41', welches aus Wirbelbettmaterial besteht, nämlich heißer Asche. Der Boden des Wirbelschichtofens 2 ist als Düsenboden 42 ausgebildet, durch den dem Wirbelschichtofen 2 Fluidisierungsluft 43 zugeführt wird.The FIG. 4 shows one in the embodiments according to FIGS. 1 to 3 Applicable plant part, can be promoted by the hot ash or other fluidized bed material from the fluidized bed reactor or fluidized bed furnace 2 to the pyrolysis reactor or shaft reactor 1 and the pyrolysis cracking reactor 30 and 30 '. In the fluidized bed furnace 2 is a fluidized bed 41 ', which consists of fluidized bed material, namely hot ash. The bottom of the fluidized bed furnace 2 is formed as a nozzle bottom 42, through which the fluidized bed furnace 2 fluidizing air 43 is supplied.

Die heiße Asche aus dem Wirbelbett 41' wird einem Crack-Reaktor/Pyrolysereaktor/Schachtreaktor/Pyrolyse-Crack-Reaktor 1, 3, 30, 31, 30', 41' zugeführt, die in der Fig. 4 nicht dargestellt sind und die in Materialflußrichtung hinter dem Pfeil 44 liegen.The hot ash from the fluidized bed 41 'is fed to a cracking reactor / pyrolysis reactor / shaft reactor / pyrolysis cracking reactor 1, 3, 30, 31, 30', 41 ', which in the Fig. 4 are not shown and lie in the direction of material flow behind the arrow 44.

Der in der Fig. 4 dargestellte fluidisierte Siphon 45 umfaßt ein Fallrohr 46, das auch als Fallschacht ausgebildet sein kann, und einen Behälter 47 mit Überlauf. Die heiße Asche aus dem Wirbelbett 41' gelangt durch den in dem Wirbelschichtofen 2 ausgebildeten Ascheüberlauf 48 in das Fallrohr 46, wo sie aufgefangen wird. Diese heiße Asche bildet in dem Fallrohr 46 ein Wanderbett aus und rutscht in den Behälter 47. Der Boden des Behälters 47 ist als Düsenboden 49 ausgebildet, durch den dem Behälter 47 überhitzter Wasserdampf 50 zugeführt wird.The Indian Fig. 4 illustrated fluidized siphon 45 includes a downpipe 46, which may also be formed as a chute, and a container 47 with overflow. The hot ash from the fluidized bed 41 'passes through the in the fluidized bed furnace second trained ash spill 48 into the downpipe 46, where it is collected. This hot ash forms in the downpipe 46 from a moving bed and slips into the container 47. The bottom of the container 47 is formed as a nozzle bottom 49 through which the container 47 superheated steam 50 is supplied.

Mit Hilfe des überhitzten Wasserdampfs 50 wird der Behälter 47 über den am Behälterboden befindlichen Düsenboden 49 angeströmt, so daß eine Fluidisierung der aus dem Fallrohr 46 nachrutschenden Asche erreicht wird und die Asche aus dem Überlauf des Behälters 47 in das weitere Fallrohr 51 abgezogen werden kann. Sie wird von dem weiteren Fallrohr 51 in Richtung des Pfeils 44 zu dem Schachtreaktor 1/Pyrolyse-Crack-Reaktor 30/Pyrolyse-Crack-Reaktor 30' geführt.With the aid of the superheated steam 50, the container 47 is flowed over the bottom of the nozzle 49 located on the bottom of the container, so that a fluidization of the ash slipping out of the downpipe 46 is achieved and the ash from the overflow of the container 47 can be withdrawn into the further downpipe 51. It is guided by the further downpipe 51 in the direction of the arrow 44 to the shaft reactor 1 / pyrolysis-cracking reactor 30 / pyrolysis-cracking reactor 30 '.

Durch den Druckverlust des Festbetts im Fallrohr 46 wird die gewünschte Dichtungsfunktion erreicht. Der fluidisierte Siphon gemäß Fig. 4 erfüllt die Funktionen der Förderung eines Feststoffs und der Abdichtung gegenüber Gasen. Durch die Fluidisierung des Siphons wird die Förderung des heißen Mediums in einen nachfolgenden Reaktor 1, 30, 30' erreicht.Due to the pressure loss of the fixed bed in the downpipe 46, the desired sealing function is achieved. The fluidized siphon according to Fig. 4 performs the functions of conveying a solid and sealing against gases. By the fluidization of the siphon, the promotion of the hot medium in a subsequent reactor 1, 30, 30 'is achieved.

Das Fallrohr 46 ermöglicht in Verbindung mit dem fluidisierten Siphon 45 einen Trennung von oxidierender Atmosphäre im Verbrennungsreaktor bzw. Wirbelschichtofen und reduzierender Atmosphäre im Crackreaktor und im Pyrolysereaktor. Ein definierter, sehr kleiner Dampfstrom dringt durch das Wanderbett im Fallrohr 46 in den Verbrennungsreaktor bzw. Wirbelschichtofen und wirkt somit als Sperrgas. Dieser Sperrdampfstrom kann gezielt eingestellt werden, indem permanent ein Druckabfall über das Wanderbett im Fallrohr 46 eingestellt wird. Dieser Druckabfall kann durch die Höhe des Wanderbetts (Auslegungsparameter) und durch den Dampf-Vordruck und den Unterdruck im Verbrennungsreaktor bzw. Wirbelschichtofen (Betriebsparameter) beeinflußt werden. Eine Beeinflußung durch andere und/oder weitere Auslegungsparameter und/oder Betriebsparameter ist möglich. Der Hauptstrom des Wasserdampfs gelangt entweder zusammen mit der Asche oder zusätzlich über einen Bypass in den Crackreaktor und sperrt somit den Siphon gegen Rohgas aus dem Crackreaktor.The downcomer 46, in conjunction with the fluidized siphon 45, permits separation of oxidizing atmosphere in the combustion reactor or fluidized bed furnace and reducing atmosphere in the cracking reactor and in the pyrolysis reactor. A defined, very small vapor stream penetrates through the moving bed in the downpipe 46 in the combustion reactor or fluidized bed furnace and thus acts as a sealing gas. This sealing steam flow can be adjusted in a targeted manner by permanently setting a pressure drop across the moving bed in the downpipe 46. This pressure drop can be influenced by the height of the moving bed (design parameters) and by the steam pre-pressure and the negative pressure in the combustion reactor or fluidized bed furnace (operating parameters). Influencing by other and / or further design parameters and / or operating parameters is possible. The main stream of water vapor passes either together with the ash or in addition via a bypass in the cracking reactor and thus blocks the siphon against raw gas from the cracking reactor.

Bei dem Verfahren nach der deutschen Patentanmeldung 100 33 453 . 9 kann im Pyrolysereaktor zur Durchführung der erwünschten Crackreaktionen überhitzter Wasserdampf mit 1,0 bis 1,5 bar Vordruck und rund 800°C bis 850°C zur Anwendung kommen. Somit ist es möglich, den überhitzten Wasserdampf 50 zunächst als Fluidisierungsmittel einzusetzen und denselben Dampf danach im Crackreaktor/Pyrolysereaktor 1, 3, 30, 31, 30', 41 für die Crackreaktionen einzusetzen. Die Menge des überhitzten Wasserdampfs aus der Fluidisierung des Siphons ist dabei mit rund 0,07 bis 0,12 kg Dampf pro kg Trockenstabilat® wesentlich geringer als die insgesamt benötigte Dampfmenge von rund 0,3 kg Dampf pro kg Trockenstabilat ® und deshalb in keiner Weise schädlich für den Prozeß sondern sogar vorteilhaft.In the method according to the German patent application 100 33 453 , 9 can be used in the pyrolysis reactor for carrying out the desired cracking reactions superheated steam with 1.0 to 1.5 bar pre-pressure and around 800 ° C to 850 ° C used. Thus, it is possible to first use the superheated steam 50 as a fluidizing agent and then use the same steam in the cracking reactor / pyrolysis reactor 1, 3, 30, 31, 30 ', 41 for the cracking reactions. The amount of superheated steam from the fluidization of the siphon is about 0.07 to 0.12 kg steam per kg Trockenstabilat ® much lower than the total required amount of steam of about 0.3 kg steam per kg Trockenstabilat ® and therefore in no way harmful to the process but even beneficial.

Die Energie für die Bereitstellung des Dampfes bei 1,5 bar und 800 bis 850°C kann aus der Abkühlung der Rauchgase aus der Verbrennung des Pyrolysekokses gewonnen werden. Somit kann die Energie für die Bereitstellung des Fluidisierungsmittels prozeßintern erzeugt bzw. verwendet werden.The energy for the provision of the steam at 1.5 bar and 800 to 850 ° C can be obtained from the cooling of the flue gases from the combustion of the pyrolysis coke. Thus, the energy for providing the fluidizing agent can be generated or used in-process.

Überraschend hat sich gezeigt, daß der als Fluidisierungsmittel zugemischte überhitzte Wasserdampf nicht zu einer Heizwertminderung des im weiteren Prozeßverlauf damit vermischten Synthesegases führt. Im Zusammenhang mit dem Verfahren nach der deutschen Patentanmeldung 100 33 453.9 ist dieser besondere Vorteil erreichbar, weil durch die Zufuhr von überhitztem Wasserdampf längerkettige Kohlenwasserstoffe im Pyrolysegas gecrackt werden und somit der Heizwert des Synthesegases erhöht wird. Die gewünschten Crackreaktionen sind somit eine Besonderheit, die es besonders sinnvoll macht, überhitzten Wasserdampf als Fluidisierungsmittel zu verwenden, ohne daß eine Verschlechterung des Synthesegases erfolgt und ohne daß der Wasserdampf bei der Abkühlung des Synthesegases als zusätzliches Kondensat anfällt.Surprisingly, it has been found that the superheated steam added as fluidizing agent does not lead to a reduction in the calorific value of the synthesis gas mixed with it in the further course of the process. In connection with the method according to the German patent application 100 33 453.9 This particular advantage is achievable because of the supply of superheated steam longer-chain hydrocarbons are cracked in the pyrolysis gas and thus the calorific value of the synthesis gas is increased. The desired cracking reactions are thus a peculiarity that makes it particularly useful to use superheated steam as a fluidizing agent, without any deterioration of the synthesis gas occurs and without the water vapor obtained during the cooling of the synthesis gas as additional condensate.

Claims (23)

  1. A method for the pyrolysis and gasification of substance mixtures containing organic constituents,
    wherein the organic substances (4) or the substance mixture containing organic constituents are brought into contact with a heat transfer medium in a pyrolysis reactor (1) and are pyrolised;
    wherein the pyrolysis coke (7) created by the pyrolysis is combusted in a combustion reactor (2) with an air supply (11);
    wherein the condensable constituents of the raw gas (6) produced by pyrolysis are cracked in a crack reactor (3);
    and wherein the heat transfer medium is conveyed as a fluidising agent by means of overheated steam (50) in a fluidised syphon,
    characterised in that
    the fluidised syphon includes a down-pipe (46) and a container (47) with overflow, with the base of the container (47) being formed as a nozzle base (49) through which overheated steam (50) is supplied to the container (47);
    in that the main flow of the steam (50) enters into the crack reactor (3) either together with the ash or additionally via a bypass; and in that a defined barrier vapour flow passes through the moving bed in the down-pipe (46).
  2. A method in accordance with claim 1, characterised in that the steam (50) is heated with energy from the combustion of the pyrolysis coke and/or with energy from the raw gas (6).
  3. A method in accordance with claim 1 or claim 2, characterised in that the steam (50) is heated with energy from the flue gases.
  4. A method in accordance with one of the preceding claims, characterised in that the steam (50) is used for the fluidisation in the crack reactor (1, 3, 30, 31, 30', 41).
  5. A method in accordance with one of the preceding claims, characterised in that the heat transfer medium comprises the ash (5) of the combustion reactor (2).
  6. A method in accordance with one of the preceding claims, characterised in that a catalyst is provided in the crack reactor (3).
  7. A method in accordance with one of the preceding claims, characterised in that the cracking is carried out while adding water vapour (8).
  8. A method in accordance with one of the preceding claims, characterised in that the pyrolysis coke (7) from the pyrolysis reactor (1) and/or the ash from the combustion reactor (2) is used as the catalyst for the raw gas (6).
  9. A method in accordance with one of the preceding claims, characterised in that a fine fraction is separated from the organic substances (4) before pyrolysis.
  10. A method in accordance with one of the preceding claims, characterised in that a synthesis gas is produced by the purification of the raw gas.
  11. A method in accordance with claim 10, characterised in that hydrogen is separated from the synthesis gas.
  12. A method in accordance with one of the preceding claims, characterised in that a zone of the pyrolysis reactor (1) is used as the crack reactor.
  13. A method in accordance with one of the preceding claims, characterised in that the catalyst is added or becomes active together with the heat transfer medium.
  14. A method in accordance with claim 13, characterised in that the catalyst (40) is added to the heat transfer medium (5).
  15. An apparatus for the pyrolysis and gasification of substance mixtures containing organic constituents, in particular for carrying out the method in accordance with one of the claims 1 to 14, comprising
    a pyrolysis reactor (1), preferably a shaft reactor, to which the organic substances (4) or the substance mixture containing organic constituents and a heat transfer medium (5) can be supplied;
    a combustion reactor (2), preferably a fluidized bed reactor, for combusting the pyrolysis coke (7) from the pyrolysis reactor (1) and for generating the heat transfer medium (5) for the pyrolysis reactor (1);
    a crack reactor (3) for cracking the condensable constituents of the raw gas (6) generated by the pyrolysis;
    and a fluidised syphon (45) to which overheated water vapour (50) can be supplied as the fluidising agent,
    characterised in that
    the fluidised syphon includes a down-pipe (46) and a container (47) with overflow:
    a fluidised bed can be formed in the down-pipe (46);
    the hot ash or the other fluidised bed material from the down-pipe (46) can be supplied to the container (47);
    the container (47) has an overflow from which the hot ash or the other fluidised bed material can be drawn off into a further down-pipe (51);
    and in that the base of the container (47) is formed as a nozzle base (49) through which overheated water vapour (50) is supplied to the container (47).
  16. An apparatus in accordance with claim 15, characterised in that a moving bed is provided or can be formed in the down-pipe (46).
  17. An apparatus in accordance with claim 15 or claim 16, characterised in that a catalyst is provided in the crack reactor (3).
  18. An apparatus in accordance with one of the claims 15 to 17, characterised by a quench for cooling and/or purifying the synthesis gas (9).
  19. An apparatus in accordance with claim 18, characterised by a dryer for cooling and/or purifying the waste water from the quench.
  20. An apparatus in accordance with one of the claims 15 to 19, characterised by a hydrogen separation for separating hydrogen from the synthesis gas from the crack reactor (3).
  21. An apparatus in accordance with one of the claims 15 to 20, characterised in that the pyrolysis reactor (1) or the shaft reactor and the crack reactor (3) are configured as one element, preferably as a pyrolysis crack reactor (30, 30').
  22. An apparatus in accordance with one of the claims 15 to 21, characterised by a further reactor having a catalyst bed.
  23. An apparatus in accordance with claim 22, characterised by a second further reactor having a catalyst bed.
EP02754763A 2001-06-27 2002-06-26 Method and device for the pyrolysis and gasification of material mixtures containing organic components Expired - Lifetime EP1399527B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10131008 2001-06-27
DE10131008 2001-06-27
DE10228100 2002-06-24
DE10228100A DE10228100B4 (en) 2001-06-27 2002-06-24 Process and apparatus for pyrolysis and gasification of mixtures containing organic components
PCT/EP2002/007078 WO2003002691A1 (en) 2001-06-27 2002-06-26 Method and device for the pyrolysis and gasification of material mixtures containing organic components

Publications (2)

Publication Number Publication Date
EP1399527A2 EP1399527A2 (en) 2004-03-24
EP1399527B1 true EP1399527B1 (en) 2013-02-20

Family

ID=26009592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754763A Expired - Lifetime EP1399527B1 (en) 2001-06-27 2002-06-26 Method and device for the pyrolysis and gasification of material mixtures containing organic components

Country Status (2)

Country Link
EP (1) EP1399527B1 (en)
WO (1) WO2003002691A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058347A1 (en) * 2006-11-17 2008-05-22 Millennium Synfuels, Llc Manufacture of fuels
IT1398597B1 (en) * 2009-04-29 2013-03-08 Protodesign Srl HYBRID PYROLYSIS PROCESS AND GASIFICATION FOR THE CONVERSION OF A GENERIC REFUSAL IN A GASEOUS FUEL (A PARTICULAR FUEL FROM REJECT - C.D.R.) AT LOW ENVIRONMENTAL IMPACT.
CN102838453B (en) * 2012-08-28 2014-08-20 华北电力大学 Method to prepare phenolic organic mixture preparation by means of catalytic pyrolysis of biomass through coke
DE102015108552A1 (en) 2015-02-27 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pyrolysis oil and process for its preparation
DE112017002937A5 (en) * 2016-07-06 2019-08-08 Hans-Jürgen Maaß Process for the parallel production of synthesis gas, carbon and low-emission residual coal from lignite
CN109722311A (en) * 2019-02-20 2019-05-07 程石 A kind of device and method cracking the combustion gas of flammable solid waste with fluid bed heat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448354C3 (en) 1974-10-10 1978-12-21 Bergwerksverband Gmbh, 4300 Essen Fluidized bed reactor for the generation of steam, combustible gases and liquid by-products from coal
GB1484130A (en) 1974-10-25 1977-08-24 Kunii D Pyrolytic process and apparatus for solid waste disposal
DE19629289A1 (en) 1996-07-19 1998-01-22 Umsicht Inst Fuer Umwelt Siche Siphon for conveying fine particulate solid materials
DE19755693C1 (en) * 1997-12-16 1999-07-29 Dmt Gmbh Process for the gasification of organic substances and mixtures of substances
DE19930071C2 (en) * 1999-06-30 2001-09-27 Wolfgang Krumm Method and device for pyrolysis and gasification of organic substances and mixtures

Also Published As

Publication number Publication date
WO2003002691A8 (en) 2003-09-25
WO2003002691A1 (en) 2003-01-09
EP1399527A2 (en) 2004-03-24

Similar Documents

Publication Publication Date Title
EP1299502B1 (en) Method and device for pyrolysis and gasification of substance mixtures containing organic constituents
EP1192234B1 (en) Method and device for pyrolyzing and gasifying organic substances or substance mixtures
DE19945771C1 (en) Process for gasifying organic materials comprises cracking the materials by contacting with a hot heat carrier medium which is removed from a solid carbonaceous residue after leaving the pyrolysis reactor and conveyed to a heating zone
EP1053291B1 (en) Method for gasifying organic substances and substance mixtures
DE102007005799B4 (en) Process for producing a hydrogen-rich product gas
DE102004024672B4 (en) Apparatus and method for producing a tar-free lean gas by gasification of biomass
DE102007062414A1 (en) Autothermic process for the continuous gasification of carbon-rich substances
CH615215A5 (en)
WO1981000112A1 (en) Process and plant for the gazification of solid fuels
EP0600923B1 (en) Process for producing synthetic or fuel gasses from solid or pasty residues and waste or low-grade fuels in a gasifying reactor
DE19925316A1 (en) Process and plant for the autothermal gasification of solid fuels
DE102009047445A1 (en) Plant for producing a product gas from organic feedstocks
DE102007004221A1 (en) Apparatus and method for the thermal conversion of pellets or wood chips
EP1337607B1 (en) Method for the gasification of liquid to pasty organic substances and substance mixtures
EP1399527B1 (en) Method and device for the pyrolysis and gasification of material mixtures containing organic components
DE102008027858A1 (en) Thermal carburetor for producing tar-less gaseous fuel for thermal engine i.e. internal combustion engine, has packing bed in flow connection with part of pyrolysis reactor or with inlet opening of gasification reactor
DE10228100B4 (en) Process and apparatus for pyrolysis and gasification of mixtures containing organic components
DE2825429A1 (en) METHOD OF PYROLYSIS OF MUELL
DE10226862B3 (en) Method and device for generating a fuel gas from biomass
DE112007003339T5 (en) Process and apparatus for the gasification of gasification fuel
EP3214155B1 (en) Process for the production of synthesis gas for running an internal combustion engine.
EP2233551A1 (en) Method and device for introducing gas to organic material
DE4317412C2 (en) Plant for the thermal treatment of carbonaceous material
DE3040227C2 (en) Process for the further processing of pyrolysis gases obtained from waste with a high calorific value by thermal treatment
WO2014012651A1 (en) Counterflow/direct flow gasification of carbon-rich substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031114

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

19U Interruption of proceedings before grant

Effective date: 20050301

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20090504

17Q First examination report despatched

Effective date: 20090320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERHOF VERWALTUNGSGESELLSCHAFT MBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597568

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215709

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HERHOF VERWALTUNGSGESELLSCHAFT MBH

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215709

Country of ref document: DE

Effective date: 20131121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215709

Country of ref document: DE

Effective date: 20140101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130626

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130626

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597568

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130626