EP1265462A1 - Device and method for the intensity control of a beam extracted from a particle accelerator - Google Patents

Device and method for the intensity control of a beam extracted from a particle accelerator Download PDF

Info

Publication number
EP1265462A1
EP1265462A1 EP01870122A EP01870122A EP1265462A1 EP 1265462 A1 EP1265462 A1 EP 1265462A1 EP 01870122 A EP01870122 A EP 01870122A EP 01870122 A EP01870122 A EP 01870122A EP 1265462 A1 EP1265462 A1 EP 1265462A1
Authority
EP
European Patent Office
Prior art keywords
intensity
signal
value
beam intensity
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01870122A
Other languages
German (de)
French (fr)
Inventor
Bruno Marchand
Bertrand Bauvir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP01870122A priority Critical patent/EP1265462A1/en
Priority to PCT/BE2002/000089 priority patent/WO2002102123A1/en
Priority to CN02811473.6A priority patent/CN1247052C/en
Priority to EP02737673A priority patent/EP1393602A1/en
Priority to JP2003504721A priority patent/JP2004529483A/en
Priority to US10/479,380 priority patent/US6873123B2/en
Priority to CA002449307A priority patent/CA2449307A1/en
Publication of EP1265462A1 publication Critical patent/EP1265462A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the present invention is in the technical field of regulating the intensity of a beam extracted from a particle accelerator.
  • the present invention relates to a device for the rapid and precise regulation of the intensity of a beam extracted from an accelerator particles, and more specifically a cyclotron.
  • the present invention also relates to a method for regulating beam intensity extract from a particle accelerator.
  • the present invention finally relates to use of this device or method in proton therapy and in particular in the technique of "Pencil Beam Scanning".
  • Cyclotrons are accelerators circular particles that are used to accelerate positive or negative ions up to energies of a few MeV or more. This type of device finds applications in different fields such as industry or medicine, specifically radiotherapy for the production of radioisotopes or in proton therapy, to treat cancerous tumors.
  • Cyclotrons typically include five major components: the ion source that generates the ionized particles, the vacuum containment device ionized particles, the electromagnet that produces the magnetic field guiding particles ionized, the high frequency accelerator system intended for accelerate the ionized particles, and the device extraction to deflect ionized particles of their acceleration trajectory and then evacuate them of the cyclotron in the form of a high energy beam kinetic. This beam is then directed towards the volume target.
  • the ion source that generates the ionized particles
  • the vacuum containment device ionized particles the electromagnet that produces the magnetic field guiding particles ionized
  • the high frequency accelerator system intended for accelerate the ionized particles
  • the device extraction to deflect ionized particles of their acceleration trajectory and then evacuate them of the cyclotron in the form of a high energy beam kinetic. This beam is then directed towards the volume target.
  • the ions are obtained by ionization, in a closed enclosure, a gaseous medium consisting of one or more gases, means of electrons strongly accelerated by resonance cyclotronic electronics under the action of a field high frequency magnetic injected into the enclosure.
  • Such cyclotrons can be used in proton therapy.
  • Proton therapy aims to deliver a dose high in a well defined target volume to be treated while sparing the healthy tissues surrounding the volume considered.
  • protons Compared to conventional radiotherapy (rays X), protons have the advantage of depositing their dose at a specific energy-dependent depth (peak of Bragg).
  • peak of Bragg Several techniques for distributing the dose in the target volume are known.
  • Patent application WO00 / 40064 of the Applicant describes an improved technique, called “pencil beam scanning ", in which the beam should not be interrupted between the irradiation of each individual voxel.
  • the process described in this document consists in moving the beam continuously so as to "paint" the target volume layer by layer.
  • Double Diffusion Another technique used in proton therapy is the technique called "Double Diffusion ".
  • the modulation of the irradiation depth i.e. energy
  • the absorbent parts of this modulator consist of a absorbent material, such as graphite or lexan.
  • the modulation in depth obtained is fairly close to predictions. Uniformity remains outside specifications desired. To reach the specifications on uniformity, rather than re-machining the wheels of modulation it is cheaper to use regulation of the beam intensity which is synchronized on the speed of rotation of the energy modulator.
  • the function of modulation is therefore established for each modulator of energy and is used as the path provided as set the beam intensity regulator. A fast and precise regulation of the beam intensity extract from a particle accelerator is therefore necessary also in the double diffusion techniques using such a modulation wheel.
  • the present invention aims to provide a device and method for regulating the intensity of a beam extracted from an accelerator particles, which does not have the disadvantages of state of the art methods and devices.
  • the device according to the invention may include analog-to-digital converter converting analog signal directly representative of the intensity of the beam measured at the exit of the accelerator, and providing a digital signal.
  • the device of the invention includes means for updating the content of the table reverse match.
  • the sampling frequency is preferably between 100 kHz and 200 kHz, and the cut-off frequency of the low-pass filter is preferably between 2 and 6 kHz.
  • the correspondence between a value for supplying the source arc current of ions and a value of the beam intensity measured at the accelerator output is determined before the regulation.
  • the values of the supply of the arc current corresponding to the values beam intensity greater than a limit are replaced by the arc current supply value matching this limit.
  • the present invention relates also to the use of the device and the method of the invention in proton therapy and in particular in "Pencil Beam Scanning” and “double” technique diffusion ".
  • Figure 1 shows a device for regulation of the intensity of a beam extracted from a particle accelerator according to the prior art.
  • FIG. 2 represents the characteristic of the system, that is to say the correspondence between a value I A for the supply of the arc current of the ion source and a value I M of the intensity of the measured beam at the exit of the accelerator.
  • FIG. 3 represents an embodiment of a beam intensity regulation device extract of a particle accelerator according to the invention.
  • FIG. 4 represents a second mode of creation of an intensity regulation device of a beam extracted from a particle accelerator according to the invention.
  • a set value I C of the beam intensity is supplied to a conventional PID regulator 10, which determines a value I A of the arc current of the ion source 20.
  • L ' beam intensity is measured by means of an ionization chamber 30, and the corresponding signal I M is compared using a comparator 90 to the set value I C to provide an error signal ⁇ .
  • the intensity of the beam varies simultaneously with the displacement, so as to obtain compliance with the delivered dose.
  • the evolution of the characteristic depends on two well decoupled phenomena: the first, of constant of short time, corresponds to the conditioning of the source of ions, that is to say at its temperature.
  • the functioning normal, continuous or intermittent with high duty cycle heats the ion source quickly.
  • This time rapid temperature establishment could allow work in an open loop, i.e. without holding account of the real characteristic of the system, in using conventional methods, during the time of conditioning.
  • this compromise strongly limits the use of a conventional method in operation intermittent with average duty cycle, which corresponds often to the operating mode used.
  • the present invention proposes by therefore to more specifically resolve this problem by using according to a preferred embodiment a regulating device 10 shown in FIG. 3 with the supply of arc current from the ion source 20.
  • the ion source produces an ion beam, which is accelerated during its course in the accelerator, is extracts, and passes through a measuring device 30 of the intensity of the beam at the exit of the accelerator.
  • This measuring device 30 can be for example a chamber ionization.
  • a filter is introduced into the feedback low-pass 60 and a phase advance regulator 70.
  • the filter 60 is for example a low pass filter of the first order.
  • the cutoff frequency is 4.5 kHz.
  • a phase advance regulator 70 differential filtered
  • the device according to the invention is realized by means of an electronic card which calls DSP (Digital Signal) type digital technologies Processing).
  • DSP Digital Signal
  • the method of regulation according to this invention has several advantages. First, she allows a controlled adaptation, i.e. it requires very little computation time compared to modern methods of adaptive control and allows a very easy change of structure since the identification is made by construction of a table of correspondence which then suffices to reverse numerically to linearize the characteristic of the system seen by the main regulator.

Abstract

The beam intensity regulator includes an analogue-digital converter (50) which converts an analogue signal (IM) directly representing the measured beam intensity at the accelerator output into a digital signal (IR). A low pass filter filters the signal (IM) to produce a filtered analogue signal (IF). A phase advance regulator samples the signal (IF), compensates for the phase delay and provides the signal (IR) to a comparator (90) An Independent claim is also included for: a regulation method. Beam intensity regulator, for beams extracted from a particle accelerator such as a cyclotron, used for proton-therapy. The particles are generated from an ion source. Regulator includes: (a) a comparator (90) determining the difference ( eta ) between a digital signal (IR) representing beam intensity measured at the accelerator output and a set value of beam intensity (IC); a SMITH predictor (80) which determines from ( eta ), a corrected value beam intensity value (IP); an inverse correspondence table (40) furnishes, from the corrected value (IP). a value (IA) for supply of a current arc for the ion source (20).

Description

Objet de l'inventionSubject of the invention

La présente invention se situe dans le domaine technique de la régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules.The present invention is in the technical field of regulating the intensity of a beam extracted from a particle accelerator.

La présente invention se rapporte à un dispositif destiné à la régulation rapide et précise de l'intensité d'un faisceau extrait d'un accélérateur de particules, et plus spécifiquement d'un cyclotron.The present invention relates to a device for the rapid and precise regulation of the intensity of a beam extracted from an accelerator particles, and more specifically a cyclotron.

La présente invention se rapporte également à une méthode pour la régulation de l'intensité du faisceau extrait d'un accélérateur de particules.The present invention also relates to a method for regulating beam intensity extract from a particle accelerator.

La présente invention se rapporte enfin à l'utilisation de ce dispositif ou de cette méthode en protonthérapie et en particulier dans la technique de "Pencil Beam Scanning".The present invention finally relates to use of this device or method in proton therapy and in particular in the technique of "Pencil Beam Scanning".

Arrière-plan technologique et état de la techniqueTechnological background and state of the art

Les cyclotrons sont des accélérateurs circulaires de particules qui sont utilisés pour accélérer des ions positifs ou négatifs jusqu'à des énergies de quelques MeV voire plus. Ce type d'appareils trouve des applications dans des domaines différents tels que l'industrie ou la médecine, plus précisément en radiothérapie pour la production de radio-isotopes ou en protonthérapie, en vue de traiter des tumeurs cancéreuses. Cyclotrons are accelerators circular particles that are used to accelerate positive or negative ions up to energies of a few MeV or more. This type of device finds applications in different fields such as industry or medicine, specifically radiotherapy for the production of radioisotopes or in proton therapy, to treat cancerous tumors.

Les cyclotrons comprennent généralement cinq composants majeurs : la source d'ions qui génère les particules ionisées, le dispositif de confinement sous vide des particules ionisées, l'électroaimant qui produit le champ magnétique assurant le guidage des particules ionisées, le système accélérateur haute fréquence destiné à accélérer les particules ionisées, et le dispositif d'extraction permettant de dévier les particules ionisées de leur trajectoire d'accélération puis de les évacuer hors du cyclotron sous forme d'un faisceau à haute énergie cinétique. Ce faisceau est ensuite dirigé vers le volume cible.Cyclotrons typically include five major components: the ion source that generates the ionized particles, the vacuum containment device ionized particles, the electromagnet that produces the magnetic field guiding particles ionized, the high frequency accelerator system intended for accelerate the ionized particles, and the device extraction to deflect ionized particles of their acceleration trajectory and then evacuate them of the cyclotron in the form of a high energy beam kinetic. This beam is then directed towards the volume target.

Dans la source d'ions d'un cyclotron, les ions sont obtenus par ionisation, dans une enceinte fermée, d'un milieu gazeux constitué d'un ou plusieurs gaz, au moyen d'électrons fortement accélérés par résonance électronique cyclotronique sous l'action d'un champ magnétique haute fréquence injecté dans l'enceinte.In the ion source of a cyclotron, the ions are obtained by ionization, in a closed enclosure, a gaseous medium consisting of one or more gases, means of electrons strongly accelerated by resonance cyclotronic electronics under the action of a field high frequency magnetic injected into the enclosure.

De tels cyclotrons peuvent être utilisés en protonthérapie. La protonthérapie vise à délivrer une dose élevée dans un volume cible à traiter bien défini tout en épargnant les tissus sains entourant le volume considéré. En comparaison à la radiothérapie conventionnelle (rayons X), les protons présentent l'avantage de déposer leur dose à une profondeur précise dépendant de l'énergie (pic de Bragg). Plusieurs techniques pour distribuer la dose dans le volume cible sont connues.Such cyclotrons can be used in proton therapy. Proton therapy aims to deliver a dose high in a well defined target volume to be treated while sparing the healthy tissues surrounding the volume considered. Compared to conventional radiotherapy (rays X), protons have the advantage of depositing their dose at a specific energy-dependent depth (peak of Bragg). Several techniques for distributing the dose in the target volume are known.

La technique mise au point par Pedroni et décrite dans « The 200-Mev proton therapy project at the Paul Scherrer Institute : conceptual design and practical realization » MEDICAL PHYSICS, JAN. 1995, USA, vol.22, no.1, pages 37-53, XP000505145 ISSN : 0094-2405, consiste à découper le volume cible en volumes élémentaires appelés « voxels ». On dirige le faisceau vers un premier voxel, et lorsque la dose prescrite est atteinte, on interrompt l'irradiation en déviant brusquement le faisceau au moyen d'un aimant rapide (fast kicking magnet). On règle alors un aimant de balayage de manière à diriger le faisceau vers un voxel suivant, et on réintroduit le faisceau de manière à irradier ce voxel suivant. Ce processus est répété jusqu'à irradiation du volume cible en entier. Un des inconvénients de ce procédé est que, en raison des interruptions et rétablissements successifs du faisceau entre deux voxels, le temps de traitement est important, et peut atteindre plusieurs minutes dans des conditions typiques.The technique developed by Pedroni and described in "The 200-Mev proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization" MEDICAL PHYSICS, JAN. 1995, USA, vol.22, no.1, pages 37-53, XP000505145 ISSN: 0094-2405, consists in cutting the target volume into elementary volumes called "voxels". The beam is directed towards a first voxel, and when the prescribed dose is reached, the irradiation is interrupted by abruptly deflecting the beam by means of a fast kicking magnet. A scanning magnet is then adjusted so as to direct the beam to a next voxel, and the beam is reintroduced so as to irradiate this next voxel. This process is repeated until the entire target volume is irradiated. One of the drawbacks of this method is that, due to the successive interruptions and re-establishment of the beam between two voxels, the processing time is long, and can reach several minutes under typical conditions.

La demande de brevet WO00/40064 de la Demanderesse décrit une technique améliorée, dite « pencil beam scanning », dans laquelle le faisceau ne doit pas être interrompu entre l'irradiation de chaque voxel individuel. Le procédé décrit dans ce document consiste à déplacer le faisceau de manière continue de manière à "peindre" le volume cible couche après couche.Patent application WO00 / 40064 of the Applicant describes an improved technique, called "pencil beam scanning ", in which the beam should not be interrupted between the irradiation of each individual voxel. The process described in this document consists in moving the beam continuously so as to "paint" the target volume layer by layer.

En opérant simultanément un déplacement du faisceau et une variation de l'intensité de ce faisceau, on parvient à conformer exactement la dose à délivrer au volume cible. La régulation de l'intensité du faisceau de protons est réalisée indirectement par une action sur le courant d'alimentation de la source d'ions. On utilise dans ce but un régulateur qui permet de réguler l'intensité du faisceau de protons. Toutefois, cette régulation n'est pas optimale.By simultaneously operating a displacement of the beam and a variation of the intensity of this beam, we manages to exactly comply with the dose to be delivered to target volume. The regulation of the beam intensity of protons is carried out indirectly by an action on the supply current from the ion source. We use in this purpose a regulator that regulates the intensity of the proton beam. However, this regulation is not optimal.

Une autre technique utilisée en protonthérapie est la technique dite de « Double Diffusion ». Dans cette technique, la modulation de la profondeur d'irradiation (c'est-à-dire de l'énergie), est réalisée à l'aide d'une roue dite roue de modulation tournant à une vitesse de l'ordre de 600 tr/min. Les parties absorbantes de ce modulateur sont constituées d'un matériau absorbant, tel que le graphite ou de lexan. Lors de la fabrication de ces roues de modulation, la modulation en profondeur obtenue est assez proche des prédictions. L'uniformité reste malgré tout en dehors des spécifications désirées. Pour atteindre les spécifications sur l'uniformité, plutôt que de ré-usiner les roues de modulation, il est moins onéreux d'utiliser une régulation de l'intensité du faisceau qui soit synchronisée sur la vitesse de rotation du modulateur d'énergie. La fonction de modulation est donc établie pour chaque modulateur d'énergie et est utilisée comme trajectoire fournie comme consigne au régulateur de l'intensité du faisceau. Une régulation rapide et précise de l'intensité du faisceau extrait d'un accélérateur de particules est donc nécessaire également dans les techniques de double diffusion utilisant une telle roue de modulation.Another technique used in proton therapy is the technique called "Double Diffusion ". In this technique, the modulation of the irradiation depth (i.e. energy), is made using a wheel called modulation wheel rotating at a speed of the order of 600 rpm. The absorbent parts of this modulator consist of a absorbent material, such as graphite or lexan. then of the manufacture of these modulation wheels, the modulation in depth obtained is fairly close to predictions. Uniformity remains outside specifications desired. To reach the specifications on uniformity, rather than re-machining the wheels of modulation it is cheaper to use regulation of the beam intensity which is synchronized on the speed of rotation of the energy modulator. The function of modulation is therefore established for each modulator of energy and is used as the path provided as set the beam intensity regulator. A fast and precise regulation of the beam intensity extract from a particle accelerator is therefore necessary also in the double diffusion techniques using such a modulation wheel.

Buts de l'inventionAims of the invention

La présente invention vise à fournir un dispositif et une méthode destinés à la régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules, qui ne présente pas les inconvénients des procédés et dispositifs de l'état de la technique.The present invention aims to provide a device and method for regulating the intensity of a beam extracted from an accelerator particles, which does not have the disadvantages of state of the art methods and devices.

Résumé de l'inventionSummary of the invention

La présente invention se rapporte à un dispositif de régulation de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple pour la protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisé en ce qu'il comporte au moins :

  • un comparateur déterminant un écart entre un signal digital représentatif de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur de consigne de l'intensité du faisceau;
  • un prédicteur de Smith, qui détermine, à partir de cet écart, une valeur corrigée de l'intensité de faisceau;
  • une table de correspondance inversée, fournissant, à partir de la valeur corrigée de l'intensité de faisceau, une valeur de consigne pour l'alimentation du courant d'arc de la source d'ions.
The present invention relates to a device for regulating the intensity of the beam extracted from a particle accelerator, such as a cyclotron, used for example for proton therapy, said particles being generated from an ion source. , characterized in that it comprises at least:
  • a comparator determining a difference between a digital signal representative of the intensity of the beam measured at the output of the accelerator and a set value of the intensity of the beam;
  • a Smith predictor, which determines, from this deviation, a corrected value of the beam intensity;
  • an inverted correspondence table, providing, from the corrected value of the beam intensity, a setpoint for supplying the arc current of the ion source.

En outre, le dispositif selon l'invention peut comprendre un convertisseur analogique-digital convertissant le signal analogique directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal digital.In addition, the device according to the invention may include analog-to-digital converter converting analog signal directly representative of the intensity of the beam measured at the exit of the accelerator, and providing a digital signal.

De préférence, le dispositif selon l'invention comprendra en outre :

  • un filtre passe-bas filtrant le signal analogique directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal analogique filtré;
  • un régulateur à avance de phase échantillonnant ledit signal analogique filtré, compensant le retard de phase introduit par le filtre passe-bas, et fournissant un signal digital au comparateur.
Preferably, the device according to the invention will also comprise:
  • a low-pass filter filtering the analog signal directly representative of the intensity of the beam measured at the output of the accelerator, and providing a filtered analog signal;
  • a phase advance regulator sampling said filtered analog signal, compensating for the phase delay introduced by the low-pass filter, and supplying a digital signal to the comparator.

Avantageusement, le dispositif de l'invention comporte des moyens de mise à jour du contenu de la table de correspondance inversée.Advantageously, the device of the invention includes means for updating the content of the table reverse match.

La fréquence d'échantillonnage est de préférence comprise entre 100 kHz et 200 kHz, et la fréquence de coupure du filtre passe-bas est de préférence comprise entre 2 et 6 kHz.The sampling frequency is preferably between 100 kHz and 200 kHz, and the cut-off frequency of the low-pass filter is preferably between 2 and 6 kHz.

La présente invention concerne également une méthode de régulation, au moyen d'un dispositif de régulation digital fonctionnant à une fréquence d'échantillonnage donnée, de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple en protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisée en ce qu'elle comprend au moins les étapes suivantes :

  • on mesure l'intensité du faisceau à la sortie de l'accélérateur de particules;
  • on compare un signal digital représentatif de la mesure de l'intensité du faisceau avec la valeur de consigne de l'intensité du faisceau;
  • on détermine, au moyen d'un prédicteur de Smith, une valeur corrigée de l'intensité de faisceau;
  • on détermine, à partir de cette valeur corrigée de l'intensité de faisceau, au moyen d'une table de correspondance inversée, une valeur de consigne pour l'alimentation du courant d'arc de la source d'ions.
The present invention also relates to a method of regulation, by means of a digital regulation device operating at a given sampling frequency, of the intensity of the beam extracted from a particle accelerator, such as a cyclotron, used by example in proton therapy, said particles being generated from an ion source, characterized in that it comprises at least the following steps:
  • the intensity of the beam at the exit of the particle accelerator is measured;
  • a digital signal representative of the measurement of the beam intensity is compared with the set value of the beam intensity;
  • a corrected beam intensity value is determined by means of a Smith predictor;
  • on the basis of this corrected beam intensity value, by means of an inverted correspondence table, a reference value is determined for supplying the arc current of the ion source.

De préférence, dans la méthode selon l'invention, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules, on convertit le signal analogique directement représentatif de l'intensité du faisceau mesurée au moyen d'un convertisseur analogique digital pour obtenir un signal digital.Preferably, in the method according to the invention, after measuring the intensity of the beam at the particle accelerator output, we convert the analog signal directly representative of the intensity of the beam measured by means of an analog converter digital to get a digital signal.

Selon une forme d'exécution de la méthode selon l'invention,

  • on filtre le signal analogique directement représentatif de l'intensité du faisceau mesurée au moyen d'un filtre passe-bas, donnant un signal analogique filtré;
  • on échantillonne ledit signal filtré, et on compense le retard de phase introduit par le filtrage pour obtenir un signal digital.
According to one embodiment of the method according to the invention,
  • the analog signal directly representative of the intensity of the beam measured is filtered by means of a low-pass filter, giving a filtered analog signal;
  • said filtered signal is sampled, and the phase delay introduced by the filtering is compensated for to obtain a digital signal.

Avantageusement, la correspondance entre une valeur pour l'alimentation du courant d'arc de la source d'ions et une valeur de l'intensité du faisceau mesurée à la sortie de l'accélérateur est déterminée préalablement à la régulation.Advantageously, the correspondence between a value for supplying the source arc current of ions and a value of the beam intensity measured at the accelerator output is determined before the regulation.

Avantageusement, dans la correspondance entre une valeur de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur pour l'alimentation du courant d'arc de la source d'ions, les valeurs de l'alimentation du courant d'arc correspondant aux valeurs d'intensité de faisceau supérieures à une limite sont remplacées par la valeur d'alimentation du courant d'arc correspondant cette limite.Advantageously, in the correspondence between a value of the beam intensity measured at the exit of the accelerator and a value for the power of the arc current from the ion source, the values of the supply of the arc current corresponding to the values beam intensity greater than a limit are replaced by the arc current supply value matching this limit.

Enfin, la présente invention se rapporte également à l'utilisation du dispositif et de la méthode de l'invention en protonthérapie et en particulier dans les technique de "Pencil Beam Scanning" et de « double diffusion ».Finally, the present invention relates also to the use of the device and the method of the invention in proton therapy and in particular in "Pencil Beam Scanning" and "double" technique diffusion ".

Brève description des figuresBrief description of the figures

La figure 1 représente un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules suivant l'art antérieur.Figure 1 shows a device for regulation of the intensity of a beam extracted from a particle accelerator according to the prior art.

La figure 2 représente la caractéristique du système, c'est-à-dire la correspondance entre une valeur IA pour l'alimentation du courant d'arc de la source d'ions et une valeur IM de l'intensité du faisceau mesurée à la sortie de l'accélérateur.FIG. 2 represents the characteristic of the system, that is to say the correspondence between a value I A for the supply of the arc current of the ion source and a value I M of the intensity of the measured beam at the exit of the accelerator.

La figure 3 représente un mode de réalisation d'un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules selon l'invention.FIG. 3 represents an embodiment of a beam intensity regulation device extract of a particle accelerator according to the invention.

La figure 4 représente un second mode de réalisation d'un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules suivant l'invention. FIG. 4 represents a second mode of creation of an intensity regulation device of a beam extracted from a particle accelerator according to the invention.

Problèmes à la base de la présente inventionProblems underlying the present invention

En utilisant une régulation classique, par exemple PID, pour la mise en oeuvre de la technique dite "pencil beam scanning" telle que décrite dans la publication WO00/40064 de la Demanderesse, on est confronté aux problèmes décrits ci-après.Using conventional regulation, for example PID example, for the implementation of the so-called technique "pencil beam scanning" as described in publication WO00 / 40064 of the Applicant, we are confronted to the problems described below.

Ainsi que le montre la figure 1, une valeur de consigne IC de l'intensité du faisceau est fournie à un régulateur PID classique 10, qui détermine une valeur IA du courant d'arc de la source d'ions 20. L'intensité du faisceau est mesurée au moyen d'une chambre d'ionisation 30, et le signal correspondant IM est comparé à l'aide d'un comparateur 90 à la valeur de consigne IC pour fournir un signal d'erreur ε. Selon la technique de balayage continu du faisceau, il est indispensable que l'intensité du faisceau varie de manière simultanée avec le déplacement, de manière à obtenir la conformité de la dose délivrée.As shown in FIG. 1, a set value I C of the beam intensity is supplied to a conventional PID regulator 10, which determines a value I A of the arc current of the ion source 20. L ' beam intensity is measured by means of an ionization chamber 30, and the corresponding signal I M is compared using a comparator 90 to the set value I C to provide an error signal ε. According to the continuous beam scanning technique, it is essential that the intensity of the beam varies simultaneously with the displacement, so as to obtain compliance with the delivered dose.

Un tel système présente les difficultés suivantes :

  • un temps mort pur important est dû au temps de parcours important d'une particule entre son émission par la source d'ions 20 et sa sortie de la machine;
  • la caractéristique du système, liant l'intensité du faisceau extrait de l'accélérateur de particules IM à l'intensité du courant d'arc de la source d'ions IA est fortement non linéaire, ainsi que le montre la figure 2;
  • de plus, cette caractéristique peut varier au cours du temps, ainsi que le montrent les courbes en trait interrompu de la figure 2. Cette variation peut survenir rapidement en raison du chauffage ou du refroidissement du filament de la source d'ions lors de sa mise en service. Elle peut également provenir du vieillissement du filament. Ces deux phénomènes conduisent à des variations de la caractéristique avec des constantes de temps très différentes;
  • le système est fortement bruité. L'intensité du faisceau généré par la source d'ions présente un bruit important, en particulier à la fréquence d'échantillonnage utilisée pour la mesure.
Such a system presents the following difficulties:
  • a large pure dead time is due to the long travel time of a particle between its emission by the ion source 20 and its exit from the machine;
  • the characteristic of the system, linking the intensity of the beam extracted from the particle accelerator I M to the intensity of the arc current of the ion source I A is strongly non-linear, as shown in FIG. 2;
  • moreover, this characteristic can vary over time, as shown by the broken lines in FIG. 2. This variation can occur quickly due to the heating or cooling of the filament of the ion source when it is placed. in service. It can also come from the aging of the filament. These two phenomena lead to variations in the characteristic with very different time constants;
  • the system is very noisy. The intensity of the beam generated by the ion source presents significant noise, in particular at the sampling frequency used for the measurement.

La régulation d'un tel système en utilisant les méthodes classiques de régulation telles que les techniques de feedforward, de feedback par action proportionnelle, intégrale et dérivée (PID) et de boucles en cascade a été évaluée. En raison du temps mort pur important, toutes ces méthodes donnent des réponses soit trop lentes, soit instables. Les méthodes classiques ne permettent pas non plus d'adresser le problème d'une caractéristique du système fluctuant en fonction du temps en utilisant une valeur moyenne des caractéristiques sur une période donnée, car les variations de gain d'une réponse à l'autre sont dans un rapport très important.The regulation of such a system using conventional methods of regulation such as feedforward techniques, action feedback proportional, integral and derivative (PID) and loops cascade was evaluated. Due to the pure dead time important, all of these methods give answers either too slow or unstable. Classic methods do not also make it impossible to address the problem of a characteristic of the system fluctuating with time using an average value of the characteristics on a given period because the gain variations of a response to each other are in a very important relationship.

L'évolution de la caractéristique dépend de deux phénomènes bien découplés : le premier, de constante de temps brève, correspond au conditionnement de la source d'ions, c'est-à-dire à sa température. Le fonctionnement normal, continu ou intermittent à rapport cyclique élevé, chauffe la source d'ions rapidement. Ce temps d'établissement rapide en température pourrait permettre de travailler en boucle ouverte, c'est-à-dire sans tenir compte de la caractéristique réelle du système, en utilisant les méthodes classiques, pendant le temps de conditionnement. Cependant, ce compromis limite fortement l'utilisation d'une méthode classique en fonctionnement intermittent à rapport cyclique moyen, qui correspond souvent au mode de fonctionnement utilisé. The evolution of the characteristic depends on two well decoupled phenomena: the first, of constant of short time, corresponds to the conditioning of the source of ions, that is to say at its temperature. The functioning normal, continuous or intermittent with high duty cycle, heats the ion source quickly. This time rapid temperature establishment could allow work in an open loop, i.e. without holding account of the real characteristic of the system, in using conventional methods, during the time of conditioning. However, this compromise strongly limits the use of a conventional method in operation intermittent with average duty cycle, which corresponds often to the operating mode used.

Le second phénomène, de constante de temps plus longue, est dû au vieillissement du filament et de la source d'ions elle-même. Cette évolution plus lente de la caractéristique pourrait donc donner lieu à l'utilisation d'une caractéristique moyenne du système. L'utilisation d'une caractéristique moyenne conduit cependant à une régulation soit trop lente, soit instable.The second phenomenon, time constant longer, is due to the aging of the filament and the source of ions itself. This slower evolution of the characteristic could therefore give rise to the use of an average characteristic of the system. Use of an average characteristic, however, leads to a regulation either too slow or unstable.

Il apparaít donc comme évident que les méthodes classiques de régulation ne peuvent pas résoudre de manière satisfaisante les problèmes du contrôle d'un tel système, c'est-à-dire un temps mort pur largement supérieur à la constante de temps principale du système (environ 4 fois) et une caractéristique non-linéaire évolutive et nécessitant une méthode de régulation adaptative.It therefore appears obvious that the classical methods of regulation cannot solve satisfactorily the problems of controlling such system, i.e. a much higher pure dead time to the main time constant of the system (approximately 4 times) and an evolving nonlinear characteristic and requiring an adaptive regulation method.

La régulation rapide et précise de l'intensité du faisceau extrait d'un accélérateur de particules se heurte donc à de nombreuses difficultés. Une telle régulation rapide et précise est cependant importante pour l'application de la technique du « pencil beam scanning ».The fast and precise regulation of the intensity of the beam extracted from an accelerator particles therefore faces many difficulties. A such rapid and precise regulation is however important for the application of the pencil beam technique scanning ”.

Description d'une forme d'exécution préférée de l'inventionDescription of a preferred embodiment of the invention

La présente invention se propose par conséquent de résoudre plus spécifiquement ce problème en utilisant selon une forme d'exécution préférée un dispositif de régulation 10 représenté à la figure 3 avec l'alimentation du courant d'arc de la source d'ions 20. La source d'ions produit un faisceau d'ions, qui est accéléré au cours de son parcours dans l'accélérateur, en est extrait, et traverse un dispositif de mesure 30 de l'intensité du faisceau à la sortie de l'accélérateur. Ce dispositif de mesure 30 peut être par exemple une chambre d'ionisation. The present invention proposes by therefore to more specifically resolve this problem by using according to a preferred embodiment a regulating device 10 shown in FIG. 3 with the supply of arc current from the ion source 20. The ion source produces an ion beam, which is accelerated during its course in the accelerator, is extracts, and passes through a measuring device 30 of the intensity of the beam at the exit of the accelerator. This measuring device 30 can be for example a chamber ionization.

Le régulateur suivant l'invention à été appliqué pour un cyclotron présentant les caractéristiques exemplatives et non limitatives suivantes :

  • énergie fixe: 235 MeV
  • temps mort pur : 60 µsec. Ce temps mort pur correspond au temps de parcours des ions dans l'accélérateur. Il correspond donc directement au temps nécessaire pour mesurer l'influence d'une modification de la consigne du courant d'arc de la source d'ions sur l'intensité du faisceau d'ions extraits de la machine
  • constante de temps principale : 15 µs. Elle donne une indication sur le temps nécessaire à l'établissement, en boucle ouverte, de la réponse du système à une modification de consigne.
  • caractéristique du système fortement non-linéaire, ce qui conduit à une caractéristique en boucle ouverte correspondant quasiment à celle d'un système à dynamique hybride (tout ou rien).
  • évolution de la caractéristique au cours du temps.
  • signal mesuré très bruité. En effet, la source d'ions est instable, ce qui conduit un niveau de bruit très important pour l'intensité du faisceau après extraction. Le rapport bruit/signal observé est de l'ordre de 150%. En conséquence, lors d'une mise en oeuvre digitale du régulateur, les fréquences d'échantillonnages retenues engendrent un rapport signal / bruit très faible.
The regulator according to the invention has been applied for a cyclotron having the following exemplary and non-limiting characteristics:
  • fixed energy: 235 MeV
  • pure dead time: 60 µsec. This pure dead time corresponds to the travel time of the ions in the accelerator. It therefore corresponds directly to the time necessary to measure the influence of a modification of the setpoint of the arc of the ion source on the intensity of the beam of ions extracted from the machine.
  • main time constant: 15 µs. It gives an indication of the time required to establish, in an open loop, the system's response to a setpoint modification.
  • characteristic of the strongly non-linear system, which leads to an open-loop characteristic corresponding almost to that of a system with hybrid dynamics (all or nothing).
  • evolution of the characteristic over time.
  • measured signal very noisy. Indeed, the ion source is unstable, which leads to a very high noise level for the intensity of the beam after extraction. The noise / signal ratio observed is around 150%. Consequently, during a digital implementation of the regulator, the selected sampling frequencies generate a very low signal / noise ratio.

Dans le dispositif de régulation de l'invention, représenté à la figure 3, les étapes suivantes sont réalisées :

  • la valeur de consigne de l'intensité du faisceau IC est fournie sous la forme d'un signal analogique 0-10 V (10 V correspondant à une intensité du faisceau de 300 nA);
  • l'intensité de faisceau est mesurée au moyen d'une chambre d'ionisation 30 et la mesure IM est fournie au dispositif de régulation 10 au moyen d'un signal analogique 0-15 µA (15 µA correspondant à une intensité du faisceau de 300 nA) ;
  • ce signal analogique IM est converti par un convertisseur 50 en un signal digital IR;
  • ce signal IR est comparé par le comparateur à la consigne IC pour fournir un signal d'erreur ε;
  • ce signal d'erreur ε est fourni au régulateur de type « Prédicteur de Smith » 80;
  • la sortie IP du prédicteur de Smith 80 est alors fournie à l'entrée d'une table de correspondance inversée 40. La table de correspondance 40 fournit de manière numérique la relation non-linéaire entre le courant d'arc de la source d'ions IA et l'intensité du faisceau IM d'ions extrait de l'accélérateur. Elle permet donc d'identifier la caractéristique non linéaire du système. La sortie de la table de correspondance inversée est convertie en un signal analogique de type 4-20 mA IA qui est fourni par le dispositif de régulation 10 comme valeur de consigne pour l'alimentation du courant d'arc de la source d'ions.
In the regulation device of the invention, shown in FIG. 3, the following steps are carried out:
  • the setpoint value of the beam intensity I C is supplied in the form of an analog signal 0-10 V (10 V corresponding to a beam intensity of 300 nA);
  • the beam intensity is measured by means of an ionization chamber 30 and the measurement I M is supplied to the regulating device 10 by means of an analog signal 0-15 μA (15 μA corresponding to an intensity of the beam of 300 nA);
  • this analog signal I M is converted by a converter 50 into a digital signal I R ;
  • this signal I R is compared by the comparator to the set point I C to provide an error signal ε;
  • this error signal ε is supplied to the regulator of the “Smith predictor” type 80;
  • the output I P of the Smith predictor 80 is then supplied to the input of an inverted correspondence table 40. The correspondence table 40 numerically provides the non-linear relationship between the arc current of the source of ions I A and the intensity of the beam I M of ions extracted from the accelerator. It therefore makes it possible to identify the nonlinear characteristic of the system. The output of the inverted correspondence table is converted into an analog signal of the 4-20 mA I A type which is supplied by the regulating device 10 as a set value for supplying the arc current of the ion source. .

Des simulations montrent qu'un tel dispositif permet une bonne régulation. Il est cependant sensible aux perturbations basse fréquence. Pour résoudre ce problème, on a développé une variante préférée du dispositif suivant l'invention, représenté à la figure 4. Dans ce dispositif 10, on introduit dans la contre-réaction un filtre passe-bas 60 et un régulateur à avance de phase 70. Le filtre 60 est par exemple un filtre passe-bas du premier ordre. La fréquence de coupure est de 4,5 kHz. Afin de compenser le retard de phase introduit par le filtre, on utilise un régulateur à avance de phase 70 (dérivateur filtré), qui compense ce déphasage.Simulations show that such a device allows good regulation. He is, however, sensitive to low frequency disturbances. To resolve this problem, we have developed a preferred variant of the following device the invention, shown in Figure 4. In this device 10, a filter is introduced into the feedback low-pass 60 and a phase advance regulator 70. The filter 60 is for example a low pass filter of the first order. The cutoff frequency is 4.5 kHz. In order to compensate for the phase delay introduced by the filter, we uses a phase advance regulator 70 (differentiator filtered), which compensates for this phase shift.

Tant le dispositif de la figure 3 que celui de la figure 4 comportent une table de correspondance inversée 40. Le contenu de cette table 40 est déterminé préalablement à chaque utilisation du dispositif de la manière suivante :

  • le régulateur étant en boucle ouverte, la consigne du courant d'arc de la source d'ions 20 est portée progressivement de 0 à 20 mA sous la forme d'une rampe de 100 ms;
  • l'intensité du faisceau est mesurée pour chacun des 4000 points échantillonnés;
  • la table obtenue est inversée, de manière à fournir une valeur correspondante du courant d'arc de la source d'ions IA en fonction de l'intensité du faisceau IM.
  • Cette table inversée est chargée dans le dispositif de régulation 10.
Both the device in FIG. 3 and that in FIG. 4 include an inverted correspondence table 40. The content of this table 40 is determined before each use of the device in the following manner:
  • the regulator being in open loop, the setpoint of the arc current of the ion source 20 is gradually increased from 0 to 20 mA in the form of a ramp of 100 ms;
  • the intensity of the beam is measured for each of the 4000 points sampled;
  • the table obtained is inverted, so as to provide a corresponding value of the arc current of the ion source I A as a function of the intensity of the beam I M.
  • This inverted table is loaded into the regulating device 10.

En pratique, cette opération est réalisée une douzaine de fois successivement. Ceci permet de s'assurer que les paramètres atteignent un palier, correspondant à la température de régime du filament. Afin d'éliminer le bruit, une moyenne des 4 dernières tables est calculée. Ces opérations, réalisées automatiquement, durent au maximum 1,5 s. Dans une variante de l'invention, les valeurs de IA correspondant aux valeurs de IM supérieures à une limite donnée sont remplacées par la valeur de IA correspondant à cette limite. Les courbes de la figure 2 sont donc écrêtées. Ceci est un élément de sécurité permettant de garantir que l'intensité du faisceau produit par l'accélérateur ne sera jamais supérieur à cette limite. In practice, this operation is carried out a dozen times successively. This ensures that the parameters reach a plateau, corresponding to the filament operating temperature. In order to eliminate the noise, an average of the last 4 tables is calculated. These operations, performed automatically, last a maximum of 1.5 s. In a variant of the invention, the values of I A corresponding to the values of I M greater than a given limit are replaced by the value of I A corresponding to this limit. The curves in Figure 2 are therefore clipped. This is a safety feature to guarantee that the intensity of the beam produced by the accelerator will never exceed this limit.

Le dispositif suivant l'invention est réalisé au moyen d'une carte électronique qui fait appel aux technologies digitales de type DSP (Digital Signal Processing).The device according to the invention is realized by means of an electronic card which calls DSP (Digital Signal) type digital technologies Processing).

La synthèse du prédicteur de Smith à été réalisée dans le domaine de Laplace et la discrétisation est fournie par la transformée en Z par la méthode de correspondance pôles-zéros. Un sur-échantillonnage aurait été adéquat pour éviter tout problème lié à la discrétisation mais les technologies DSP du moment ne nous ont pas permis de monter au-delà de 100 kHz.Smith's predictor synthesis was performed in the Laplace domain and discretization is provided by the Z transform by the method of pole-zero correspondence. Oversampling would have been adequate to avoid any problems related to the discretization but the DSP technologies of the moment do not have not allowed to go beyond 100 kHz.

La méthode de régulation selon la présente invention présente plusieurs avantages. Tout d'abord, elle permet une adaptation commandée, c'est-à-dire qu'elle demande un temps de calcul très petit en comparaison des méthodes modernes du contrôle adaptatif et permet un changement de structure très facile puisque l'identification est faite par construction d'une table de correspondance qu'il suffit alors d'inverser numériquement pour linéariser la caractéristique du système vu par le régulateur principal.The method of regulation according to this The invention has several advantages. First, she allows a controlled adaptation, i.e. it requires very little computation time compared to modern methods of adaptive control and allows a very easy change of structure since the identification is made by construction of a table of correspondence which then suffices to reverse numerically to linearize the characteristic of the system seen by the main regulator.

En outre, elle offre une flexibilité importante puisqu'elle pourrait trouver sa place dans la régulation précise, reproductible, robuste et performante de toute source d'ions équipant un cyclotron et ce de par l'avantage d'une régulation de type adaptatif permettant la ré-identification de la caractéristique du système lorsque celle-ci évolue dans le temps. Elle permet donc l'identification et la régulation d'un autre accélérateur que le cyclotron C235 pour laquelle cette régulation à été développée à la base.In addition, it offers flexibility important since it could find its place in the precise, reproducible, robust and efficient regulation from any ion source equipping a cyclotron and this by the advantage of an adaptive type regulation allowing the re-identification of the system characteristic when it evolves over time. It therefore allows the identification and regulation of another accelerator that the C235 cyclotron for which this regulation has been originally developed.

Claims (13)

Dispositif (10) de régulation de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple pour la protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisé en ce qu'il comporte au moins : un comparateur (90) déterminant un écart ε entre un signal digital IR représentatif de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur de consigne IC de l'intensité du faisceau; un prédicteur de Smith (80), qui détermine, à partir de l'écart ε, une valeur corrigée de l'intensité de faisceau IP; une table de correspondance inversée (40), fournissant, à partir de la valeur corrigée de l'intensité de faisceau IP, une valeur de consigne IA pour l'alimentation du courant d'arc de la source d'ions (20). Device (10) for regulating the intensity of the beam extracted from a particle accelerator, such as a cyclotron, used for example for proton therapy, said particles being generated from an ion source, characterized in that that it includes at least: a comparator (90) determining a difference ε between a digital signal I R representative of the beam intensity measured at the output of the accelerator and a reference value I C of the beam intensity; a Smith predictor (80), which determines, from the difference ε, a corrected value of the beam intensity I P ; an inverted correspondence table (40), providing, from the corrected value of the beam intensity I P , a reference value I A for supplying the arc current of the ion source (20) . Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre un convertisseur analogique-digital (50) convertissant le signal analogique IM directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal digital IR.Device according to claim 1, characterized in that it further comprises an analog-digital converter (50) converting the analog signal I M directly representative of the intensity of the beam measured at the output of the accelerator, and providing a signal digital I R. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre : un filtre passe-bas (60) filtrant le signal analogique IM directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal analogique filtré IF; un régulateur à avance de phase (70) échantillonnant le signal analogique filtré IF, compensant le retard de phase introduit par le filtre passe-bas (60), et fournissant un signal digital IR au comparateur (90). Device according to claim 1, characterized in that it further comprises: a low-pass filter (60) filtering the analog signal I M directly representative of the intensity of the beam measured at the output of the accelerator, and providing a filtered analog signal I F ; a phase advance regulator (70) sampling the filtered analog signal I F , compensating for the phase delay introduced by the low-pass filter (60), and supplying a digital signal I R to the comparator (90). Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens de mise à jour du contenu de la table de correspondance inversée (40).Device according to any one of the preceding claims, characterized in that it includes means for updating the content of the reverse correspondence table (40). Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence d'échantillonnage est comprise entre 100 kHz et 200 kHz.Device according to any one of the preceding claims, characterized in that the sampling frequency is between 100 kHz and 200 kHz. Dispositif suivant l'une quelconque des revendications 3 à 5, caractérisé en ce que la fréquence de coupure du filtre passe-bas (60) est comprise entre 2 et 6 kHz.Device according to any one of Claims 3 to 5, characterized in that the cut-off frequency of the low-pass filter (60) is between 2 and 6 kHz. Méthode de régulation, au moyen d'un dispositif de régulation digital (10) fonctionnant à une fréquence d'échantillonnage donnée, de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple en protonthérapie, lesdites particules étant générées à partir d'une source d'ions (20), caractérisée en ce qu'elle comprend au moins les étapes suivantes : on mesure l'intensité du faisceau (IM) à la sortie de l'accélérateur de particules; on compare au moyen d'un comparateur (90) un signal digital IR représentatif de la mesure de l'intensité du faisceau (IM) avec la valeur de consigne IC de l'intensité du faisceau; on détermine, au moyen d'un prédicteur de Smith (80), une valeur corrigée IP de l'intensité de faisceau; on détermine, à partir de la valeur corrigée IP de l'intensité de faisceau, au moyen d'une table de correspondance inversée (40), une valeur de consigne IA pour l'alimentation du courant d'arc de la source d'ions (20). Method of regulation, by means of a digital regulation device (10) operating at a given sampling frequency, of the intensity of the beam extracted from a particle accelerator, such as a cyclotron, used for example in proton therapy , said particles being generated from an ion source (20), characterized in that it comprises at least the following steps: the beam intensity (I M ) is measured at the exit of the particle accelerator; a digital signal I R representative of the measurement of the beam intensity (I M ) is compared by means of a comparator (90) with the set value I C of the beam intensity; a corrected value I P of the beam intensity is determined by means of a Smith predictor (80); a reference value I A is determined from the corrected value I P of the beam intensity, by means of an inverted correspondence table (40) for supplying the arc current from the source d 'ions (20). Méthode de régulation selon la revendication 7, caractérisée en ce que, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules, on convertit le signal analogique IM directement représentatif de l'intensité du faisceau mesurée au moyen d'un convertisseur analogique digital (50) pour obtenir un signal digital IR.Regulation method according to claim 7, characterized in that , after the measurement of the beam intensity at the output of the particle accelerator, the analog signal I M is directly representative of the beam intensity measured by means an analog digital converter (50) to obtain a digital signal I R. Méthode selon la revendication 7, caractérisée en ce que, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules : on filtre le signal analogique IM directement représentatif de l'intensité du faisceau mesurée au moyen d'un filtre passe-bas (60), donnant un signal analogique filtré IF; on échantillonne le signal filtré IF, et on compense le retard de phase à l'aide d'un régulateur à avance de phase (70) introduit par le filtrage pour obtenir un signal digital IR. Method according to claim 7, characterized in that , after measuring the intensity of the beam at the outlet of the particle accelerator: the analog signal I M is filtered directly representative of the intensity of the beam measured by means of a low-pass filter (60), giving a filtered analog signal I F ; the filtered signal I F is sampled, and the phase delay is compensated for using a phase advance regulator (70) introduced by the filtering to obtain a digital signal I R. Méthode selon l'une quelconque des revendications 7 à 9, caractérisée en ce que la correspondance entre une valeur IA pour l'alimentation du courant d'arc de la source d'ions (20) et une valeur IM de l'intensité du faisceau mesurée à la sortie de l'accélérateur est déterminée préalablement à la régulation.Method according to any one of Claims 7 to 9, characterized in that the correspondence between an I A value for supplying the arc current of the ion source (20) and an I M value of the intensity of the beam measured at the accelerator output is determined prior to regulation. Méthode selon l'une quelconque des revendications 7 à 9, caractérisée en ce que, dans la correspondance entre une valeur IM de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur IA pour l'alimentation du courant d'arc de la source d'ions, les valeurs de IA correspondant aux valeurs de IM supérieures à une limite sont remplacées par la valeur de IA correspondant cette limite.Method according to any one of Claims 7 to 9, characterized in that , in the correspondence between an I M value of the beam intensity measured at the output of the accelerator and an I A value for the power supply of the ion source arc, the values of I A corresponding to the values of I M greater than a limit are replaced by the value of I A corresponding to this limit. Utilisation du dispositif selon l'une quelconque des revendications 1 à 6 en protonthérapie et en particulier dans les technique de "Pencil Beam Scanning" et de « double diffusion ».Use of the device according to one any of claims 1 to 6 in proton therapy and particular in the techniques of "Pencil Beam Scanning" and of "double diffusion". Utilisation de la méthode de selon l'une quelconque des revendications 7 à 11 en protonthérapie et en particulier dans les techniques de "Pencil Beam Scanning" et de « double diffusion ».Using the method according to any one of claims 7 to 11 in proton therapy and in particular in the techniques of "Pencil Beam Scanning" and "dual diffusion".
EP01870122A 2001-06-08 2001-06-08 Device and method for the intensity control of a beam extracted from a particle accelerator Withdrawn EP1265462A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP01870122A EP1265462A1 (en) 2001-06-08 2001-06-08 Device and method for the intensity control of a beam extracted from a particle accelerator
PCT/BE2002/000089 WO2002102123A1 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of a beam extracted from a particle accelerator
CN02811473.6A CN1247052C (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of beam extracted from particle accelerator
EP02737673A EP1393602A1 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of a beam extracted from a particle accelerator
JP2003504721A JP2004529483A (en) 2001-06-08 2002-06-03 Apparatus and method for adjusting the intensity of a beam extracted from a particle accelerator
US10/479,380 US6873123B2 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of beam extracted from a particle accelerator
CA002449307A CA2449307A1 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of a beam extracted from a particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01870122A EP1265462A1 (en) 2001-06-08 2001-06-08 Device and method for the intensity control of a beam extracted from a particle accelerator

Publications (1)

Publication Number Publication Date
EP1265462A1 true EP1265462A1 (en) 2002-12-11

Family

ID=8184983

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01870122A Withdrawn EP1265462A1 (en) 2001-06-08 2001-06-08 Device and method for the intensity control of a beam extracted from a particle accelerator
EP02737673A Withdrawn EP1393602A1 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of a beam extracted from a particle accelerator

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP02737673A Withdrawn EP1393602A1 (en) 2001-06-08 2002-06-03 Device and method for regulating intensity of a beam extracted from a particle accelerator

Country Status (6)

Country Link
US (1) US6873123B2 (en)
EP (2) EP1265462A1 (en)
JP (1) JP2004529483A (en)
CN (1) CN1247052C (en)
CA (1) CA2449307A1 (en)
WO (1) WO2002102123A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056165A1 (en) * 2007-10-29 2009-05-07 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
WO2010149740A1 (en) * 2009-06-24 2010-12-29 Ion Beam Applications S.A. Device and method for particle beam production
EP2259664A3 (en) * 2004-07-21 2016-01-06 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE357839T1 (en) 2001-10-30 2007-04-15 Univ Loma Linda Med DEVICE FOR ALIGNING A PATIENT FOR RADIATION THERAPY
EP1531902A1 (en) * 2002-05-31 2005-05-25 Ion Beam Applications S.A. Apparatus for irradiating a target volume
US7317192B2 (en) * 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
CA2891712A1 (en) * 2003-08-12 2005-03-03 Loma Linda University Medical Center Patient positioning system for radiation therapy system
KR101249815B1 (en) * 2003-08-12 2013-04-03 로마 린다 유니버시티 메디칼 센터 Patient positioning system for radiation therapy system
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7279882B1 (en) * 2004-10-04 2007-10-09 Jefferson Science Associates, Llc Method and apparatus for measuring properties of particle beams using thermo-resistive material properties
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
WO2007014109A2 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of remotely directing radiation therapy treatment
JP2009502250A (en) * 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド Method and system for processing data associated with radiation therapy treatment planning
CA2616292A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treament plan
US8442287B2 (en) 2005-07-22 2013-05-14 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
EP1906826A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc System and method of detecting a breathing phase of a patient receiving radiation therapy
CA2616299A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
CN101267857A (en) 2005-07-22 2008-09-17 断层放疗公司 System and method of delivering radiation therapy to a moving region of interest
WO2007014104A2 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of evaluating dose delivered by a radiation therapy system
CA2616316A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for adapting a radiation therapy treatment plan based on a biological model
EP1907981A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc Method and system for evaluating delivered dose
EP1907059A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc Method of and system for predicting dose delivery
WO2007014090A2 (en) * 2005-07-23 2007-02-01 Tomotherapy Incorporated Radiation therapy imaging and delivery utilizing coordinated motion of gantry and couch
JP5245193B2 (en) 2005-09-07 2013-07-24 株式会社日立製作所 Charged particle beam irradiation system and charged particle beam extraction method
CN101361156B (en) 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 Charged particle radiation therapy
JP4730167B2 (en) 2006-03-29 2011-07-20 株式会社日立製作所 Particle beam irradiation system
US20080043910A1 (en) * 2006-08-15 2008-02-21 Tomotherapy Incorporated Method and apparatus for stabilizing an energy source in a radiation delivery device
CN101641748B (en) 2006-11-21 2013-06-05 洛马林达大学医学中心 Device and method for immobilizing patients for breast radiation therapy
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9058910B2 (en) * 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
NZ589387A (en) 2008-05-22 2012-11-30 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
MX2010012716A (en) 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system.
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
CA2725493C (en) 2008-05-22 2015-08-18 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8688197B2 (en) 2008-05-22 2014-04-01 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8901509B2 (en) * 2008-05-22 2014-12-02 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy method and apparatus
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
JP4691583B2 (en) 2008-07-02 2011-06-01 株式会社日立製作所 Charged particle beam irradiation system and charged particle beam extraction method
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
CN102138155A (en) 2008-08-28 2011-07-27 断层放疗公司 System and method of calculating dose uncertainty
SG173879A1 (en) 2009-03-04 2011-10-28 Protom Aozt Multi-field charged particle cancer therapy method and apparatus
JP5031796B2 (en) * 2009-06-11 2012-09-26 住友重機械工業株式会社 Particle acceleration system
DE102010014002A1 (en) * 2010-04-07 2011-10-13 Siemens Aktiengesellschaft Method for operating a particle therapy system
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
CA2829094A1 (en) 2011-03-07 2012-11-29 Loma Linda University Medical Center Systems, devices and methods related to calibration of a proton computed tomography scanner
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
US9764160B2 (en) 2011-12-27 2017-09-19 HJ Laboratories, LLC Reducing absorption of radiation by healthy cells from an external radiation source
EP2900325B1 (en) 2012-09-28 2018-01-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
EP2901822B1 (en) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Focusing a particle beam
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6254600B2 (en) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド Particle accelerator
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9443633B2 (en) 2013-02-26 2016-09-13 Accuray Incorporated Electromagnetically actuated multi-leaf collimator
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (en) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 Particle therapy system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN105282956B (en) * 2015-10-09 2018-08-07 中国原子能科学研究院 A kind of high intensity cyclotron radio frequency system intelligence self-start method
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
KR20200140278A (en) * 2018-04-12 2020-12-15 스미도모쥬기가이고교 가부시키가이샤 Charged particle beam treatment device
WO2020185543A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2539867A1 (en) * 1983-01-25 1984-07-27 Thomson Csf APPARATUS FOR INDICATING TOPOGRAPHIC DATA RECORDED ON FILM AND ITS USE FOR AIR NAVIGATION
FR2749613A1 (en) * 1996-06-11 1997-12-12 Renault WEALTH REGULATION SYSTEM IN AN INTERNAL COMBUSTION ENGINE
WO2000040064A2 (en) * 1998-12-24 2000-07-06 Ion Beam Applications Method for treating a target volume with a particle beam and device implementing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907097A1 (en) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for operating an ion beam therapy system while monitoring the radiation dose distribution
DE19907138A1 (en) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for checking the beam generating means and the beam accelerating means of an ion beam therapy system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2539867A1 (en) * 1983-01-25 1984-07-27 Thomson Csf APPARATUS FOR INDICATING TOPOGRAPHIC DATA RECORDED ON FILM AND ITS USE FOR AIR NAVIGATION
FR2749613A1 (en) * 1996-06-11 1997-12-12 Renault WEALTH REGULATION SYSTEM IN AN INTERNAL COMBUSTION ENGINE
WO2000040064A2 (en) * 1998-12-24 2000-07-06 Ion Beam Applications Method for treating a target volume with a particle beam and device implementing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V.J. VANDOREN: "The Smith Predictor: A Process Engineer's Crystal Ball", CONTROL ENGINEERING, May 1996 (1996-05-01), pages 61 - 62, XP000638018 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259664A3 (en) * 2004-07-21 2016-01-06 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
EP3294045A1 (en) * 2004-07-21 2018-03-14 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocycltron
EP3557956A1 (en) * 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
WO2009056165A1 (en) * 2007-10-29 2009-05-07 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
JP2011501391A (en) * 2007-10-29 2011-01-06 イオン・ビーム・アプリケーションズ・エス・アー Apparatus and method for fast modulation of beam current in a particle accelerator
US8410730B2 (en) 2007-10-29 2013-04-02 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
US8896238B2 (en) 2007-10-29 2014-11-25 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
WO2010149740A1 (en) * 2009-06-24 2010-12-29 Ion Beam Applications S.A. Device and method for particle beam production
US9451688B2 (en) 2009-06-24 2016-09-20 Ion Beam Applications S.A. Device and method for particle beam production
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam

Also Published As

Publication number Publication date
CN1515133A (en) 2004-07-21
WO2002102123A1 (en) 2002-12-19
US6873123B2 (en) 2005-03-29
CN1247052C (en) 2006-03-22
JP2004529483A (en) 2004-09-24
US20040155206A1 (en) 2004-08-12
EP1393602A1 (en) 2004-03-03
CA2449307A1 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
EP1265462A1 (en) Device and method for the intensity control of a beam extracted from a particle accelerator
FR2537768A1 (en) METHOD AND DEVICE FOR OBTAINING SPATIALLY MODULATED DENSITY PARTICLE BEAMS, APPLICATION TO ION ETCHING AND IMPLANTATION
CN103313502B (en) Ion source, heavy particle beam irradiating apparatus and method, ionogenic driving method
CA2929804A1 (en) Irradiation device using ionizing radiation for radiotherapy or radiobiology
WO2004049770A1 (en) Cyclotron
Yin Vallgren Low secondary electron yield carbon coatings for electron cloud mitigation in modern particle accelerators
CA2819374A1 (en) Device for cold plasma sterilization of an object, such as a medical device, particularly an implant, and method using this device
EP0165118A1 (en) Method and apparatus for polymerising and/or cross-linking, by using ionising radiation, a resin for use as an article of composite material
CA2495460A1 (en) Particle accelerator
EP0142414B1 (en) Ion source, in particular for highly charged metallic ions, whose ion current is controlled
Velardi et al. Proton extraction from transition metals using PLATONE
FR2941065A1 (en) DEVICE FOR MEASURING AND PROCESSING A HIGH DYNAMIC INPUT SIGNAL, LEAK DETECTOR AND CORRESPONDING MEASURING AND PROCESSING METHOD
JP3405321B2 (en) Operation method of ion source and ion beam irradiation device
EP1517727B1 (en) Device for irradiating a target with a hadron-charged beam, use in hadrontherapy
JPH11233300A (en) Particle accelerator
FR2962622A1 (en) Accelerator i.e. fixed field alternating gradient accelerator for use in e.g. preparation room of hospital to accelerate hadrons for treatment of cancer of patient, has electromagnet applying magnetic field to packets of particles
RU2135633C1 (en) Method of vacuum deposition of thin films
EP0238375A1 (en) Apparatus and method for the production of a braking radiation from accelerated electrons
WO2021002354A1 (en) Charged particle emission control device, method, and program
Vecchione et al. High gradient rf gun studies of CsBr photocathodes
WO2023198653A1 (en) Method and system for accelerating electrons using laser-plasma interaction
KR101104996B1 (en) Porous metal target, method of manufacturing porous metal target and method of generating extreme ultraviolet using the same
KR102243549B1 (en) Apparatus for generating heavy-ion beam and the method of the same
Pasch et al. Sputtering of amorphous C: H and C/B: H layers by argon ions
Ceccio et al. Au/Al Ion Energy Analysis of laser generating plasma at W/c intensity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030612