EP1368805B1 - Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals - Google Patents

Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals Download PDF

Info

Publication number
EP1368805B1
EP1368805B1 EP02718164A EP02718164A EP1368805B1 EP 1368805 B1 EP1368805 B1 EP 1368805B1 EP 02718164 A EP02718164 A EP 02718164A EP 02718164 A EP02718164 A EP 02718164A EP 1368805 B1 EP1368805 B1 EP 1368805B1
Authority
EP
European Patent Office
Prior art keywords
signal
tonality
measure
spectral components
quotient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02718164A
Other languages
English (en)
French (fr)
Other versions
EP1368805A2 (de
Inventor
Eric Allamanche
Jürgen HERRE
Oliver Hellmuth
Bernhard FRÖBA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M2any GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1368805A2 publication Critical patent/EP1368805A2/de
Application granted granted Critical
Publication of EP1368805B1 publication Critical patent/EP1368805B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0033Recording/reproducing or transmission of music for electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/081Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for automatic key or tonality recognition, e.g. using musical rules or a knowledge base
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/011Files or data streams containing coded musical information, e.g. for transmission
    • G10H2240/046File format, i.e. specific or non-standard musical file format used in or adapted for electrophonic musical instruments, e.g. in wavetables
    • G10H2240/061MP3, i.e. MPEG-1 or MPEG-2 Audio Layer III, lossy audio compression
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/121Musical libraries, i.e. musical databases indexed by musical parameters, wavetables, indexing schemes using musical parameters, musical rule bases or knowledge bases, e.g. for automatic composing methods
    • G10H2240/131Library retrieval, i.e. searching a database or selecting a specific musical piece, segment, pattern, rule or parameter set
    • G10H2240/135Library retrieval index, i.e. using an indexing scheme to efficiently retrieve a music piece
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/131Mathematical functions for musical analysis, processing, synthesis or composition
    • G10H2250/215Transforms, i.e. mathematical transforms into domains appropriate for musical signal processing, coding or compression
    • G10H2250/235Fourier transform; Discrete Fourier Transform [DFT]; Fast Fourier Transform [FFT]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/541Details of musical waveform synthesis, i.e. audio waveshape processing from individual wavetable samples, independently of their origin or of the sound they represent
    • G10H2250/571Waveform compression, adapted for music synthesisers, sound banks or wavetables
    • G10H2250/601Compressed representations of spectral envelopes, e.g. LPC [linear predictive coding], LAR [log area ratios], LSP [line spectral pairs], reflection coefficients

Definitions

  • the present invention relates to characterization of audio signals with regard to their content and in particular on a concept for classifying or indexing Audio pieces in terms of their content, for researchability to enable such multimedia data.
  • U.S. Patent No. 5,918,223 discloses a method for the Content-based analysis, storage, recovery and Segmentation of audio information.
  • An analysis of audio data generates a set of numerical values, also called Feature vector is referred to, and used for this can determine the similarity between individual audio pieces that typically in a multimedia database or on the World Wide Web are stored, classified and ranked.
  • the analysis also enables the description of user-defined Classes of audio pieces based on an analysis of a set of audio pieces that all members of a Are user-defined class.
  • the system is able individual sections of sound within a longer piece of sound find what enables audio recording to automatically segmented into a series of shorter audio segments becomes.
  • MFCCs Mel Frequency Cepstral Coefficients
  • the database system is able to measure the distance in an n-dimensional Space between two n-dimensional vectors quantify. It is also possible to have classes of audio pieces to generate by specifying a set of audio pieces who belongs in a class. Example classes are twittering birds, Rock music, etc.
  • the user is enabled to the audio track database using specific ones Search procedures. The result of a search is one List of sound files ordered by their distance from that specified n-dimensional vector are listed.
  • the User can search the database for similarity characteristics, with regard to acoustic or psychoacoustic Characteristics, in terms of subjective characteristics or in terms of special noises, e.g. Bee buzz, search.
  • Audio pieces suggested such as Animal sounds, bell sounds, Crowd sounds, laughter, machine noises, Music instruments, male language, female language, Telephone noises or water noises.
  • U.S. Patent No. 5,510,572 discloses an apparatus for Analyze and harmonize a tune using results of a melody analysis.
  • a melody in the form of a Sequence of notes played by a keyboard is read in and broken down into melody segments, a melody segment, i.e. a phrase, e.g. B. four bars of the melody includes.
  • a tonality analysis is done with each phrase, to determine the key of the melody in that phrase. To do this, the pitch of a note in the phrase is determined and then a pitch difference between the current one considered note and the previous note. Further becomes a pitch difference between the current note and the following note. Because of the pitch differences becomes a previous coupling coefficient and a subsequent coupling coefficient determined.
  • the coupling coefficient for the current grade then results from the previous coupling coefficient and the following Coupling coefficient and the note length. This process will repeated for each note of the melody in the phrase to the Key of the melody or a candidate for the key of the Determine melody.
  • the key of the phrase is used to a grade type classifier for interpretation to control the meaning of each note in a phrase.
  • the key information, which were obtained by the tonality analysis is also used to create a transpose module to control the one in a reference key in a database stored chord progression in the by tonality analysis transposed certain key for a considered melody phrase.
  • Document US-B1-6185527 discloses a classification and an indexing of audio data based on a tonality determination.
  • the object of the present invention is an improved Concept for characterizing or indexing a To create signal that has audio content.
  • This task is accomplished through a characterization process of a signal according to claim 1, by a method for Generating an indexed signal according to claim 11, by a device for characterizing a signal Claim 14 or by a device for generating a indexed signal according to claim 15 solved.
  • the present invention is based on the finding that when selecting the characteristic for characterization or indexing of a signal especially for robustness Distortions of the signal must be taken into account.
  • the usefulness of characteristics or combinations of characteristics depends on how strongly by irrelevant changes such as B. by a MP3 coding, can be changed.
  • the tonality of a signal i. H. the property of a signal, a rather flat spectrum with pronounced lines or rather a spectrum with the same height Having lines that are more robust to distortion is more common Is like Distortion caused by a lossy coding method, such as. MP3.
  • the essence of the signal is taken its spectral appearance, and related to the individual spectral lines or groups of Spectral lines.
  • the tonality also provides great flexibility with regard to the computing effort to be carried out in order to to determine the tonality measure.
  • the tonality measure can be taken from the Tonality of all spectral components of a piece derived or from the tonality of groups of spectral components, etc.
  • tonalities of successive short-term spectra of the signal under investigation either individually or weighted or statistically evaluated be used.
  • the tonality depends on the present Registration based on the audio content. Is the audio content or the signal under consideration with the audio content has noisy, so it has a different tonality than a less noisy signal.
  • a noise-like signal typically has a lower one Tonality value as a less noisy, i.e. H. more tonal, Signal. The latter signal has a higher tonality value.
  • the tonality i.e. H. the noise or tonality of a signal
  • H. the noise or tonality of a signal
  • a concept based on a tonality measure Characterizing or indexing signals therefore provides a robust recognition, which shows that the tonality essence of a signal is not beyond recognition is changed if the signal is distorted.
  • Distortion is, for example, a transmission of the signal from a loudspeaker via an air transmission channel to a microphone.
  • the robustness property of the tonality feature is significant with regard to lossy compression methods.
  • the tonality measure of a signal through lossy data compression such as according to one of the MPEG standards not or hardly being affected. It also provides a distinguishing feature based on the tonality of the signal a sufficiently good one Essence for the signal so that two different from each other Audio signals also have sufficiently different tonality measures deliver. The content of the audio signal is therefore strong correlates with the tonality measure.
  • the main advantage of the present invention is thus in that the tonality measure of the signal compared to disturbed, d. H. distorted, signals is robust. This robustness exists in particular against filtering, i. H. equalization, Dynamic compression, lossy data reduction, such as. MPEG-1/2 Layer 3, an analog transmission, etc. It also provides the tonality property of a signal has a high correlation to the content of the signal.
  • Fig. 1 shows a basic block diagram of an inventive Device for characterizing a signal that a Represents audio content.
  • the device includes an entrance 10, in which the signal to be characterized are entered can, the signal to be characterized compared to a original signal, for example a lossy one Has undergone audio coding.
  • the one to be characterized Signal is in a device 12 for determining a measure for the tonality of the signal.
  • the measure of that Tonality for the signal is via a connecting line 14 a device 16 for making a statement about the content of the signal supplied.
  • the device 16 is designed to this statement based on the transmitted by the device 12 Measure of the tonality of the signal and delivers this statement about the content of the signal at an output 18 of the system.
  • FIG. 2 shows an inventive device for generating an indexed signal that has audio content.
  • the Signal for example an audio piece as it is generated in the recording studio has been stored on a compact disc, is via an input 20 in the device shown in Fig. 2 fed.
  • a device 22 that is basically the same how the device 12 of FIG. 12 can be constructed, determines a measure of the tonality of the signal to be indexed and delivers this measure via a connecting line 24 to a device 26 for recording the measurement as an index for the signal.
  • the output 28 of the device shown in FIG. 2 to generate an indexed signal, the Signal fed in at input 20 together with a tonality index be issued.
  • the one in FIG Device shown be designed so that at the output 28 a table entry is generated, the tonality index linked to an identification mark, the identification mark clearly assigned to the signal to be indexed is.
  • the device shown in Fig. 2 provides one Index for the signal, where the index is assigned to the signal and indicates the audio content of the signal.
  • the database When a plurality of signals by the one shown in Fig. 2 Device is processed, gradually creates a database from indices for audio pieces, for example for the pattern recognition system outlined in FIG. 5 can be used can.
  • the database optionally contains the Audio pieces themselves Tonality properties can be easily searched to identify a piece by the device shown in FIG. 1 and classify them, in terms of tonality or in terms of similarities to others Pieces or distances between two pieces.
  • the device shown in Fig. 2 provides one possibility to create pieces with an associated meta description, d. H. the tonality index. Therefore it is possible Records e.g. to index according to given tonality indices and search so that according to the present invention an efficient search and find of Multimedia pieces is possible.
  • Various can be used to calculate the tonality measure of a piece Procedures are applied.
  • Fig. 3 is a time signal to be characterized by means of a device 30 are implemented in the spectral range, to a block from a block of temporal samples of generating spectral coefficients.
  • a separate tonality value can be determined in order for example using a yes / no determination, whether a spectral component is tonal or not.
  • the Tonality values can be determined by the device 32 then by means of a device 34 the tonality measure for the Signal calculated in a variety of different ways become.
  • Pieces can be classified as similar if their tonality measures only about a difference less than one differentiate predetermined threshold while pieces other than can be classified differently if their tonality indices differ by a difference that is greater than is a dissimilarity threshold.
  • Two tonality measures can be used to determine the tonality distance other sizes are used between two pieces, such as B. the difference between two absolute values, the square a difference, the quotient between two tonality measures less one, the correlation between two tonality measures, the distance metric between two tonality measures, the n-dimensional Are vectors, etc.
  • the signal to be characterized does not necessarily have to be a time signal, but that it is the same can also be an MP3-encoded signal, for example, which consists of a sequence of Huffman code words consisting of quantized spectral values have been generated.
  • the quantized spectral values were from the original Spectral values generated by quantization, the quantization was chosen such that the quantization introduced quantization noise below the psychoacoustic Masking threshold is.
  • directly the encoded MP3 data stream can be used, for example the spectral values using an MP3 decoder calculate (device 40 in Fig. 4). It is not necessary before the determination of the tonality an implementation in the time domain and then again implement a conversion into the spectral range, but it can be inside the MP3 decoder calculated spectral values can be taken directly to the Tonality per spectral component or as shown in FIG.
  • the measure for spectral flatness (SFM) is calculated using the following equation.
  • X (n) stands for the square of one Spectral component with the index n, while N for the total number is the spectral coefficient of a spectrum.
  • the SFM is equal to the quotient from the geometric mean of the spectral components to arithmetic mean of the spectral components.
  • the geometric mean is always smaller or at most equal to the arithmetic mean so that the SFM has a range of values between 0 and 1.
  • a value indicates close to 0 to a tonal signal and a value close to 1 to a closer noise-like signal with a flat spectral curve.
  • the SFM is in "Digital Coding of Waveforms", Englewood Cliffs, NJ, Prentice-Hall, N. Jayant, P. Noll, 1984 and was originally used as a measure of the maximum to be achieved Coding gain defined from a redundancy reduction.
  • the SFM can then be determined by a device 44 of the tonality measure the tonality measure can be determined.
  • Another way to determine the tonality of the spectral values, performed by a device 32 of FIG. 3 can be determined by determining peaks in the Power density spectrum of the audio signal as found in MPEG-1 audio ISO / IEC 11172-3, Annex D1 "Psychoacoustic Model 1" is.
  • the level of a spectral component determined.
  • the levels of two become the one spectral component surrounding spectral components determined.
  • a Classification of the spectral component as tonal then takes place instead when the level of the spectral component is a predetermined Factor is greater than a level of a surrounding Spectral component.
  • the predetermined threshold is in the state of technology adopted as 7dB, being for the present invention however, any other predetermined thresholds are used can be. This allows for each spectral component whether it is tonal or not.
  • the measure of tonality can then by means 34 of FIG. 3 under Use of the tonality values for the individual components and the energy of the spectral components can be specified.
  • Another way to determine the tonality of a Spectral component consists in evaluating the temporal Predictability, d. H. Predictability, the spectral component.
  • MPEG-1 Audio ISO / IEC 11172-3, Annex D2 "Psychoacoustic Model 2".
  • General will a current block of samples of the to be characterized Signal converted into a spectral representation to a to get current block of spectral components.
  • hereupon become the spectral components of the current block of spectral components using information from samples of the signal to be characterized that corresponds to the current Go ahead block, so using historical information, predicted. This will result in a prediction error from which a tonality measure is then derived can.
  • U.S. Patent No. 5,918,203 Another possibility for determining the tonality is in U.S. Patent No. 5,918,203.
  • the amounts or squares of amounts of the spectral components initially logarithmic compressed and then using a filter with differentiating Characteristic filtered to differentiate a block of to get filtered spectral components.
  • the amounts of Spectral components first with a filter with differentiating Characteristic filtered to get a counter and then with a filter with an integrating characteristic filtered to get a denominator.
  • the quotient of one differentially filtered amount of a spectral component and the integrally filtered amount of the same spectral component then gives the tonality value for this spectral component.
  • Tonality value is calculated per spectral component
  • it will preferred in view of a lower computing effort for example always the amount squares of two neighboring ones Add spectral components and then for each result the addition of a tonality value by one of the above Calculate procedure.
  • Any kind of additive grouping of amount squares or amounts of spectral components can be used to set tonality values for more than one Calculate spectral component.
  • Another way to determine the tonality of a Spectral component is the level of a spectral component with an average of levels of spectral components to compare in a frequency band.
  • the band is chosen narrow.
  • the band could also be chosen broadly, or also according to psychoacoustic Aspects. As a result, the influence can be brief Performance drops in the spectrum can be reduced.
  • the tonality of an audio signal was determined based on its spectral components, this can also in the time domain, i.e. using the samples of the Audio signal happen. This could be an LPC analysis of the signal be performed to gain a prediction for the Estimate signal.
  • the prediction gain is inversely proportional to the SFM and is also a measure of tonality of the audio signal.
  • the tonality measure is a multidimensional vector of tonality values.
  • the short-term spectrum in four adjacent and preferably not overlapping areas or frequency bands are divided, with a tonality value for example for each frequency band by the device 34 of FIG. 3 or by the device 44 of Fig. 4 is determined.
  • This is for a short-term spectrum of the signal to be characterized is a 4-dimensional one Preserve tonality vector.
  • a tonality measure which is a 16-dimensional vector or generally an n x m-dimensional Is vector, where n is the number of tonality components per frame or block of samples, while m for the number of blocks or short-term spectra under consideration stands.
  • the tonality measure would then, as stated, a 16-dimensional vector.
  • the tonality can thus consist of parts of the whole Spectrum can be calculated. So it is possible to Tonality / noiseiness of a sub-spectrum or several Determine sub-spectra and thus a finer characterization to achieve the spectrum and thus the audio signal.
  • short-term statistics from tonality values such as e.g. Mean, variance and central moments of higher order, can be calculated as a measure of tonality.
  • mean mean
  • central moments of higher order can be calculated as a measure of tonality.
  • Tonality vectors or linearly filtered tonality values are used, for example as a linear filter IIR filters or FIR filters can be used.
  • Pattern recognition system between two operating modes, namely training mode 50 and classification mode 52.
  • data is "trained", i.e. H. the System added and then recorded in a database 54.
  • Fig. 1 Device In classification mode an attempt is made to characterize one Signal with the entries in the database 54 to compare and order.
  • the invention shown in Fig. 1 Device can be in classification mode 52 be used when there are tonality indices of other pieces, with which the tonality index of the current piece can be compared to a statement about the piece too to meet.
  • the device shown in Fig. 2, however, is advantageous used in training mode 50 of Fig. 5 to the Database to be filled gradually.
  • the pattern recognition system comprises a device 56 for signal preprocessing, a downstream device 58 for Feature extraction, a device 60 for feature processing, a device 62 for cluster generation, and means 64 for performing a classification to for example, as a result of classification mode 52 such a statement about the content of the signal to be characterized to meet that signal with the signal xy that is in a Previous training mode has been trained identically is.
  • Block 56 together with block 58, forms a feature extractor, while block 60 represents a feature processor.
  • Block 56 sets an input signal to a uniform one Target format, such as B. the number of channels, the sampling rate, the resolution (in bits per sample) etc. This is insofar as it makes sense and is necessary because there are no requirements about the source from which the input signal originates should.
  • the feature 58 for feature extraction is used to do the usual large amount of information at the exit of the facility 56 to a small amount of information.
  • the too investigating signals usually have a high data rate, so a high number of samples per time period.
  • the restriction on a small amount of information must take place that the essence of the original signal, that is, the peculiarity the same, is not lost.
  • characteristic properties as general for example loudness, fundamental frequency, etc. and / or, according to the present invention, tonality features or the SFM, extracted from the signal.
  • the tonality characteristics thus obtained are said to be the essence of the signal under investigation include.
  • the previously calculated feature vectors can are processed.
  • the processing is simple Standardization of the vectors.
  • Possible processing of characteristics are linear transformations, such as the Karhunen-Loeve transformation (KLT) or linear discriminant analysis (LDA), which are known in the art. More in particular nonlinear transformations are also available Feature processing applicable.
  • KLT Karhunen-Loeve transformation
  • LDA linear discriminant analysis
  • the class generator is used to process the feature vectors to combine into classes. These classes correspond a compact representation of the associated signal.
  • the Classifier 64 is finally used to generate a feature vector a predefined class or a predefined Assign signal.
  • the table presents detection rates using a database (54) of FIG. 5 with a total of 305 pieces of music, of which the first 180 seconds each as reference data were trained.
  • the detection rate gives the percentage Number of correctly recognized pieces depending on the signal influence on.
  • the second column represents the detection rate if loudness is used as a characteristic.
  • the loudness was calculated in four spectral bands, then logarithmizing the loudness values, and then a difference of logarithmic loudness values for corresponding spectral bands in succession carried out. The result obtained was used as a feature vector used for loudness.
  • the SFM was used as the feature vector for four bands used.
  • tonality according to the invention as a classification feature for a 100% recognition rate of MP-3 encoded pieces when a snippet of 30 seconds is considered while the detection rates are both in the inventive feature as well as in the Decrease loudness as a characteristic if shorter sections (e.g. 15 s) of the signal to be examined is used for detection become.
  • FIG Device used to do the shown in FIG Train detection system.
  • the in Fig. 2 device shown can be used for any Multimedia records meta descriptions, d. H. Generating indexes so that it is possible to view records regarding their Search for tonality values or records from a database to output that have a certain tonality vector or are similar to a certain tonality vector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Communication Control (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Auxiliary Devices For Music (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

Die vorliegende Erfindung bezieht sich auf das Charakterisieren von Audiosignalen hinsichtlich ihres Inhalts und insbesondere auf ein Konzept zum Klassifizieren bzw. Indexieren von Audiostücken hinsichtlich ihres Inhalts, um eine Recherchierbarkeit solcher Multimediadaten zu ermöglichen.
In den letzen Jahren ist die Verfügbarkeit multimedialen Datenmaterials, d. h. von Audiodaten, stark gestiegen. Diese Entwicklung wurde durch eine Reihe von technischen Faktoren bedingt. Diese technischen Faktoren umfassen beispielsweise die breite Verfügbarkeit des Internets, die breite Verfügbarkeit leistungsfähiger Rechner sowie die breite Verfügbarkeit leistungsfähiger Verfahren zur Datenkompression, d. h. Quellcodierung, von Audiodaten. Als Beispiel hierfür ist MPEG 1/2 Layer 3 genannt, das auch als MP3 bezeichnet wird.
Die riesigen Mengen audiovisueller Daten, die beispielsweise auf dem Internet weltweit verfügbar sind, verlangen nach Konzepten, die es ermöglichen, diese Daten nach inhaltlichen Kriterien zu beurteilen, zu katalogisieren oder zu verwalten. Es besteht der Bedarf, multimediale Daten gezielt durch Angabe sinnvoller Kriterien zu suchen und zu finden.
Dies erfordert den Einsatz sogenannter "inhaltsbasierter" Techniken, die aus den audiovisuellen Daten sogenannte Merkmale, die in der Technik auch als "Features" bezeichnet werden, extrahieren, die wichtige charakteristische Inhalts-Eigenschaften des interessierenden Signals darstellen. Basierend auf solchen Merkmalen bzw. Kombinationen solcher Merkmale können Ähnlichkeitsbeziehungen bzw. Gemeinsamkeiten zwischen den Audiosignalen hergeleitet werden. Dieser Vorgang erfolgt im allgemeinen durch Vergleich bzw. In-Beziehungsetzen der extrahierten Merkmalswerte aus verschiedenen Signalen, welche hier auch als "Stücke" bezeichnet werden sollen.
Das US-Patent Nr. 5,918,223 offenbart ein Verfahren für die Inhalts-basierte Analyse, Speicherung, Wiedergewinnung und Segmentierung von Audioinformationen. Eine Analyse von Audiodaten erzeugt einen Satz von numerischen Werten, der auch als Merkmalsvektor bezeichnet wird, und der dazu verwendet werden kann, um die Ähnlichkeit zwischen einzelnen Audiostücken, die typischerweise in einer Multimediadatenbank oder im World Wide Web gespeichert sind, zu klassifizieren und rangmäßig zu ordnen.
Die Analyse ermöglicht ferner die Beschreibung von benutzerdefinierten Klassen von Audiostücken basierend auf einer Analyse eines Satzes von Audiostücken, die alle Mitglieder einer Benutzer-definierten Klasse sind. Das System ist in der Lage, einzelne Tonabschnitte innerhalb eines längeren Tonstücks zu finden, was es ermöglicht, daß die Audioaufzeichnung automatisch in eine Serie von kürzeren Audiosegmenten segmentiert wird.
Als Merkmale zur Charakterisierung bzw. Klassifizierung von Audiostücken hinsichtlich ihres Inhalts wird die Lautheit eines Stückes, der Baß-Gehalt eines Stückes, die Tonhöhe, die Tonhelligkeit ("Brightness"), die Bandbreite und die sogenannten Mel-Frequenz-Cepstral-Koeffizienten (MFCCs) bei periodischen Intervallen in dem Audiostück verwendet. Die Werte pro Block oder Frame werden gespeichert und einer ersten Ableitung unterzogen. Hierauf werden spezifische statistische Größen berechnet, wie z.B. der Mittelwert oder die Standardabweichung, und zwar von jedem dieser Merkmale einschließlich der ersten Ableitungen derselben, um eine Variation über der Zeit zu beschreiben. Dieser Satz von statistischen Größen bildet den Merkmalsvektor. Der Merkmalsvektor des Audiostücks wird in einer Datenbank in Zuordnung zu der Ursprungsdatei gespeichert, wobei ein Benutzer auf die Datenbank zugreifen kann, um entsprechende Audiostücke abzurufen.
Das Datenbanksystem ist in der Lage, den Abstand in einem n-dimensionalen Raum zwischen zwei n-dimensionalen Vektoren zu quantifizieren. Es ist ferner möglich, Klassen von Audiostükken zu erzeugen, indem ein Satz von Audiostücken spezifiziert wird, der in eine Klasse gehört. Beispielsklassen sind Vogelgezwitscher, Rockmusik usw. Der Benutzer wird in die Lage versetzt, die Audiostück-Datenbank unter Verwendung spezifischer Verfahren zu durchsuchen. Das Ergebnis einer Suche ist eine Liste von Tondateien, die geordnet nach ihrem Abstand von dem spezifizierten n-dimensionalen Vektor aufgelistet sind. Der Benutzer kann die Datenbank hinsichtlich Ännlichkeits-Merkmalen, hinsichtlich akustischer bzw. psychoakustischer Merkmale, hinsichtlich subjektiver Merkmale oder hinsichtlich spezieller Geräusche, wie z.B. Bienensummen, durchsuchen.
Die Fachveröffentlichung "Multimedia Content Analysis using both audio and visual clue", Yao Wang u.a., IEEE Signal Processing Magazine, November 2000, Seiten 12 bis 36, offenbart ein ähnliches Konzept, um Multimediastücke zu charakterisieren. Als Merkmale zum Klassifizieren des Inhalts eines Multimediastückes werden Zeitbereichsmerkmale oder Frequenzbereichsmerkmale vorgeschlagen. Diese umfassen die Lautstärke, die Tonhöhe als Grundfrequenz einer Audiosignalform, spektrale Merkmale, wie z. B. der Energieinhalt eines Bandes bezogen auf den Gesamtenergiegehalt, Grenzfrequenzen im Spektralverlauf etc. Neben Kurzzeitmerkmalen, die die genannten Größen pro Block von Abtastwerten des Audiosignals betreffen, werden auch Langzeitgrößen vorgeschlagen, die sich auf einen längeren Zeitraum des Audiostücks beziehen.
Zur Charakterisierung von Audiostücken werden verschiedene Kategorien vorgeschlagen, wie z.B. Tiergeräusche, Glockengeräusche, Geräusche einer Menschenmenge, Gelächter, Maschinengeräusche, Musikinstrumente, männliche Sprache, weibliche Sprache, Telefongeräusche oder Wassergeräusche.
Problematisch bei der Auswahl der verwendeten Merkmale ist, daß der Rechenaufwand zum Extrahieren eines Merkmals moderat sein soll, um eine zügige Charakterisierung zu erreichen, daß jedoch gleichzeitig das Merkmal für das Audiostück charakteristisch sein soll, derart, daß zwei unterschiedliche Stücke auch voneinander unterscheidbare Merkmale aufweisen.
Weiterhin problematisch ist die Robustheit des Merkmals. So wird bei den genannten Konzepten nicht auf Robustheitskriterien eingegangen. Wird ein Audiostück unmittelbar nach seiner Generierung im Tonstudio charakterisiert und mit einem Index versehen, der den Merkmalsvektor des Stücks darstellt und gewissermaßen die Essenz des Stücks bildet, so ist die Wahrscheinlichkeit relativ hoch, dieses Stück wiederzuerkennen, wenn dieselbe, unverzerrte Version dieses Stückes demselben Verfahren unterzogen wird, also dieselben Merkmale extrahiert werden und der Merkmalsvektor dann in der Datenbank mit einer Vielzahl von Merkmalsvektoren verschiedener Stücke verglichen wird.
Problematisch wird es jedoch dann, wenn ein Audiostück vor seiner Charakterisierung verzerrt wird, so daß das zu charakterisierende Signal nicht mehr identisch zum ursprünglichen Signal ist, jedoch denselben Inhalt hat. Ein Mensch, der beispielsweise ein Lied kennt, wird dieses Lied auch wiedererkennen, wenn es verrauscht ist, wenn es lauter oder leiser ist oder wenn es in einer anderen Tonhöhe gespielt wird als ursprünglich aufgenommen. Eine weitere Verzerrung könnte beispielsweise durch eine verlustbehaftete Datenkompression erreicht worden sein, beispielsweise mittels eines Codierverfahrens gemäß einem MPEG-Standard, wie z.B. MP3 oder AAC.
Führt eine Verzerrung bzw. Datenkompression dazu, daß das Merkmal durch die Verzerrung bzw. Datenkompression ebenfalls stark beeinträchtigt wird, würde dies bedeuten, daß die Essenz verloren geht, während der Inhalt des Stücks für einen Menschen immer noch erkennbar ist.
Das US-Patent Nr. 5,510,572 offenbart eine Vorrichtung zum Analysieren und Harmonisieren einer Melodie unter Verwendung von Resultaten einer Melodieanalyse. Eine Melodie in Form einer Folge von Noten, wie sie von einem Keyboard gespielt wird, wird eingelesen und in Melodiesegmente zerlegt, wobei ein Melodiesegment, d.h. eine Phrase, z. B. vier Takte der Melodie umfaßt. Eine Tonalitätsanalyse wird mit jeder Phrase durchgeführt, um die Tonart der Melodie in dieser Phrase zu bestimmen. Hierzu wird die Tonhöhe einer Note in der Phrase bestimmt und daraufhin eine Tonhöhendifferenz zwischen der gegenwärtig betrachteten Note und der vorhergehenden Note bestimmt. Ferner wird eine Tonhöhendifferenz zwischen der gegenwärtigen Note und der nachfolgenden Note bestimmt. Aufgrund der Tonhöhendifferenzen wird ein vorhergehender Kopplungskoeffizient und ein anschließender Kopplungskoeffizient ermittelt. Der Kopplungskoeffizient für die aktuelle Note ergibt sich dann aus dem vorhergehenden Kopplungskoeffizient und dem nachfolgenden Kopplungskoeffizient und der Notenlänge. Dieser Prozess wird für jede Note der Melodie in der Phrase wiederholt, um die Tonart der Melodie bzw. einen Kandidaten für die Tonart der Melodie zu bestimmen. Die Tonart der Phrase wird verwendet, um eine Notentypklassifizierungseinrichtung zum Interpretieren der Bedeutung jeder Note in einer Phrase anzusteuern. Die Tonart-Information, die durch die Tonalitätsanalyse erhalten worden ist, wird ferner dazu verwendet, um ein Transponiermodul anzusteuern, das eine in einer Referenztonart in einer Datenbank abgelegte Akkordfolge in die durch die Tonalitätsanalyse bestimmte Tonart für eine betrachtete Melodiephrase transponiert.
Das Dokument US-B1-6185527 offenbart eine klassifikation und eine Indexierung von Audiodaten anhand einer Tonalitätsbestimmung.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Konzept zum Charakterisieren bzw. Indexieren eines Signals, das einen Audioinhalt aufweist, zu schaffen.
Diese Aufgabe wird durch ein Verfahren zum Charakterisieren eines Signals nach Patentanspruch 1, durch ein Verfahren zum Erzeugen eines indexierten Signals nach Patentanspruch 11, durch eine Vorrichtung zum Charakterisieren eines Signals nach Patentanspruch 14 oder durch eine Vorrichtung zum Erzeugen eines indexierten Signals nach Patentanspruch 15 gelöst.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß bei der Auswahl des Merkmals zum Charakterisieren bzw. Indexieren eines Signals besonders auf die Robustheit gegenüber Verzerrungen des Signals geachtet werden muß. Die Nützlichkeit von Merkmalen bzw. Merkmalskombinationen hängt davon ab, wie stark sie durch irrelevante Veränderungen, wie z. B. durch eine MP3-Codierung, verändert werden.
Erfindungsgemäß wird als Merkmal zum Charakterisieren bzw. Indexieren von Signalen die Tonalität des Signals verwendet. Es hat sich herausgestellt, daß die Tonalität eines Signals, d. h. die Eigenschaft eines Signals, ein eher unflaches Spektrum mit ausgeprägten Linien oder eher ein Spektrum mit gleich hohen Linien zu haben, robust gegenüber Verzerrungen üblicher Art ist, wie z.B. Verzerrungen durch ein verlustbehaftetes Codierverfahren, wie z.B. MP3. Als Essenz des Signals wird gewissermaßen sein spektrales Erscheinungsbild genommen, und zwar bezogen auf die einzelnen Spektrallinien bzw. Gruppen von Spektrallinien. Die Tonalität liefert ferner eine hohe Flexibilität hinsichtlich des zu betreibenden Rechenaufwands, um das Tonalitätsmaß zu bestimmen. Das Tonalitätsmaß kann aus der Tonalität sämtlicher Spektralkomponenten eines Stücks abgeleitet werden, oder aber aus der Tonalität von Gruppen von Spektralkomponenten, usw. Darüber hinaus können Tonalitäten von aufeinander folgenden Kurzzeitspektren des untersuchten Signals entweder einzeln oder gewichtet oder statistisch ausgewertet verwendet werden.
Mit anderen Worten hängt die Tonalität im Sinne der vorliegenden Anmeldung von dem Audioinhalt ab. Ist der Audioinhalt bzw. das betrachtete Signal mit dem Audioinhalt rauschartig, so hat es eine andere Tonalität als ein weniger rauschartiges Signal. Ein rauschartiges Signal hat typischerweise einen niedrigeren Tonalitätswert als ein weniger rauschartiges, d. h. mehr tonales, Signal. Das letztere Signal hat einen höheren Tonalitätswert.
Die Tonalität, d. h. die Rausch- bzw. Tonartigkeit eines Signals, ist eine vom Inhalt des Audiosignals abhängige Größe, die weitestgehend unbeeinflußt von verschiedenen Verzerrungsarten ist. Ein auf einem Tonalitätsmaß aufbauendes Konzept zum Charakterisieren bzw. Indexieren von Signalen liefert daher eine robuste Wiedererkennung, was sich dahingehend äußert, daß die Tonalitäts-Essenz eines Signals nicht bis zur Unkenntlichkeit verändert wird, wenn das Signal verzerrt wird.
Eine Verzerrung ist beispielsweise eine Übertragung des Signals von einem Lautsprecher über einen Luftübertragungskanal zu einem Mikrofon.
Bedeutsam ist die Robustheitseigenschaft des Tonalitätsmerkmals im Hinblick auf verlustbehaftete Kompressionsverfahren.
Es hat sich herausgestellt, daß das Tonalitätsmaß eines Signals durch eine verlustbehaftete Datenkompression wie beispielsweise nach einem der MPEG-Standards nicht oder nur kaum beeinflußt wird. Darüber hinaus liefert ein Erkennungsmerkmal auf der Basis der Tonalität des Signals eine ausreichend gute Essenz für das Signal, so daß zwei voneinander unterschiedliche Audiosignale auch ausreichend unterschiedliche Tonalitätsmaße liefern. Der Inhalt des Audiosignals ist somit stark mit dem Tonalitätsmaß korreliert.
Der wesentliche Vorteil der vorliegenden Erfindung besteht somit darin, daß das Tonalitätsmaß des Signals gegenüber gestörten, d. h. verzerrten, Signalen robust ist. Diese Robustheit besteht insbesondere gegenüber einer Filterung, d. h. Equalisierung, Dynamikkompression, einer verlustbehafteten Datenreduktion, wie z.B. MPEG-1/2 Layer 3, einer analogen Übertragung, etc. Darüber hinaus liefert die Tonalitätseigenschaft eines Signals eine hohe Korrelation zum Inhalt des Signals.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
Fig. 1
ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Charakterisieren eines Signals;
Fig. 2
ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Indexieren eines Signals;
Fig. 3
ein Prinzipblockschaltbild einer Vorrichtung zum Berechnen des Tonalitätsmaßes aus der Tonalität pro Spektralkomponente;
Fig. 4
ein Prinzipblockschaltbild zum Bestimmen des Tonalitätsmaßes aus der Spectral Flatness Measure (SFM); und
Fig. 5
ein Prinzipblockschaltbild eines Mustererkennungssystems, in dem das Tonalitätsmaß als Merkmal (Feature) verwendet werden kann.
Fig. 1 zeigt ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Charakterisieren eines Signals, das einen Audioinhalt darstellt. Die Vorrichtung umfaßt einen Eingang 10, in dem das zu charakterisierende Signal eingegeben werden kann, wobei das zu charakterisierende Signal gegenüber einem ursprünglichen Signal beispielsweise einer verlustbehafteten Audiocodierung unterzogen worden ist. Das zu charakterisierende Signal wird in eine Einrichtung 12 zum Ermitteln eines Maßes für die Tonalität des Signals eingespeist. Das Maß für die Tonalität für das Signal wird über eine Verbindungsleitung 14 einer Einrichtung 16 zum Treffen einer Aussage über den Inhalt des Signals zugeführt. Die Einrichtung 16 ist ausgebildet, um diese Aussage aufgrund des von der Einrichtung 12 übermittelten Maßes für die Tonalität des Signals zu treffen und liefert diese Aussage über den Inhalt des Signals an einem Ausgang 18 des Systems.
Fig. 2 zeigt eine erfindungsgemäße Vorrichtung zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist. Das Signal, beispielsweise ein Audiostück, wie es im Tonstudio erzeugt worden ist und auf einer Compact Disc gespeichert ist, wird über einen Eingang 20 in die in Fig. 2 gezeigte Vorrichtung eingespeist. Eine Einrichtung 22, die grundsätzlich genauso wie die Einrichtung 12 von Fig. 12 aufgebaut sein kann, ermittelt ein Maß für die Tonalität des zu indexierenden Signals und liefert dieses Maß über eine Verbindungsleitung 24 zu einer Einrichtung 26 zum Aufzeichnen des Maßes als Index für das Signal. An einem Ausgang der Einrichtung 26, der gleichzeitig der Ausgang 28 der in Fig. 2 gezeigten Vorrichtung zum Erzeugen eines indexierten Signals ist, kann dann das am Eingang 20 eingespeiste Signal zusammen mit einem Tonalitätsindex ausgegeben werden. Alternativ könnte die in Fig. 2 gezeigte Vorrichtung so ausgestaltet sein, daß an dem Ausgang 28 ein Tabelleneintrag erzeugt wird, der den Tonalitätsindex mit einer Identifikationsmarke verknüpft, wobei die Identifikationsmarke dem zu indexierenden Signal eindeutig zugeordnet ist. Allgemein liefert die in Fig. 2 gezeigte Vorrichtung einen Index für das Signal, wobei der Index dem Signal zugeordnet ist und auf den Audioinhalt des Signals hinweist.
Wenn eine Vielzahl von Signalen durch die in Fig. 2 gezeigte Vorrichtung verarbeitet wird, entsteht nach und nach eine Datenbank aus Indizes für Audiostücke, die beispielsweise für das in Fig. 5 skizzierte Mustererkennungssystem verwendet werden kann. Die Datenbank enthält neben den Indizes optional die Audiostücke selbst. Damit können die Stücke hinsichtlich ihrer Tonalitätseigenschaften ohne weiteres durchsucht werden, um ein Stück durch die in Fig. 1 gezeigte Vorrichtung zu identifizieren und zu klassifizieren, und zwar hinsichtlich der Tonalitätseigenschaft bzw. hinsichtlich von Ähnlichkeiten zu anderen Stücken bzw. Abständen zwischen zwei Stücken. Allgemein liefert die in Fig. 2 gezeigte Vorrichtung jedoch eine Möglichkeit zur Erzeugung von Stücken mit einer zugehörigen Meta-Beschreibung, d. h. dem Tonalitätsindex. Daher ist es möglich, Datensätze z.B. nach vorgegebenen Tonalitätsindizes zu indexieren und zu durchsuchen, so daß gemäß der vorliegenden Erfindung gewissermaßen ein effizientes Suchen und Auffinden von Multimediastücken möglich ist.
Zur Berechnung des Tonalitätsmaßes eines Stückes können verschiedene Verfahren angewendet werden. Wie es in Fig. 3 gezeigt ist, kann ein zu charakterisierendes Zeitsignal mittels einer Einrichtung 30 in den Spektralbereich umgesetzt werden, um aus einem Block von zeitlichen Abtastwerten einen Block von Spektralkoeffizienten zu erzeugen. Wie später ausgeführt wird, kann für jeden Spektralkoeffizienten bzw. für jede Spektralkomponente ein eigener Tonalitätswert bestimmt werden, um beispielsweise mittels einer Ja/Nein-Bestimmung zu klassifizieren, ob eine Spektralkomponente tonal ist oder nicht. Unter Verwendung der Tonalitätswerte für die Spektralkomponenten und der Energie bzw. Leistung der Spektralkomponenten, wobei die Tonalitätswerte durch die Einrichtung 32 bestimmt werden, kann dann mittels einer Einrichtung 34 das Tonalitätsmaß für das Signal auf eine Vielzahl von verschiedenen Arten berechnet werden.
Aufgrund der Tatsache, daß beispielsweise durch das in Fig. 3 beschriebene Konzept ein quantitatives Tonalitätsmaß erhalten wird, ist es auch möglich, Abstände bzw. Ähnlichkeiten zwischen zwei Tonalitäts-indexierten Stücken anzugeben, wobei Stücke als ähnlich klassifiziert werden können, wenn ihre Tonalitätsmaße sich nur über eine Differenz kleiner als eine vorbestimmte Schwelle unterscheiden, während andere Stücke als unähnlich klassifiziert werden können, wenn sich ihre Tonalitätsindizes durch eine Differenz unterscheiden, die größer als eine Unähnlichkeitsschwelle ist. Neben der Differenz zwischen zwei Tonalitätsmaßen können zur Bestimmung des Tonalitätsabstandes zwischen zwei Stücken weitere Größen verwendet werden, wie z. B. die Differenz zwischen zwei Absolutwerten, das Quadrat einer Differenz, der Quotient zwischen zwei Tonalitätsmaßen weniger Eins, die Korrelation zwischen zwei Tonalitätsmaßen, die Distanzmetrik zwischen zwei Tonalitätsmaßen, die n-dimensionale Vektoren sind, etc.
Es sei darauf hingewiesen, daß das zu charakterisierende Signal nicht unbedingt ein Zeitsignal sein muß, sondern daß dasselbe auch ein beispielsweise MP3-codiertes Signal sein kann, das aus einer Folge von Huffman-Codewörtern besteht, die aus quantisierten Spektralwerten erzeugt worden sind.
Die quantisierten Spektralwerte wurden aus den ursprünglichen Spektralwerten durch Quantisierung erzeugt, wobei die Quantisierung derart gewählt wurde, daß das durch die Quantisierung eingeführte Quantisierungsrauschen unterhalb der psychoakustischen Maskierungsschwelle liegt. In einem solchen Fall kann, wie es beispielsweise anhand von Fig. 4 dargestellt ist, direkt der codierte MP3-Datenstrom verwendet werden, um beispielsweise mittels einer MP3-Decodierers die Spektralwerte zu berechnen (Einrichtung 40 in Fig. 4). Es ist nicht nötig, vor der Bestimmung der Tonalität eine Umsetzung in den Zeitbereich und dann wieder eine Umsetzung in den Spektralbereich vorzunehmen, sondern es können die innerhalb des MP3-Decodierers berechneten Spektralwerte unmittelbar genommen werden, um die Tonalität pro Spektralkomponente oder, wie es in Fig. 4 gezeigt ist, das SFM (SFM = Spectral Flatness Measure = Maß für die spektrale Flachheit) durch die Einrichtung 42 zu berechnen. Wenn zur Bestimmung der Tonalität daher Spektralkomponenten verwendet werden, und wenn das zu charakterisierende Signal ein MP3-Datenstrom ist, so ist die Einrichtung 40 wie ein Decodierer aufgebaut, jedoch ohne die inverse Filterbank.
Das Maß für die spektrale Flachheit (SFM) wird durch folgende Gleichung berechnet.
Figure 00120001
In dieser Gleichung steht X(n) für das Betragsquadrat einer Spektralkomponente mit dem Index n, während N für die Gesamtanzahl der Spektralkoeffizienten eines Spektrums steht. Aus der Gleichung ist zu sehen, daß das SFM gleich dem Quotienten aus dem geometrischen Mittel der Spektralkomponenten zum arithmetischen Mittel der Spektralkomponenten ist. Wie bekannt ist, ist das geometrische Mittel immer kleiner oder höchstens gleich dem arithmetischen Mittel, so daß das SFM einen Wertebereich hat, der zwischen 0 und 1 liegt. Dabei deutet ein Wert nahe 0 auf ein tonales Signal und ein Wert nahe 1 auf ein eher rauschartiges Signal mit einem flachen Spektralverlauf hin. Es sei darauf hingewiesen, daß das arithmetische Mittel und das geometrische Mittel nur gleich sind, wenn alle X(n) identisch sind, was einem völlig atonalen, d. h. rauschartigen oder impulsartigen Signal entspricht. Ist dagegen im Extremfall lediglich eine Spektralkomponente betragsmäßig sehr groß, während andere Spektralkomponenten X(n) betragsmäßig sehr klein sind, so wird das SFM einen Wert nahe 0 haben, was auf ein sehr tonales Signal hinweist.
Das SFM ist in "Digital Coding of Waveforms", Englewood Cliffs, NJ, Prentice-Hall, N. Jayant, P. Noll, 1984, beschrieben und wurde ursprünglich als Maß für den maximal zu erreichenden Codiergewinn aus einer Redundanzreduktion definiert.
Aus dem SFM kann dann durch eine Einrichtung 44 zum Bestimmen des Tonalitätsmaßes das Tonalitätsmaß ermittelt werden.
Eine weitere Möglichkeit zum Bestimmen der Tonalität der Spektralwerte, die durch eine Einrichtung 32 von Fig. 3 durchgeführt werden kann, besteht in der Bestimmung von Spitzen im Leistungsdichtespektrum des Audiosignals, wie es in MPEG-1 Audio ISO/IEC 11172-3, Annex D1 "Psychoacoustic Model 1", beschrieben ist. Hierbei wird der Pegel einer Spektralkomponente ermittelt. Daraufhin werden die Pegel von zwei die eine Spektralkomponente umgebenden Spektralkomponenten bestimmt. Eine Klassifizierung der Spektralkomponente als tonal findet dann statt, wenn der Pegel der Spektralkomponente um einen vorbestimmten Faktor größer ist als ein Pegel einer umgebenden Spektralkomponente. Die vorbestimmte Schwelle wird im Stand der Technik als 7dB angenommen, wobei für die vorliegende Erfindung jedoch beliebige andere vorbestimmte Schwellen verwendet werden können. Dadurch kann für jede Spektralkomponente angegeben werden, ob diese tonal ist oder nicht. Das Tonalitätsmaß kann dann durch die Einrichtung 34 von Fig. 3 unter Verwendung der Tonalitätswerte für die einzelnen Komponenten sowie der Energie der Spektralkomponenten angegeben werden.
Eine weitere Möglichkeit zur Bestimmung der Tonalität einer Spektralkomponente besteht in der Auswertung der zeitlichen Prädizierbarkeit, d. h. Vorhersagbarkeit, der Spektralkomponente. Hierbei wird wieder auf MPEG-1 Audio ISO/IEC 11172-3, Annex D2 "Psychoacoustic Model 2", verwiesen. Allgemein wird ein aktueller Block von Abtastwerten des zu charakterisierenden Signals in eine spektrale Darstellung umgesetzt, um einen aktuellen Block von Spektralkomponenten zu erhalten. Hierauf werden die Spektralkomponenten des aktuellen Blocks von Spektralkomponenten unter Verwendung von Informationen aus Abtastwerten des zu charakterisierenden Signals, die dem aktuellen Block vorausgehen, also unter Verwendung von Vergangenheitsinformationen, prädiziert. Daraufhin wird ein Prädiktionsfehler bestimmt, aus dem dann ein Tonalitätsmaß abgeleitet werden kann.
Eine weitere Möglichkeit zur Bestimmung der Tonalität ist in dem US-Patent Nr. 5,918,203 beschrieben. Wieder wird eine positive reellwertige Darstellung des Spektrums des zu charakterisierenden Signals verwendet. Diese Darstellung kann die Beträge, die Betragsquadrate etc. der Spektralkomponten umfassen. Bei einem Ausführungsbeispiel werden die Beträge oder Betragsquadrate der Spektralkomponenten zunächst logarithmisch komprimiert und dann mit einem Filter mit differenzierender Charakteristik gefiltert, um einen Block von differenzierend gefilterten Spektralkomponenten zu erhalten.
Bei einem anderen Ausführungsbeispiel werden die Beträge der Spektralkomponenten zunächst mit einem Filter mit differenzierender Charakteristik gefiltert, um einen Zähler zu erhalten, und dann mit einem Filter mit integrierender Charakteristik gefiltert, um einen Nenner zu erhalten. Der Quotient aus einem differenzierend gefilterten Betrag einer Spektralkomponente und dem integrierend gefilterten Betrag derselben Spektralkomponente ergibt dann den Tonalitätswert für diese Spektralkomponente.
Durch diese beiden Vorgehensweisen werden langsame Änderungen zwischen benachbarten Beträgen von Spektralkomponenten unterdrückt, während abrupte Änderungen zwischen benachbarten Beträgen von Spektralkomponenten im Spektrum hervorgehoben werden. Langsame Änderungen zwischen benachbarten Beträgen von Spektralkomponenten deuten auf atonale Signalkomponenten hin, während abrupte Änderungen auf tonale Signalkomponenten hinweisen. Die logarithmisch komprimierten und differenzierend gefilterten Spektralkomponenten bzw. die Quotienten können dann wiederum dazu verwendet werden, um ein Tonalitätsmaß für das betrachtete Spektrum zu berechnen.
Obgleich im vorherigen Text davon gesprochen wurde, daß ein Tonalitätswert pro Spektralkomponente berechnet wird, wird es im Hinblick auf einen geringeren Rechenaufwand bevorzugt, beispielsweise immer die Betragsquadrate zweier benachbarter Spektralkomponenten zu addieren und dann für jedes Ergebnis der Addition einen Tonalitätswert durch eines der genannten Verfahren zu berechnen. Jede Art einer additiven Gruppierung von Betragsquadraten bzw. Beträgen von Spektralkomponenten kann verwendet werden, um Tonalitätswerte für mehr als eine Spektralkomponente zu berechnen.
Eine weitere Möglichkeit zur Bestimmung der Tonalität einer Spektralkomponente besteht darin, den Pegel einer Spektralkomponente mit einem Mittelwert von Pegeln von Spektralkomponenten in einem Frequenzband zu vergleichen. Die Breite des Frequenzbands, in dem die eine Spektralkomponente liegt, deren Pegel mit dem Mittelwert z. B. der Beträge oder Betragsquadrate der Spektralkomponenten verglichen wird, kann je nach Anforderung gewählt werden. Eine Möglichkeit besteht beispielsweise darin, daß das Band schmal gewählt wird. Alternativ könnte das Band auch breit gewählt werden, oder auch nach psychoakustischen Gesichtspunkten. Dadurch kann der Einfluß kurzzeitiger Leistungseinbrüche im Spektrum vermindert werden.
Obgleich im vorhergehenden die Tonalität eines Audiosignals anhand seiner Spektralkomponenten bestimmt wurde, kann dies auch im Zeitbereich, also unter Verwendung der Abtastwerte des Audiosignals geschehen. Hierzu könnte eine LPC-Analyse des Signals durchgeführt werden, um einen Prädiktionsgewinn für das Signal abzuschätzen. Der Prädiktionsgewinn ist umgekehrt proportional zu dem SFM und ist ebenfalls ein Maß für die Tonalität des Audiosignals.
Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung wird nicht nur ein Wert pro Kurzzeitspektrum angegeben, sondern das Tonalitätsmaß ist ein mehrdimensionaler Vektor von Tonalitätswerten. So kann beispielsweise das Kurzzeitspektrum in vier aneinander angrenzende und vorzugsweise nicht überlappende Bereiche bzw. Frequenzbänder aufgeteilt werden, wobei für jedes Frequenzband ein Tonalitätswert beispielsweise durch die Einrichtung 34 von Fig. 3 oder durch die Einrichtung 44 von Fig. 4 ermittelt wird. Damit wird für ein Kurzzeitspektrum des zu charakterisierenden Signals ein 4-dimensionaler Tonalitätsvektor erhalten. Um eine bessere Charakterisierung zu erlauben, würde es ferner bevorzugt, beispielsweise vier aufeinanderfolgende Kurzzeitspektren wie oben beschrieben zu bearbeiten, so daß sich insgesamt ein Tonalitätsmaß ergibt, das ein 16-dimensionaler Vektor oder allgemein ein n x m-dimensionaler Vektor ist, wobei n für die Anzahl der Tonalitätskomponenten pro Frame oder Block von Abtastwerten steht, während m für die Anzahl von betrachteten Blöcken bzw. Kurzzeitspektren steht. Das Tonalitätsmaß wäre dann, wie ausgeführt, ein 16-dimensionaler Vektor. Um den zeitlichen Verlauf des zu charakterisierenden Signals besser zu berücksichtigen, wird es ferner bevorzugt, mehrere derartige beispielsweise 16-dimensionale Vektoren zu errechnen und dann statistisch zu verarbeiten, um beispielsweise Varianz, Mittelwert oder Zentralmomente höherer Ordnung aus sämtlichen n x m-dimensionalen Tonalitätsvektoren eines Stücks mit einer bestimmten Länge zu berechnen, um dieses Stück dadurch zu indexieren.
Allgemein gesagt kann die Tonalität somit aus Teilen des gesamten Spektrums berechnet werden. Damit ist es möglich, die Tonalität/Rauschartigkeit eines Teilspektrums bzw. mehrerer Teilspektren zu bestimmen und somit eine feinere Charakterisierung des Spektrums und somit des Audiosignals zu erzielen.
Ferner können Kurzzeitstatistiken aus Tonalitätswerten, wie z.B. Mittelwert, Varianz und Zentralmomente höherer Ordnung, als Tonalitätsmaß berechnet werden. Diese werden mittels statistischer Techniken anhand einer zeitlichen Folge von Tonalitätswerten bzw. Tonalitätsvektoren ermittelt und liefern damit eine Essenz über einen längeren Abschnitt eines Stückes.
Darüber hinaus können auch Differenzen von zeitlich aufeinanderfolgenden Tonalitätsvektoren oder linear gefilterte Tonalitätswerte verwendet werden, wobei als lineare Filter beispielsweise IIR-Filter oder FIR-Filter eingesetzt werden können.
Auch bei der Berechnung des SFM (Block 42 in Fig. 4) wird es aus Rechenzeitersparnisgründen bevorzugt, beispielsweise zwei frequenzmäßig benachbarte Betragsquadrate zu addieren oder zu mitteln und die SFM-Berechnung auf dieser vergröberten positiven und reellwertigen Spektraldarstellung durchzuführen. Dies führt ferner zu einer größeren Robustheit gegenüber schmalbandigen Frequenzeinbrüchen sowie zu einem geringeren Rechenaufwand.
Im nachfolgenden wird auf Fig. 5 eingegangen, die eine schematische Übersicht über ein Mustererkennungssystem zeigt, bei dem die vorliegende Erfindung vorteilhaft eingesetzt werden kann. Prinzipiell unterscheidet man bei einem in Fig. 5 gezeigten Mustererkennungssystem zwischen zwei Betriebsmodi, nämlich dem Trainingsmodus 50 und dem Klassifikationsmodus 52.
In dem Trainings-Modus werden Daten "eintrainiert", d. h. dem System zugefügt und anschließend in einer Datenbank 54 aufgenommen.
Im Klassifikations-Modus wird versucht, ein zu charakterisierendes Signal mit den in der Datenbank 54 vorhandenen Einträgen zu vergleichen und zu ordnen. Die in Fig. 1 gezeigte erfindungsgemäße Vorrichtung kann im Klassifikationsmodus 52 verwendet werden, wenn Tonalitätsindizes anderer Stücke vorliegen, mit denen der Tonalitätsindex des aktuellen Stücks verglichen werden kann, um eine Aussage über das Stück zu treffen. Die in Fig. 2 gezeigte Vorrichtung wird dagegen vorteilhaft im Trainings-Modus 50 von Fig. 5 eingesetzt, um die Datenbank nach und nach zu füllen.
Das Mustererkennungssystem umfaßt eine Einrichtung 56 zur Signalvorverarbeitung, eine nachgeschaltete Einrichtung 58 zur Merkmalsextraktion, eine Einrichtung 60 zur Merkmalsverarbeitung, eine Einrichtung 62 für eine Cluster-Generierung, und eine Einrichtung 64 zum Durchführen einer Klassifikation, um beispielsweise als Ergebnis des Klassifikations-Modus 52 eine solche Aussage über den Inhalt des zu charakterisierenden Signals zu treffen, daß das Signal mit dem Signal xy, das in einem früheren Trainings-Modus eintrainiert worden ist, identisch ist.
Im nachfolgenden wird auf die Funktionalität der einzelnen Blöcke von Fig. 5 eingegangen.
Der Block 56 bildet zusammen mit dem Block 58 einen Merkmals-Extraktor, während der Block 60 einen Merkmalsprozessor darstellt. Der Block 56 setzt ein Eingangssignal auf ein einheitliches Zielformat um, wie z. B. die Anzahl der Kanäle, die Abtastrate, die Auflösung (in Bits pro Abtastwert) usw. Dies ist insofern sinnvoll und notwendig, da keine Voraussetzungen über die Quelle, aus der das Eingangssignal stammt, gemacht werden sollten.
Die Einrichtung 58 zur Merkmalsextraktion dient dazu, die üblicherweise große Informationsmenge am Ausgang der Einrichtung 56 auf eine kleine Informationsmenge einzuschränken. Die zu untersuchenden Signale haben meist eine hohe Datenrate, also eine hohe Anzahl von Abtastwerten pro Zeitabschnitt. Die Einschränkung auf eine kleine Informationsmenge muß so stattfinden, daß die Essenz des ursprünglichen Signals, also die Eigenheit desselben, nicht verloren geht. In der Einrichtung 58 werden vorgegebene charakteristische Eigenschaften, wie allgemein beispielsweise Lautheit, Grundfrequenz, usw. und/oder, gemäß der vorliegenden Erfindung, Tonalitätsmerkmale bzw. das SFM, aus dem Signal extrahiert. Die so gewonnenen Tonalitätsmerkmale sollen sozusagen die Essenz des untersuchten Signals beinhalten.
In dem Block 60 können die zuvor errechneten Merkmalsvektoren verarbeitet werden. Eine einfache Verarbeitung besteht in der Normierung der Vektoren. Mögliche Merkmalsverarbeitungen sind lineare Transformationen, wie beispielsweise die Karhunen-Loeve-Transformation (KLT) oder die lineare Diskriminanz-Analyse (LDA), die in der Technik bekannt sind. Weitere insbesondere auch nichtlineare Transformationen sind ebenfalls zur Merkmalsverarbeitung anwendbar.
Der Klassengenerator dient dazu, die verarbeiteten Merkmalsvektoren zu Klassen zusammenzufassen. Diese Klassen entsprechen einer kompakten Darstellung des zugehörigen Signals. Der Klassifikator 64 dient schließlich dazu, einen erzeugten Merkmalsvektor einer vordefinierten Klasse bzw. einem vordefinierten Signal zuzuordnen.
Die nachfolgende Tabelle stellt eine Übersicht über Erkennungsraten unter verschiedenen Bedingungen dar.
Art der Verzerrung Erkennungsrate
(Lautheit als Merkmal)
Erkennungsrate
(SFM als Merkmal)
MP3-Codierung, 96kbps, 30s Ausschnitt 83,9 % 100 %
MP3-Codierung, 96kbps, 15s Ausschnitt 76,1 % 74,1 %
Die Tabelle stellt Erkennungsraten unter Verwendung einer Datenbank (54) von Fig. 5 mit insgesamt 305 Musikstücken dar, von denen jeweils die ersten 180 Sekunden als Referenzdaten eintrainiert wurden. Die Erkennungsrate gibt prozentual die Anzahl der richtig erkannten Stücke in Abhängigkeit des Signaleinflusses an. Die zweite Spalte stellt die Erkennungsrate dar, wenn die Lautheit als Merkmal verwendet wird. Insbesondere wurde die Lautheit in vier Spektralbändern berechnet, dann eine Logarithmierung der Lautheitswerte durchgeführt, und dann eine Differenzbildung von logarithmierten Lautheitswerten für zeitlich aufeinanderfolgende entsprechende Spektralbänder durchgeführt. Das dadurch erhaltene Ergebnis wurde als Merkmalsvektor für die Lautheit verwendet.
In der letzten Spalte wurde das SFM für vier Bänder als Merkmalsvektor verwendet.
Es ist zu sehen, daß die erfindungsgemäße Verwendung der Tonalität als Klassifikationsmerkmal zu einer 100%igen Erkennungsrate von MP-3-codierten Stücken führt, wenn ein Ausschnitt von 30 Sekunden betrachtet wird, während die Erkennungsraten sowohl bei dem erfindungsgemäßen Merkmal als auch bei der Lautheit als Merkmal abnehmen, wenn kürzere Ausschnitte (z. B. 15 s) des zu untersuchenden Signals zur Erkennung verwendet werden.
Wie es bereits ausgeführt worden ist, kann die in Fig. 2 gezeigte Vorrichtung verwendet werden, um das in Fig. 5 gezeigte Erkennungssystem zu trainieren. Allgemein kann jedoch die in Fig. 2 gezeigte Vorrichtung verwendet werden, um für jegliche Multimediadatensätze Metabeschreibungen, d. h. Indizes zu erzeugen, so daß es möglich ist, Datensätze hinsichtlich ihrer Tonalitätswerte zu durchsuchen bzw. aus einer Datenbank Datensätze auszugeben, die einen bestimmten Tonalitätsvektor haben bzw. zu einem bestimmten Tonalitätsvektor ähnlich sind.

Claims (15)

  1. Verfahren zum Charakterisieren eines Signals, das einen Audioinhalt darstellt, mit folgenden Schritten:
    Ermitteln (12) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet, wobei der Schritt (12) des Ermittelns eines Maßes für die Tonalität folgende Schritte aufweist:
    Berechnen (40) eines Blocks von positiven und reellwertigen Spektralkomponenten für das zu charakterisierende Signal;
    Bilden (42) eines Quotienten mit dem geometrischen Mittel einer Mehrzahl von Spektralkomponenten des Blocks von Spektralkomponenten als Zähler und dem arithmetischen Mittel der Mehrzahl von Spektralkomponenten im Nenner, wobei der Quotient als Maß für die Tonalität dient, wobei ein Quotient mit einem Wert in der Nähe von 0 auf ein tonales Signal hinweist, und wobei ein Quotient in der Nähe von 1 auf ein nicht tonales Signal mit flachem Spektralverlauf hinweist; und
    Treffen (16) einer Aussage über den Audioinhalt des Signals aufgrund des Maßes für die Tonalität des Signals.
  2. Verfahren nach Anspruch 1, bei dem der Schritt (16) des Treffens einer Aussage folgende Schritte aufweist:
    Vergleichen (64) des Maßes für die Tonalität des Signals mit einer Mehrzahl von bekannten Tonalitätsmaßen für eine Mehrzahl von bekannten Signalen, die unterschiedliche Audioinhalte darstellen;
    Feststellen, daß der Audioinhalt des zu charakterisierenden Signals mit dem Inhalt eines bekannten Signals übereinstimmt, wenn das Tonalitätsmaß des zu charakterisierenden Signals eine geringere als eine vorbestimmte Abweichung zu dem Tonalitätsmaß hat, das dem bekannten Signal zugeordnet ist.
  3. Verfahren nach Anspruch 2, das ferner folgenden Schritt aufweist:
    Ausgeben eines Titels, eines Urhebers oder sonstiger Metainformationen für das zu charakterisierende Signal, wenn eine Übereinstimmung festgestellt wird.
  4. Verfahren nach Anspruch 1, bei dem das Maß für die Tonalität eine quantitative Größe ist, wobei das Verfahren ferner folgende Schritte aufweist:
    Berechnen eines Tonalitäts-Abstandes zwischen dem ermittelten Maß für die Tonalität des Signals und einem bekannten Tonalitätsmaß für ein bekanntes Signal; und
    Angeben eines Ähnlichkeitsmaßes für das zu charakterisierende Signal, wobei das Ähnlichkeitsmaß von dem Tonalitätsabstand abhängt und die Ähnlichkeit des Inhalts des bekannten Signals zu dem Inhalt des zu charakterisierenden Signals darstellt.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    bei dem das zu charakterisierende Signal durch Codierung aus einem ursprünglichen Signal abgeleitet ist,
    wobei die Codierung eine blockweise Umsetzung des ursprünglichen Signals in den Frequenzbereich und eine von einem psychoakustischen Modell gesteuerte Quantisierung von Spektralwerten des ursprünglichen Signals aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 4
    bei dem das zu charakterisierende Signal durch Ausgabe eines ursprünglichen Signals mittels eines Lautsprechers und durch Aufnahme mittels eines Mikrofons bereitgestellt wird.
  7. Verfahren nach Anspruch 1, bei dem zumindest zwei frequenzmäßig benachbarte Spektralkomponenten gruppiert werden, wobei daraufhin nicht die einzelnen Spektralkomponenten, sondern die gruppierten Spektralkomponenten weiterverarbeitet werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    bei dem im Schritt (12) des Ermittelns ein Kurzzeitspektrum des zu charakterisierenden Signals in n Bänder aufgeteilt wird, wobei für jedes Band ein Tonalitätswert ermittelt wird,
    bei dem ferner für m aufeinanderfolgende Kurzzeitspektren des zu charakterisierenden Signals jeweils n Tonalitätswerte bestimmt werden, und
    bei dem ein Tonalitätsvektor mit einer Dimension gebildet wird, die gleich m x n ist, wobei m und n größer oder gleich 1 sind.
  9. Verfahren nach Anspruch 8, bei dem das Maß für die Tonalität der Tonalitätsvektor oder eine Statistikgröße aus einer Mehrzahl von zeitlich aufeinanderfolgenden Tonalitätsvektoren des zu charakterisierenden Signals ist, wobei die Statistikgröße einen Mittelwert, eine Varianz oder ein Zentralmoment höherer Ordnung oder eine Kombination der genannten Statistikgrößen ist.
  10. Verfahren nach Anspruch 8, bei dem das Maß für die Tonalität aus einer Differenz einer Mehrzahl von Tonalitätsvektoren oder einer linearen Filterung einer Mehrzahl von Tonalitätsvektoren abgeleitet ist.
  11. Verfahren zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist, mit folgenden Schritten:
    Ermitteln (22) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet, wobei der Schritt (12) des Ermittelns eines Maßes für die Tonalität folgende Schritte aufweist:
    Berechnen (40) eines Blocks von positiven und reellwertigen Spektralkomponenten für das zu charakterisierende Signal;
    Bilden (42) eines Quotienten mit dem geometrischen Mittel einer Mehrzahl von Spektralkomponenten des Blocks von Spektralkomponenten als Zähler und dem arithmetischen Mittel der Mehrzahl von Spektralkomponenten im Nenner, wobei der Quotient als Maß für die Tonalität dient, wobei ein Quotient mit einem Wert in der Nähe von 0 auf ein tonales Signal hinweist, und wobei ein Quotient in der Nähe von 1 auf ein nicht tonales Signal mit flachem Spektralverlauf hinweist; und
    Aufzeichnen (26) des Maßes für die Tonalität als Index in Zuordnung zu dem Signal, wobei der Index auf den Audioinhalt des Signals hinweist.
  12. Verfahren nach Anspruch 11, bei dem der Schritt des Ermittelns (22) eines Maßes für die Tonalität folgende Schritte aufweist:
    Berechnen von Tonalitätswerten für verschiedene Spektralkomponenten oder Gruppen von Spektralkomponenten des Signals; und
    Verarbeiten der Tonalitätsgrößen (60), um das Maß für die Tonalität zu erhalten; und
    Einordnen (62) des Signals in eine Signalklasse abhängig von dem Maß für die Tonalität.
  13. Verfahren nach Anspruch 11, das für eine Mehrzahl von Signalen durchgeführt wird, um eine Datenbank (54) aus Verweisen auf die Mehrzahl von Signalen samt zugeordneten Indizes, die auf Tonalitätseigenschaften der Signale hinweisen, zu erhalten.
  14. Vorrichtung zum Charakterisieren eines Signals, das einen Audioinhalt darstellt, mit folgenden Merkmalen:
    einer Einrichtung zum Ermitteln (12) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet, wobei die Einrichtung zum Ermitteln ausgebildet ist, um
    einen Blocks von positiven und reellwertigen Spektralkomponenten für das zu charakterisierende Signal zu berechnen (40); und
    um einen Quotienten mit dem geometrischen Mittel einer Mehrzahl von Spektralkomponenten des Blocks von Spektralkomponenten als Zähler und dem arithmetischen Mittel der Mehrzahl von Spektralkomponenten im Nenner zu bilden (42), wobei der Quotient als Maß für die Tonalität dient, wobei ein Quotient mit einem Wert in der Nähe von 0 auf ein tonales Signal hinweist, und wobei ein Quotient in der Nähe von 1 auf ein nicht tonales Signal mit flachem Spektralverlauf hinweist; und
    einer Einrichtung zum Treffen (16) einer Aussage über den Audioinhalt des Signals aufgrund des Maßes für die Tonalität des Signals.
  15. Vorrichtung zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist, mit folgenden Merkmalen:
    einer Einrichtung zum Ermitteln (22) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet, wobei die Einrichtung zum Ermitteln ausgebildet ist, um
    einen Blocks von positiven und reellwertigen Spektralkomponenten für das zu charakterisierende Signal zu berechnen (40); und
    um einen Quotienten mit dem geometrischen Mittel einer Mehrzahl von Spektralkomponenten des Blocks von Spektralkomponenten als Zähler und dem arithmetischen Mittel der Mehrzahl von Spektralkomponenten im Nenner zu bilden (42), wobei der Quotient als Maß für die Tonalität dient, wobei ein Quotient mit einem Wert in der Nähe von 0 auf ein tonales Signal hinweist, und wobei ein Quotient in der Nähe von 1 auf ein nicht tonales Signal mit flachem Spektralverlauf hinweist; und
    einer Einrichtung zum Aufzeichnen (26) des Maßes für die Tonalität als Index in Zuordnung zu dem Signal, wobei der Index auf den Audioinhalt des Signals hinweist.
EP02718164A 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals Expired - Lifetime EP1368805B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109648 2001-02-28
DE10109648A DE10109648C2 (de) 2001-02-28 2001-02-28 Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
PCT/EP2002/002005 WO2002073592A2 (de) 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals

Publications (2)

Publication Number Publication Date
EP1368805A2 EP1368805A2 (de) 2003-12-10
EP1368805B1 true EP1368805B1 (de) 2004-08-18

Family

ID=7675809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02718164A Expired - Lifetime EP1368805B1 (de) 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals

Country Status (9)

Country Link
US (1) US7081581B2 (de)
EP (1) EP1368805B1 (de)
JP (1) JP4067969B2 (de)
AT (1) ATE274225T1 (de)
AU (1) AU2002249245A1 (de)
DE (2) DE10109648C2 (de)
DK (1) DK1368805T3 (de)
ES (1) ES2227453T3 (de)
WO (1) WO2002073592A2 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277766B1 (en) 2000-10-24 2007-10-02 Moodlogic, Inc. Method and system for analyzing digital audio files
US7890374B1 (en) 2000-10-24 2011-02-15 Rovi Technologies Corporation System and method for presenting music to consumers
DE10134471C2 (de) * 2001-02-28 2003-05-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
DE10157454B4 (de) * 2001-11-23 2005-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer Kennung für ein Audiosignal, Verfahren und Vorrichtung zum Aufbauen einer Instrumentendatenbank und Verfahren und Vorrichtung zum Bestimmen der Art eines Instruments
US7027983B2 (en) * 2001-12-31 2006-04-11 Nellymoser, Inc. System and method for generating an identification signal for electronic devices
DE10232916B4 (de) * 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
AU2003281641A1 (en) * 2002-07-22 2004-02-09 Koninklijke Philips Electronics N.V. Determining type of signal encoder
US20040194612A1 (en) * 2003-04-04 2004-10-07 International Business Machines Corporation Method, system and program product for automatically categorizing computer audio files
KR101008022B1 (ko) * 2004-02-10 2011-01-14 삼성전자주식회사 유성음 및 무성음 검출방법 및 장치
JP2006018023A (ja) * 2004-07-01 2006-01-19 Fujitsu Ltd オーディオ信号符号化装置、および符号化プログラム
DE102004036154B3 (de) * 2004-07-26 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur robusten Klassifizierung von Audiosignalen sowie Verfahren zu Einrichtung und Betrieb einer Audiosignal-Datenbank sowie Computer-Programm
DE102004047032A1 (de) * 2004-09-28 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bezeichnen von verschiedenen Segmentklassen
DE102004047069A1 (de) * 2004-09-28 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Ändern einer Segmentierung eines Audiostücks
WO2006062064A1 (ja) * 2004-12-10 2006-06-15 Matsushita Electric Industrial Co., Ltd. 楽曲処理装置
US7567899B2 (en) * 2004-12-30 2009-07-28 All Media Guide, Llc Methods and apparatus for audio recognition
JP4940588B2 (ja) * 2005-07-27 2012-05-30 ソニー株式会社 ビート抽出装置および方法、音楽同期画像表示装置および方法、テンポ値検出装置および方法、リズムトラッキング装置および方法、音楽同期表示装置および方法
US8068719B2 (en) 2006-04-21 2011-11-29 Cyberlink Corp. Systems and methods for detecting exciting scenes in sports video
JP4597919B2 (ja) * 2006-07-03 2010-12-15 日本電信電話株式会社 音響信号特徴抽出方法、抽出装置、抽出プログラム、該プログラムを記録した記録媒体、および該特徴を利用した音響信号検索方法、検索装置、検索プログラム、並びに該プログラムを記録した記録媒体
US8450592B2 (en) * 2006-09-18 2013-05-28 Circle Consult Aps Method and a system for providing sound generation instructions
US7873634B2 (en) * 2007-03-12 2011-01-18 Hitlab Ulc. Method and a system for automatic evaluation of digital files
EP2162880B1 (de) 2007-06-22 2014-12-24 VoiceAge Corporation Verfahren und einrichtung zur schätzung der tonalität eines schallsignals
US8412340B2 (en) 2007-07-13 2013-04-02 Advanced Bionics, Llc Tonality-based optimization of sound sensation for a cochlear implant patient
US8401845B2 (en) 2008-03-05 2013-03-19 Voiceage Corporation System and method for enhancing a decoded tonal sound signal
US7923624B2 (en) * 2008-06-19 2011-04-12 Solar Age Technologies Solar concentrator system
CN101847412B (zh) * 2009-03-27 2012-02-15 华为技术有限公司 音频信号的分类方法及装置
US8620967B2 (en) * 2009-06-11 2013-12-31 Rovi Technologies Corporation Managing metadata for occurrences of a recording
US20110041154A1 (en) * 2009-08-14 2011-02-17 All Media Guide, Llc Content Recognition and Synchronization on a Television or Consumer Electronics Device
US8677400B2 (en) * 2009-09-30 2014-03-18 United Video Properties, Inc. Systems and methods for identifying audio content using an interactive media guidance application
US20110078020A1 (en) * 2009-09-30 2011-03-31 Lajoie Dan Systems and methods for identifying popular audio assets
US8161071B2 (en) 2009-09-30 2012-04-17 United Video Properties, Inc. Systems and methods for audio asset storage and management
US20110173185A1 (en) * 2010-01-13 2011-07-14 Rovi Technologies Corporation Multi-stage lookup for rolling audio recognition
US8886531B2 (en) 2010-01-13 2014-11-11 Rovi Technologies Corporation Apparatus and method for generating an audio fingerprint and using a two-stage query
US8812310B2 (en) * 2010-08-22 2014-08-19 King Saud University Environment recognition of audio input
JP5851455B2 (ja) * 2013-08-06 2016-02-03 日本電信電話株式会社 共通信号含有区間有無判定装置、方法、及びプログラム
EP3317878B1 (de) 2015-06-30 2020-03-25 Fraunhofer Gesellschaft zur Förderung der Angewand Verfahren und vorrichtung zum erzeugen einer datenbank
US9743138B2 (en) 2015-07-31 2017-08-22 Mutr Llc Method for sound recognition task trigger
CN105741835B (zh) * 2016-03-18 2019-04-16 腾讯科技(深圳)有限公司 一种音频信息处理方法及终端
CN109584904B (zh) * 2018-12-24 2022-10-28 厦门大学 应用于基础音乐视唱教育的视唱音频唱名识别建模方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210820A (en) * 1990-05-02 1993-05-11 Broadcast Data Systems Limited Partnership Signal recognition system and method
US5510572A (en) * 1992-01-12 1996-04-23 Casio Computer Co., Ltd. Apparatus for analyzing and harmonizing melody using results of melody analysis
JPH06110945A (ja) * 1992-09-29 1994-04-22 Fujitsu Ltd 音楽データベース作成装置及びその検索装置
DE19505435C1 (de) * 1995-02-17 1995-12-07 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bestimmen der Tonalität eines Audiosignals
US5918223A (en) * 1996-07-22 1999-06-29 Muscle Fish Method and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
US6185527B1 (en) * 1999-01-19 2001-02-06 International Business Machines Corporation System and method for automatic audio content analysis for word spotting, indexing, classification and retrieval

Also Published As

Publication number Publication date
US7081581B2 (en) 2006-07-25
ATE274225T1 (de) 2004-09-15
DE10109648C2 (de) 2003-01-30
DE50200869D1 (de) 2004-09-23
WO2002073592A2 (de) 2002-09-19
DE10109648A1 (de) 2002-09-12
WO2002073592A3 (de) 2003-10-02
AU2002249245A1 (en) 2002-09-24
US20040074378A1 (en) 2004-04-22
JP2004530153A (ja) 2004-09-30
ES2227453T3 (es) 2005-04-01
DK1368805T3 (da) 2004-11-22
EP1368805A2 (de) 2003-12-10
JP4067969B2 (ja) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1368805B1 (de) Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals
EP1407446B1 (de) Verfahren und vorrichtung zum charakterisieren eines signals und zum erzeugen eines indexierten signals
EP1405222B1 (de) Verfahren und vorrichtung zum erzeugen eines fingerabdrucks und verfahren und vorrichtung zum identifizieren eines audiosignals
EP1787284B1 (de) Vorrichtung und verfahren zur robusten klassifizierung von audiosignalen sowie verfahren zu einrichtung und betrieb einer audiosignal-datenbank sowie computer-programm
DE10232916B4 (de) Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
DE60203436T2 (de) Verfahren und System zum Erkennen, Indizieren und Suchen von akustischen Signalen
DE60215495T2 (de) Verfahren und system zur automatischen erkennung ähnlicher oder identischer segmente in audioaufzeichnungen
EP1371055B1 (de) Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion
DE10117870A1 (de) Verfahren und Vorrichtung zum Überführen eines Musiksignals in eine Noten-basierte Beschreibung und Verfahren und Vorrichtung zum Referenzieren eines Musiksignals in einer Datenbank
EP1388145B1 (de) Vorrichtung und verfahren zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen
DE10157454B4 (de) Verfahren und Vorrichtung zum Erzeugen einer Kennung für ein Audiosignal, Verfahren und Vorrichtung zum Aufbauen einer Instrumentendatenbank und Verfahren und Vorrichtung zum Bestimmen der Art eines Instruments
DE102004028693B4 (de) Vorrichtung und Verfahren zum Bestimmen eines Akkordtyps, der einem Testsignal zugrunde liegt
EP1377924B1 (de) VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals
EP1247275B1 (de) Vorrichtung und verfahren zum bestimmen eines codierungs-blockrasters eines decodierten signals
Thiruvengatanadhan Music genre classification using mfcc and aann
EP1743324B1 (de) Vorrichtung und verfahren zum analysieren eines informationssignals
DE3935308C1 (en) Speech recognition method by digitising microphone signal - using delta modulator to produce continuous of equal value bits for data reduction
DE102008040163A1 (de) Vorrichtung und Verfahren zur Bereithaltung von Zuordnungsdaten, welche Audiodatensätze in Teilmengen aufteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030822

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HELLMUTH, OLIVER

Inventor name: ALLAMANCHE, ERIC

Inventor name: FROEBA, BERNHARD

Inventor name: HERRE, JUERGEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50200869

Country of ref document: DE

Date of ref document: 20040923

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041118

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040818

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050226

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2227453

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: M2ANY GMBH

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) -TRANSFER TO- M2ANY GMBH#LICHTENBERGSTRASSE 8#85748 GARCHING (DE)

NLS Nl: assignments of ep-patents

Owner name: M2ANY GMBH

Effective date: 20060131

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20190222

Year of fee payment: 18

Ref country code: GB

Payment date: 20190225

Year of fee payment: 18

Ref country code: CH

Payment date: 20190222

Year of fee payment: 18

Ref country code: DE

Payment date: 20181204

Year of fee payment: 18

Ref country code: ES

Payment date: 20190315

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190222

Year of fee payment: 18

Ref country code: AT

Payment date: 20190222

Year of fee payment: 18

Ref country code: FR

Payment date: 20190224

Year of fee payment: 18

Ref country code: DK

Payment date: 20190222

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200869

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 274225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200226

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227