EP1277940B1 - Procédé et dispositif de commande d'un moteur d'entraînement - Google Patents

Procédé et dispositif de commande d'un moteur d'entraînement Download PDF

Info

Publication number
EP1277940B1
EP1277940B1 EP20020013385 EP02013385A EP1277940B1 EP 1277940 B1 EP1277940 B1 EP 1277940B1 EP 20020013385 EP20020013385 EP 20020013385 EP 02013385 A EP02013385 A EP 02013385A EP 1277940 B1 EP1277940 B1 EP 1277940B1
Authority
EP
European Patent Office
Prior art keywords
torque
variable
idling
function
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020013385
Other languages
German (de)
English (en)
Other versions
EP1277940A2 (fr
EP1277940A3 (fr
Inventor
Lilian Matischok
Juergen Biester
Holger Jessen
Thomas Schuster
Rainer Mayer
Mario Kustosch
Gerald-Markus Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1277940A2 publication Critical patent/EP1277940A2/fr
Publication of EP1277940A3 publication Critical patent/EP1277940A3/fr
Application granted granted Critical
Publication of EP1277940B1 publication Critical patent/EP1277940B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states

Definitions

  • the invention relates to a method and a device for operating a drive motor of a motor vehicle.
  • From the EP 1 052 390 A2 is a switching between a torque controller and an idle controller by correcting the output of the torque controller known in such a way that the switching takes place as gently as possible.
  • the correction adjusts the output of the torque controller to the output of the idle controller. The correction takes place only when the accelerator pedal is released.
  • an idle controller takes over the task of keeping the engine speed at a safe level for engine operation to stabilize.
  • this idle controller should not affect the moment of the drive motor when the accelerator pedal and higher speeds, the engine torque should be adjusted according to the driver's request.
  • the transition between these two operating states is to be realized so that the operation of the engine control and ride comfort are influenced as little as possible.
  • an optimized integration of this transition function in a torque structure which is independent of the respective engine type (gasoline engine, diesel engine), to strive for.
  • gasoline and diesel engines it is possible for gasoline and diesel engines to allow the same (identical) structure for the moment coordination including the connection of the idle control.
  • the contribution of the idle controller is influenced in the same way for gasoline and diesel engines in the transition from idle to non-idle operation and / or vice versa.
  • the engine speed-dependent replacement of the idle controller contribution In a defined speed range above a speed threshold, the desired property of wheel torque constant gear changes is achieved here as well.
  • the influencing function of the idle controller depends on further operating variables, eg engine temperature, outside temperature, air pressure, etc.
  • FIG. 1 shows an overview image of a control device for operating a drive motor
  • FIG. 2 a preferred embodiment of a torque structure in connection with the control of a drive motor is shown with reference to a flowchart, if it is relevant in view of the described approach.
  • the FIGS. 3 and 4 show two preferred embodiments for forming a correction factor, with the help of the idle controller is influenced in the transition between idle and non-idle.
  • FIG. 1 shows a block diagram of a control device for controlling a drive motor, in particular an internal combustion engine.
  • a control unit 10 is provided, which has as components an input circuit 14, at least one computer unit 16 and an output circuit 18.
  • a communication system 20 connects these components for mutual data exchange.
  • the input circuit 14 of the control unit 10 are supplied to input lines 22 to 26, which are designed in a preferred embodiment as a bus system and via which the control unit 10 signals are supplied, which represent to be evaluated for controlling the drive motor operating variables. These signals are detected by measuring devices 28 to 32.
  • Such operating variables are in the example of an internal combustion engine accelerator pedal position, engine speed, engine load, exhaust gas composition, engine temperature, etc.
  • the control unit 10 controls the power of the drive motor. This is in FIG.
  • control systems of the vehicle which transmit input variables 14, for example torque setpoints, to the input circuit 14.
  • Such control systems are, for example, traction control systems, vehicle dynamics controls, transmission controls, engine drag torque control, speed controller, speed limiter, etc.
  • external setpoint specifications which may include a setpoint input by the driver in the form of a driving desire or a maximum speed limit
  • internal specifications for the drive motor are provided , Eg the output signal of an idle speed control, a speed limit, a torque limit, etc ..
  • control system will also work with alternative drive concepts, e.g. Electric motors, used.
  • an idle controller determines, for example, depending on the speed deviation between a target and an actual speed by means of a predetermined control strategy (eg proportional, integral and / or differential component) a contribution (eg torque change quantity or desired torque) which is applied to the resulting setpoint torque value for the drive motor.
  • a predetermined control strategy eg proportional, integral and / or differential component
  • this connection is performed as an addition.
  • the idle contribution for example, will be normalized, so that the connection takes place by means of multiplication.
  • the connection of the idle controller takes place to the resulting target torque, which is formed by coordination of driver command torque and the desired torque of other control systems, external and possibly internal default variables. As a result, an influencing of the wheel torque by the idle controller is avoided, as mentioned above, so that gear torque constant transmission changes are achieved.
  • a time-limited process is started in the preferred embodiment, during which time the idle controller contribution is continuously reduced to zero.
  • a factor is formed depending on the time, which assumes the value zero starting at one after a predetermined period of time and with which the idle controller contribution is weighted (multiplied). After the predetermined period of time, the idle controller contribution is zero.
  • this factor is abruptly set to one in the preferred embodiment to allow the idle controller to immediately intervene to maintain engine operation.
  • a time-dependent control of the idle controller contribution is also applied here, wherein the factor increases from zero to one.
  • the time periods for detachment and switching on the idle controller are preferably different, wherein when the controller is turned on a shorter time period is selected than at the replacement.
  • Another alternative is to associate with the idle controller output signal maximum and minimum value limits to which the signal is limited.
  • the release or control is then realized by manipulating these limits, wherein at the replacement of e.g. the maximum value is preferably reduced to zero depending on the time or speed, and / or the minimum value is set to zero.
  • the control is reversed.
  • FIG. 2 The flow chart shown describes a program of a microcomputer of the control unit 10, wherein the individual blocks of the representation of FIG. 2 Programs, program parts or program steps, while the connecting lines represent the signal flow.
  • signals are supplied which correspond to the vehicle speed VFZG and the accelerator pedal position PWG. These variables are converted in a map 100 into a torque request of the driver.
  • This driver command torque which represents a default value for a torque on the output side of the transmission or for a wheel torque, is fed to a correction stage 102.
  • This correction is preferably an addition or subtraction.
  • the driver's desired torque is corrected by a weighted loss torque MKORR, which was formed in the connection point 104.
  • MKORR weighted loss torque
  • the weighting is preferably done as a multiplication.
  • the factor F3 is formed in 106 from the value PWG representing the accelerator pedal position and, if appropriate, additionally a variable NMOT representing the engine speed.
  • the driver's request MFA in this way is supplied to the moment coordination to form a resulting default torque MSOLLRES.
  • a first maximum value selection stage 108 the maximum value of driver desired torque MFA and the default torque MFGR of a vehicle speed controller is selected.
  • This maximum value is applied to a subsequent minimum value stage 110, in which the smaller of this value and the setpoint torque value MESP of an electronic stability program is selected.
  • the output quantity of the minimum value stage 110 represents a torque magnitude on the output side of the transmission or a wheel torque quantity which is converted into a torque magnitude on the output side of the transmission by taking into account the transmission ratio Ü and, if applicable, further transmissions in the drive train on the output side or on the output side the drive motor is present.
  • This torque magnitude is coordinated in a further coordinator 112 with the target torque MGETR a transmission control.
  • the target torque of the transmission control is formed according to the needs of the switching operation.
  • the resulting target torque MSOLLRES is then formed as the larger of the torque values minimum torque MMIN and the output torque of the coordination stage 112.
  • the minimum torque is derived in a preferred embodiment of the loss moment.
  • moment coordination is shown above by way of example only.
  • one or the other default torque is not used for coordination or further default torques are provided, for example a moment of a maximum speed limit, an engine speed limit, etc.
  • the resultant setpoint torque formed in the manner described above is supplied to a correction stage 116, in which the setpoint torque is corrected with the loss torques to be applied by the engine and not available to the drive.
  • the loss moments MVER are weighted in a weighting stage 118 with a factor F2. Depending on the version, this is constant (also 1) or depends on the operating variable, eg motor speed dependent.
  • the torque losses MVER itself are formed in the addition stage 120 from the torque requirement MNA of ancillary units and the engine lost torque MVERL. The determination of these variables is known from the prior art, wherein the torque requirement depends on the operating status of the respective auxiliary unit in accordance with characteristics or the like, the engine torque loss is determined depending on engine speed and engine temperature.
  • the loss moment MVER formed in this way is then provided to the correction stage 104, wherein a conversion of the torque loss using the known gear ratio Ü and possibly further translations in the drive train on the output side of the transmission to the level of getriebeausgangs- or Radmomente done.
  • the output of the correction stage 116 which in the preferred embodiment is an addition, is a default value for the torque to be generated by the drive unit for the drive, taking into account the internal losses and the torque required to operate ancillary units (eg air conditioning compressor) motor torque).
  • This default torque is corrected (preferably added) in a further correction stage 122 with the output variable DMLLR of the idle controller weighted in a correction stage 124.
  • the weighting factor F1 with which the output variable of the idle controller is weighted in 124, is speed-dependent and / or time-dependent, wherein when leaving the idling range, the factor decreases with time or with increasing engine speed to zero.
  • the default variable MISOLL is then implemented in 126 as known from the prior art in manipulated variables for adjusting the performance parameters of the drive motor, in the case of an Otto internal combustion engine in air supply, fuel injection and ignition angle, in the case of a diesel engine in fuel quantity.
  • further operational quantities are taken into account in determining the deceleration of the idle control portion, e.g. Motor temperature, outside temperature, outside pressure, etc.
  • the idle controller engages with its contribution DMLLR in the direction of action after the torque coordination (108 to 114) in the torque input, in which it corrects the resulting target torque MSOLLRES according to its output signal. In the idle control area, the correction is complete.
  • the idle controller output is weighted at 124 by a factor of F1, which decreases from one to zero with time after actuation of the accelerator pedal or speed dependent. If the factor is zero, no idle controller part is switched on.
  • the idle controller itself can continue to be active and run at its limit in accordance with the speed ratios or can be stopped partially or completely by timing down the integral component, setting the proportional and differential component to zero or setting the integral component to the current value.
  • the idle controller is also pre-controlled by the connection of the loss torque MVER in 116. This means that the idle controller only corrects the deviations between pilot values and the actual torque ratios. In other embodiments, this pre-control of the loss moments is missing, so that the idle controller corrects the total loss moments and the need of ancillary units.
  • One intermediate solution is to weight in 118 the lost torque feedforward control with a factor F2 which is compensated in a complementary manner for the reduction of the open loop controller contribution. That is, as the weighting of the idle control contribution decreases in 124, it increases by incremental weighting of the feedforward control in step 118.
  • FIG. 3 Essential for the operation of this arrangement is the formation of the factor F1, which causes the replacement and possibly in an analogous manner, the Aufberichtung the idle controller contribution.
  • a first solution is in FIG. 3 shown.
  • the factor F1 is triggered in time by the operation of the accelerator pedal (signal PWG> 0) reduced from its value one to zero.
  • An example is in FIG. 3 shown, in which the reduction is made linearly. In other embodiments, other time functions, such as exponential, step-shaped time functions, etc. are used.
  • the pedal is actuated at time T0, after expiration of a certain predetermined time period at time T1, the factor F1 is then reduced to the value zero. This means a complete disappearance of the effect of the idle controller in the context of torque control. If the pedal is released, that is, the drive motor returns to idle mode, the idle controller portion is controlled in one embodiment time-dependent again to its full value.
  • accelerator pedal position instead of the accelerator pedal position alone, a combination of accelerator pedal position and speed or driving speed is crucial in determining the transition in other embodiments.
  • Another embodiment initiates the procedure shown when operating the pedal beyond a certain extent.
  • a second embodiment is disclosed in FIG. 4 shown.
  • a characteristic 150 is provided, which is supplied to the engine speed NMOT.
  • the factor F1 is plotted against the engine speed. For speeds below the speed N1 the factor is 1, for speeds greater than N2 it is zero. In the area between the rotational speeds N1 and N2, a course of the factor F1 is given, whereby it declines with increasing rotational speed in the direction of zero.
  • the illustrated linear dependence between factor F1 and speed is exemplary. In other versions, other dependencies are chosen.
  • N1 is a speed that is just above the idle speed (eg, 900 rpm), while the second speed N2 is a larger speed, eg, 1500 rpm.
  • the value of the factor F1 is read out, which is then weighted according to its size, the effect of the idle controller in the context of the torque control shown. If the rotational speed returns to the range of rotational speeds N1 and N2, the idling-control component is, in one embodiment, driven up to its full value as a function of rotational speed.
  • the engine speed not the engine speed but a, e.g. used to the idling target speed, normalized size. This is advantageous when using an operating state-dependent (normalized) speed threshold for the idling control, the activation of which falls below this speed threshold by the (normalized) engine speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)

Claims (12)

  1. Procédé de gestion d'un moteur d'entraînement selon lequel, en fonction du souhait du conducteur et d'autres grandeurs de consigne, on détermine une grandeur de consigne résultante pour commander le moteur, selon lequel,
    en plus un régulateur de ralenti forme une grandeur de correction en fonction de la vitesse de rotation du moteur,
    caractérisé en ce que
    la grandeur de correction du régulateur de ralenti est appliquée à la grandeur de consigne résultante,
    et lors du passage du mode de fonctionnement au ralenti vers le mode de fonctionnement hors ralenti ou inversement, on modifie la grandeur de correction du régulateur de ralenti en fonction du régime du moteur ou du temps.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les grandeurs de consigne et les grandeurs de corrections sont des grandeurs instantanées représentant le couple de roues, le couple de sortie du moteur ou des couples moteurs indexés.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on a une fin de commande ou un début de commande dépendant du temps pour la grandeur de correction du régulateur de ralenti si l'on actionne la pédale d'accélérateur.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    en actionnant la pédale d'accélérateur on modifie un facteur en fonction du temps, par lequel on pondère la grandeur de correction du régulateur de ralenti.
  5. Procédé selon la revendication 4,
    caractérisé en ce qu'
    on modifie le facteur en fonction du temps en passant de la valeur un à la valeur zéro ou inversement.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on forme un facteur dépendant de la vitesse de rotation du moteur avec lequel on pondère la grandeur de correction du régulateur de ralenti, le facteur diminuant lorsque la vitesse de rotation du moteur augmente.
  7. Procédé selon la revendication 6,
    caractérisé en ce qu'
    on modifie le facteur de la valeur un à la valeur zéro lorsque la vitesse de rotation du moteur augmente.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on forme des couples perdus qui représentent la demande de couple des utilisateurs auxiliaires et/ ou qui correspondent au couple que doit fournir le moteur d'entraînement pour compenser le frottement interne, cette valeur de couple perdu étant combinée aux grandeurs de consigne résultantes et la grandeur de couple perdu, appliquée, est pondérée en sens opposé des grandeurs de correction du régulateur de ralenti.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la grandeur de correction du régulateur de ralenti est limitée à une valeur maximale et/ou à une valeur minimale et en cas de passage du mode de fonctionnement de ralenti au mode de fonctionnement sans ralenti ou inversement, on modifie la valeur maximale et/ou la valeur minimale en fonction de la vitesse de rotation du moteur ou en fonction du temps.
  10. Dispositif de gestion d'un moteur d'entraînement comprenant une unité de commande formant à partir d'une grandeur représentant la demande du conducteur et les grandeurs de consigne d'autres systèmes de commande, une grandeur de consigne résultant pour commander le moteur d'entraînement, comprenant un régulateur de ralenti qui forme une grandeur de correction,
    caractérisé en ce que
    l'unité de commande électronique comprend des moyens qui appliquent la grandeur de correction du régulateur de ralenti à la grandeur de consigne résultante,
    la grandeur de correction du régulateur de ralenti étant modifiée en fonction de la vitesse de rotation du moteur ou en fonction du temps lors du passage du mode de fonctionnement au ralenti au mode de fonctionnement hors ralenti et inversement.
  11. Programme d'ordinateur comportant des moyens de code de programme pour exécuter toutes les étapes de l'une quelconque des revendications 1 à 8 lorsque le programme est exécuté sur un ordinateur.
  12. Produit-programme d'ordinateur comportant des moyens de code de programme enregistrés en mémoire sur un support de données que peut lire un ordinateur pour exécuter le procédé selon l'une quelconque des revendications 1 à 8, lorsque le produit-programme est exécuté par un ordinateur.
EP20020013385 2001-07-19 2002-06-19 Procédé et dispositif de commande d'un moteur d'entraînement Expired - Lifetime EP1277940B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001135143 DE10135143A1 (de) 2001-07-19 2001-07-19 Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors
DE10135143 2001-07-19

Publications (3)

Publication Number Publication Date
EP1277940A2 EP1277940A2 (fr) 2003-01-22
EP1277940A3 EP1277940A3 (fr) 2006-05-03
EP1277940B1 true EP1277940B1 (fr) 2008-05-28

Family

ID=7692341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020013385 Expired - Lifetime EP1277940B1 (fr) 2001-07-19 2002-06-19 Procédé et dispositif de commande d'un moteur d'entraînement

Country Status (3)

Country Link
EP (1) EP1277940B1 (fr)
JP (1) JP2003049693A (fr)
DE (2) DE10135143A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357868A1 (de) * 2003-12-11 2005-07-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
DE102004041660B3 (de) * 2004-08-27 2006-05-04 Siemens Ag Verfahren und Vorrichtung zur Ermittlung eines Ausgabedrehmoments
FR2927281B1 (fr) * 2008-02-11 2010-04-16 Renault Sas Procede de regulation automatique du couple moteur pendant les phases de glissement symetrique des roues motrices d'un vehicule et dispositif pour la mise en oeuvre de ce procede
US8099229B2 (en) 2008-03-03 2012-01-17 GM Global Technology Operations LLC Method and apparatus for limiting wheel slip
DE102011004862A1 (de) 2011-02-28 2012-08-30 Bayerische Motoren Werke Aktiengesellschaft Bestimmen von Rad- und/oder Achsmomentvorgaben in einem Kraftfahrzeug
DE102011005962B4 (de) 2011-03-23 2023-07-27 Bayerische Motoren Werke Aktiengesellschaft Aufteilen einer Momentenanforderung auf zwei von unterschiedlichen Motoren angetriebenen Antriebsachsen eines Kraftfahrzeugs
DE102011120792A1 (de) * 2011-12-10 2013-06-13 Gm Global Technology Operations, Llc Verfahren zum Steuern und Steuerschaltung eines Verbrennungsmotors eines Kraftfahrzeuges
DE102017200296A1 (de) * 2017-01-10 2018-07-12 Volkswagen Aktiengesellschaft Motorsteuerung, Motorsteuerungsverfahren und entsprechendes Computerprogramm
CN112428982B (zh) * 2019-08-07 2022-02-01 纬湃科技投资(中国)有限公司 混合动力汽车油门踏板信号处理方法
CN112196677B (zh) * 2020-10-10 2022-11-29 东风康明斯发动机有限公司 一种发电用电控柴油机的转速控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100380A1 (de) * 1991-01-09 1992-07-16 Vdo Schindling Verfahren zum betreiben einer drosselklappengeregelten brennkraftmaschine im leerlaufregelbereich
DE4239711B4 (de) 1992-11-26 2005-03-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
US5901682A (en) * 1997-12-19 1999-05-11 Caterpillar Inc. Method for transitioning between different operating modes of an internal combustion engine
US6119063A (en) * 1999-05-10 2000-09-12 Ford Global Technologies, Inc. System and method for smooth transitions between engine mode controllers

Also Published As

Publication number Publication date
EP1277940A2 (fr) 2003-01-22
EP1277940A3 (fr) 2006-05-03
JP2003049693A (ja) 2003-02-21
DE10135143A1 (de) 2003-01-30
DE50212311D1 (de) 2008-07-10

Similar Documents

Publication Publication Date Title
DE4304779B4 (de) Vorrichtung zur Steuerung des von einer Antriebseinheit eines Fahrzeugs abzugebenden Drehmoments
EP0837984B1 (fr) Procede et dispositif permettant d'assurer la commande d'un moteur a combustion interne
EP0557299B1 (fr) Procede pour l'actionnement d'une unite d'entrainement constituee d'un moteur a combustion interne et d'une transmission automatique
DE4321413C2 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE19615806B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeuges
EP1277940B1 (fr) Procédé et dispositif de commande d'un moteur d'entraînement
EP1412630B1 (fr) Procede et dispositif d'utilisation d'un moteur d'entrainement d'un vehicule
DE10225448A1 (de) Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
DE4305573C2 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
EP0930424B1 (fr) Méthode et dispositif pour améliorer le démarrage d'un véhicule à boíte de vitesse manuelle
DE10148343B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit
EP1077827B1 (fr) Dispositif de commande de moteur de vehicule avec regulation et/ou limitation de la vitesse de roulement
WO1998046878A1 (fr) Procede et dispositif pour la regulation d'un moteur a combustion interne
EP1432899B1 (fr) Procede et dispositif pour l'exploitation d'un moteur d'entrainement d'un vehicule
DE10114040B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
EP1242731A2 (fr) Procede et dispositif pour assurer la commande de l'unite d'entrainement d'un vehicule
DE10048015A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
EP1242732B1 (fr) Procede et dispositif de commande de l'unite d'entrainement d'un vehicule
DE4426972B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2003033289A1 (fr) Procede et dispositif pour commander la vitesse d'un vehicule
DE10039784A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10205024C1 (de) Vorrichtung zur Steuerung des Drehmoments einer Antriebseinheit eines Fahrzeugs
DE10253004B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, Computerprogramm, Speicher, Steuergerät und Brennkraftmaschine
EP2254781B1 (fr) Procédé et dispositif pour la commande d'un véhicule à entraînement hybride
DE10148342A1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20061103

AKX Designation fees paid

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20070716

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 50212311

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080618

Year of fee payment: 7

Ref country code: IT

Payment date: 20080626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080624

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160810

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212311

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103