EP1388238B1 - System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet - Google Patents

System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet Download PDF

Info

Publication number
EP1388238B1
EP1388238B1 EP01997926A EP01997926A EP1388238B1 EP 1388238 B1 EP1388238 B1 EP 1388238B1 EP 01997926 A EP01997926 A EP 01997926A EP 01997926 A EP01997926 A EP 01997926A EP 1388238 B1 EP1388238 B1 EP 1388238B1
Authority
EP
European Patent Office
Prior art keywords
time
real
data
critical
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01997926A
Other languages
German (de)
French (fr)
Other versions
EP1388238A1 (en
Inventor
Karl-Heinz Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1388238A1 publication Critical patent/EP1388238A1/en
Application granted granted Critical
Publication of EP1388238B1 publication Critical patent/EP1388238B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6445Admission control
    • H04L2012/6448Medium Access Control [MAC]
    • H04L2012/6454Random, e.g. Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6445Admission control
    • H04L2012/6462Movable boundaries in packets or frames

Definitions

  • the invention relates to a system and method for the parallel transmission of real-time critical and non real-time critical data via switchable data networks, in particular Ethernet.
  • Data networks allow communication between several participants through networking, ie connection of the individual participants with each other.
  • Communication means the transmission of data between the participants.
  • the data to be transmitted are sent as data telegrams, ie, the data is packed into several packets and sent in this form over the data network to the appropriate recipient. This is why we also speak of data packets.
  • the term transmission of data is used in this document completely synonymous with the above-mentioned transmission of data telegrams or data packets.
  • the networking itself is achieved, for example, in switchable high-performance data networks, in particular Ethernet, in that at least one coupling unit is connected between two subscribers, which is connected to both subscribers. Each coupling unit can be connected to more than two participants.
  • the coupling unit can also be connected only to another coupling unit or to another subscriber, ie to represent a terminal.
  • Each participant is connected to at least one coupling unit but not directly to another participant.
  • Participants are, for example, computers, programmable logic controllers (PLCs) or other machines that exchange electronic data with other machines, in particular process.
  • PLCs programmable logic controllers
  • a channel access method for radio networks is known, which allow a quasi simultaneous voice and data transmission. It takes into account the different requirements, which provide a voice and data transmission to transmission delay and error rate. Speech data is treated as real-time critical data and other data as non-real-time critical.
  • the known radio data network is constructed between at least two subscribers, in particular a transmitter and a receiver, wherein the data is stored in at least a transmission cycle with adjustable time duration are transmitted.
  • Each transmission cycle is subdivided into at least a first region for transmission of real-time critical data, namely the voice data, and at least a second region for transmission of non-real-time critical data.
  • buffering is allowed, while for real-time critical data, it is not allowed because they need to be transmitted in near-real time in a continuous stream. If the channel capacity is busy, however, it may also happen that voice data, for example in the case of a new connection attempt, is blocked and thus lost.
  • the object of the invention is to provide a system and a method for the transmission of data via switchable data networks, in particular Ethernet, which allows a mixed operation of real-time critical and non real-time critical, in particular inter- or intranet-based data communication in the same data network.
  • This object is achieved by a method for transmitting data via switchable data networks, in particular Ethernet in the field of industrial installations, are transmitted in the real-time critical and non-real-time critical data, the switchable data network between at least two participants, in particular a transmitter and a receiver is constructed wherein the data is transmitted in at least one adjustable-length transmission cycle, each transmission cycle is transmitted in at least a first range for transmission of real-time critical data for real-time control and at least a second area is subdivided for transmission of non-real-time critical data.
  • the invention is based on the finding that an open Internet-based communication is spontaneous communication, ie that both the time of such communication and the amount of data that has to be transferred can not be determined beforehand. As a result, collisions on the transmission lines in bus systems or in the coupling units in switchable high-speed networks, in particular Fast Ethernet or Switched Ethernet, can not be ruled out.
  • a mixed operation of real-time communication with other spontaneous, non-real-time critical communication, in particular Internet communication is desirable. This is made possible by the fact that the real-time communication, which predominantly occurs cyclically in the application areas considered here and can thus be planned in advance, is not, in contrast, unforeseeable Real-time critical communication, especially open, Internet-based communication is strictly separated.
  • each transmission cycle in at least a first range for transmitting real-time critical data for real-time control, such as the designated industrial facilities and at least a second area for transmitting non-real-time critical data, for example, the open, internet capable Communication is divided.
  • a particularly advantageous embodiment of the invention is characterized in that each participant is assigned a coupling unit which is provided for transmitting and / or receiving and / or for forwarding the data to be transmitted.
  • An extremely advantageous embodiment of the invention is characterized in that all participants and switching units of the switchable data network by time synchronization with each other always have a common synchronous time base. This is a prerequisite for a separation of the plannable real-time communication from the unpredictable, non-real-time critical communication.
  • the separation of the plannable real-time communication and the unpredictable, non-real-time critical communication is achieved by applying the time synchronization method according to the non-prepublished application DE 10004425.5 guaranteed.
  • a further particularly advantageous embodiment of the invention is characterized in that all non-real-time critical data which is to be transmitted during the intended range of real-time communication range of a transmission cycle, temporarily stored by the respective coupling unit and during the, not real-time critical communication provided this area or a subsequent transmission cycle, ie a non-scheduled Internet communication possibly occurring in the first area of a transmission cycle reserved for real-time communication is shifted to the second area of the transmission cycle reserved for spontaneous, non-real-time critical communication, thereby completely avoiding real-time communication disturbances.
  • the corresponding data of the spontaneous, not real-time-critical communication are buffered by the respective coupling unit concerned and after the expiration of the real-time communication area only in the second area of the transmission cycle, which is reserved for the spontaneous, not real-time critical communication.
  • This second area i. the entire time period until the end of the transmission cycle is available to all subscribers for unpredictable, non-real-time critical communication, in particular internet communication, likewise without influencing the real-time communication since this is carried out separately in time.
  • Collisions with the real-time critical data telegrams in the coupling units can be avoided in that all non-real-time critical data provided during the, for the transmission of non-real-time critical data Range of a transmission cycle can not be transmitted, cached by the respective coupling unit and during the, intended for the transmission of the non-real-time critical data area of a subsequent transmission cycle.
  • a further advantageous embodiment of the invention is characterized in that the time duration of the area for the transmission of non-real-time critical data within a transmission cycle is automatically determined by the time duration of the area for the transmission of real-time critical data.
  • the time duration of the range for transmitting real-time critical data within a transmission cycle is determined in each case by the connection-specific data to be transmitted, ie, the time duration of the two areas is determined for each individual data connection by the respectively required amount of data to be transmitted real-time critical data whereby the division of the two areas and thus the time available for non-real-time critical communication is optimized for each individual data connection between two coupling units for each transmission cycle.
  • a further advantageous embodiment of the invention is characterized in that the time duration of a transmission cycle is determined at least once prior to the respective execution of the data transmission.
  • This has the advantage that at each start of a new, planned in advance data transmission, the duration of a transmission cycle to the respective requirements for real-time communication or open, Internet-enabled communication are tuned can.
  • the duration of a transmission cycle and / or the duration of the range for transmitting real-time critical data of a transmission cycle can be changed as required, for example at previously scheduled, fixed times and / or after a planned number of transmission cycles, advantageously before the beginning of a transmission cycle by switching to other scheduled, real-time critical transmission cycles.
  • the duration of a transmission cycle depending on the application between one microsecond and ten seconds.
  • Another highly advantageous embodiment of the invention is characterized in that replanning of the real-time communication can be performed at any time during operation of an automation system, whereby a flexible adaptation of the real-time control is guaranteed at short term changing boundary conditions. As a result, a change in the duration of a transmission cycle is also possible.
  • a further advantageous embodiment of the invention is characterized in that a part of the intended for the transmission of real-time critical data range of the transmission cycle for the transmission of data to organize the data transmission is provided. It has proven to be of particular advantage in this case that the data telegrams for the organization of the data transmission are transmitted at the beginning of the area for the transmission of real-time-critical data of the transmission cycle. Data for the organization of the data transmission are, for example, data for the time synchronization of the subscribers and coupling units of the data network, data for the topology recognition of the network, etc.
  • a further advantageous embodiment of the invention is characterized in that for all to be transmitted, real-time critical data telegrams transmitting and receiving time all time points for the forwarding of the real-time critical data telegrams and the respective associated links via which the real-time critical data telegrams are forwarded before the start of the respective implementation of data transmission, ie it is in a coupling unit at stations and / or receivers and in each coupling units involved notes when and at which output port a real-time critical data telegram arriving at time X should be sent on.
  • Another highly advantageous embodiment of the invention is characterized in that the forwarding times are planned so that each real-time critical data telegram arrives at the latest forwarding time or earlier at the corresponding coupling unit, but it is forwarded in any case until the forwarding time.
  • the real-time-critical data telegrams can be transmitted or forwarded directly, without time interval, i. a worse use of bandwidth in real-time data packets is avoided.
  • a further advantage of time-based forwarding is that the destination determination in the coupling unit is no longer address-based, because it is clear from the outset which port should be forwarded to.
  • the optimal use of all existing links within the switchable data network is possible. Redundant links of the switchable data network, which should not be used for the address-based switching of non-real-time critical communication, because otherwise would be circularities of data packets, but can be considered in advance for the planning of the forwarding lines and thus used for real-time communication.
  • This Realization of redundant network topologies, eg rings for fault-tolerant real-time systems, possible. Data packets can be sent redundantly on disjoint paths, circularities of data packets do not occur.
  • Another advantage of the forwarded forwarding is that the monitoring of each leg is thus possible without acknowledgment and a fault diagnosis is thus easy to carry out.
  • a further, extremely advantageous embodiment of the invention is characterized in that at least one arbitrary subscriber, in particular a subscriber with the ability to open, Internet-capable communication, with or without associated coupling unit, can be added to a switchable data network and it is ensured that critical Data transfers are performed successfully at the desired time, even if the arbitrary participant performs a non real-time critical communication, in particular Internet communication in parallel to a real-time critical communication.
  • a further, particularly advantageous embodiment of the invention is characterized in that a coupling unit is integrated into a subscriber. This results in an extraordinary cost advantage over the previously implemented as independent blocks coupling units, also called switches.
  • a further advantageous embodiment of the invention is characterized in that a coupling unit has two separate accesses to the respective subscriber, wherein an access for the exchange of real-time critical data and the other access for the exchange of non-real-time critical data is provided.
  • This has the advantage that real-time critical and non-real-time critical data are processed separately.
  • the access for the non-real-time critical data corresponds to the commercial interface of a regular Ethernet controller, whereby the previously existing software, In particular driver, without restriction is usable.
  • FIG. 1 shows a schematic representation of an embodiment of a distributed automation system, wherein for reasons of clarity of presentation as part of the invention in each case the coupling unit is already integrated into the relevant participants.
  • the prior art sees each of the coupling units integrated here already in the relevant local subscriber as their own device, which is in each case connected between two users.
  • the integration of the respective coupling unit in a subscriber is cheaper and easier to maintain.
  • the automation system shown consists of several participants, which can be pronounced both as a sender and as a receiver at the same time, for example, from a control computer 1, several drives, where for reasons the clear representation of only the drive 2 is designated, and other computers 3, 4, 5, by means of connection cable, in particular Ethernet cable, where for reasons of clarity, only the connections 6a, 7a, 8a, 9a are designated, to a switchable data network , in particular Ethernet, are interconnected.
  • connection cable in particular Ethernet cable
  • switchable data network in particular Ethernet
  • the control computer 1 is for example additionally connected to a company-internal communication network, for example intranet 11 and / or the worldwide communication network Internet 11. From the control computer 1 real-time critical data, for example, to control drive 2 via the connections 6a, 7a, 8a, 9a sent.
  • This real-time critical data must be processed exactly at the time X of drive 2, otherwise unwanted effects, such as late startup of the drive 2, etc., occur, which disturb the functioning of the automation system.
  • the respective forwarding of the real-time critical data is performed by the coupling units 6, 7, 8, 9 to the coupling unit 10, which transfers them to the receiver drive 2, from which the data are processed at the time X.
  • the application of the disclosed invention makes it possible, in parallel to the real-time communication, to use any non-real-time-critical communication in the same data network without disturbing the real-time communication.
  • This is indicated by the connection of the computers 3 and 4, in which no coupling unit is integrated and which are integrated by means of direct Ethernet connection in the illustrated automation system.
  • the computers 3 and 4 do not participate in the real-time communication, but only in the spontaneous, Internet-capable, not real-time critical communication without disturbing the real-time communication.
  • the invention is based on the idea that real-time-critical and non-real-time-critical communication in switchable data networks is separated from one another such that the non-real-time critical communication does not have a disruptive effect on the real-time critical communication.
  • Prerequisite for this separation is on the one hand, that all participants and switching units of the switchable data network by time synchronization with each other always have a common synchronous time base. This is done by permanent application of the time synchronization method according to the non-prepublished application DE 10004425.5 guaranteed during operation of a distributed automation system.
  • the second prerequisite for the separation is the predictability of the real-time critical communication, which is given by the fact that the real-time communication in the application areas considered here in particular the drive technology cyclically occurs, ie a data transmission takes place in one or more transmission cycles.
  • FIG. 2 is the expression of a basic structure of a transmission cycle which is divided into two areas, exemplified.
  • a transmission cycle 12 is divided into a first area 13, which is provided for the transmission of real-time critical data, and a second area 14, which is provided for the transmission of non-real-time critical data.
  • the length of the illustrated transmission cycle 12 symbolizes its duration 17, which is advantageously between one microsecond and ten seconds depending on the purpose.
  • the time period 17 of a transmission cycle 12 is variable, but is determined at least once before the time of data transmission, for example by the control computer 1 and is the same length for all participants and switching units of the switchable data network.
  • the time period 17 of a transmission cycle 12 and / or the time duration of the first area 13, which is provided for transmitting real-time critical data may at any time, for example at previously scheduled, fixed times and / or after a planned number of transmission cycles, advantageously before the beginning of a transmission cycle 12 are changed by the control computer 1, for example, switches to other scheduled, real-time critical transmission cycles.
  • the control computer 1 can at any time during operation of an automation system as required carry out new planning of the real-time communication, whereby also the time period 17 of a transmission cycle 12 can be changed.
  • the absolute duration 17 of a transmission cycle 12 is a measure of the time proportion, or the bandwidth of the non-real-time critical communication during a transmission cycle 12, ie the time that is available for non-real-time critical communication.
  • non-real-time critical communication has a bandwidth of 30% for a period of time 17 of a transmission cycle 12 of 500us, a bandwidth of 97% for 10ms.
  • the first area 13 is provided for transmitting real-time critical data, a certain period of time for sending data telegrams for the organization of the data transmission 15 is reserved before sending the actual real-time critical data telegrams, of which for clarity, only the data message 16 is designated.
  • the data telegrams for organizing the data transmission 15 include, for example, data for time synchronization of the participants and coupling units of the data network and / or data for topology detection of the network. After these data telegrams have been sent, the real-time critical data telegrams, or data telegram 16, are sent. Since the real-time communication through the cyclic operation can be planned in advance, the transmission times or the times for forwarding the real-time critical data telegrams before the start of data transmission are known for all, real-time critical data telegrams of a transmission cycle 12, respectively data telegram 16, ie the duration of the Area 14 for transmission of non-real-time critical data is automatically determined by the time duration of area 13 for transmission of real-time critical data.
  • the advantage of this arrangement is that in each case only the necessary transmission time is used for the real-time critical data traffic and after its completion, the remaining time is automatically available for non-real-time critical communication, for example for non-schedulable Internet communication or other non-real-time critical applications. It is particularly advantageous that the time duration of the area 13 for the transmission of real-time critical data is determined in each case by the connection-specific data to be transmitted, ie, the time duration of the two areas is determined for each individual data connection by the respectively necessary amount of data to be transmitted real-time critical data, thereby the time division of area 13 and area 14 may be different for each individual data link for each transmission cycle 12.
  • the real-time communication is planned in advance in such a way that the arrival of the real-time critical data telegrams in the corresponding coupling units is planned such that the considered, real-time critical data telegrams, for example data telegram 16, arrive at the latest at the forwarding time or earlier at the corresponding coupling units
  • the real-time critical data telegrams can , respectively data telegram 16, are sent or forwarded without time interval, so that the available time period is used in the best possible way by the densely packed transmission or forwarding.
  • FIG. 3 shows the principle of operation in a switched network. Shown are representative of a network, a participant 18, such as a drive, and a subscriber 19, for example, a control computer, each with integrated coupling units 20, 21 and another participant 36 without coupling unit, which are connected to each other by the data links 32, 33.
  • the coupling unit 20 is connected via the external port 30, the data connection 32 and the external port 31 to the coupling unit 21.
  • On the designation of the other illustrated external ports of the coupling units 20, 21 has been omitted for the sake of clarity. On the presentation of other participants with or without integrated coupling unit was also omitted for the sake of clarity. Data connections 34, 35 to other subscribers starting from the illustrated coupling units 20, 21 are only indicated.
  • the coupling units 20, 21 each have local memory 24, 25, which via the internal interfaces 22, 23 are connected to the participants 18, 19. Via the interfaces 22, 23, the participants 18, 19 exchange data with the corresponding coupling units 20, 21.
  • the local memories 24, 25 are connected within the coupling units 20, 21 via the data links 28, 29 to the control units 26, 27.
  • the control units 26, 27 receive data or forward data via the internal data links 28, 29 from or to the local memories 24, 25 or via one or more of the external ports, for example port 30 or port 31.
  • subscriber 21 has real-time-critical data, these are picked up at the time scheduled for the real-time critical communication via the interface 23, the local memory 25 and the connection 29 from the control unit 27 and from there via the provided external port, for example, port 31 to Coupling unit 20 sent.
  • non-real-time critical data can be transmitted during the, intended for the transmission of non-real-time critical portion of a transmission cycle, they are cached in the local memory 25 of the coupling unit 21 until they during a, for the transmission the non-real-time critical data area of a later transmission cycle can be transmitted, whereby Disturbances of real-time communication are excluded in any case.
  • the real-time critical data telegrams which arrive via data connection 32 via the external port 30 at the control unit 26 of the coupling unit 20, are forwarded directly via the corresponding external ports.
  • the planning in advance of the real-time communication also ensures that, for example, no data collisions occur on the data connection 34 starting from port 38.
  • FIG. 4 shows a schematic representation of the interfaces between a local subscriber and a coupling unit.
  • the coupling unit 40 is integrated according to the disclosed invention in the subscriber 39, for example, a control computer 1 of an automation system.
  • Participant 39 participates in both real-time critical and non-real-time critical communication, therefore real-time critical applications 48, for example for controlling drives of an automation system, and non-real-time critical applications 49, such as spontaneous internet communication or word processing software, are installed on the subscriber 39 , For reasons of clarity, only logical and no physical connections, in particular data connections are shown.
  • the communication between subscriber 39 and integrated coupling unit 40 takes place via the local memory 41, in which the corresponding data, which are sent by subscriber 39 or intended for subscriber 39, are buffered.
  • Both the subscriber 39 and the coupling unit 40 must be able to access the local memory 41; the physical location of the local memory 41, which in the exemplary embodiment shown is part of the coupling unit 40, for example, is not important here.
  • two separate accesses to the subscriber 39 are required, with one access for the exchange of real-time critical data and the other access for the exchange of non-real-time critical data.
  • the physical communication takes place via two separate ones Logical interfaces 42 and 43, between the data network and the coupling unit 40, not shown for reasons of clarity, and the logically separate communication channels 46 and 47 between the memory 41, ie the coupling unit 40, and the subscriber 39th Die Thomasstelle 42 und die Kilunikationskanal 46
  • the communication channels for the real-time-critical, the interface 43 and the communication channel 47 characterize the communication channels for non-real-time critical communication.
  • the two logically separated interfaces 42 and 43 and the communication channels 46 and 47 respectively shown are each physically the same communication channel used to communicate the respective data in both directions.
  • drivers 44 and the real-time-critical applications 48 can be processed with a higher priority than drivers 45 and the non-real-time critical applications 49.
  • real-time processing of the real-time-critical data can also be guaranteed in the subscriber 39.
  • the separation of the real-time critical and the non real-time critical communication, which is necessary for ensuring the real-time communication, also has the advantage that existing non-real-time communication programs, especially existing drivers can be used without restriction, which on the one hand no expensive new developments are necessary and, on the other hand, the further evolution of non-real-time critical standard communication has no effect on real-time communication itself and therefore may be included without limitation in the disclosed invention.
  • the invention relates to a system and a method that enables both real-time critical and non-real-time critical communication in a switchable data network consisting of subscribers and switching units, for example, a distributed automation system by a cyclic operation.
  • a so-called transmission cycle (12) at least one area (13) for transmitting real-time critical and at least one area (14) for transmitting non-real time critical data exists for all users and switching units of the switchable data network, whereby the real-time critical is separated from the non-real-time critical communication. Since all subscribers and switching units are always synchronized to a common time base, the respective areas for transmitting data for all subscribers and switching units take place at the same time, i.
  • Real-time critical communication takes place independently of time-critical communication and is therefore not influenced by it.
  • Real-time critical communication is planned in advance. Feeding of the data telegrams at the originating transmitter and their forwarding by means of the participating coupling units is time-based. By buffering in the respective coupling units is achieved that occurring at any time, spontaneous, internet-capable, not real-time critical communication in the, provided for the non-real-time communication transmission range (14) of a transmission cycle (12) and also transmitted only there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A system and a method provide a real-time-critical communication and a non-real-time-critical communication in a switched data network consisting of users and switching units, for example a distributed automation system, by a cyclic operation. In a transmission cycle, there exists for all users and switching units of the switched data network in each case at least one section for transmitting real-time-critical data and at least one section for transmitting non-real-time-critical data, as a result of which the real-time-critical communication is separated from the non-real-time-critical communication. Since all users and switching units are always synchronized to a common time base, the respective sections for transmitting data in each case take place at the same time for all users and switching units, i.e. the real-time-critical communication takes place independently in time from the non-real-time-critical communication.

Description

Die Erfindung bezieht sich auf ein System und Verfahren zur parallelen Übertragung von echtzeitkritischen und nicht echtzeitkritischen Daten über schaltbare Datennetze, insbesondere Ethernet.The invention relates to a system and method for the parallel transmission of real-time critical and non real-time critical data via switchable data networks, in particular Ethernet.

Datennetze ermöglichen die Kommunikation zwischen mehreren Teilnehmern durch die Vernetzung, also Verbindung der einzelnen Teilnehmer untereinander. Kommunikation bedeutet dabei die Übertragung von Daten zwischen den Teilnehmern. Die zu übertragenden Daten werden dabei als Datentelegramme verschickt, d.h. die Daten werden zu mehreren Paketen zusammengepackt und in dieser Form über das Datennetz an den entsprechenden Empfänger gesendet. Man spricht deshalb auch von Datenpaketen. Der Begriff Übertragung von Daten wird dabei in diesem Dokument völlig synonym zur oben erwähnten Übertragung von Datentelegrammen oder Datenpaketen verwendet. Die Vernetzung selbst wird beispielsweise bei schaltbaren Hochleistungsdatennetzen, insbesondere Ethernet, dadurch gelöst, dass zwischen zwei Teilnehmern jeweils mindestens eine Koppeleinheit geschaltet ist, die mit beiden Teilnehmern verbunden ist. Jede Koppeleinheit kann mit mehr als zwei Teilnehmern verbunden sein. Ist der Teilnehmer mit einer Koppeleinheit integriert, so kann die Koppeleinheit auch nur mit einer anderen Koppeleinheit oder einem anderen Teilnehmer verbunden sein, also ein Endgerät darstellen. Jeder Teilnehmer ist mit mindestens einer Koppeleinheit, aber nicht direkt mit einem anderen Teilnehmer verbunden. Teilnehmer sind beispielsweise Computer, speicherprogrammierbare Steuerungen (SPS) oder andere Maschinen, die elektronische Daten mit anderen Maschinen austauschen, insbesondere verarbeiten. Im Gegensatz zu Bussystemen, bei denen jeder Teilnehmer jeden anderen Teilnehmer des Datennetzes direkt über den Datenbus erreichen kann, handelt es sich bei den schaltbaren Datennetzen ausschließlich um Punkt-zu-Punkt-Verbindungen, d.h. ein Teilnehmer kann alle anderen Teilnehmer des schaltbaren Datennetzes nur indirekt, durch entsprechende Weiterleitung der zu übertragenden Daten mittels einer oder mehrerer Koppeleinheiten erreichen.Data networks allow communication between several participants through networking, ie connection of the individual participants with each other. Communication means the transmission of data between the participants. The data to be transmitted are sent as data telegrams, ie, the data is packed into several packets and sent in this form over the data network to the appropriate recipient. This is why we also speak of data packets. The term transmission of data is used in this document completely synonymous with the above-mentioned transmission of data telegrams or data packets. The networking itself is achieved, for example, in switchable high-performance data networks, in particular Ethernet, in that at least one coupling unit is connected between two subscribers, which is connected to both subscribers. Each coupling unit can be connected to more than two participants. If the subscriber is integrated with a coupling unit, the coupling unit can also be connected only to another coupling unit or to another subscriber, ie to represent a terminal. Each participant is connected to at least one coupling unit but not directly to another participant. Participants are, for example, computers, programmable logic controllers (PLCs) or other machines that exchange electronic data with other machines, in particular process. Unlike bus systems, where each participant is every other participant of the data network can reach directly over the data bus, it is the switchable data networks exclusively to point-to-point connections, ie a subscriber can only indirectly all other participants of the switchable data network, by corresponding forwarding of the data to be transmitted by means of one or more Reaching coupling units.

In verteilten Automatisierungssystemen, beispielsweise im Bereich Antriebstechnik, müssen bestimmte Daten zu bestimmten Zeiten bei den dafür bestimmten Teilnehmern eintreffen und von den Empfängern verarbeitet werden. Man spricht dabei von echtzeitkritischen Daten bzw. Datenverkehr, da ein nicht rechtzeitiges Eintreffen der Daten am Bestimmungsort zu unerwünschten Resultaten beim Teilnehmer führt. Gemäß IEC 61491, EN61491 SERCOS interface - Technische Kurzbeschreibung (http://www.sercos.de/deutsch/index_deutsch.htm) kann ein erfolgreicher echtzeitkritischer Datenverkehr der genannten Art in verteilten Automatisierungssystemen gewährleistet werden.In distributed automation systems, for example in the field of drive technology, certain data must arrive at specific times at specific times and be processed by the receivers. This is referred to as real-time critical data or data traffic, since an inaccurate arrival of the data at the destination leads to undesired results for the subscriber. According to IEC 61491, EN61491 SERCOS interface - Technical Description (http://www.sercos.de/english/index_english.htm), successful real-time critical data traffic of the type mentioned can be ensured in distributed automation systems.

Aus der US 5,654,969 ist eine Anordnung in einem digitalen Kommunikationsnetzwerk zur Übertragung synchron übertragbarer erster Informationen, beispielsweise Sprache oder Video, und asynchron übertragbarer zweiter Informationen, beispielsweise Daten, bekannt.From the US 5,654,969 An arrangement in a digital communication network is known for transmitting synchronously transferable first information, such as voice or video, and asynchronously transferable second information, such as data.

Aus dem Aufsatz " Fixed- and Movable-Boundary Channel-Access Schemes for Integrated Voice/Data Wireless Networks" von Jeffrey E. Wieselthier, IEEE-Transactions on Communications, Volume 43, No. 1, January 1995, page 64 - 74 , ist ein Kanalzugangsverfahren für Funknetzwerke bekannt, die eine quasi gleichzeitige Sprach- und Datenübertragung erlauben. Dabei wird auf die unterschiedlichen Anforderungen Rücksicht genommen, welche eine Sprach- und Datenübertragung an Übertragungsverzögerung und Fehlerrate stellen. Sprachdaten werden wie echtzeitkritische Daten behandelt und andere Daten wie nicht echtzeitkritische. Das bekannte Funkdatennetz ist zwischen wenigstens zwei Teilnehmern, insbesondere einem Sender und einem Empfänger, aufgebaut, wobei die Daten in wenigstens einem Übertragungszyklus mit einstellbarer Zeitdauer übertragen werden. Jeder Übertragungszyklus ist in wenigstens einen ersten Bereich zur Übertragung von echtzeitkritischen Daten, nämlich der Sprachdaten, und wenigstens einen zweiten Bereich zur Übertragung von nicht echtzeitkritischen Daten unterteilt. Für nicht echtzeitkritische Daten wird eine Pufferung zugelassen, während diese bei echtzeitkritischen Daten nicht erlaubt ist, da diese in einem kontinuierlichen Strom nahezu in Echtzeit übertragen werden müssen. Wenn die Kanalkapazität ausgelastet ist, kann es jedoch auch vorkommen, dass Sprachdaten, beispielsweise bei einem neuen Verbindungsversuch, geblockt werden und damit verlorengehen.From the essay " Fixed and Movable Boundary Channel Access Schemes for Integrated Voice / Data Wireless Networks "by Jeffrey E. Wieselthier, IEEE Transactions on Communications, Volume 43, No. 1, January 1995, page 64-74 , a channel access method for radio networks is known, which allow a quasi simultaneous voice and data transmission. It takes into account the different requirements, which provide a voice and data transmission to transmission delay and error rate. Speech data is treated as real-time critical data and other data as non-real-time critical. The known radio data network is constructed between at least two subscribers, in particular a transmitter and a receiver, wherein the data is stored in at least a transmission cycle with adjustable time duration are transmitted. Each transmission cycle is subdivided into at least a first region for transmission of real-time critical data, namely the voice data, and at least a second region for transmission of non-real-time critical data. For non-real-time critical data, buffering is allowed, while for real-time critical data, it is not allowed because they need to be transmitted in near-real time in a continuous stream. If the channel capacity is busy, however, it may also happen that voice data, for example in the case of a new connection attempt, is blocked and thus lost.

Aufgabe der Erfindung ist es, ein System und ein Verfahren zur Übertragung von Daten über schaltbare Datennetze, insbesondere Ethernet, anzugeben, das einen Mischbetrieb von echtzeitkritischer und nicht echtzeitkritischer, insbesondere inter- bzw. intranetbasierte Datenkommunikation, im selben Datennetz ermöglicht.The object of the invention is to provide a system and a method for the transmission of data via switchable data networks, in particular Ethernet, which allows a mixed operation of real-time critical and non real-time critical, in particular inter- or intranet-based data communication in the same data network.

Diese Aufgabe wird durch ein Verfahren zur Übertragung von Daten über schaltbare Datennetze, insbesondere Ethernet im Bereich industrieller Anlagen, gelöst, bei dem echtzeitkritische und nicht echtzeitkritische Daten übertragen werden, wobei das schaltbare Datennetz zwischen wenigstens zwei Teilnehmern, insbesondere einem Sender und einem Empfänger aufgebaut ist, wobei die Daten in wenigstens einem Übertragungszyklus mit einstellbarer Zeitdauer übertragen werden, jeder Übertragungszyklus in wenigstens einen ersten Bereich zur Übertragung von echtzeitkritischen Daten zur Echtzeitsteuerung und wenigstens einen zweiten Bereich zur Übertragung von nicht echtzeitkritischen Daten unterteilt ist.This object is achieved by a method for transmitting data via switchable data networks, in particular Ethernet in the field of industrial installations, are transmitted in the real-time critical and non-real-time critical data, the switchable data network between at least two participants, in particular a transmitter and a receiver is constructed wherein the data is transmitted in at least one adjustable-length transmission cycle, each transmission cycle is transmitted in at least a first range for transmission of real-time critical data for real-time control and at least a second area is subdivided for transmission of non-real-time critical data.

Diese Aufgabe wird durch ein System zur Übertragung von Daten über schaltbare Datennetze, insbesondere Ethernet im Bereich industrieller Anlagen, mit mindestens einer mit einem Datennetz koppelbaren Datenverarbeitungsvorrichtung gelöst, das echtzeitkritische und nicht echtzeitkritische Daten überträgt, wobei das schaltbare Datennetz zwischen wenigstens zwei Teilnehmern, insbesondere einem Sender und einem Empfänger aufgebaut ist, wobei das System Mittel zur Übertragung von Daten in wenigstens einem Übertragungszyklus mit einstellbarer Zeitdauer aufweist, jeder Übertragungszyklus in wenigstens einen ersten Bereich zur Übertragung von echtzeitkritischen Daten zur Echtzeitsteuerung und wenigstens einen zweiten Bereich zur Übertragung von nicht echtzeitkritischen Daten unterteilt ist.This object is achieved by a system for transmitting data via switchable data networks, in particular Ethernet in the field of industrial facilities, with at least one data processing device which can be coupled to a data network, which transmits real-time-critical and non-real-time critical data, the switchable data network between at least two subscribers, in particular one Transmitter and a receiver, the system having means for transmitting data in at least one adjustable-length transmission cycle, each transmission cycle divided into at least a first real-time control real-time data transmission area and at least a second non-real-time data transmission area is.

Der Erfindung liegt die Erkenntnis zugrunde, dass eine offene internetbasierte Kommunikation spontane Kommunikation ist, d.h., dass sowohl Zeitpunkt solcherart Kommunikation als auch die anfallende Datenmenge, die dabei zu transferieren ist, nicht vorher bestimmbar ist. Dadurch sind Kollisionen auf den Übertragungsleitungen bei Bussystemen bzw. in den Koppeleinheiten bei schaltbaren Hochgeschwindigkeitsnetzen, insbesondere Fast Ethernet oder Switched Ethernet, nicht auszuschlie-ßen. Um die Vorteile der Internetkommunikationstechnologie auch bei der Echtzeitkommunikation in schaltbaren Datennetzen im Bereich der Automatisierungstechnik, insbesondere der Antriebstechnik nutzen zu können, ist ein Mischbetrieb von Echtzeitkommunikation mit sonstiger spontaner, nicht echtzeitkritischer Kommunikation, insbesondere Internetkommunikation wünschenswert. Dies wird dadurch möglich, dass die Echtzeitkommunikation, die in den hier betrachteten Anwendungsgebieten vorwiegend zyklisch auftritt und somit im Voraus planbar ist, von der im Gegensatz dazu nicht planbaren, nicht echtzeitkritischen Kommunikation, insbesondere der offenen, internetbasierten Kommunikation strikt getrennt wird.The invention is based on the finding that an open Internet-based communication is spontaneous communication, ie that both the time of such communication and the amount of data that has to be transferred can not be determined beforehand. As a result, collisions on the transmission lines in bus systems or in the coupling units in switchable high-speed networks, in particular Fast Ethernet or Switched Ethernet, can not be ruled out. In order to be able to use the advantages of Internet communication technology also in real-time communication in switchable data networks in the field of automation technology, in particular drive technology, a mixed operation of real-time communication with other spontaneous, non-real-time critical communication, in particular Internet communication, is desirable. This is made possible by the fact that the real-time communication, which predominantly occurs cyclically in the application areas considered here and can thus be planned in advance, is not, in contrast, unforeseeable Real-time critical communication, especially open, Internet-based communication is strictly separated.

Die Kommunikation zwischen den Teilnehmern erfolgt dabei in Übertragungszyklen, wobei jeder Übertragungszyklus in wenigstens einen ersten Bereich zur Übertragung von echtzeitkritischen Daten zur Echtzeitsteuerung, beispielsweise der dafür vorgesehenen industriellen Anlagen und wenigstens einen zweiten Bereich zur Übertragung von nicht echtzeitkritischen Daten, beispielsweise bei der offenen, internetfähigen Kommunikation unterteilt ist. Eine besonders vorteilhafte Ausgestaltung der Erfindung ist dabei dadurch gekennzeichnet, dass jedem Teilnehmer eine Koppeleinheit zugeordnet ist, die zum Senden und/oder zum Empfangen und/oder zur Weiterleitung der zu übertragenden Daten vorgesehen ist.The communication between the subscribers takes place in transmission cycles, wherein each transmission cycle in at least a first range for transmitting real-time critical data for real-time control, such as the designated industrial facilities and at least a second area for transmitting non-real-time critical data, for example, the open, internet capable Communication is divided. A particularly advantageous embodiment of the invention is characterized in that each participant is assigned a coupling unit which is provided for transmitting and / or receiving and / or for forwarding the data to be transmitted.

Eine außerordentlich vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass alle Teilnehmer und Koppeleinheiten des schaltbaren Datennetzes durch Zeitsynchronisation untereinander stets eine gemeinsame synchrone Zeitbasis aufweisen. Dies ist Voraussetzung für eine Trennung der planbaren Echtzeitkommunikation von der nicht planbaren, nicht echtzeitkritischen Kommunikation. Die Trennung der planbaren Echtzeitkommunikation und der nicht planbaren, nicht echtzeitkritischen Kommunikation wird durch Anwendung des Verfahrens zur Zeitsynchronisation gemäß der nicht vorveröffentlichten Anmeldung DE 10004425.5 gewährleistet. Durch permanente Anwendung dieses Verfahrens auch im laufenden Betrieb eines verteilten Automatisierungssystems sind alle Teilnehmer und Koppeleinheiten des schaltbaren Datennetzes stets auf eine gemeinsame Zeitbasis synchronisiert, was infolgedessen gleicher Startpunkt und gleiche Länge jedes Übertragungszyklus für alle Teilnehmer und Koppeleinheiten bedeutet. Da alle echtzeitkritischen Datenübertragungen durch den zyklischen Betrieb vor der eigentlichen Datenübertragung bekannt sind und deshalb im Voraus geplant werden können, ist sichergestellt, dass für alle Teilnehmer und Koppeleinheiten die Echtzeitkommunikation so gesteuert werden kann, dass keine Störungen, beispielsweise Kollisionen, bei der Datenübertragung der echtzeitkritischen Datentelegramme selbst auftreten und alle geplanten kritischen Datentransferzeitpunkte exakt eingehalten werden.An extremely advantageous embodiment of the invention is characterized in that all participants and switching units of the switchable data network by time synchronization with each other always have a common synchronous time base. This is a prerequisite for a separation of the plannable real-time communication from the unpredictable, non-real-time critical communication. The separation of the plannable real-time communication and the unpredictable, non-real-time critical communication is achieved by applying the time synchronization method according to the non-prepublished application DE 10004425.5 guaranteed. Through permanent use of this method even during operation of a distributed automation system all participants and switching units of the switchable data network are always synchronized to a common time base, which consequently means the same starting point and the same length of each transmission cycle for all participants and coupling units. Since all real-time critical data transmissions are known by the cyclic operation before the actual data transmission and therefore can be planned in advance, it is ensured that for all participants and coupling units the Real-time communication can be controlled so that no disturbances, such as collisions occur in the data transmission of the real-time critical data telegrams themselves and all planned critical data transfer times are met exactly.

Eine weitere besonders vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass alle nicht echtzeitkritischen Daten, die während des, für die echtzeitkritische Kommunikation vorgesehenen Bereichs eines Übertragungszyklus übertragen werden sollen, von der jeweiligen Koppeleinheit zwischengespeichert und während des, für die nicht echtzeitkritische Kommunikation vorgesehenen Bereichs dieses oder eines folgenden Übertragungszyklus übertragen werden, d.h. eine im ersten Bereich eines Übertragungszyklus, der für die Echtzeitkommunikation reserviert ist, möglicherweise auftretende, nicht geplante Internetkommunikation wird in den zweiten Bereich des Übertragungszyklus, der für die spontane, nicht echtzeitkritische Kommunikation vorbehalten ist, verschoben, wodurch Störungen der Echtzeitkommunikation vollständig vermieden werden. Die entsprechenden Daten der spontanen, nicht echtzeitkritischen Kommunikation werden dabei von der jeweils betroffenen Koppeleinheit zwischengespeichert und nach Ablauf des Bereichs für die Echtzeitkommunikation erst im zweiten Bereich des Übertragungszyklus, der für die spontane, nicht echtzeitkritische Kommunikation vorbehalten ist, gesendet. Dieser zweite Bereich, d.h. die gesamte Zeitdauer bis zum Ende des Übertragungszyklus, steht allen Teilnehmern für die nicht planbare, nicht echtzeitkritische Kommunikation, insbesondere Internetkommunikation zur Verfügung, ebenfalls ohne die Echtzeitkommunikation zu beeinflussen, da diese zeitlich getrennt durchgeführt wird.A further particularly advantageous embodiment of the invention is characterized in that all non-real-time critical data which is to be transmitted during the intended range of real-time communication range of a transmission cycle, temporarily stored by the respective coupling unit and during the, not real-time critical communication provided this area or a subsequent transmission cycle, ie a non-scheduled Internet communication possibly occurring in the first area of a transmission cycle reserved for real-time communication is shifted to the second area of the transmission cycle reserved for spontaneous, non-real-time critical communication, thereby completely avoiding real-time communication disturbances. The corresponding data of the spontaneous, not real-time-critical communication are buffered by the respective coupling unit concerned and after the expiration of the real-time communication area only in the second area of the transmission cycle, which is reserved for the spontaneous, not real-time critical communication. This second area, i. the entire time period until the end of the transmission cycle is available to all subscribers for unpredictable, non-real-time critical communication, in particular internet communication, likewise without influencing the real-time communication since this is carried out separately in time.

Kollisionen mit den echtzeitkritischen Datentelegrammen in den Koppeleinheiten können dadurch vermieden werden, dass alle nicht echtzeitkritischen Daten, die während des, für die Übertragung der nicht echtzeitkritischen Daten vorgesehenen Bereichs eines Übertragungszyklus nicht übertragen werden können, von der jeweiligen Koppeleinheit zwischengespeichert und während des, für die Übertragung der nicht echtzeitkritischen Daten vorgesehenen Bereichs eines späteren Übertragungszyklus übertragen werden.Collisions with the real-time critical data telegrams in the coupling units can be avoided in that all non-real-time critical data provided during the, for the transmission of non-real-time critical data Range of a transmission cycle can not be transmitted, cached by the respective coupling unit and during the, intended for the transmission of the non-real-time critical data area of a subsequent transmission cycle.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Zeitdauer des Bereichs zur Übertragung von nicht echtzeitkritischen Daten innerhalb eines Übertragungszyklus automatisch durch die Zeitdauer des Bereichs zur Übertragung von echtzeitkritischen Daten festgelegt wird. Vorteil dieser Anordnung ist, dass jeweils nur die notwendige Übertragungszeit für den echtzeitkritischen Datenverkehr verwendet wird und die restliche Zeit automatisch für die nicht echtzeitkritische Kommunikation, beispielsweise für die nicht planbare Internetkommunikation bzw. andere nicht echtzeitkritische Anwendungen zur Verfügung steht. Besonders vorteilhaft ist, dass die Zeitdauer des Bereichs zur Übertragung von echtzeitkritischen Daten innerhalb eines Übertragungszyklus jeweils durch die verbindungsspezifisch zu übertragenden Daten bestimmt wird, d.h., die Zeitdauer der beiden Bereiche wird für jede einzelne Datenverbindung durch die jeweils notwendige Datenmenge der zu übertragenden echtzeitkritischen Daten bestimmt, wodurch die Aufteilung der beiden Bereiche und damit die Zeit, die zur nicht echtzeitkritischen Kommunikation zur Verfügung steht, für jede einzelne Datenverbindung zwischen zwei Koppeleinheiten für jeden Übertragungszyklus optimiert ist.A further advantageous embodiment of the invention is characterized in that the time duration of the area for the transmission of non-real-time critical data within a transmission cycle is automatically determined by the time duration of the area for the transmission of real-time critical data. The advantage of this arrangement is that in each case only the necessary transmission time is used for the real-time-critical data traffic and the remaining time is automatically available for non-real-time critical communication, for example for non-schedulable Internet communication or other non-real-time critical applications. It is particularly advantageous that the time duration of the range for transmitting real-time critical data within a transmission cycle is determined in each case by the connection-specific data to be transmitted, ie, the time duration of the two areas is determined for each individual data connection by the respectively required amount of data to be transmitted real-time critical data whereby the division of the two areas and thus the time available for non-real-time critical communication is optimized for each individual data connection between two coupling units for each transmission cycle.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Zeitdauer eines Übertragungszyklus wenigstens einmal vor der jeweiligen Durchführung der Datenübertragung festgelegt wird. Dies hat den Vorteil, dass dadurch bei jedem Start einer neuen, im Voraus geplanten Datenübertragung die Zeitdauer eines Übertragungszyklus auf die jeweiligen Erfordernisse zur Echtzeitkommunikation bzw. zur offenen, internetfähigen Kommunikation abgestimmt werden kann. Selbstverständlich ist es auch möglich, dass die Zeitdauer eines Übertragungszyklus und/oder die Zeitdauer des Bereichs zur Übertragung von echtzeitkritischen Daten eines Übertragungszyklus je nach Erfordernis verändert werden kann, beispielsweise zu vorher geplanten, festen Zeitpunkten und/oder nach einer geplanten Anzahl von Übertragungszyklen, vorteilhafterweise vor Beginn eines Übertragungszyklus durch Umschalten auf andere geplante, echtzeitkritische Übertragungszyklen. Vorteilhafterweise liegt die Zeitdauer eines Übertragungszyklus je nach Anwendungszweck zwischen einer Mikrosekunde und zehn Sekunden.A further advantageous embodiment of the invention is characterized in that the time duration of a transmission cycle is determined at least once prior to the respective execution of the data transmission. This has the advantage that at each start of a new, planned in advance data transmission, the duration of a transmission cycle to the respective requirements for real-time communication or open, Internet-enabled communication are tuned can. Of course, it is also possible that the duration of a transmission cycle and / or the duration of the range for transmitting real-time critical data of a transmission cycle can be changed as required, for example at previously scheduled, fixed times and / or after a planned number of transmission cycles, advantageously before the beginning of a transmission cycle by switching to other scheduled, real-time critical transmission cycles. Advantageously, the duration of a transmission cycle, depending on the application between one microsecond and ten seconds.

Eine weitere überaus vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass Neuplanungen der Echtzeitkommunikation jederzeit im laufenden Betrieb eines Automatisierungssystems durchgeführt werden können, wodurch eine flexible Anpassung der Echtzeitsteuerung an sich kurzfristig ändernde Randbedingungen gewährleistet ist. Dadurch ist ebenfalls eine Änderung der Zeitdauer eines Übertragungszyklus möglich.Another highly advantageous embodiment of the invention is characterized in that replanning of the real-time communication can be performed at any time during operation of an automation system, whereby a flexible adaptation of the real-time control is guaranteed at short term changing boundary conditions. As a result, a change in the duration of a transmission cycle is also possible.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass ein Teil des für die Übertragung der echtzeitkritischen Daten vorgesehenen Bereichs des Übertragungszyklus für die Übertragung von Daten zur Organisation der Datenübertragung vorgesehen ist. Von besonderem Vorteil hat sich dabei erwiesen, dass die Datentelegramme zur Organisation der Datenübertragung am Anfang des Bereichs zur Übertragung echtzeitkritischer Daten des Übertragungszyklus übertragen werden. Daten zur Organisation der Datenübertragung sind dabei beispielsweise Daten zur Zeitsynchronisation der Teilnehmer und Koppeleinheiten des Datennetzes, Daten zur Topologieerkennung des Netzwerks, etc.A further advantageous embodiment of the invention is characterized in that a part of the intended for the transmission of real-time critical data range of the transmission cycle for the transmission of data to organize the data transmission is provided. It has proven to be of particular advantage in this case that the data telegrams for the organization of the data transmission are transmitted at the beginning of the area for the transmission of real-time-critical data of the transmission cycle. Data for the organization of the data transmission are, for example, data for the time synchronization of the subscribers and coupling units of the data network, data for the topology recognition of the network, etc.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass für alle zu übertragenden, echtzeitkritischen Datentelegramme Sende- und Empfangszeitpunkt bei Sender und/oder Empfänger und in allen jeweils beteiligten Koppeleinheiten alle Zeitpunkte für die Weiterleitung der echtzeitkritischen Datentelegramme sowie die jeweils zugehörigen Verbindungsstrecken, über die die echtzeitkritischen Datentelegramme weitergeleitet werden, vor Beginn der jeweiligen Durchführung der Datenübertragung vermerkt sind, d.h. es ist in einer Koppeleinheit vermerkt, wann und an welchen Ausgangsport ein zum Zeitpunkt X ankommendes echtzeitkritisches Datentelegramm weiter gesendet werden soll.A further advantageous embodiment of the invention is characterized in that for all to be transmitted, real-time critical data telegrams transmitting and receiving time all time points for the forwarding of the real-time critical data telegrams and the respective associated links via which the real-time critical data telegrams are forwarded before the start of the respective implementation of data transmission, ie it is in a coupling unit at stations and / or receivers and in each coupling units involved notes when and at which output port a real-time critical data telegram arriving at time X should be sent on.

Eine weitere überaus vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Weiterleitungszeitpunkte so geplant sind, dass jedes echtzeitkritische Datentelegramm spätestens zum Weiterleitungszeitpunkt oder früher bei der entsprechenden Koppeleinheit ankommt, es aber auf jeden Fall erst zum Weiterleitungszeitpunkt weitergesendet wird. Damit ist das Problem von Zeitunschärfen, das sich insbesondere bei langen Übertragungsketten bemerkbar macht, eliminiert. Dadurch können die echtzeitkritischen Datentelegramme unmittelbar, ohne zeitlichen Zwischenraum gesendet bzw. weitergeleitet werden, d.h. eine schlechtere Nutzung der Bandbreite bei Echtzeitdatenpaketen wird vermieden. Selbstverständlich ist es aber auch möglich bei Bedarf Sendepausen zwischen der Übertragung der einzelnen Datenpakete einzubauen.Another highly advantageous embodiment of the invention is characterized in that the forwarding times are planned so that each real-time critical data telegram arrives at the latest forwarding time or earlier at the corresponding coupling unit, but it is forwarded in any case until the forwarding time. This eliminates the problem of time blurring, which is particularly noticeable in long transmission chains. As a result, the real-time-critical data telegrams can be transmitted or forwarded directly, without time interval, i. a worse use of bandwidth in real-time data packets is avoided. Of course, it is also possible if necessary to incorporate transmission pauses between the transmission of the individual data packets.

Ein weiterer Vorteil der zeitbasierten Weiterleitung ist, dass die Zielfindung in der Koppeleinheit nicht mehr adressbasiert ist, weil von vornherein klar ist, an welchen Port weitergesendet werden soll. Damit ist die optimale Nutzung aller vorhandenen Verbindungsstrecken innerhalb des schaltbaren Datennetzes möglich. Redundante Verbindungsstrecken des schaltbaren Datennetzes, die für die adressbasierte Durchschaltung der nicht echtzeitkritischen Kommunikation nicht benutzt werden dürfen, weil es andernfalls zu Zirkularitäten von Datenpaketen kommen würde, können aber im Voraus für die Planung der Weiterleitungsstrecken berücksichtigt und somit für die Echtzeitkommunikation benutzt werden. Dadurch ist die Realisierung von redundanten Netzwerktopologien, z.B. Ringe für fehlertolerante Echtzeitsysteme, möglich. Datenpakete können redundant auf disjunkten Pfaden gesendet werden, Zirkularitäten von Datenpaketen treten nicht auf. Ein weiterer Vorteil der vorausgeplanten Weiterleitung ist, dass die Überwachung jeder Teilstrecke dadurch quittungslos möglich und eine Fehlerdiagnose damit einfach durchführbar ist.A further advantage of time-based forwarding is that the destination determination in the coupling unit is no longer address-based, because it is clear from the outset which port should be forwarded to. Thus, the optimal use of all existing links within the switchable data network is possible. Redundant links of the switchable data network, which should not be used for the address-based switching of non-real-time critical communication, because otherwise would be circularities of data packets, but can be considered in advance for the planning of the forwarding lines and thus used for real-time communication. This is the result Realization of redundant network topologies, eg rings for fault-tolerant real-time systems, possible. Data packets can be sent redundantly on disjoint paths, circularities of data packets do not occur. Another advantage of the forwarded forwarding is that the monitoring of each leg is thus possible without acknowledgment and a fault diagnosis is thus easy to carry out.

Eine weitere, außerordentlich vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass wenigstens ein beliebiger Teilnehmer, insbesondere ein Teilnehmer mit der Fähigkeit zur offenen, internetfähigen Kommunikation, mit oder ohne zugeordnete Koppeleinheit, zu einem schaltbaren Datennetz hinzugefügt werden kann und dabei sichergestellt ist, dass kritische Datentransfers zum gewünschten Zeitpunkt erfolgreich durchgeführt werden, auch wenn der beliebige Teilnehmer eine nicht echtzeitkritische Kommunikation, insbesondere Internetkommunikation parallel zu einer echtzeitkritischen Kommunikation durchführt.A further, extremely advantageous embodiment of the invention is characterized in that at least one arbitrary subscriber, in particular a subscriber with the ability to open, Internet-capable communication, with or without associated coupling unit, can be added to a switchable data network and it is ensured that critical Data transfers are performed successfully at the desired time, even if the arbitrary participant performs a non real-time critical communication, in particular Internet communication in parallel to a real-time critical communication.

Eine weitere, besonders vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass eine Koppeleinheit in einen Teilnehmer integriert ist. Dadurch ergibt sich ein außerordentlicher Kostenvorteil gegenüber den, bisher immer als selbständige Bausteine realisierten Koppeleinheiten, auch Switches genannt.A further, particularly advantageous embodiment of the invention is characterized in that a coupling unit is integrated into a subscriber. This results in an extraordinary cost advantage over the previously implemented as independent blocks coupling units, also called switches.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass eine Koppeleinheit zwei getrennte Zugänge zum jeweiligen Teilnehmer aufweist, wobei ein Zugang für den Austausch von echtzeitkritischen Daten und der andere Zugang für den Austausch von nicht echtzeitkritischen Daten vorgesehen ist. Dies hat den Vorteil, dass echtzeitkritische und nicht echtzeitkritische Daten getrennt verarbeitet werden. Der Zugang für die nicht echtzeitkritischen Daten entspricht der handelsüblichen Schnittstelle eines regulären Ethernet-Kontrollers wodurch die bisher existierende Software, insbesondere Treiber, ohne Einschränkung verwendbar ist. Dasselbe gilt für die bisher existierende Software für ein nicht echtzeitfähiges Datennetz.
Im folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.
A further advantageous embodiment of the invention is characterized in that a coupling unit has two separate accesses to the respective subscriber, wherein an access for the exchange of real-time critical data and the other access for the exchange of non-real-time critical data is provided. This has the advantage that real-time critical and non-real-time critical data are processed separately. The access for the non-real-time critical data corresponds to the commercial interface of a regular Ethernet controller, whereby the previously existing software, In particular driver, without restriction is usable. The same applies to the hitherto existing software for a non-real-time capable data network.
In the following the invention with reference to the embodiments illustrated in the figures will be described and explained in more detail.

Es zeigen:Show it:

FIG 1FIG. 1
eine schematische Darstellung eines Ausführungsbeispiels für ein verteiltes Automatisierungssystems,a schematic representation of an embodiment of a distributed automation system,
FIG 2FIG. 2
den prinzipiellen Aufbau eines Übertragungszyklus,the basic structure of a transmission cycle,
FIG 3FIG. 3
die prinzipielle Arbeitsweise in einem geschalteten Netzwerk undthe principle of operation in a switched network and
FIG 4FIG. 4
eine schematische Darstellung der Schnittstellen zwischen einem lokalen Teilnehmer und einer Koppeleinheit.a schematic representation of the interfaces between a local subscriber and a coupling unit.

Figur 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels für ein verteiltes Automatisierungssystems, wobei aus Gründen der übersichtlichen Darstellung als Teil der Erfindung jeweils die Koppeleinheit bereits in den betreffenden Teilnehmer integriert ist. Der bisherige Stand der Technik sieht im Gegensatz dazu jeden der hier bereits in den betreffenden lokalen Teilnehmer integrierten Koppeleinheiten als eigenes Gerät, das jeweils zwischen zwei Teilnehmer geschaltet ist. Die Integration der jeweiligen Koppeleinheit in einen Teilnehmer ist kostengünstiger und wartungsfreundlicher. FIG. 1 shows a schematic representation of an embodiment of a distributed automation system, wherein for reasons of clarity of presentation as part of the invention in each case the coupling unit is already integrated into the relevant participants. The prior art, in contrast, sees each of the coupling units integrated here already in the relevant local subscriber as their own device, which is in each case connected between two users. The integration of the respective coupling unit in a subscriber is cheaper and easier to maintain.

Das gezeigte Automatisierungssystem besteht aus mehreren Teilnehmern, die gleichzeitig sowohl als Sender als auch als Empfänger ausgeprägt sein können, beispielsweise aus einem Steuerungsrechner 1, mehreren Antrieben, bei denen aus Gründen der übersichtlichen Darstellung nur der Antrieb 2 bezeichnet ist, sowie weiteren Rechnern 3, 4, 5, die mittels Verbindungskabel, insbesondere Ethernetkabel, bei denen aus Gründen der übersichtlichen Darstellung nur die Verbindungen 6a, 7a, 8a, 9a bezeichnet sind, zu einem schaltbaren Datennetz, insbesondere Ethernet, miteinander verbunden sind. Die für die Topologie eines Ethernet typischen Koppeleinheiten, bei denen aus Gründen der übersichtlichen Darstellung nur die Koppeleinheiten 6, 7, 8, 9, 10 bezeichnet sind, sind bei dieser Darstellung bereits in die jeweiligen Teilnehmer integriert. Die Koppeleinheiten dienen zum Senden und/oder zum Empfangen und/oder zur Weiterleitung der zu übertragenden Daten.The automation system shown consists of several participants, which can be pronounced both as a sender and as a receiver at the same time, for example, from a control computer 1, several drives, where for reasons the clear representation of only the drive 2 is designated, and other computers 3, 4, 5, by means of connection cable, in particular Ethernet cable, where for reasons of clarity, only the connections 6a, 7a, 8a, 9a are designated, to a switchable data network , in particular Ethernet, are interconnected. The typical for the topology of an Ethernet coupling units in which, for reasons of clarity, only the coupling units 6, 7, 8, 9, 10 are designated, are already integrated into the respective participants in this presentation. The coupling units are used for transmitting and / or receiving and / or forwarding the data to be transmitted.

Der Steuerungsrechner 1 ist beispielsweise zusätzlich an ein firmeninternes Kommunikationsnetz beispielsweise Intranet 11 und/oder das weltweite Kommunikationsnetz Internet 11 angeschlossen. Vom Steuerungsrechner 1 werden echtzeitkritische Daten beispielsweise zur Steuerung von Antrieb 2 über die Verbindungen 6a, 7a, 8a, 9a gesendet. Diese echtzeitkritischen Daten müssen genau zum Zeitpunkt X von Antrieb 2 verarbeitet werden, da sonst unerwünschte Auswirkungen, wie z.B. verspäteter Anlauf des Antriebs 2, etc., eintreten, die die Automatisierungsanlage in ihrer Funktionsweise stören. Die jeweilige Weiterleitung der echtzeitkritischen Daten erfolgt durch die Koppeleinheiten 6, 7, 8, 9 bis zur Koppeleinheit 10, die sie an den Empfänger Antrieb 2 übergibt, von dem die Daten zum Zeitpunkt X verarbeitet werden. Im bisherigen Stand der Technik kann ein erfolgreicher echtzeitkritischer Datenverkehr der genannten Art gewährleistet werden, wenn darüber hinaus zur selben Zeit keine sonstige beliebige Kommunikation, beispielsweise Internetkommunikation durch Rechner 5, stattfindet. In diesem Fall, Internetkommunikation zur selben Zeit durch Rechner 5, fordert Rechner 5 beispielsweise eine Internetseite an. Diese nicht echtzeitkritischen Daten werden über die Verbindungen 8a, 7a, 6a mittels der Koppeleinheiten 9, 8 und 7 an die Koppeleinheit 6 weitergeleitet, welche die Daten an den Rechner 1 übergibt, der schließlich die entsprechende Anfrage an das Internet 11 absetzt und die Antwort über dieselben Verbindungen bzw. Koppeleinheiten in umgekehrter Reihenfolge an Rechner 5 zurücksendet. Die Antwort benutzt damit den gleichen Weg wie die echtzeitkritische Kommunikation. Es können damit Wartesituation in den beteiligten Koppeleinheiten auftreten und die echtzeitkritischen Daten können nicht mehr zeitgerecht beim Antrieb 2 ankommen. Ein fehlerfreier Echtzeitbetrieb kann deshalb mit dem bisherigen Stand der Technik nicht mehr garantiert werden. Die Anwendung der offenbarten Erfindung ermöglicht dagegen parallel zur Echtzeitkommunikation eine beliebige, nicht echtzeitkritische Kommunikation im gleichen Datennetz, ohne Störung der Echtzeitkommunikation. Dies ist durch den Anschluss der Rechner 3 und 4 angedeutet, bei denen keine Koppeleinheit integriert ist und die mittels direktem EthernetAnschluss in das dargestellte Automatisierungssystem integriert sind. Die Rechner 3 und 4 nehmen nicht an der Echtzeitkommunikation, sondern nur an der spontanen, internetfähigen, nicht echtzeitkritischen Kommunikation teil, ohne die Echtzeitkommunikation zu stören.The control computer 1 is for example additionally connected to a company-internal communication network, for example intranet 11 and / or the worldwide communication network Internet 11. From the control computer 1 real-time critical data, for example, to control drive 2 via the connections 6a, 7a, 8a, 9a sent. This real-time critical data must be processed exactly at the time X of drive 2, otherwise unwanted effects, such as late startup of the drive 2, etc., occur, which disturb the functioning of the automation system. The respective forwarding of the real-time critical data is performed by the coupling units 6, 7, 8, 9 to the coupling unit 10, which transfers them to the receiver drive 2, from which the data are processed at the time X. In the prior art, a successful real-time critical data traffic of the type mentioned can be ensured, if in addition no other arbitrary communication, for example internet communication by computer 5, takes place at the same time. In this case, Internet communication at the same time by computer 5, computer 5 requests, for example, a website. These non-real-time critical data are forwarded via the connections 8a, 7a, 6a by means of the coupling units 9, 8 and 7 to the coupling unit 6, which the Data transfers to the computer 1, which finally sends the corresponding request to the Internet 11 and returns the answer via the same connections or coupling units in reverse order to computer 5. The answer uses the same way as the real-time critical communication. It can thus wait situation in the participating coupling units occur and the real-time critical data can no longer arrive on time at the drive 2. An error-free real-time operation can therefore no longer be guaranteed with the prior art. By contrast, the application of the disclosed invention makes it possible, in parallel to the real-time communication, to use any non-real-time-critical communication in the same data network without disturbing the real-time communication. This is indicated by the connection of the computers 3 and 4, in which no coupling unit is integrated and which are integrated by means of direct Ethernet connection in the illustrated automation system. The computers 3 and 4 do not participate in the real-time communication, but only in the spontaneous, Internet-capable, not real-time critical communication without disturbing the real-time communication.

Der Erfindung liegt die Idee zugrunde, dass echtzeitkritische und nicht echtzeitkritische Kommunikation in schaltbaren Datennetzen so voneinander getrennt wird, dass die nicht echtzeitkritische Kommunikation keinen störenden Einfluß auf die echtzeitkritische Kommunikation nimmt. Voraussetzung für diese Trennung ist einerseits, dass alle Teilnehmer und Koppeleinheiten des schaltbaren Datennetzes durch Zeitsynchronisation untereinander stets eine gemeinsame synchrone Zeitbasis aufweisen. Dies wird durch permanente Anwendung des Verfahrens zur Zeitsynchronisation gemäß der nicht vorveröffentlichten Anmeldung DE 10004425.5 auch im laufenden Betrieb eines verteilten Automatisierungssystems gewährleistet. Die zweite Voraussetzung für die Trennung ist die Planbarkeit der echtzeitkritischen Kommunikation, was dadurch gegeben ist, dass die Echtzeitkommunikation in den hier betrachteten Anwendungsgebieten insbesondere der Antriebstechnik zyklisch auftritt, d.h. eine Datenübertragung in einem oder mehreren Übertragungszyklen stattfindet.The invention is based on the idea that real-time-critical and non-real-time-critical communication in switchable data networks is separated from one another such that the non-real-time critical communication does not have a disruptive effect on the real-time critical communication. Prerequisite for this separation is on the one hand, that all participants and switching units of the switchable data network by time synchronization with each other always have a common synchronous time base. This is done by permanent application of the time synchronization method according to the non-prepublished application DE 10004425.5 guaranteed during operation of a distributed automation system. The second prerequisite for the separation is the predictability of the real-time critical communication, which is given by the fact that the real-time communication in the application areas considered here in particular the drive technology cyclically occurs, ie a data transmission takes place in one or more transmission cycles.

In Figur 2 ist die Ausprägung eines prinzipiellen Aufbaus eines Übertragungszyklus der in zwei Bereiche aufgeteilt ist, beispielhaft dargestellt. Ein Übertragungszyklus 12 ist in einen ersten Bereich 13, der zur Übertragung echtzeitkritischer Daten vorgesehen ist, und einen zweiten Bereich 14, der zur Übertragung nicht echtzeitkritischer Daten vorgesehen ist, aufgeteilt. Die Länge des dargestellten Übertragungszyklus 12 symbolisiert dessen zeitliche Dauer 17, die vorteilhafterweise je nach Anwendungszweck zwischen einer Mikrosekunde und zehn Sekunden beträgt. Die Zeitdauer 17 eines Übertragungszyklus 12 ist veränderbar, wird aber vor dem Zeitpunkt der Datenübertragung, beispielsweise durch den Steuerungsrechner 1 wenigstens einmal festgelegt und ist für alle Teilnehmer und Koppeleinheiten des schaltbaren Datennetzes jeweils gleich lang. Die Zeitdauer 17 eines Übertragungszyklus 12 und/oder die Zeitdauer des ersten Bereichs 13, der zur Übertragung von echtzeitkritischen Daten vorgesehen ist, kann jederzeit, beispielsweise zu vorher geplanten, festen Zeitpunkten und/oder nach einer geplanten Anzahl von Übertragungszyklen, vorteilhafterweise vor Beginn eines Übertragungszyklus 12 verändert werden, indem der Steuerungsrechner 1 beispielsweise auf andere geplante, echtzeitkritische Übertragungszyklen umschaltet. Darüber hinaus kann der Steuerungsrechner 1 jederzeit im laufenden Betrieb eines Automatisierungssystems je nach Erfordernis Neuplanungen der Echtzeitkommunikation durchführen, wodurch ebenfalls die Zeitdauer 17 eines Übertragungszyklus 12 verändert werden kann. Die absolute Zeitdauer 17 eines Übertragungszyklus 12 ist ein Maß für den zeitlichen Anteil, bzw. die Bandbreite der nicht echtzeitkritischen Kommunikation während eines Übertragungszyklus 12, also die Zeit, die für die nicht echtzeitkritische Kommunikation zur Verfügung steht. So hat die nicht echtzeitkritische Kommunikation beispielsweise bei einer Zeitdauer 17 eines Übertragungszyklus 12 von 500us eine Bandbreite von 30%, bei 10ms eine Bandbreite von 97%. Im ersten Bereich 13, der zur Übertragung echtzeitkritischer Daten vorgesehen ist, ist vor dem Senden der eigentlichen echtzeitkritischen Datentelegramme, von denen der Übersichtlichkeit wegen nur das Datentelegramm 16 bezeichnet ist, eine gewisse Zeitdauer zum Senden von Datentelegrammen zur Organisation der Datenübertragung 15 reserviert. Die Datentelegramme zur Organisation der Datenübertragung 15 enthalten beispielsweise Daten zur Zeitsynchronisation der Teilnehmer und Koppeleinheiten des Datennetzes und/oder Daten zur Topologieerkennung des Netzwerks. Nachdem diese Datentelegramme gesendet wurden, werden die echtzeitkritischen Datentelegramme, respektive Datentelegramm 16, gesendet. Da die Echtzeitkommunikation durch den zyklischen Betrieb im Voraus planbar ist, sind für alle zu übertragenden, echtzeitkritischen Datentelegramme eines Übertragungszyklus 12, respektive Datentelegramm 16, die Sendezeitpunkte bzw. die Zeitpunkte für die Weiterleitung der echtzeitkritischen Datentelegramme vor Beginn der Datenübertragung bekannt, d.h. die Zeitdauer des Bereichs 14 zur Übertragung von nicht echtzeitkritischen Daten ist automatisch durch die Zeitdauer des Bereichs 13 zur Übertragung von echtzeitkritischen Daten festgelegt. Vorteil dieser Anordnung ist, dass jeweils nur die notwendige Übertragungszeit für den echtzeitkritischen Datenverkehr verwendet wird und nach dessen Beendigung die restliche Zeit automatisch für die nicht echtzeitkritische Kommunikation, beispielsweise für die nicht planbare Internetkommunikation bzw. andere nicht echtzeitkritische Anwendungen zur Verfügung steht. Besonders vorteilhaft ist, dass die Zeitdauer des Bereichs 13 zur Übertragung von echtzeitkritischen Daten jeweils durch die verbindungsspezifisch zu übertragenden Daten bestimmt wird, d.h., die Zeitdauer der beiden Bereiche wird für jede einzelne Datenverbindung durch die jeweils notwendige Datenmenge der zu übertragenden echtzeitkritischen Daten bestimmt, wodurch die zeitliche Aufteilung von Bereich 13 und Bereich 14 für jede einzelne Datenverbindung für jeden Übertragungszyklus 12 verschieden sein kann. Es wird jeweils nur die notwendige Übertragungszeit für den echtzeitkritischen Datenverkehr verwendet und die restliche Zeit eines Übertragungszyklus 12 steht automatisch für die nicht echtzeitkritische Kommunikation, beispielsweise für die nicht planbare Internetkommunikation bzw. andere nicht echtzeitkritische Anwendungen für alle Teilnehmer des schaltbaren Datennetzes zur Verfügung. Da die Echtzeitkommunikation im Voraus entsprechend so geplant ist, dass das Ankommen der echtzeitkritischen Datentelegramme in den entsprechenden Koppeleinheiten so geplant ist, dass die betrachteten, echtzeitkritischen Datentelegramme, beispielsweise Datentelegramm 16, spätestens zum Weiterleitungszeitpunkt oder früher bei den entsprechenden Koppeleinheiten ankommen, können die echtzeitkritischen Datentelegramme, respektive Datentelegramm 16, ohne zeitlichen Zwischenraum gesendet bzw. weitergeleitet werden, so dass durch das dicht gepackte Senden, bzw. Weiterleiten, die zur Verfügung stehende Zeitdauer bestmöglich genutzt wird. Selbstverständlich ist es aber auch möglich bei Bedarf Sendepausen zwischen der Übertragung der einzelnen Datentelegramme einzubauen.In FIG. 2 is the expression of a basic structure of a transmission cycle which is divided into two areas, exemplified. A transmission cycle 12 is divided into a first area 13, which is provided for the transmission of real-time critical data, and a second area 14, which is provided for the transmission of non-real-time critical data. The length of the illustrated transmission cycle 12 symbolizes its duration 17, which is advantageously between one microsecond and ten seconds depending on the purpose. The time period 17 of a transmission cycle 12 is variable, but is determined at least once before the time of data transmission, for example by the control computer 1 and is the same length for all participants and switching units of the switchable data network. The time period 17 of a transmission cycle 12 and / or the time duration of the first area 13, which is provided for transmitting real-time critical data, may at any time, for example at previously scheduled, fixed times and / or after a planned number of transmission cycles, advantageously before the beginning of a transmission cycle 12 are changed by the control computer 1, for example, switches to other scheduled, real-time critical transmission cycles. In addition, the control computer 1 can at any time during operation of an automation system as required carry out new planning of the real-time communication, whereby also the time period 17 of a transmission cycle 12 can be changed. The absolute duration 17 of a transmission cycle 12 is a measure of the time proportion, or the bandwidth of the non-real-time critical communication during a transmission cycle 12, ie the time that is available for non-real-time critical communication. For example, non-real-time critical communication has a bandwidth of 30% for a period of time 17 of a transmission cycle 12 of 500us, a bandwidth of 97% for 10ms. In the first area 13, is provided for transmitting real-time critical data, a certain period of time for sending data telegrams for the organization of the data transmission 15 is reserved before sending the actual real-time critical data telegrams, of which for clarity, only the data message 16 is designated. The data telegrams for organizing the data transmission 15 include, for example, data for time synchronization of the participants and coupling units of the data network and / or data for topology detection of the network. After these data telegrams have been sent, the real-time critical data telegrams, or data telegram 16, are sent. Since the real-time communication through the cyclic operation can be planned in advance, the transmission times or the times for forwarding the real-time critical data telegrams before the start of data transmission are known for all, real-time critical data telegrams of a transmission cycle 12, respectively data telegram 16, ie the duration of the Area 14 for transmission of non-real-time critical data is automatically determined by the time duration of area 13 for transmission of real-time critical data. The advantage of this arrangement is that in each case only the necessary transmission time is used for the real-time critical data traffic and after its completion, the remaining time is automatically available for non-real-time critical communication, for example for non-schedulable Internet communication or other non-real-time critical applications. It is particularly advantageous that the time duration of the area 13 for the transmission of real-time critical data is determined in each case by the connection-specific data to be transmitted, ie, the time duration of the two areas is determined for each individual data connection by the respectively necessary amount of data to be transmitted real-time critical data, thereby the time division of area 13 and area 14 may be different for each individual data link for each transmission cycle 12. Only the necessary transmission time for the real-time-critical data traffic is used and the remaining time of a transmission cycle 12 is automatically available for the non-real-time critical communication, for example for the unpredictable Internet communication or other non-real-time critical applications for all participants of the switchable data network. Since the real-time communication is planned in advance in such a way that the arrival of the real-time critical data telegrams in the corresponding coupling units is planned such that the considered, real-time critical data telegrams, for example data telegram 16, arrive at the latest at the forwarding time or earlier at the corresponding coupling units, the real-time critical data telegrams can , respectively data telegram 16, are sent or forwarded without time interval, so that the available time period is used in the best possible way by the densely packed transmission or forwarding. Of course, it is also possible if necessary to incorporate transmission pauses between the transmission of the individual data telegrams.

Figur 3 zeigt die prinzipielle Arbeitsweise in einem geschalteten Netzwerk. Dargestellt sind stellvertretend für ein Netzwerk ein Teilnehmer 18, beispielsweise ein Antrieb, und ein Teilnehmer 19, beispielsweise ein Steuerrechner, mit jeweils integrierten Koppeleinheiten 20, 21 und einem weiteren Teilnehmer 36 ohne Koppeleinheit, die durch die Datenverbindungen 32, 33 miteinander verbunden sind. Dabei ist die Koppeleinheit 20 über den externen Port 30, die Datenverbindung 32 und den externen Port 31 mit der Koppeleinheit 21 verbunden. Auf die Bezeichnung der anderen dargestellten externen Ports der Koppeleinheiten 20, 21 wurde aus Gründen der übersichtlichen Darstellung verzichtet. Auf die Darstellung weiterer Teilnehmer mit bzw. ohne integrierte Koppeleinheit wurde ebenfalls aus Gründen der übersichtlichen Darstellung verzichtet. Datenverbindungen 34, 35 zu weiteren Teilnehmern ausgehend von den dargestellten Koppeleinheiten 20, 21 sind nur angedeutet. Die Koppeleinheiten 20, 21 besitzen jeweils lokale Speicher 24, 25, die über die internen Schnittstellen 22, 23 mit den Teilnehmern 18, 19 verbunden sind. Über die Schnittstellen 22, 23 tauschen die Teilnehmer 18, 19 Daten mit den entsprechenden Koppeleinheiten 20, 21 aus. Die lokalen Speicher 24, 25 sind innerhalb der Koppeleinheiten 20, 21 über die Datenverbindungen 28, 29 mit den Steuerwerken 26, 27 verbunden. Die Steuerwerke 26, 27 empfangen Daten bzw. leiten Daten weiter über die internen Datenverbindungen 28, 29 von bzw. zu den lokalen Speichern 24, 25 oder über eine oder mehrere der externen Ports, beispielsweise Port 30 oder Port 31. Durch Anwendung des Verfahrens der Zeitsynchronisation haben die Koppeleinheiten 20, 21 stets eine gemeinsame synchrone Zeitbasis. Hat Teilnehmer 21 echtzeitkritische Daten, so werden diese zum vorausgeplanten Zeitpunkt während des Bereichs für die echtzeitkritische Kommunikation über die Schnittstelle 23, den lokalen Speicher 25 und die Verbindung 29 vom Steuerwerk 27 abgeholt und von dort über den vorgesehenen externen Port, beispielsweise Port 31, zur Koppeleinheit 20 gesendet. Sendet Teilnehmer 36 zur gleichen Zeit, also während der echtzeitkritischen Kommunikation, nicht echtzeitkritische Daten, beispielsweise für eine Internetabfrage, über die Datenverbindung 33, so werden diese vom Steuerwerk 27 über den externen Port 37 empfangen und über die interne Verbindung 29 an den lokalen Speicher 25 weitergeleitet und dort zwischengespeichert. Von dort werden sie erst im Bereich für die nicht echtzeitkritische Kommunikation wieder abgeholt und an den Empfänger weitergeleitet, d.h. sie werden in den zweiten Bereich des Übertragungszyklus, der für die spontane, nicht echtzeitkritische Kommunikation vorbehalten ist, verschoben, wodurch Störungen der Echtzeitkommunikation ausgeschlossen werden. Für den Fall, dass nicht alle zwischengespeicherten, nicht echtzeitkritischen Daten während des, für die Übertragung der nicht echtzeitkritischen Daten vorgesehenen Bereichs eines Übertragungszyklus übertragen werden können, werden sie im lokalen Speicher 25 der Koppeleinheit 21 solange zwischengespeichert, bis sie während eines, für die Übertragung der nicht echtzeitkritischen Daten vorgesehenen Bereichs eines späteren Übertragungszyklus übertragen werden können, wodurch Störungen der Echtzeitkommunikation in jedem Fall ausgeschlossen werden.
Die echtzeitkritischen Datentelegramme, die über Datenverbindung 32 über den externen Port 30 beim Steuerwerk 26 der Koppeleinheit 20 eintreffen, werden unmittelbar über die entsprechenden externen Ports weitergeleitet. Dies ist möglich, da die Echtzeitkommunikation im Voraus geplant ist und deshalb für alle zu übertragenden, echtzeitkritischen Datentelegramme Sende- und Empfangszeitpunkt, alle jeweils beteiligten Koppeleinheiten sowie alle Zeitpunkte für die Weiterleitung und alle Empfänger der echtzeitkritischen Datentelegramme bekannt sind, d.h. es ist beispielsweise beim Steuerwerk 26 der Koppeleinheit 20 vermerkt, dass die zum Zeitpunkt X ankommenden echtzeitkritischen Datentelegramme über den externen Port 38 an die nächste Koppeleinheit weitergesendet werden sollen. Durch die im Voraus erfolgte Planung der Echtzeitkommunikation ist auch sichergestellt, dass es beispielsweise auf der Datenverbindung 34 ausgehend von Port 38 zu keinen Datenkollisionen kommt. Dasselbe gilt natürlich für alle anderen Datenverbindungen, bzw. Ports während der Echtzeitkommunikation. Die Weiterleitungszeitpunkte aller echtzeitkritischen Datenpakete von den jeweils beteiligten Koppeleinheiten sind ebenfalls vorher geplant und damit eindeutig festgelegt. Das Ankommen der echtzeitkritischen Datentelegrammen beispielsweise im Steuerwerk 26 der Koppeleinheit 20 ist deshalb so geplant, dass die betrachteten, echtzeitkritischen Datentelegramme spätestens zum Weiterleitungszeitpunkt oder früher im Steuerwerk 26 der Koppeleinheit 20 ankommen. Damit ist das Problem von Zeitunschärfen, die sich insbesondere bei langen Übertragungsketten bemerkbar machen, eliminiert. Daten die beispielsweise für den Teilnehmer 18 bestimmt sind und im lokalen Speicher 24 der Koppeleinheit 20 zwischengespeichert wurden, werden von diesem zu gegebener Zeit abgeholt, echtzeitkritische Daten zu den vorher festgelegten Zeitpunkten und nicht echtzeitkritische Daten während des dafür vorgesehenen Bereichs.
FIG. 3 shows the principle of operation in a switched network. Shown are representative of a network, a participant 18, such as a drive, and a subscriber 19, for example, a control computer, each with integrated coupling units 20, 21 and another participant 36 without coupling unit, which are connected to each other by the data links 32, 33. In this case, the coupling unit 20 is connected via the external port 30, the data connection 32 and the external port 31 to the coupling unit 21. On the designation of the other illustrated external ports of the coupling units 20, 21 has been omitted for the sake of clarity. On the presentation of other participants with or without integrated coupling unit was also omitted for the sake of clarity. Data connections 34, 35 to other subscribers starting from the illustrated coupling units 20, 21 are only indicated. The coupling units 20, 21 each have local memory 24, 25, which via the internal interfaces 22, 23 are connected to the participants 18, 19. Via the interfaces 22, 23, the participants 18, 19 exchange data with the corresponding coupling units 20, 21. The local memories 24, 25 are connected within the coupling units 20, 21 via the data links 28, 29 to the control units 26, 27. The control units 26, 27 receive data or forward data via the internal data links 28, 29 from or to the local memories 24, 25 or via one or more of the external ports, for example port 30 or port 31. By applying the method of Time synchronization, the coupling units 20, 21 always have a common synchronous time base. If subscriber 21 has real-time-critical data, these are picked up at the time scheduled for the real-time critical communication via the interface 23, the local memory 25 and the connection 29 from the control unit 27 and from there via the provided external port, for example, port 31 to Coupling unit 20 sent. Sends subscriber 36 at the same time, so during real-time critical communication, not real-time critical data, for example, for an Internet query, via the data connection 33, they are received by the control unit 27 via the external port 37 and via the internal connection 29 to the local memory 25th forwarded and cached there. From there, they are only picked up again in the area for non-real-time critical communication and forwarded to the receiver, ie they are shifted to the second area of the transmission cycle, which is reserved for spontaneous, non-real-time critical communication, thereby excluding disturbances in real-time communication. In the event that not all cached, non-real-time critical data can be transmitted during the, intended for the transmission of non-real-time critical portion of a transmission cycle, they are cached in the local memory 25 of the coupling unit 21 until they during a, for the transmission the non-real-time critical data area of a later transmission cycle can be transmitted, whereby Disturbances of real-time communication are excluded in any case.
The real-time critical data telegrams, which arrive via data connection 32 via the external port 30 at the control unit 26 of the coupling unit 20, are forwarded directly via the corresponding external ports. This is possible because the real-time communication is planned in advance and therefore for all real-time critical data telegrams transmitting and receiving time, all participating coupling units and all times for forwarding and all receivers of the real-time critical data telegrams are known, ie it is for example at the control unit 26 of the coupling unit 20 notes that the incoming at the time X real-time critical data telegrams to be forwarded via the external port 38 to the next coupling unit. The planning in advance of the real-time communication also ensures that, for example, no data collisions occur on the data connection 34 starting from port 38. The same is of course true for all other data connections, or ports during real-time communication. The forwarding times of all real-time critical data packets from the coupling units involved in each case are also planned in advance and thus clearly defined. The arrival of the real-time critical data telegrams, for example, in the control unit 26 of the coupling unit 20 is therefore planned so that the considered, real-time critical data telegrams arrive at the latest forwarding time or earlier in the control unit 26 of the coupling unit 20. This eliminates the problem of time blurring, which is particularly noticeable in long transmission chains. Data intended, for example, for the subscriber 18 and buffered in the local memory 24 of the coupling unit 20 are fetched from it in due course, real-time critical data at the predetermined times and non-real-time critical data during the designated area.

Wie oben ausgeführt ist folglich ein gleichzeitiger Betrieb von echtzeitkritischer und nicht echtzeitkritischer Kommunikation im selben schaltbaren Datennetz, sowie ein beliebiger Anschluss von zusätzlichen Teilnehmern an das schaltbare Datennetz möglich, ohne die Echtzeitkommunikation selbst störend zu beeinflussen.As stated above, consequently, simultaneous operation of real-time-critical and non-real-time-critical communication in the same switchable data network and any connection of additional subscribers to the switchable data network is possible without disturbing the real-time communication itself.

Figur 4 zeigt eine schematische Darstellung der Schnittstellen zwischen einem lokalen Teilnehmer und einer Koppeleinheit. Die Koppeleinheit 40 ist gemäß der offenbarten Erfindung in den Teilnehmer 39, beispielsweise ein Steuerrechner 1 eines Automatisierungssystems, integriert. Der Teilnehmer 39 nimmt sowohl an der echtzeitkritischen als auch an der nicht echtzeitkritischen Kommunikation teil, deshalb sind echtzeitkritische Applikationen 48, beispielsweise zur Steuerung von Antrieben eines Automatisierungssystems, und nicht echtzeitkritische Applikationen 49, beispielsweise Browser zur spontanen Internetkommunikation oder Textverarbeitungsprogramme, auf dem Teilnehmer 39 installiert. Aus Gründen der Übersichtlichkeit werden nur logische und keine physikalischen Verbindungen, insbesondere Datenverbindungen dargestellt. Die Kommunikation zwischen Teilnehmer 39 und integrierter Koppeleinheit 40 erfolgt über den lokalen Speicher 41, in dem die entsprechenden Daten, die vom Teilnehmer 39 gesendet werden, bzw. für den Teilnehmer 39 bestimmt sind, zwischengespeichert werden. Auf den lokalen Speicher 41 muß sowohl der Teilnehmer 39 als auch die Koppeleinheit 40 zugreifen können, der physikalische Ort des lokalen Speichers 41, der im gezeigten Ausführungsbeispiel beispielsweise Teil der Koppeleinheit 40 ist, ist dabei nicht von Bedeutung. Um die Trennung zwischen echtzeitkritischer und nicht echtzeitkritischer Kommunikation und damit eine störungsfreie Echtzeitkommunikation zu gewährleisten, sind zwei getrennte Zugänge zum Teilnehmer 39 erforderlich, wobei ein Zugang für den Austausch von echtzeitkritischen Daten und der andere Zugang für den Austausch von nicht echtzeitkritischen Daten vorgesehen ist. Die physikalische Kommunikation erfolgt infolgedessen über zwei getrennte logische Schnittstellen 42 und 43, zwischen dem aus Gründen der Übersichtlichkeit nicht dargestellten Datennetz und der Koppeleinheit 40, und den logisch getrennten Kommunikationskanäle 46 und 47 zwischen dem Speicher 41, also der Koppeleinheit 40, und dem Teilnehmer 39. Die Schnittstelle 42 und der Kommunikationskanal 46 charakterisieren dabei die Kommunikationskanäle für die echtzeitkrische, die Schnittstelle 43 und der Kommunikationskanal 47 die Kommunikationskanäle für die nicht echtzeitkritische Kommunikation. Die zwei jeweils dargestellten, logisch voneinander getrennten Schnittstellen 42 bzw. 43 und die Kommunikationskanäle 46 bzw. 47 sind physikalisch gesehen jedoch jeweils der gleiche Kommunikationskanal, der zur Übermittlung der jeweiligen Daten in beiden Richtungen benutzt wird. Insbesondere erfolgt die getrennte Signalisierung welche Art von Daten vorliegen und abgeholt werden können über die beiden logisch voneinander getrennten Kommunikationskanäle 46 und 47, wobei über Kommunikationskanal 46 die Bereitstellung von echtzeitkritischen Daten für die echtzeitkritischen Applikationen 48 und über Kommunikationskanal 47 die Bereitstellung von nicht echtzeitkritischen Daten für die nicht echtzeitkritischen Applikationen 49 signalisiert wird. Damit können Treiber 44 und die echtzeitkritischen Applikationen 48 mit einer höheren Priorität bearbeitet werden als Treiber 45 und die nicht echtzeitkritischen Applikationen 49. Damit kann auch im Teilnehmer 39 die echtzeitfähige Verarbeitung der echtzeitkritischen Daten garantiert werden. Die Trennung der echtzeitkritischen und der nicht echtzeitkritischen Kommunikation, die für die Gewährleistung der Echtzeitkommunikation notwendig ist, hat zudem den Vorteil, dass für die nicht echtzeitkritische Kommunikation bestehende Programme, insbesondere existierende Treiber, ohne Einschränkung verwendet werden können, wodurch einerseits keine teuren Neuentwicklungen notwendig sind und andererseits die weitere Evolution der nicht echtzeitkritischen Standardkommunikation keinen Einfluß auf die Echtzeitkommunikation selbst hat und deshalb ohne Einschränkung in die offenbarte Erfindung einbezogen werden kann. FIG. 4 shows a schematic representation of the interfaces between a local subscriber and a coupling unit. The coupling unit 40 is integrated according to the disclosed invention in the subscriber 39, for example, a control computer 1 of an automation system. Participant 39 participates in both real-time critical and non-real-time critical communication, therefore real-time critical applications 48, for example for controlling drives of an automation system, and non-real-time critical applications 49, such as spontaneous internet communication or word processing software, are installed on the subscriber 39 , For reasons of clarity, only logical and no physical connections, in particular data connections are shown. The communication between subscriber 39 and integrated coupling unit 40 takes place via the local memory 41, in which the corresponding data, which are sent by subscriber 39 or intended for subscriber 39, are buffered. Both the subscriber 39 and the coupling unit 40 must be able to access the local memory 41; the physical location of the local memory 41, which in the exemplary embodiment shown is part of the coupling unit 40, for example, is not important here. In order to ensure the separation between real-time-critical and non-real-time communication and thus interference-free real-time communication, two separate accesses to the subscriber 39 are required, with one access for the exchange of real-time critical data and the other access for the exchange of non-real-time critical data. As a result, the physical communication takes place via two separate ones Logical interfaces 42 and 43, between the data network and the coupling unit 40, not shown for reasons of clarity, and the logically separate communication channels 46 and 47 between the memory 41, ie the coupling unit 40, and the subscriber 39th Die Schnittstelle 42 und die Kommunikationskanal 46 In this case, the communication channels for the real-time-critical, the interface 43 and the communication channel 47 characterize the communication channels for non-real-time critical communication. However, the two logically separated interfaces 42 and 43 and the communication channels 46 and 47 respectively shown are each physically the same communication channel used to communicate the respective data in both directions. In particular, the separate signaling which type of data is present and can be collected via the two logically separate communication channels 46 and 47, where via communication channel 46, the provision of real-time critical data for the real-time critical applications 48 and communication channel 47, the provision of non-real-time critical data for the non-real-time critical applications 49 is signaled. In this way, drivers 44 and the real-time-critical applications 48 can be processed with a higher priority than drivers 45 and the non-real-time critical applications 49. Thus real-time processing of the real-time-critical data can also be guaranteed in the subscriber 39. The separation of the real-time critical and the non real-time critical communication, which is necessary for ensuring the real-time communication, also has the advantage that existing non-real-time communication programs, especially existing drivers can be used without restriction, which on the one hand no expensive new developments are necessary and, on the other hand, the further evolution of non-real-time critical standard communication has no effect on real-time communication itself and therefore may be included without limitation in the disclosed invention.

Zusammenfassend betrifft die Erfindung ein System und ein Verfahren, das sowohl eine echtzeitkritische als auch eine nicht echtzeitkritische Kommunikation in einem schaltbaren Datennetz, bestehend aus Teilnehmern und Koppeleinheiten, beispielsweise eines verteilten Automatisierungssystems durch einen zyklischen Betrieb ermöglicht. In einem sogenannten Übertragungszyklus (12) existiert für alle Teilnehmer und Koppeleinheiten des schaltbaren Datennetzes jeweils wenigstens ein Bereich (13) zur Übermittlung echtzeitkritischer und wenigstens ein Bereich (14) zur Übermittlung nicht echtzeitkritischer Daten, wodurch die echtzeitkritische von der nicht echtzeitkritischen Kommunikation getrennt wird. Da alle Teilnehmer und Koppeleinheiten immer auf eine gemeinsame Zeitbasis synchronisiert sind, finden die jeweiligen Bereiche zur Übermittlung von Daten für alle Teilnehmer und Koppeleinheiten jeweils zum selben Zeitpunkt statt, d.h. die echtzeitkritische Kommunikation findet zeitlich unabhängig von der nicht echtzeitkritischen Kommunikation statt und wird deshalb nicht von dieser beeinflusst. Die echtzeitkritische Kommunikation wird im Voraus geplant. Einspeisen der Datentelegramme beim originären Sender sowie deren Weiterleitung mittels der beteiligten Koppeleinheiten erfolgt zeitbasiert. Durch Zwischenspeicherung in den jeweiligen Koppeleinheiten wird erreicht, dass zu beliebiger Zeit auftretende, spontane, internetfähige, nicht echtzeitkritische Kommunikation in den, für die nicht echtzeitkritische Kommunikation vorgesehenen Übertragungsbereich (14) eines Übertragungszyklus (12) verschoben und auch nur dort übertragen wird.In summary, the invention relates to a system and a method that enables both real-time critical and non-real-time critical communication in a switchable data network consisting of subscribers and switching units, for example, a distributed automation system by a cyclic operation. In a so-called transmission cycle (12), at least one area (13) for transmitting real-time critical and at least one area (14) for transmitting non-real time critical data exists for all users and switching units of the switchable data network, whereby the real-time critical is separated from the non-real-time critical communication. Since all subscribers and switching units are always synchronized to a common time base, the respective areas for transmitting data for all subscribers and switching units take place at the same time, i. Real-time critical communication takes place independently of time-critical communication and is therefore not influenced by it. Real-time critical communication is planned in advance. Feeding of the data telegrams at the originating transmitter and their forwarding by means of the participating coupling units is time-based. By buffering in the respective coupling units is achieved that occurring at any time, spontaneous, internet-capable, not real-time critical communication in the, provided for the non-real-time communication transmission range (14) of a transmission cycle (12) and also transmitted only there.

Claims (41)

  1. Method for transmitting data via a data network, in which real-time-critical and non-real-time-critical data are transmitted, the data network being set up between at least two users, especially a transmitter and a receiver, the data being transmitted in at least one transmission cycle (12) with adjustable period (17), each transmission cycle (12) being subdivided into at least one first section (13) for the transmission of real-time-critical data and at least one second section (14) for the transmission of non-real-time-critical data, characterized in that the data network is a switched Ethernet data network in the field of industrial systems, in which each user is allocated a switching unit which is provided for transmitting and/or receiving and/or forwarding the data to be transmitted, that all switching units of the switched data network exhibit a common synchronous time base due to mutual timing synchronization, and that in all switching units involved in each case, all times for forwarding the real-time-critical data telegrams and the respective associated links via which the real-time-critical data telegrams are forwarded are noted before the beginning of the respective performance of the data transmission for all real-time-critical data telegrams to be transmitted for real-time control.
  2. Method according to Claim 1, characterized in that all non-real-time-critical data which are intended to be transmitted during the section (13) of a transmission cycle (12) which is provided for the real-time-critical communication are temporarily stored by the respective switching unit and are transmitted during the section (14) of this or a subsequent transmission cycle which is intended for the non-real-time-critical communication.
  3. Method according to Claim 1 or 2, characterized in that all non-real-time-critical data which cannot be transmitted during the section (14) of a transmission cycle (12) intended for the transmission of the non-real-time-critical data are temporarily stored by the respective switching unit and transmitted during the section (14) of a later transmission cycle which is intended for the transmission of the non-real-time-critical data.
  4. Method according to one of the preceding claims, characterized in that the period of the section (14) for the transmission of non-real-time-critical data within a transmission cycle (12) is automatically established by the period of the section (13) for the transmission of real-time-critical data.
  5. Method according to one of the preceding claims, characterized in that the period of the section (13) for the transmission of real-time-critical data within a transmission cycle (12) is in each case determined by the data to be transmitted in a connection-oriented manner.
  6. Method according to one of the preceding claims, characterized in that the period (17) of a transmission cycle (12) is established at least once before the respective data transmission takes place.
  7. Method according to one of the preceding claims, characterized in that the period (17) of a transmission cycle (12) and/or the period of the section (13) for the transmission of real-time-critical data of a transmission cycle (12) can be changed.
  8. Method according to one of the preceding claims, characterized in that the period (17) of a transmission cycle (12) is between 1 microsecond and 10 seconds.
  9. Method according to one of the preceding claims, characterized in that the real-time communication can be newly planned at any time during active operation of an automation system.
  10. Method according to one of the preceding claims, characterized in that the period (17) of a transmission cycle (12) can be changed by newly planning the real-time communication.
  11. Method according to one of the preceding claims, characterized in that a part of the section (13) of the transmission cycle (12) intended for the transmission of the real-time-critical data is intended for the transmission of data for the organization of the data transmission (15).
  12. Method according to one of the preceding claims, characterized in that the data for the organization of the data transmission (15) are transmitted at the beginning of the section (13) for the transmission of real-time-critical data of the transmission cycle (12).
  13. Method according to one of the preceding claims, characterized in that the data for the organization of the data transmission (15) contain data for the timing synchronization of the users and switching units of the data network and/or data for recognizing the topology of the network.
  14. Method according to one of the preceding claims, characterized in that the transmitting and receiving time for all real-time-critical data telegrams to be transmitted are noted at the transmitter and/or receiver before the beginning of the respective performance of the data transmission.
  15. Method according to one of the preceding claims, characterized in that each real-time-critical data telegram arrives at the corresponding switching unit at the latest at the forwarding time or earlier.
  16. Method according to one of the preceding claims, characterized in that the real-time-critical data telegrams are transmitted or, respectively, forwarded immediately without time interval.
  17. Method according to one of the preceding claims, characterized in that links of a switched data network which must not be used for the non-real-time-critical communication are used in the real-time-critical communication.
  18. Method according to one of the preceding claims, characterized in that at least one user of a switched data network can perform a real-time-critical communication and/or a non-real-time-critical communication, especially an Internet communication, in parallel in the same switched data network, wherein the non-real-time-critical communication taking place does not influence the real-time-critical communication taking place in parallel.
  19. Method according to one of the preceding claims, characterized in that at least one arbitrary user, especially a user having the capability for open Internet-capable communication, with or without associated switching unit, can be added to a switched data network.
  20. System for transmitting data via a data network, comprising at least one data processing device which can be coupled to a switched data network and which transmits real-time-critical and non-real-time-critical data, the data network being set up between at least two users, especially a transmitter and a receiver, the system exhibiting at least one means for transmitting data in at least one transmission cycle (12) with adjustable period (17), each transmission cycle (12) being subdivided into at least one first section (13) for transmitting real-time-critical data and at least one second section (14) for transmitting non-real-time-critical data, characterized in that the data network is a switched Ethernet data network in the field of industrial systems, in which each user is allocated a switching unit which is provided for transmitting and/or receiving and/or forwarding the data to be transmitted, that the system exhibits at least one means which supplies all switching units of the switched data network with a common synchronous time base by means of mutual timing synchronization, and that the system exhibits at least one means which notes all times for the forwarding of the real-time-critical data telegrams and the respective associated links via which the real-time-critical data telegrams are forwarded for all real-time-critical data telegrams to be transmitted for real-time control in all switching units involved in each case, before the beginning of the respective performance of the data transmission.
  21. System according to Claim 20, characterized in that the system exhibits at least one means which ensures that all non-real-time-critical data which are to be transmitted during the section (13) of a transmission cycle (12) intended for the real-time-critical communication are temporarily stored by the respective switching unit and are transmitted during the section (14), intended for the non-real-time-critical communication, of this or a subsequent transmission cycle.
  22. System according to one of Claims 20 or 21, characterized in that the system exhibits at least one means which ensures that all non-real-time-critical data which cannot be transmitted during the section (14) of a transmission cycle (12) intended for the transmission of the non-real-time-critical data are temporarily stored by the respective switching unit and are transmitted during the section (14), intended for the transmission of the non-real-time-critical data, of a later transmission cycle.
  23. System according to one of Claims 20 to 22, characterized in that the system exhibits at least one means which automatically establishes the period of the section (14) for the transmission of non-real-time-critical data within a transmission cycle (12) by means of the period of the section (13) for transmitting real-time-critical data.
  24. System according to one of Claims 20 to 23, characterized in that the system exhibits at least one means which in each case determines the period of the section (13) for transmitting real-time-critical data within a transmission cycle (12) by means of the data to be transmitted in a connection-oriented manner.
  25. System according to one of Claims 20 to 24, characterized in that the system exhibits at least one means which establishes the period (17) of a transmission cycle (12) at least once before the respective performance of the data transmission.
  26. System according to one of Claims 20 to 25, characterized in that the system exhibits at least one means which changes the period (17) of a transmission cycle (12) and/or the period of the section (13) for the transmission of real-time-critical data of a transmission cycle (12).
  27. System according to one of Claims 20 to 26, characterized in that the system exhibits at least one means which newly plans the real-time communication at any time during active operation of an automation system.
  28. System according to one of Claims 20 to 27, characterized in that the system exhibits at least one means which changes the period (17) of a transmission cycle (12) by newly planning the real-time communication.
  29. System according to one of Claims 20 to 28, characterized in that the system exhibits at least one means which provides a part of the section (13) of the transmission cycle (12) provided for the transmission of the real-time-critical data for the transmission of data for the organization of the data transmission (15).
  30. System according to one of Claims 20 to 29, characterized in that the system exhibits at least one means which transmits the data for the organization of the data transmission (15) at the beginning of the section (13) for the transmission of the real-time-critical data of the transmission cycle (12).
  31. System according to one of Claims 20 to 30, characterized in that the system exhibits at least one means which notes the transmitting and receiving time at the transmitter and/or receiver for all real-time-critical data telegrams to be transmitted before the beginning of the respective performance of the data transmission.
  32. System according to one of Claims 20 to 31, characterized in that the system exhibits at least one means which ensures that each real-time-critical data telegram arrives at the corresponding switching unit at the latest at the forwarding time or earlier.
  33. The system according to one of Claims 20 to 32, characterized in that the system exhibits at least one means which transmits or forwards the real-time-critical data telegrams immediately without time interval.
  34. The system according to one of Claims 20 to 33, characterized in that the system exhibits at least one means which ensures that links of a switched data network which must not be used for the non-real-time-critical communication are used in the real-time-critical communication.
  35. The system according to one of Claims 20 to 34, characterized in that a switching unit is integrated in a user.
  36. The system according to one of Claims 20 to 35, characterized in that a switching unit has two separate accesses to the respective user, one access being intended for exchanging real-time-critical data and the other access being intended for exchanging non-real-time-critical data.
  37. The system according to one of Claims 20 to 36, characterized in that the system exhibits at least one means which ensures that at least one user of a switched data network can perform a real-time-critical communication and/or a non-real-time-critical communication, especially an Internet communication, in parallel in the same switched data network, wherein the non-real-time-critical communication taking place does not influence the real-time-critical communication taking place in parallel.
  38. The system according to one of Claims 20 to 37, characterized in that the system exhibits at least one means which ensures that at least one arbitrary user, especially a user with the capability for open Internet-capable communication, with or without associated switching unit, can be added to a switched data network.
  39. User for a system according to one of Claims 20 to 38 and/or a user with means to carry out the method according to one of Claims 1 to 19.
  40. User according to Claim 39, characterized in that the user is a user of an automation system.
  41. User according to one of Claims 39 or 40, characterized in that the user exhibits at least one means for transmitting real-time-critical and non-real-time-critical data, the data being transmitted in at least one transmission cycle (12) with adjustable period (17), each transmission cycle (12) being subdivided into at least one first section (13) for transmitting real-time-critical data for real-time control and at least one second section (14) for transmitting non-real-time-critical data.
EP01997926A 2000-11-24 2001-11-16 System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet Expired - Lifetime EP1388238B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10058524A DE10058524A1 (en) 2000-11-24 2000-11-24 System and method for the parallel transmission of real-time-critical and non-real-time-critical data via switchable data networks, in particular Ethernet
DE10058524 2000-11-24
PCT/DE2001/004322 WO2002043336A1 (en) 2000-11-24 2001-11-16 System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet

Publications (2)

Publication Number Publication Date
EP1388238A1 EP1388238A1 (en) 2004-02-11
EP1388238B1 true EP1388238B1 (en) 2008-03-05

Family

ID=7664614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01997926A Expired - Lifetime EP1388238B1 (en) 2000-11-24 2001-11-16 System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet

Country Status (8)

Country Link
US (3) US20020064157A1 (en)
EP (1) EP1388238B1 (en)
JP (1) JP3854578B2 (en)
CN (1) CN100409641C (en)
AT (1) ATE388559T1 (en)
DE (2) DE10058524A1 (en)
ES (1) ES2300386T3 (en)
WO (1) WO2002043336A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007128A1 (en) 2010-07-14 2012-01-19 Phoenix Contact Gmbh & Co. Kg Communication system and method for isochronous data transmission in real time
DE102010027167A1 (en) 2010-07-14 2012-01-19 Phoenix Contact Gmbh & Co. Kg Communication system for isochronous transmission of real time-critical data telegram in isochronous real-time-domain to control industrial drive system in automation surrounding area, has microprocessor controlling forwarding of telegram
DE102010052322A1 (en) 2010-11-25 2012-05-31 Phoenix Contact Gmbh & Co. Kg Communication system for isochronous data transmission in real time, has rear-time controlled Ethernet-data network with communication devices which have synchronous timing circuit
DE102012204536A1 (en) 2012-03-21 2013-05-08 Siemens Aktiengesellschaft Method for transmitting data through common transmission medium in network, involves determining one time for media access to send message in other time range of current transfer cycle or subsequent transmission cycle

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904194B2 (en) 2001-02-09 2011-03-08 Roy-G-Biv Corporation Event management systems and methods for motion control systems
US7411966B2 (en) 2001-03-16 2008-08-12 Siemens Aktiengesellschaft Method and system for coupling data networks
DE10113261C2 (en) * 2001-03-16 2003-07-10 Siemens Ag Synchronous, clocked communication system with decentralized input / output modules and method for integrating decentralized input / output modules in such a system
US7463643B2 (en) 2001-03-16 2008-12-09 Siemens Aktiengesellschaft Applications of a switched data network for real-time and non-real time communication
US20040131066A1 (en) * 2001-03-22 2004-07-08 Franz-Josef Gotz Electronic switching circuit and method for a communication interface with cut through buffer memory
US20040114582A1 (en) * 2001-03-22 2004-06-17 Franz-Josef Gotz Electronic switching circuit and method for a communication interface with buffer storage
US20040105398A1 (en) * 2001-03-22 2004-06-03 Michael Franke Method and electronic switching circuit for a scalable communication interface in automation components
DE10147419A1 (en) * 2001-09-26 2003-04-24 Siemens Ag Method for creating a dynamic address table for a coupling node in a data network and method for transmitting a data telegram
CA2461492A1 (en) * 2001-09-26 2003-04-03 Siemens Aktiengesellschaft Method for operating an isochronous cyclical communication system
EP1430643B1 (en) * 2001-09-26 2011-10-26 Siemens Aktiengesellschaft Method for transmitting real time data messages in a cyclic communications system
WO2003028336A2 (en) 2001-09-26 2003-04-03 Siemens Aktiengesellschaft Receipt of data messages in communications systems comprising redundant network paths
DE50205762D1 (en) * 2001-09-26 2006-04-13 Siemens Ag METHOD FOR TRANSMITTING A DATA TELEGRAM BETWEEN A REAL-TIME DOMAIN AND A NON-REAL-TIME DOMAIN AND COUPLING UNIT
DE50212162D1 (en) 2001-10-17 2008-06-05 Siemens Ag PARTICIPANT UNIT FOR A HIGH PERFORMANCE COMMUNICATION SYSTEM
DE10242667B4 (en) * 2002-09-13 2004-07-29 Phoenix Contact Gmbh & Co. Kg Real-time control system with a PLC application under a non-real-time operating system
DE10243384B4 (en) 2002-09-18 2006-10-05 Siemens Ag Method for permanent redundant transmission of data telegrams in communication systems
DE10243850A1 (en) * 2002-09-20 2004-04-01 Siemens Ag Process for the transmission of data telegrams in a switched, cyclical communication system
DE10304637A1 (en) * 2003-02-04 2004-08-19 Elektro Beckhoff Gmbh Unternehmensbereich Industrie Elektronik Network coupler, network and data processing method for Ethernet telegrams
DE10305828A1 (en) 2003-02-12 2004-09-02 Siemens Ag Deterministic communication system
DE10308954A1 (en) 2003-02-28 2004-09-09 Siemens Ag Transmission of data in a switchable data network
DE10309164A1 (en) * 2003-02-28 2004-09-09 Siemens Ag Scheduling of real-time communication in switched networks
DE10313050B3 (en) * 2003-03-24 2004-06-24 Siemens Ag Mobile communications terminal e.g. for automobile audio system, with Bluetooth (RTM) antenna provided by metal frame used for electrostatic discharge protection of printed circuit board
DE10314025B4 (en) 2003-03-28 2010-04-01 Kuka Roboter Gmbh Method and device for controlling a plurality of handling devices
DE10327545B4 (en) * 2003-06-18 2005-12-01 Infineon Technologies Ag Method and device for processing real-time data
CN100382522C (en) * 2003-08-04 2008-04-16 浙江中控技术股份有限公司 Method for realizing deterministic communication dispatch of ethernet
US8027349B2 (en) 2003-09-25 2011-09-27 Roy-G-Biv Corporation Database event driven motion systems
US20060064503A1 (en) * 2003-09-25 2006-03-23 Brown David W Data routing systems and methods
KR100575989B1 (en) 2004-04-08 2006-05-02 삼성전자주식회사 Segmentation Transmitting Method of Asynchronous Data In Synchronous Ethernet and Data Structure Used In Segmentation Transmitting Method
DE102004041093A1 (en) * 2004-08-24 2006-03-09 Bosch Rexroth Aktiengesellschaft Main station and slave station in a network and a method for transmitting data in a network
US7983769B2 (en) * 2004-11-23 2011-07-19 Rockwell Automation Technologies, Inc. Time stamped motion control network protocol that enables balanced single cycle timing and utilization of dynamic data structures
US7904184B2 (en) * 2004-11-23 2011-03-08 Rockwell Automation Technologies, Inc. Motion control timing models
DE102005019105A1 (en) 2005-04-25 2006-11-02 Siemens Ag Communication system e.g. switched network with substations interconnected in pairs via data circuits and one of pairs of substations is interconnected via first line or separate second line
US7649912B2 (en) * 2005-04-27 2010-01-19 Rockwell Automation Technologies, Inc. Time synchronization, deterministic data delivery and redundancy for cascaded nodes on full duplex ethernet networks
DE112005003656A5 (en) 2005-06-01 2008-05-21 Siemens Aktiengesellschaft Universal measuring or protective device
KR101050658B1 (en) * 2005-07-05 2011-07-19 삼성전자주식회사 How to Set the Transmission Cycle to Accept Fast Ethernet on the Residential Ethernet
DE102006006508A1 (en) 2006-02-10 2007-08-16 Robert Bosch Gmbh Method for data transmission over data networks
WO2007107236A1 (en) * 2006-03-17 2007-09-27 Abb Patent Gmbh Robot control system
EP1835699A1 (en) * 2006-03-17 2007-09-19 ABB PATENT GmbH Robot controller
DE102006023799B4 (en) * 2006-05-20 2014-05-15 Franki Grundbau Gmbh & Co.Kg Device for producing foundation elements
DE102007017835A1 (en) 2007-04-16 2008-10-23 Beckhoff Automation Gmbh Packet switching device and local communication network with such a packet switching device
DE102008010385B4 (en) * 2008-02-21 2009-10-29 Ic-Haus Gmbh Method and data transmission system for serial data transmission between a control device and at least one subscriber device
JP4994281B2 (en) * 2008-03-26 2012-08-08 ルネサスエレクトロニクス株式会社 Connection confirmation type network device, network system, and frame transfer method
EP2485436A4 (en) * 2009-09-29 2017-03-22 Siemens Aktiengesellschaft Communication method in a profinet communication system
DE102010023070B4 (en) 2009-09-29 2024-04-11 Volkswagen Ag Methods and filters for transmitting time-controlled messages
DE102009058517A1 (en) * 2009-12-16 2011-06-22 Siemens Aktiengesellschaft, 80333 Device and method for protecting a real-time network segment
JP5137984B2 (en) * 2010-02-12 2013-02-06 株式会社日立ハイテクインスツルメンツ Field network system
ES2411081T3 (en) * 2010-07-30 2013-07-04 Siemens Aktiengesellschaft Transmission loop prevention in a redundant ring network
US9197576B2 (en) 2010-11-15 2015-11-24 Rockwell Automation Technologies, Inc. Method and apparatus for allocating and prioritizing data transmission
JP5389071B2 (en) * 2011-02-17 2014-01-15 株式会社日立産機システム Communication control device
EP2501079A1 (en) 2011-03-15 2012-09-19 Siemens Aktiengesellschaft Method for real-time data transmission in a communication network
DE102011121522A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Method for controlling machine tool used with e.g. printer, involves transferring telegrams to system unit via real-time bus over non-real time channel, and prioritizing telegrams relative to other telegrams, which are sent over channel
DE112012006248B4 (en) 2012-04-20 2023-06-22 Mitsubishi Electric Corporation Data processing device and program
DE102013207760B4 (en) 2013-04-29 2024-02-22 Phoenix Contact Gmbh & Co. Kg Electrical interface module
DE102014206387A1 (en) 2014-04-03 2015-10-08 Phoenix Contact Gmbh & Co. Kg Electrical interface module
DE102014112082A1 (en) 2014-08-22 2016-02-25 Beckhoff Automation Gmbh Distribution hub, automation network and method for transmitting real-time-relevant and non-real-time-relevant data packets
DK3245797T3 (en) * 2015-01-14 2019-03-04 Widex As PROCEDURE TO OPERATE A HEARING SYSTEM AND HEARING SYSTEM
CN107926026B (en) * 2015-08-26 2019-07-30 三菱电机株式会社 The recording medium that wireless communication device, wireless communications method and computer capacity are read
TW201719454A (en) * 2015-11-18 2017-06-01 財團法人資訊工業策進會 Data processing server and data processing method thereof
US11072356B2 (en) 2016-06-30 2021-07-27 Transportation Ip Holdings, Llc Vehicle control system
US10814893B2 (en) 2016-03-21 2020-10-27 Ge Global Sourcing Llc Vehicle control system
CN105930285A (en) * 2016-04-12 2016-09-07 深圳市汇川技术股份有限公司 485 bus based driving device monitoring method and system
WO2018003117A1 (en) * 2016-07-01 2018-01-04 三菱電機株式会社 Communication system and communication method
JP7089842B2 (en) * 2016-10-07 2022-06-23 オムロン株式会社 Arithmetic logic unit and control unit
JP6355863B1 (en) 2016-11-14 2018-07-11 三菱電機株式会社 Network system and communication method
US10678216B2 (en) * 2017-02-28 2020-06-09 Sap Se Manufacturing process data collection and analytics
DE102017125086A1 (en) 2017-10-26 2019-05-02 Beckhoff Automation Gmbh Data transmission method and communication network
US10587560B2 (en) * 2017-11-07 2020-03-10 General Electric Company Unified real-time and non-real-time data plane
US10735218B2 (en) 2018-05-23 2020-08-04 Beckhofff Automation GmbH Data transmission method and automation-communication network
DE102018112357A1 (en) * 2018-05-23 2019-11-28 Beckhoff Automation Gmbh Data transmission method and automation communication network
US10659190B1 (en) 2019-02-25 2020-05-19 At&T Intellectual Property I, L.P. Optimizing delay-sensitive network-based communications with latency guidance
DE102019116510A1 (en) * 2019-06-18 2020-12-24 Beckhoff Automation Gmbh Network participants and automation network
DE102019219648A1 (en) * 2019-12-16 2021-06-17 Robert Bosch Gmbh Method for operating a communication network and communication network
CN113037685B (en) * 2019-12-24 2022-08-30 中国移动通信集团四川有限公司 Data transmission method and electronic equipment
FR3115957B1 (en) * 2020-11-05 2023-12-22 Thales Sa Method for exchanging data in a communications platform, associated computer program product and communications platform
CN114884903B (en) * 2022-04-29 2023-06-02 绿盟科技集团股份有限公司 Data processing method, field programmable gate array chip and network security device
DE102022118267B3 (en) 2022-07-21 2024-01-25 Rockwell Collins Deutschland Gmbh Synchronized data network system and method for initializing and synchronizing same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8606217D0 (en) * 1986-03-13 1986-04-16 Univ Strathclyde Local area network priority control system
JPS63199540A (en) * 1987-02-16 1988-08-18 Toshiba Corp Method and equipment for transmitting data
EP0510290B1 (en) * 1991-04-22 1997-02-05 International Business Machines Corporation Collision-free insertion and removal of circuit-switched channels in a packet-switched transmission structure
SE501373C2 (en) * 1992-12-17 1995-01-30 Televerket Device at communication networks
EP0684719A1 (en) * 1994-05-25 1995-11-29 International Business Machines Corporation Method and apparatus for transmission of high priority traffic on low speed communication links
KR0170714B1 (en) * 1995-12-20 1999-03-30 김광호 Nand type flash memory device and its driving method
US5812545A (en) * 1996-01-04 1998-09-22 Orion Atlantic, L.P. Full mesh satellite-based multimedia networking system
AT410875B (en) * 1996-01-10 2003-08-25 Frequentis Nachrichtentechnik Gmbh METHOD AND SYSTEM FOR TRANSMITTING DATA
US5784569A (en) * 1996-09-23 1998-07-21 Silicon Graphics, Inc. Guaranteed bandwidth allocation method in a computer system for input/output data transfers
US5923648A (en) * 1996-09-30 1999-07-13 Amsc Subsidiary Corporation Methods of dynamically switching return channel transmissions of time-division multiple-access (TDMA) communication systems between signalling burst transmissions and message transmissions
US5982761A (en) * 1996-09-30 1999-11-09 Amsc Subsidiary Corporation Methods of communicating over time-division multiple-access (TDMA) communication systems with distinct non-time-critical and time-critical network management information transmission rates
SE510162C2 (en) * 1997-01-14 1999-04-26 Ericsson Telefon Ab L M A method and communication station for controlling message transmission in a mobile communication system
EP0876032A3 (en) * 1997-02-26 2005-01-26 Kabushiki Kaisha Toshiba Communication apparatus, communication method, and record medium
US6321272B1 (en) * 1997-09-10 2001-11-20 Schneider Automation, Inc. Apparatus for controlling internetwork communications
US6360271B1 (en) * 1999-02-02 2002-03-19 3Com Corporation System for dynamic jitter buffer management based on synchronized clocks
US6412006B2 (en) * 1998-02-10 2002-06-25 3Com Corporation Method and apparatus for sending delay sensitive information assisted by packet switched networks
JP2000078201A (en) * 1998-06-17 2000-03-14 Canon Inc Communication device, communication method and communication system
US6483846B1 (en) * 1998-07-10 2002-11-19 Honeywell Inc. Middleware-based real-time communication system
US6370159B1 (en) * 1998-07-22 2002-04-09 Agilent Technologies, Inc. System application techniques using time synchronization
US6611519B1 (en) * 1998-08-19 2003-08-26 Swxtch The Rules, Llc Layer one switching in a packet, cell, or frame-based network
US6215797B1 (en) * 1998-08-19 2001-04-10 Path 1 Technologies, Inc. Methods and apparatus for providing quality of service guarantees in computer networks
US6246702B1 (en) * 1998-08-19 2001-06-12 Path 1 Network Technologies, Inc. Methods and apparatus for providing quality-of-service guarantees in computer networks
US6570849B1 (en) 1999-10-15 2003-05-27 Tropic Networks Inc. TDM-quality voice over packet
EP1130877B1 (en) * 2000-03-02 2007-05-16 Alcatel Lucent Qualified priority queue scheduler
US6993043B1 (en) * 2000-11-13 2006-01-31 At&T Corp. End-to-end prioritized data delivery on networks using IP over frame relay
US7093256B2 (en) * 2002-12-13 2006-08-15 Equator Technologies, Inc. Method and apparatus for scheduling real-time and non-real-time access to a shared resource

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007128A1 (en) 2010-07-14 2012-01-19 Phoenix Contact Gmbh & Co. Kg Communication system and method for isochronous data transmission in real time
DE102010027167A1 (en) 2010-07-14 2012-01-19 Phoenix Contact Gmbh & Co. Kg Communication system for isochronous transmission of real time-critical data telegram in isochronous real-time-domain to control industrial drive system in automation surrounding area, has microprocessor controlling forwarding of telegram
DE102010052322A1 (en) 2010-11-25 2012-05-31 Phoenix Contact Gmbh & Co. Kg Communication system for isochronous data transmission in real time, has rear-time controlled Ethernet-data network with communication devices which have synchronous timing circuit
DE102012204536A1 (en) 2012-03-21 2013-05-08 Siemens Aktiengesellschaft Method for transmitting data through common transmission medium in network, involves determining one time for media access to send message in other time range of current transfer cycle or subsequent transmission cycle

Also Published As

Publication number Publication date
US20100232430A1 (en) 2010-09-16
WO2002043336A1 (en) 2002-05-30
US8064482B2 (en) 2011-11-22
JP3854578B2 (en) 2006-12-06
DE10058524A1 (en) 2002-06-13
US8179923B2 (en) 2012-05-15
JP2004515122A (en) 2004-05-20
WO2002043336A9 (en) 2003-12-18
US20020064157A1 (en) 2002-05-30
ATE388559T1 (en) 2008-03-15
US20090034524A1 (en) 2009-02-05
CN1476702A (en) 2004-02-18
DE50113709D1 (en) 2008-04-17
ES2300386T3 (en) 2008-06-16
CN100409641C (en) 2008-08-06
EP1388238A1 (en) 2004-02-11

Similar Documents

Publication Publication Date Title
EP1388238B1 (en) System and method for the parallel transmission of real-time critical and non real-time critical data via switched data networks, especially ethernet
EP1502400B1 (en) Method and system for transmitting data via switchable data networks
EP1884851B1 (en) Method, node and network for cyclical transmission of ethernet telegrams
EP1430643B1 (en) Method for transmitting real time data messages in a cyclic communications system
EP1820111B1 (en) Communications module assembly comprising an interface module and associated interface module
EP1436924B1 (en) Method for operating an end-user of an isochronous cyclical communication system
EP1965549B1 (en) Bus system and method for operating the bus system
EP1436950B1 (en) User device for a high performance communication system
EP2538618A1 (en) Method for transferring data packets
EP1540905B1 (en) Method for the transmission of data telegrammes in a switched cyclical communication system
EP1527578B1 (en) Communication in a data network
DE102019125545B3 (en) DATA TRANSFER PROCEDURE, SEGMENT TELEGRAM AND AUTOMATION COMMUNICATION NETWORK
EP1453252B1 (en) Transmission of data in a data switch network
DE10141187B4 (en) Electronic circuit and method for a communication interface with buffering
EP1593235B1 (en) Deterministic communications system
EP1371185A2 (en) Method and electronic switching circuit for a scalable communication interface in automation components
WO2006114391A1 (en) Communication system
DE10241191A1 (en) Method for operating an end user of an isochronous, cyclical communication system
AT503207B1 (en) METHOD AND SYSTEM FOR TRANSFERRING DATA
WO2002078252A2 (en) Electronic switching circuit and method for a communication interface having a cut-through buffer memory
EP1453230A2 (en) Synchronisation in a switching data network
DE10235436A1 (en) Method for the transmission of real-time data telegrams in a cyclic communication system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20070503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113709

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2300386

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

26N No opposition filed

Effective date: 20081208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201102

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201112

Year of fee payment: 20

Ref country code: IT

Payment date: 20201123

Year of fee payment: 20

Ref country code: AT

Payment date: 20201012

Year of fee payment: 20

Ref country code: GB

Payment date: 20201202

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210202

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210119

Year of fee payment: 20

Ref country code: ES

Payment date: 20210223

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50113709

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20211115

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20211116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 388559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211117