EP1262046B1 - Interworking in a communication system - Google Patents

Interworking in a communication system Download PDF

Info

Publication number
EP1262046B1
EP1262046B1 EP01909731A EP01909731A EP1262046B1 EP 1262046 B1 EP1262046 B1 EP 1262046B1 EP 01909731 A EP01909731 A EP 01909731A EP 01909731 A EP01909731 A EP 01909731A EP 1262046 B1 EP1262046 B1 EP 1262046B1
Authority
EP
European Patent Office
Prior art keywords
subsystem
network
elements
message
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01909731A
Other languages
German (de)
French (fr)
Other versions
EP1262046A2 (en
Inventor
Marc Greis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Priority to EP05076867A priority Critical patent/EP1601141B1/en
Publication of EP1262046A2 publication Critical patent/EP1262046A2/en
Application granted granted Critical
Publication of EP1262046B1 publication Critical patent/EP1262046B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/824Applicable to portable or mobile terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • H04L47/783Distributed allocation of resources, e.g. bandwidth brokers
    • H04L47/785Distributed allocation of resources, e.g. bandwidth brokers among multiple network domains, e.g. multilateral agreements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • H04L47/783Distributed allocation of resources, e.g. bandwidth brokers
    • H04L47/785Distributed allocation of resources, e.g. bandwidth brokers among multiple network domains, e.g. multilateral agreements
    • H04L47/786Mapping reservation between domains
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • the present invention relates to interworking between different functions of a telecommunications system.
  • Telecommunications networks typically operate in accordance with a given standard or specification which sets out what the various elements of the network are permitted to do and how that should be achieved.
  • the standard or specification may define whether the user, or more precisely, user equipment or terminal is provided with circuit switched or packet switched service.
  • the standard or specification may also define the communication protocols and/or parameters which shall be used for the connection.
  • the standards and/or specifications define the "rules" on which the communication within a communication system can be based on.
  • GSM Global System for Mobile communications
  • GSM based systems such as GPRS: General Packet Radio Service
  • AMPS American Mobile Phone System
  • DAMPS Digital AMPS
  • WCDMA Wideband Code Division Multiple Access
  • TD/CDMA Time Division / Code Division Multiple Access in Universal Mobile Telecommunications System
  • IMT 2000 IMT 2000 and so on.
  • a base station serves mobile stations or similar terminal apparatus (mobile station MS in the GSM, User Equipment UE in the UMTS) via a wireless interface.
  • Each of the cells of the cellular system can be served by an appropriate transceiver apparatus.
  • Node B which is connected to and controlled by an element called as a radio network controller (RNC) node.
  • RNC radio network controller
  • the cell is served by a base station (BTS), which is connected to and controlled by a base station controller (BSC) node.
  • BSC base station controller
  • the BSC/RNC element may be connected to and controlled by a mobile switching center (MSC) or similar facility.
  • MSC mobile switching center
  • the BSC/RNC may also be connected to and controlled by a serving GPRS support node (SGSN).
  • SGSN serving GPRS support node
  • the MSCs of a network are typically interconnected and there may be one or more Gateway MSC (GMSC) for connecting the cellular network to other telecommunication networks.
  • GMSC Gateway MSC
  • the SGSN may be connected to a Gateway GPRS support node (GGSN) for connecting the mobile network to the Internet and other packet switched networks.
  • GGSN Gateway GPRS support node
  • the mobile station may be in communication via only one controller and/or gateway node at the time, it may also communicate via several different nodes.
  • the nodes the mobile station is connected with may also be configured and operated based on different standards and/or specifications.
  • the differences in the standards and/or specifications may cause difficulties with respect to the interworking of the various elements of the different network systems.
  • QoS Quality of Service
  • the General Packet Radio Service GPRS relates to the transfer of data to and from mobile stations.
  • the GPRS standard is provided in conjunction with the Global System for Mobile communications GSM standard.
  • the GSM standard is a circuit switched service and is originally designed for speech services.
  • the GPRS networks are described in more detail e.g. in 3GPP Technical Specification 3G TS 23.060 version 3.2.0, "General Packet Radio Service (GPRS); Service description; Stage 2", January 2000. This document is incorporated herein by reference.
  • An adaptation of the GPRS standard is also being proposed for use with the third generation standard UMTS, which typically uses code division multiple access.
  • the packet data part of the UMTS is contained in the above referenced 23.060 specification, i.e. 23.060 applies for packet switched data both for the UMTS and the GPRS.
  • RSVP Resource Reservation Protocol
  • the inventor has found that in the current interworking between the RSVP QoS signaling and the UMTS/GPRS QoS mechanisms (i.e. so called PDPcontext activation) the RSVP messages do not carry enough QoS information to determine the full set of UMTS/GPRS QoS parameters from these messages. More particularly, the RSVP PATH message carries QoS information in a "SENDER_TSPEC" object.
  • the "SENDER_TSPEC" object contains only the following QoS parameters: 'Token Bucket Rate', 'Token Bucket Size', 'Peak Data Rate', 'Minimum Policed Unit', 'Maximum Packet Size'.
  • Said UMTS/GPRS QoS and the parameters thereof are defined e.g. in 3GPP Technical Specification 3G TS 23.107 version 3.1.0, "QoS Concept and Architecture", October 1999.
  • a more detailed description of the RSVP PATH message can be found e.g. from document by Braden, R., et al, "Resource ReSerVation Protocol (RSVP) -Version 1 Functional Specification", IETF RFC 2205, September 1997.
  • the "SENDER_TSPEC” object is defined e.g. by Wroclawski, J. in document "The Use of RSVP with IETF Integrated Services", IETF RFC 2210, September 1997.
  • the RSVP RESV message may carry an additional "RSPEC” (within a "FLOWSPEC” object) containing a rate and a slack term, which may be used to derive the 'Transfer Delay' parameter.
  • RSPEC (like all other RSVP QoS parameters) is meant to be used for end-to-end QoS while the UMTS Transfer Delay parameter only defines the delay within the UMTS network.
  • the RSPEC applies to queuing delay, while in the UMTS/GPRS QoS specifies transfer delay.
  • the UMTS QoS parameters and the RSVP QoS parameters as contained in a FLOWSPEC object and a possible mapping between these parameters are shown in Table 1. This table shows the UMTS specific QoS parameters which can not be derived from the RSVP QoS parameters.
  • UMTS and RSVP QoS Parameters UMTS Attributes RSVP Parameters Traffic Class Service Class?
  • RSVP/IntServ service classes Best Effort, Controlled Load, Guaranteed Service
  • UMTS service classes Conversational, Streaming, Interactive, Background
  • a method in a communication system including a first subsystem and a second subsystem, the method comprising: generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem; adding to the control message an object containing control information that is transparent for the elements of the second subsystem; transmitting the control message via the first and second subsystems; and controlling the operation of at least one of the elements of the first subsystem based on the control information contained in the object.
  • the first subsystem may comprise a packet switched network providing wireless services for the users thereof.
  • the second subsystem may also comprises a data network that is based on a packet switched communication protocol that is different from the communication protocol used by the first subsystem.
  • the message may be transmitted further to a third subsystem comprising at least one element capable of interpreting the information carried by the object.
  • the third subsystem may be based on substantially similar operational principles than the first subsystem.
  • the communication system may comprise at least a first terminal and a second terminal, the first terminal belonging to the first subsystem, and wherein a connection between the two terminals is negotiated based on a quality of service mechanism for packet data.
  • the control message may comprise a resource reservation protocol message.
  • the object may contain at least one quality of service parameter that is required by the first subsystem for connection set-up purposes.
  • a communication system comprising: a first subsystem comprising a first plurality of elements for transmitting messages; a second subsystem comprising a second plurality of elements for transmitting messages; a controller for generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem; and a controller for adding to the control message an object containing control information that is transparent for the elements of the second subsystem, wherein the arrangement is such that operation of at least one of the elements of the first subsystem is controlled based on the control information contained in the object while the elements of the second subsystem are not affected by the control information contained in the object.
  • a user equipment for a system providing wireless packet switched communication between a first and second packet switched networks, the user equipment comprising: a controller for generating a control message to be signaled from the first network to the second network, the control message being readable by elements of a first predefined group of elements of the first and second networks; and a controller for adding to the control message an object containing control information, said message being readable only by elements of a second predefined group of elements of the first and second networks.
  • a control message in a communication system that provides wireless packet data communication between first and second networks, the control message comprising: a portion that can be interpreted by elements of a first predefined group of elements of the first and second networks; and an object containing control information, said object being readable only by elements of a second predefined group of elements of the first and second networks.
  • the embodiments of the invention may improve interworking between the various functions, such as protocols and mechanisms. For example, interworking of the Resource Reservation Protocol RSVP and packet data QoS mechanisms of a packet switched service such as the Universal Mobile Telecommunication System UMTS or the General Packet Radio Service GPRS may be improved. In a more specific embodiment, the interworking between two UMTS/GPRS networks may be improved since it provides a possibility for an end-to-end signalling between UMTS networks based on RSVP messages.
  • RSVP Resource Reservation Protocol
  • packet data QoS mechanisms of a packet switched service such as the Universal Mobile Telecommunication System UMTS or the General Packet Radio Service GPRS
  • the interworking between two UMTS/GPRS networks may be improved since it provides a possibility for an end-to-end signalling between UMTS networks based on RSVP messages.
  • FIG. 1 shows a communication system in which the embodiments of the present invention may be employed.
  • the area covered by the communication system is divided into a plurality of cells (not shown). Each cell has associated therewith a base station 6.
  • the base station is sometimes referred to as node B, for example in the third generation standards.
  • the term base station will be used in this document to encompass all elements which transmit to mobile stations 1 or the like via the air interface.
  • the mobile stations 1 or other user equipment is arranged to communicate with the respective base station.
  • the mobile station 1 may be associated with terminal equipment 11, as will be explained later.
  • the embodiment of the invention is described in the context of a UMTS (Universal Mobile Telecommunications System) and a GPRS (General Packet radio Service) and communications involving packet data.
  • UMTS Universal Mobile Telecommunications System
  • GPRS General Packet radio Service
  • embodiments of the present invention are applicable to any other communication system which deals with packet data, non-packet data or even voice communication or the like, such as the IMT 2000, wireless LAN or different access networks.
  • the elements of a UMTS network system 2 will now be discussed in more detail.
  • the mobile station or user equipment 1 is arranged to communicate via the air interface with a respective base station 6.
  • the base station is controlled by a radio network controller RNC 7.
  • the radio network controller RNC and the base station may sometimes be referred to as the radio network subsystem RNS 8 or radio access network RAN.
  • RNS 8 radio access network RAN.
  • a UMTS network is typically provided with more than one RNC, and that each radio network controller is arranged generally to control more than one base station 6 although only one base station is shown in Figure 1.
  • the elements of the RNS can be included in either or both of the RNC and the base station. This is an implementation issue.
  • the radio network subsystem 8 may be connected to a SGSN (serving GPRS support node) 14.
  • the SGSN 14 keeps track of the mobile station's location and performs security functions and access control.
  • the functions of the SGSN are defined e.g. in the 3GPP specification 33.060.
  • the SGSN 14 is connected to a GGSN (gateway GPRS support node) 16.
  • the GGSN 16 provides interworking with external packet switched networks, i.e. the GGSN acts as a gateway between the UMTS data network 2 and an external network 3, such as an IP based data network.
  • the functions of a typical GGSN are also defined in the 3GPP specification.
  • Figure 1 shows further a second UMTS network 4.
  • the second UMTS network may be of a substantially similar design than the first UMTS network 2.
  • the network system 2 may also be connected to conventional telecommunication networks, such as to a GSM based cellular public land mobile network (PLMN) or to a public switched telephone network (PSTN).
  • PLMN GSM based cellular public land mobile network
  • PSTN public switched telephone network
  • the various networks may be interconnected to each other via appropriate interfaces and/or gateways.
  • the following describes an embodiment for improving interworking between the Resource Reservation Protocol RSVP and packet data QoS mechanisms of the Universal Mobile Telecommunication System UMTS and/or the General Packet Radio Service GPRS.
  • RSVP for carrying UMTS QoS parameters by defining a new RSVP object which can be interpreted by UMTS network elements while the object is carried transparently through other networks or links between two UMTS networks such that the element of the other networks or links are not aware of this additional object of the RSVP message.
  • the described embodiments may be applied for UMTS networks as well as GPRS networks and any hybrids thereof.
  • a feature of the RSVP protocol is that it is modular.
  • a RSVP message consists of a pre-defined set of objects, where the object type is indicated by the Class-Num octet in the header of each object. If an RSVP process in a network element encounters an unknown object while it processes an RSVP message, there are alternative possibilities for how to process this object and the whole message, based on the two high-order bits in the object's Class-Num octet. For example, if:
  • the last mentioned alternative may thus be used for the extension of the RSVP protocol with network-specific objects.
  • the added objects may be carried transparently through other networks and/or elements that are based on different standards, specifications or settings. That is, the forwarding of the RSVP messages is not affected in any way by such an added object in networks which are not able to interpret it. All those network elements or nodes that are not able to interpret the object will still be able to interpret the rest of the RSVP message.
  • a previously undefined RSVP object (referred to in the following as "UMTS QoS Object") with a Class-Num octet which matches the mask "11bbbbb” is adapted to carry UMTS QoS (Quality of Service) information.
  • the RSVP object may carry all UMTS QoS parameters which are defined e.g. in the above referred 3GPP Technical specification "QoS Concept and Architecture".
  • the RSVP object may also carry only a subset of these parameters.
  • the RSVP object may also carry QoS information which is currently not contained in the RSVP QoS parameters and which can be used to determine all the UMTS QoS parameters or a subset of these parameters.
  • the UMTS QoS information can be used by the network elements within the UMTS network 2 (the elements include the mobile station 1 as well as attached terminal equipment) to extend the information contained especially in the PATH messages.
  • the UMTS QoS information can also be used in other RSVP messages to provide the UMTS network 2 with additional QoS information.
  • the additional information is not included in conventional RSVP messages.
  • the network elements can be adapted to use the information contained in the UMTS QoS object to avoid mapping inconsistencies between the RSVP QoS parameters and the UMTS QoS parameters.
  • the UMTS QoS information can also be used to enable the transfer of UMTS QoS information between two remote end points or two UMTS networks within RSVP messages.
  • UMTS QoS information requires that there are network elements within the UMTS network 2 which are able to generate this information and that there are elements within the UMTS network 2, the receiving UMTS network or other data network which are able to process and use this information as described above.
  • a Class-Num octet may be used which matches the above described second possible mask "10bbbbb" to avoid possible interference with proprietary solutions in other access networks. That is, the object is not forwarded from the particular element interpreting the message and the object and thus the object cannot cause interference.
  • the interference problem can also be avoided by standardizing the Class-Num for the UMTS QoS Object within the appropriate instances.
  • the additional object within the RSVP message may be interpreted internally within one UMTS network but not in end-to-end QoS negotiation (e.g. it could be stripped from outgoing RSVP messages by the GGSN 16 or any other appropriate element).
  • the object can also be used in the end-to-end QoS negotiation between two UMTS networks so that a terminal in a UMTS network can be informed about the exact UMTS QoS requirements of a terminal in another UMTS network.
  • the first network element (including the terminal equipment 11 and/or the mobile station 1) in the UMTS network 2 which processes an RSVP message and which is able to perform a mapping between RSVP and UMTS QoS parameters is preferably used for the mapping and adding a UMTS QoS object to the forwarded RSVP message containing the resulting parameters.
  • This object may also be added by the application that requests for the QoS.
  • a possibility is to add the object by drivers or utilities within the terminal equipment 11.
  • the user may control the terminal equipment 11, e.g. by means of the user interface (typically keypad) of the mobile station 1.
  • the UMTS QoS Object could be added to a RSVP message in an application running in the terminal equipment 11 which is integrated or attached to the mobile station 1.
  • the application is both RSVP-aware and aware of the UMTS access network 8.
  • the application is able to signal a RSVP message, is aware of the fact that the UE is attached to a UMTS network and knows the UMTS QoS (i.e. is enabled to add the UMTS QoS object to the RSVP message).
  • the adding of the object may also occur in drivers or other utility applications running in the terminal equipment.
  • a mobile station which is RSVP-aware may also be used.
  • the user When the object is added at the user equipment or any other unit that is controllable by the user, the user is facilitated with a direct control over the UMTS QoS parameters transmitted to the network. This may be an advantage, since the user typically has the best or first hand knowledge of the type of the traffic that is to be transmitted (e.g. video data or speech data).
  • the UMTS QoS parameters may also be determined in a mapping procedure from the RSVP QoS parameters by a network element of the UMTS network 2.
  • the network element may not be under the user's direct control.
  • a UMTS QoS Object may also be added to a RSVP message by the GGSN 16 upon receipt of an RSVP message. This allows for the signaling of UMTS QoS requirements to remote endpoints. It also allows signaling by a separate network element within the UMTS network which is responsible for QoS negotiation (e.g. bandwidth broker, etc.).
  • the terminal equipment may be an external device such as a laptop computer which is attached to the mobile station 1.
  • the UMTS QoS object may be interpreted in several elements of the communication system depending the application. It should be appreciated that the following list of the possible network elements is not indented to be complete.
  • the interpretation may be accomplished in an RSVP aware mobile station 5 which receives an RSVP message from attached terminal equipment to trigger a PDP context activation procedure with the QoS parameters contained in the RSVP message.
  • the interpretation may also be accomplished in an RSVP aware mobile station 5 which receives an RSVP message from a remote terminal which is implemented either in a UMTS-network or which is capable of adding a UMTS QoS Object to RSVP messages to trigger a PDP context activation procedure with the QoS parameters contained in the RSVP message.
  • a possible node for interpretation is a GGSN node which receives incoming or outgoing RSVP messages and which may have to trigger PDP context activation procedures based on these messages, perform admission control or map RSVP QoS parameters to UMTS QoS parameters.
  • the RSVP or any similar protocol providing a possibility to add one or more objects therein may be employed for carrying UMTS QoS parameters or one or more other parameters required by the network by defining a new object into the message.
  • the added object can be interpreted by the elements of the particular network the one or more parameters are indented for while the object can be carried transparently through networks which do not base the operation thereof on the one or more parameters.
  • the object may be added to the message such that the other networks may not even become aware of this additional part of the message.
  • RSVP messages allow applications, drivers or user-controlled utility applications which are aware of both RSVP and UMTS QoS to take full control of the UMTS QoS instead of leaving the mapping between RSVP QoS parameters and UMTS QoS parameters to other network elements.
  • the QoS requirements signaled by the RSVP messages can be split up in QoS requirements for the access network (contained in the UMTS QoS Object) and end-to-end QoS requirements (contained in the SENDER_TSPEC and FLOWSPEC objects).
  • RSVP messages containing the UMTS QoS Object can be transferred transparently through one or more external data networks, such as TCP/IP Internet and/or X.25 networks, no matter if these networks are aware of the RSVP modification or not. RSVP messages containing the UMTS QoS Object will neither be discarded nor cause error messages in network nodes which are not able to interpret this object. This allows for the signaling of QoS requirements between terminals in two UMTS networks.
  • the added object can be implemented as an optional feature. If a communication application is not able to create this object, it may be created e.g. by an RSVP-aware MT or by the GGSN. This allows for high flexibility (e.g. the operator may want to configure network elements to ignore or override the object) and even for proprietary implementations without causing any interworking problems with "traditional" RSVP.
  • the RSVP message is used for signaling the quality of service QoS communication between two data networks providing wireless services for the users thereof.
  • the required QoS information is transmitted in the object, and no other QoS signaling is required.
  • the communication between two data networks is not transmitted via a third network that is located between said two networks, but the subsystem between the two networks comprises an appropriate link or gateway.
  • This type of embodiment is provided, for example, when the IP network 3 of Figure 1 is replaced by an appropriate link between the UMTS networks 2 and 4.
  • An arrangement where the elements of the link between the two data networks may not be enabled to interpret the message is also possible.
  • the arrangement may be such that elements of a network between the two data networks may not be provided with means for interpreting any part of the message.
  • the elements of a data network are divided in at least two subgroups such that the first group may interpret an object that is transparent for the second subgroup.
  • the data is described as being in packet form. In alternative embodiments of the invention the data may be sent in any suitable format.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Traffic Control Systems (AREA)
  • Particle Accelerators (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

The present invention relates to a communication system including at least two groups of differently arranged elements. A control message is generated that can be interpreted by at least one element of a first group of elements and at least one element of the second group of elements. An object containing control information is added into the message, whereby the operation of at least one element of the communication system may be controlled based on the control information contained in the object. <IMAGE>

Description

    Field of the Invention
  • The present invention relates to interworking between different functions of a telecommunications system.
  • Background of the Invention
  • Telecommunications networks typically operate in accordance with a given standard or specification which sets out what the various elements of the network are permitted to do and how that should be achieved. For example, the standard or specification may define whether the user, or more precisely, user equipment or terminal is provided with circuit switched or packet switched service. The standard or specification may also define the communication protocols and/or parameters which shall be used for the connection. In other words, the standards and/or specifications define the "rules" on which the communication within a communication system can be based on. Examples of the different standards and/or specifications include, without limiting to these, specifications such as GSM (Global System for Mobile communications) or various GSM based systems (such as GPRS: General Packet Radio Service), AMPS (American Mobile Phone System), DAMPS (Digital AMPS), WCDMA (Wideband Code Division Multiple Access) or TD/CDMA in UMTS (Time Division / Code Division Multiple Access in Universal Mobile Telecommunications System), IMT 2000 and so on.
  • In a cellular communication system a base station serves mobile stations or similar terminal apparatus (mobile station MS in the GSM, User Equipment UE in the UMTS) via a wireless interface. Each of the cells of the cellular system can be served by an appropriate transceiver apparatus. For example, in the WCDMA radio access network the cell is served by Node B, which is connected to and controlled by an element called as a radio network controller (RNC) node. In the GSM radio network the cell is served by a base station (BTS), which is connected to and controlled by a base station controller (BSC) node. The BSC/RNC element may be connected to and controlled by a mobile switching center (MSC) or similar facility. The BSC/RNC may also be connected to and controlled by a serving GPRS support node (SGSN). The MSCs of a network are typically interconnected and there may be one or more Gateway MSC (GMSC) for connecting the cellular network to other telecommunication networks. The SGSN may be connected to a Gateway GPRS support node (GGSN) for connecting the mobile network to the Internet and other packet switched networks.
  • Thus, although the mobile station may be in communication via only one controller and/or gateway node at the time, it may also communicate via several different nodes. The nodes the mobile station is connected with may also be configured and operated based on different standards and/or specifications. The differences in the standards and/or specifications may cause difficulties with respect to the interworking of the various elements of the different network systems. The following will describe an example of the possible incompability problem in the context of Quality of Service (QoS) signaling between the different elements and protocols of a communication system comprising one or more packet switched UMTS/GRPS networks.
  • The General Packet Radio Service GPRS relates to the transfer of data to and from mobile stations. Typically, the GPRS standard is provided in conjunction with the Global System for Mobile communications GSM standard. The GSM standard is a circuit switched service and is originally designed for speech services. There are elements of the GSM standard and the GPRS standard which are in common. The GPRS networks are described in more detail e.g. in 3GPP Technical Specification 3G TS 23.060 version 3.2.0, "General Packet Radio Service (GPRS); Service description; Stage 2", January 2000. This document is incorporated herein by reference. An adaptation of the GPRS standard is also being proposed for use with the third generation standard UMTS, which typically uses code division multiple access. The packet data part of the UMTS is contained in the above referenced 23.060 specification, i.e. 23.060 applies for packet switched data both for the UMTS and the GPRS.
  • To negotiate an end-to-end QoS between terminals in UMTS/GRPS networks and terminals in other data networks such as the IP (Internet Protocol) or X.25 based networks, a conventional fixed IP network, or another UMTS/GRPS network, a protocol such as Resource Reservation Protocol RSVP may be used. An example of the use of RSVP in an IP network is provided by the RFC 2746, by A. Tergis et al, in which IPV4 packets are sent in IPV6 tunnels.
  • However, the inventor has found that in the current interworking between the RSVP QoS signaling and the UMTS/GPRS QoS mechanisms (i.e. so called PDPcontext activation) the RSVP messages do not carry enough QoS information to determine the full set of UMTS/GPRS QoS parameters from these messages. More particularly, the RSVP PATH message carries QoS information in a "SENDER_TSPEC" object. The "SENDER_TSPEC" object contains only the following QoS parameters: 'Token Bucket Rate', 'Token Bucket Size', 'Peak Data Rate', 'Minimum Policed Unit', 'Maximum Packet Size'. Said UMTS/GPRS QoS and the parameters thereof are defined e.g. in 3GPP Technical Specification 3G TS 23.107 version 3.1.0, "QoS Concept and Architecture", October 1999. A more detailed description of the RSVP PATH message can be found e.g. from document by Braden, R., et al, "Resource ReSerVation Protocol (RSVP) -Version 1 Functional Specification", IETF RFC 2205, September 1997. The "SENDER_TSPEC" object is defined e.g. by Wroclawski, J. in document "The Use of RSVP with IETF Integrated Services", IETF RFC 2210, September 1997. These three documents are incorporated herein by reference.
  • It is not possible for a network element within a UMTS network to determine essential UMTS QoS parameters like 'Traffic Class' and 'Transfer Delay' alone from the QoS parameters contained in this SENDER_TSPEC object.
  • The RSVP RESV message may carry an additional "RSPEC" (within a "FLOWSPEC" object) containing a rate and a slack term, which may be used to derive the 'Transfer Delay' parameter. However, the mapping may be problematic since the RSPEC (like all other RSVP QoS parameters) is meant to be used for end-to-end QoS while the UMTS Transfer Delay parameter only defines the delay within the UMTS network. In addition, the RSPEC applies to queuing delay, while in the UMTS/GPRS QoS specifies transfer delay.
  • The UMTS QoS parameters and the RSVP QoS parameters as contained in a FLOWSPEC object and a possible mapping between these parameters are shown in Table 1. This table shows the UMTS specific QoS parameters which can not be derived from the RSVP QoS parameters.
    UMTS and RSVP QoS Parameters
    UMTS Attributes RSVP Parameters
    Traffic Class Service Class?
    Maximum Bitrate Peak Data Rate
    Guaranteed Bitrate Token Bucket Rate
    Maximum SDU Size Maximum Packet Size
    Delivery Order -
    SDU Format Information -
    SDU Error Ratio -
    Residual Bit Error Ratio -
    Delivery of Erroneous SDUs -
    Transfer Delay -
    Traffic Handling Priority -
    Allocation/Retention Priority -
    - Token Bucket Size
    - Rspec (Rate/Slack Term)
    - Minimum Policed Unit
  • It also has to be noted that there are only three RSVP/IntServ service classes (Best Effort, Controlled Load, Guaranteed Service), but four UMTS service classes (Conversational, Streaming, Interactive, Background) which complicates further the mapping between these two parameters.
  • Summary of the Invention
  • It is an aim of the embodiments of the present invention to address one or several of the above problems.
  • According to one aspect of the present invention, there is provided a method in a communication system including a first subsystem and a second subsystem, the method comprising: generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem; adding to the control message an object containing control information that is transparent for the elements of the second subsystem; transmitting the control message via the first and second subsystems; and controlling the operation of at least one of the elements of the first subsystem based on the control information contained in the object.
  • The first subsystem may comprise a packet switched network providing wireless services for the users thereof. The second subsystem may also comprises a data network that is based on a packet switched communication protocol that is different from the communication protocol used by the first subsystem. The message may be transmitted further to a third subsystem comprising at least one element capable of interpreting the information carried by the object. The third subsystem may be based on substantially similar operational principles than the first subsystem.
  • The communication system may comprise at least a first terminal and a second terminal, the first terminal belonging to the first subsystem, and wherein a connection between the two terminals is negotiated based on a quality of service mechanism for packet data. The control message may comprise a resource reservation protocol message. The object may contain at least one quality of service parameter that is required by the first subsystem for connection set-up purposes.
  • According to another aspect of the present invention there is provided a communication system comprising: a first subsystem comprising a first plurality of elements for transmitting messages; a second subsystem comprising a second plurality of elements for transmitting messages; a controller for generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem; and a controller for adding to the control message an object containing control information that is transparent for the elements of the second subsystem, wherein the arrangement is such that operation of at least one of the elements of the first subsystem is controlled based on the control information contained in the object while the elements of the second subsystem are not affected by the control information contained in the object.
  • According to another aspect of the present invention there is provided a user equipment for a system providing wireless packet switched communication between a first and second packet switched networks, the user equipment comprising: a controller for generating a control message to be signaled from the first network to the second network, the control message being readable by elements of a first predefined group of elements of the first and second networks; and a controller for adding to the control message an object containing control information, said message being readable only by elements of a second predefined group of elements of the first and second networks.
  • According to another aspect of the present invention there is provided a control message in a communication system that provides wireless packet data communication between first and second networks, the control message comprising: a portion that can be interpreted by elements of a first predefined group of elements of the first and second networks; and an object containing control information, said object being readable only by elements of a second predefined group of elements of the first and second networks.
  • The embodiments of the invention may improve interworking between the various functions, such as protocols and mechanisms. For example, interworking of the Resource Reservation Protocol RSVP and packet data QoS mechanisms of a packet switched service such as the Universal Mobile Telecommunication System UMTS or the General Packet Radio Service GPRS may be improved. In a more specific embodiment, the interworking between two UMTS/GPRS networks may be improved since it provides a possibility for an end-to-end signalling between UMTS networks based on RSVP messages.
  • Brief Description of Drawings
  • For better understanding of the present invention, reference will now be made by way of example to the accompanying drawings in which:
  • Figure 1 shows a communication system where the embodiments of the present invention may be used; and
  • Figure 2 is a flowchart illustrating the operation of one embodiment of the present invention.
  • Description of Preferred Embodiments of the Invention
  • Reference is made to Figure 1 which shows a communication system in which the embodiments of the present invention may be employed. The area covered by the communication system is divided into a plurality of cells (not shown). Each cell has associated therewith a base station 6. Depending on the standard being used by the network, the base station is sometimes referred to as node B, for example in the third generation standards. The term base station will be used in this document to encompass all elements which transmit to mobile stations 1 or the like via the air interface. The mobile stations 1 or other user equipment is arranged to communicate with the respective base station. The mobile station 1 may be associated with terminal equipment 11, as will be explained later.
  • The embodiment of the invention is described in the context of a UMTS (Universal Mobile Telecommunications System) and a GPRS (General Packet radio Service) and communications involving packet data. However, it should be appreciated that embodiments of the present invention are applicable to any other communication system which deals with packet data, non-packet data or even voice communication or the like, such as the IMT 2000, wireless LAN or different access networks.
  • The elements of a UMTS network system 2 will now be discussed in more detail. The mobile station or user equipment 1 is arranged to communicate via the air interface with a respective base station 6. The base station is controlled by a radio network controller RNC 7. The radio network controller RNC and the base station may sometimes be referred to as the radio network subsystem RNS 8 or radio access network RAN. It should be appreciated that a UMTS network is typically provided with more than one RNC, and that each radio network controller is arranged generally to control more than one base station 6 although only one base station is shown in Figure 1. The elements of the RNS can be included in either or both of the RNC and the base station. This is an implementation issue.
  • The radio network subsystem 8 may be connected to a SGSN (serving GPRS support node) 14. The SGSN 14 keeps track of the mobile station's location and performs security functions and access control. The functions of the SGSN are defined e.g. in the 3GPP specification 33.060. The SGSN 14 is connected to a GGSN (gateway GPRS support node) 16. The GGSN 16 provides interworking with external packet switched networks, i.e. the GGSN acts as a gateway between the UMTS data network 2 and an external network 3, such as an IP based data network. The functions of a typical GGSN are also defined in the 3GPP specification.
  • Figure 1 shows further a second UMTS network 4. The second UMTS network may be of a substantially similar design than the first UMTS network 2.
  • Although not shown, the network system 2 may also be connected to conventional telecommunication networks, such as to a GSM based cellular public land mobile network (PLMN) or to a public switched telephone network (PSTN). The various networks may be interconnected to each other via appropriate interfaces and/or gateways.
  • The following describes an embodiment for improving interworking between the Resource Reservation Protocol RSVP and packet data QoS mechanisms of the Universal Mobile Telecommunication System UMTS and/or the General Packet Radio Service GPRS. The application of RSVP for carrying UMTS QoS parameters by defining a new RSVP object which can be interpreted by UMTS network elements while the object is carried transparently through other networks or links between two UMTS networks such that the element of the other networks or links are not aware of this additional object of the RSVP message. The described embodiments may be applied for UMTS networks as well as GPRS networks and any hybrids thereof.
  • A feature of the RSVP protocol is that it is modular. A RSVP message consists of a pre-defined set of objects, where the object type is indicated by the Class-Num octet in the header of each object. If an RSVP process in a network element encounters an unknown object while it processes an RSVP message, there are alternative possibilities for how to process this object and the whole message, based on the two high-order bits in the object's Class-Num octet. For example, if:
    • Class-Num = 0bbbbbbb
      => the entire message containing this object is rejected and an error message is generated;
    • Class-Num = 10bbbbbb
      => the network element ignores the object and does not forward it and no error message is generated;
    • Class-Num = 11bbbbbb
      => the network element ignores the object but forwards the object in all messages resulting from the processed message.
  • The last mentioned alternative may thus be used for the extension of the RSVP protocol with network-specific objects. In principle, it is possible to add any desired information into these objects. It is thus possible to have objects that only apply for e.g. for the GGSN of a network, and/or objects which only apply e.g. for the mobile station MS. The added objects may be carried transparently through other networks and/or elements that are based on different standards, specifications or settings. That is, the forwarding of the RSVP messages is not affected in any way by such an added object in networks which are not able to interpret it. All those network elements or nodes that are not able to interpret the object will still be able to interpret the rest of the RSVP message.
  • In accordance with an embodiment of the present invention, a previously undefined RSVP object (referred to in the following as "UMTS QoS Object") with a Class-Num octet which matches the mask "11bbbbbb" is adapted to carry UMTS QoS (Quality of Service) information. The RSVP object may carry all UMTS QoS parameters which are defined e.g. in the above referred 3GPP Technical specification "QoS Concept and Architecture". The RSVP object may also carry only a subset of these parameters. The RSVP object may also carry QoS information which is currently not contained in the RSVP QoS parameters and which can be used to determine all the UMTS QoS parameters or a subset of these parameters.
  • The UMTS QoS information can be used by the network elements within the UMTS network 2 (the elements include the mobile station 1 as well as attached terminal equipment) to extend the information contained especially in the PATH messages. The UMTS QoS information can also be used in other RSVP messages to provide the UMTS network 2 with additional QoS information. The additional information is not included in conventional RSVP messages. The network elements can be adapted to use the information contained in the UMTS QoS object to avoid mapping inconsistencies between the RSVP QoS parameters and the UMTS QoS parameters. The UMTS QoS information can also be used to enable the transfer of UMTS QoS information between two remote end points or two UMTS networks within RSVP messages.
  • The use of UMTS QoS information requires that there are network elements within the UMTS network 2 which are able to generate this information and that there are elements within the UMTS network 2, the receiving UMTS network or other data network which are able to process and use this information as described above.
  • According to an alternative embodiment, a Class-Num octet may be used which matches the above described second possible mask "10bbbbbb" to avoid possible interference with proprietary solutions in other access networks. That is, the object is not forwarded from the particular element interpreting the message and the object and thus the object cannot cause interference. However, the interference problem can also be avoided by standardizing the Class-Num for the UMTS QoS Object within the appropriate instances.
  • The additional object within the RSVP message may be interpreted internally within one UMTS network but not in end-to-end QoS negotiation (e.g. it could be stripped from outgoing RSVP messages by the GGSN 16 or any other appropriate element). The object can also be used in the end-to-end QoS negotiation between two UMTS networks so that a terminal in a UMTS network can be informed about the exact UMTS QoS requirements of a terminal in another UMTS network.
  • The first network element (including the terminal equipment 11 and/or the mobile station 1) in the UMTS network 2 which processes an RSVP message and which is able to perform a mapping between RSVP and UMTS QoS parameters is preferably used for the mapping and adding a UMTS QoS object to the forwarded RSVP message containing the resulting parameters. This object may also be added by the application that requests for the QoS. A possibility is to add the object by drivers or utilities within the terminal equipment 11. The user may control the terminal equipment 11, e.g. by means of the user interface (typically keypad) of the mobile station 1.
  • The UMTS QoS Object could be added to a RSVP message in an application running in the terminal equipment 11 which is integrated or attached to the mobile station 1. The application is both RSVP-aware and aware of the UMTS access network 8. In other words, the application is able to signal a RSVP message, is aware of the fact that the UE is attached to a UMTS network and knows the UMTS QoS (i.e. is enabled to add the UMTS QoS object to the RSVP message). The adding of the object may also occur in drivers or other utility applications running in the terminal equipment. A mobile station which is RSVP-aware may also be used. When the object is added at the user equipment or any other unit that is controllable by the user, the user is facilitated with a direct control over the UMTS QoS parameters transmitted to the network. This may be an advantage, since the user typically has the best or first hand knowledge of the type of the traffic that is to be transmitted (e.g. video data or speech data).
  • The UMTS QoS parameters may also be determined in a mapping procedure from the RSVP QoS parameters by a network element of the UMTS network 2. The network element may not be under the user's direct control. For example, a UMTS QoS Object may also be added to a RSVP message by the GGSN 16 upon receipt of an RSVP message. This allows for the signaling of UMTS QoS requirements to remote endpoints. It also allows signaling by a separate network element within the UMTS network which is responsible for QoS negotiation (e.g. bandwidth broker, etc.).
  • It should be appreciated that the UMTS QoS Object could be added to RSVP messages in several other locations as well and that the above examples do not exclude these.
  • The terminal equipment may be an external device such as a laptop computer which is attached to the mobile station 1.
  • The UMTS QoS object may be interpreted in several elements of the communication system depending the application. It should be appreciated that the following list of the possible network elements is not indented to be complete.
  • The interpretation may be accomplished in an RSVP aware mobile station 5 which receives an RSVP message from attached terminal equipment to trigger a PDP context activation procedure with the QoS parameters contained in the RSVP message. The interpretation may also be accomplished in an RSVP aware mobile station 5 which receives an RSVP message from a remote terminal which is implemented either in a UMTS-network or which is capable of adding a UMTS QoS Object to RSVP messages to trigger a PDP context activation procedure with the QoS parameters contained in the RSVP message.
  • A possible node for interpretation is a GGSN node which receives incoming or outgoing RSVP messages and which may have to trigger PDP context activation procedures based on these messages, perform admission control or map RSVP QoS parameters to UMTS QoS parameters.
  • In the embodiments the RSVP or any similar protocol providing a possibility to add one or more objects therein may be employed for carrying UMTS QoS parameters or one or more other parameters required by the network by defining a new object into the message. The added object can be interpreted by the elements of the particular network the one or more parameters are indented for while the object can be carried transparently through networks which do not base the operation thereof on the one or more parameters. The object may be added to the message such that the other networks may not even become aware of this additional part of the message. The addition of a UMTS QoS Object to RSVP messages allows applications, drivers or user-controlled utility applications which are aware of both RSVP and UMTS QoS to take full control of the UMTS QoS instead of leaving the mapping between RSVP QoS parameters and UMTS QoS parameters to other network elements.
  • The QoS requirements signaled by the RSVP messages can be split up in QoS requirements for the access network (contained in the UMTS QoS Object) and end-to-end QoS requirements (contained in the SENDER_TSPEC and FLOWSPEC objects).
  • RSVP messages containing the UMTS QoS Object can be transferred transparently through one or more external data networks, such as TCP/IP Internet and/or X.25 networks, no matter if these networks are aware of the RSVP modification or not. RSVP messages containing the UMTS QoS Object will neither be discarded nor cause error messages in network nodes which are not able to interpret this object. This allows for the signaling of QoS requirements between terminals in two UMTS networks.
  • The added object can be implemented as an optional feature. If a communication application is not able to create this object, it may be created e.g. by an RSVP-aware MT or by the GGSN. This allows for high flexibility (e.g. the operator may want to configure network elements to ignore or override the object) and even for proprietary implementations without causing any interworking problems with "traditional" RSVP.
  • According to a further embodiment the RSVP message is used for signaling the quality of service QoS communication between two data networks providing wireless services for the users thereof. The required QoS information is transmitted in the object, and no other QoS signaling is required.
  • It should be appreciated that whilst embodiments of the present invention have been described in relation to UMTS and GPRS networks and RSVP messages, embodiments of the present invention are applicable to any other suitable type of networks and protocols.
  • In an embodiment the communication between two data networks is not transmitted via a third network that is located between said two networks, but the subsystem between the two networks comprises an appropriate link or gateway. This type of embodiment is provided, for example, when the IP network 3 of Figure 1 is replaced by an appropriate link between the UMTS networks 2 and 4. An arrangement where the elements of the link between the two data networks may not be enabled to interpret the message is also possible. Correspondingly, the arrangement may be such that elements of a network between the two data networks may not be provided with means for interpreting any part of the message. According to a further embodiment the elements of a data network are divided in at least two subgroups such that the first group may interpret an object that is transparent for the second subgroup.
  • The data is described as being in packet form. In alternative embodiments of the invention the data may be sent in any suitable format.
  • It is also noted herein that while the above describes exemplifying embodiments of the invention, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention as defined in the appended claims.

Claims (44)

  1. A method in a communication system including a first subsystem and a second subsystem, the method comprising:
    generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem;
    adding to the control message an object containing control information that is transparent for the elements of the second subsystem;
    transmitting the control message via the first and second subsystems;
    controlling the operation of at least one of the elements of the first subsystem based on the control information contained in the object, wherein the second subsystem comprises a data network that is based on a packet switched communication protocol that is different from the communication protocol used by the first subsystem.
  2. A method as claimed in claim 1, wherein the first subsystem comprises a packet switched network providing wireless services for the users thereof.
  3. A method as claimed in claim 1 or 2, wherein the first subsystem is based on a universal mobile telephone system and/or a general packet radio services.
  4. A method as claimed in any preceding claim, wherein the second subsystem is an internet protocol based data network.
  5. A method as claimed in any preceding claim, wherein the message is transmitted further to a third subsystem comprising at least one element capable of interpreting the information carried by the object.
  6. A method as claimed in claim 5, wherein the third subsystem is based on substantially similar operational principles than the first subsystem.
  7. A method as claimed in claim 5, wherein the object is interpreted in an element of the third subsystem
  8. A method as claimed in any of the preceding claims, wherein the communication system comprises at least a first terminal and a second terminal, the first terminal belonging to the first subsystem, and wherein a connection between the two terminals is negotiated based on a quality of service mechanism for packet data.
  9. A method as claimed in claim 8, wherein the second terminal belongs to a third subsystem.
  10. A method as claimed in any preceding claim, wherein the control message comprises a resource reservation protocol message.
  11. A method as claimed in any preceding claim, wherein the object contains at least one quality of service parameter that is required by the first subsystem for connection set-up purposes.
  12. A method as claimed in claim 11, wherein the object carries all parameters required for the connection set-up.
  13. A method as claimed in claim 11, wherein the object carries a subset of parameters required for the connection set-up.
  14. A method as claimed in any of claims 1 to 10, wherein quality of service information is determined based on information carried by the object.
  15. A method as claimed in any preceding claim, wherein additional quality of service information is determined based on the information carried by the object, and the additional information is used for avoiding inconsistencies between the quality of services parameters of different communication networks.
  16. A method as claimed in any preceding claim, wherein the networks elements of the second subsystem ignore the object and forward the object in all messages that result from processing of the control message.
  17. A method as claimed in any preceding claim, wherein the object includes at least one bit instructing the element processing the control message whether the object should be ignored or not by the element.
  18. A method as claimed in claim 17, wherein a high order bit is included in the class-number octet of the object.
  19. A method as claimed in any preceding claim, wherein a network element reads the information content of the object and removes the object from the message before forwarding the message.
  20. A method as claimed in any preceding claim, wherein a network element in the communication path generates the objects and adds the object in the control message.
  21. A method as claimed in claim 20, wherein the element comprises a mobile station.
  22. A method as claimed in claim 20, wherein the element comprises an element of a radio access network of the first subsystem.
  23. A method as claimed in claim 20, wherein the element comprises a gateway node between two different networks.
  24. A method as claimed in any of claims 20 to 23, wherein the user of the network element is enabled to control the use of the objects.
  25. A method as claimed in any preceding claim, wherein the object is interpreted in a terminal that terminates the connection.
  26. A method as claimed in any preceding claim, wherein the object is interpreted in a gateway node between different networks.
  27. A communication system comprising:
    a first subsystem comprising a first plurality of elements for transmitting messages;
    a second subsystem comprising a second plurality of elements for transmitting messages;
    a controller for generating a control message that can be interpreted by at least one element of the first subsystem and at least one element of the second subsystem; and
    a controller for adding to the control message an object containing control information that is transparent for the elements of the second subsystem, wherein the arrangement is such that operation of at least one of the elements of the first subsystem is controlled based on the control information contained in the object while the elements of the second subsystem are not affected by the control information contained in the object, wherein the second subsystem comprises a data network that is based on a packet switched communication protocol that is different from the communication protocol used by the first subsystem.
  28. A communication system as claimed in claim 27, wherein the first subsystem comprises a packet switched network providing wireless services for the users thereof.
  29. A communication system as claimed in claim 27 or 28, wherein the first subsystem is based on universal mobile telephone system specifications and/or a general packet radio service specifications.
  30. A communication system as claimed in any of claims 27 to 29, wherein the second subsystem is a data network that is based on the Internet protocol.
  31. A communication system as claimed in any of claims 27 to 30, wherein the first subsystem comprises a first network and a second network, the message being transmitted from the first network to the second network via the second subsystem.
  32. A communication system as claimed in claim 31, wherein the first and second networks are based on similar operational principles.
  33. A communication system as claimed in any of claims 27 to 32, wherein the communication system comprises at least a first terminal and a second terminal, the first terminal belonging to the first subsystem, and wherein a connection between the two terminals is adapted to be negotiated based on a quality of service mechanism for packet data.
  34. A communication system as claimed in any of the claims 27 to 33, wherein the control message comprises a resource reservation protocol message.
  35. A communication system as claimed in any of claims 27 to 34, wherein the object contains at least one quality of service parameter that is required by the first subsystem for connection set-up purposes.
  36. A communication system as claimed in any of claims 27 to 35, wherein quality of service information is determined based on information carried by the object.
  37. A communication system as claimed in any of claims 27 to 36, wherein the networks elements of the second subsystem are adapted to ignore the object and forward the object in all messages that result from processing of the control message.
  38. A communication system as claimed in any of claims 27 to 37, wherein the network element in the communication path that generates the objects and adds the object in the control message is one of the following: a mobile station; an element of a radio access network of the first subsystem; a gateway node between two different networks.
  39. A communication system as claimed in any of claims 27 to 38, wherein the object is interpreted by one of the following: a terminal that terminates the connection; an element of the third subsystem; a gateway node between different networks.
  40. A communication system as claimed in claim 31, wherein the second subsystem comprises a link between the first and the second networks.
  41. A user equipment for a system providing wireless packet switched communication between a first and second packet switched networks, the user equipment comprising:
    a controller for generating a control message to be signaled from the first network to the second network, the control message being readable by elements of a first predefined group of elements of the first and second networks; and
    a controller for adding to the control message an object containing control information, said message being readable only by elements of a second predefined group of elements of the first and second networks, wherein the first network is based on a packet switched communication protocol which is different from the communication protocol used by the second network.
  42. A user equipment as claimed in claim 41, wherein the message comprises a resource reservation protocol message and the object contains quality of service information.
  43. A control message for a communication system, said communication system providing wireless packet data communication between first and second networks, the control message comprising:
    a portion for being interpreted by elements of a first predefined group of elements of the first and second networks; and
    an object containing control information, said object being readable only by elements of a second predefined group of elements of the first and second networks, wherein the first network is based on a packet switched communication protocol which is different from the communication protocol used by the second network.
  44. A control message as claimed in claim 43, wherein the message comprises a resource reservation protocol message and the object contains quality of service information.
EP01909731A 2000-03-06 2001-02-09 Interworking in a communication system Expired - Lifetime EP1262046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05076867A EP1601141B1 (en) 2000-03-06 2001-02-09 Interworking in a communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0005363 2000-03-06
GBGB0005363.7A GB0005363D0 (en) 2000-03-06 2000-03-06 Interworking in a communication system
PCT/EP2001/001452 WO2001067687A2 (en) 2000-03-06 2001-02-09 Interworking in a communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP05076867A Division EP1601141B1 (en) 2000-03-06 2001-02-09 Interworking in a communication system

Publications (2)

Publication Number Publication Date
EP1262046A2 EP1262046A2 (en) 2002-12-04
EP1262046B1 true EP1262046B1 (en) 2005-11-09

Family

ID=9887056

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01909731A Expired - Lifetime EP1262046B1 (en) 2000-03-06 2001-02-09 Interworking in a communication system
EP05076867A Expired - Lifetime EP1601141B1 (en) 2000-03-06 2001-02-09 Interworking in a communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05076867A Expired - Lifetime EP1601141B1 (en) 2000-03-06 2001-02-09 Interworking in a communication system

Country Status (9)

Country Link
US (1) US20030137960A1 (en)
EP (2) EP1262046B1 (en)
AT (2) ATE426976T1 (en)
AU (1) AU2001237371A1 (en)
DE (3) DE60114781T2 (en)
ES (2) ES2255899T3 (en)
GB (1) GB0005363D0 (en)
PT (1) PT1601141E (en)
WO (1) WO2001067687A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985441B1 (en) * 2001-03-05 2006-01-10 Advanced Micro Devices, Inc. Intelligent embedded processor enabled mechanism to implement RSVP function
KR100849345B1 (en) * 2003-10-30 2008-07-29 삼성전자주식회사 Method for Supporting QoS in High Packet Data System
ATE445950T1 (en) * 2005-05-23 2009-10-15 Alcatel Lucent RSVP PROTOCOL EXTENSION TO SUPPORT OAM FEATURES
US9112901B2 (en) * 2007-11-20 2015-08-18 Radware, Ltd. Method and system for providing connection resiliency

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570084A (en) * 1994-06-28 1996-10-29 Metricom, Inc. Method of loose source routing over disparate network types in a packet communication network
US6021263A (en) * 1996-02-16 2000-02-01 Lucent Technologies, Inc. Management of ATM virtual circuits with resources reservation protocol
US6937566B1 (en) * 1997-07-25 2005-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic quality of service reservation in a mobile communications network
US6608832B2 (en) * 1997-09-25 2003-08-19 Telefonaktiebolaget Lm Ericsson Common access between a mobile communications network and an external network with selectable packet-switched and circuit-switched and circuit-switched services
US6167040A (en) * 1997-10-10 2000-12-26 Nokia Telecommunications Oy Speech transmission between terminals in different networks
US6671276B1 (en) * 1997-11-18 2003-12-30 Nec Corporation Switch based network architecture for IP multicast and integrated services
FI974558A (en) * 1997-12-18 1999-06-19 Nokia Mobile Phones Ltd Resource reservation in mobile Internet protocol
FI106512B (en) * 1998-06-26 2001-02-15 Nokia Networks Oy Handling of packet switching connections in a mobile communication network
US6625156B2 (en) * 1998-06-29 2003-09-23 Nortel Networks Limited Method of implementing quality-of-service data communications over a short-cut path through a routed network
FI105969B (en) * 1998-08-10 2000-10-31 Nokia Networks Oy Quality of service management in a mobile communication system
JP2000078145A (en) * 1998-08-28 2000-03-14 Fujitsu Ltd Boundary device conducting connection control at border of two communication networks and its method
FI108200B (en) * 1998-09-14 2001-11-30 Nokia Mobile Phones Ltd Switching the connection between mobile networks
FI108601B (en) * 1999-01-05 2002-02-15 Nokia Corp Dissemination of QoS mapping information in a packet radio network
US6327256B1 (en) * 1999-05-28 2001-12-04 Nokia Mobile Phones Limited Apparatus, and associated method, for communicating packet data in a radio communication system
US6968190B1 (en) * 1999-11-29 2005-11-22 Nokia Mobile Phones, Ltd. Transfer of optimization algorithm parameters during handover of a mobile station between radio network subsystems
US20010027490A1 (en) * 2000-01-25 2001-10-04 Gabor Fodor RSVP handling in 3G networks
EP1130931A1 (en) * 2000-03-03 2001-09-05 Lucent Technologies Inc. Resource reservation in mobile packet data telecommunications network

Also Published As

Publication number Publication date
US20030137960A1 (en) 2003-07-24
DE60114781D1 (en) 2005-12-15
AU2001237371A1 (en) 2001-09-17
GB0005363D0 (en) 2000-04-26
ES2255899T1 (en) 2006-07-16
EP1601141B1 (en) 2009-03-25
EP1262046A2 (en) 2002-12-04
DE05076867T1 (en) 2006-07-13
DE60138144D1 (en) 2009-05-07
WO2001067687A3 (en) 2002-03-14
ATE426976T1 (en) 2009-04-15
ES2255899T3 (en) 2009-06-04
ATE309659T1 (en) 2005-11-15
EP1601141A1 (en) 2005-11-30
DE60114781T2 (en) 2006-08-03
WO2001067687A2 (en) 2001-09-13
ES2252196T3 (en) 2006-05-16
PT1601141E (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US6708034B1 (en) End-to-end quality of service guarantee in a wireless environment
EP1250787B1 (en) Rsvp handling in 3g networks
US7254392B2 (en) Intersystem handover with modified parameters
EP1397750B1 (en) Technique for providing announcements in mobile-originated calls
JP3936290B2 (en) Communication system with mode selection procedure and method thereof
JP3625769B2 (en) Transport of QoS mapping information in packet radio networks
KR100800794B1 (en) Method And Apparatus for efficiently utilizing radio resources of voice over internet protocol using predefined length indicator in a mobile telecommunication system
EP1104639B1 (en) Controlling quality of service in a mobile communications system
KR100788889B1 (en) Apparatus and method for negotiating quality of service
US20040246962A1 (en) Dynamically assignable resource class system to directly map 3GPP subscriber communications to a MPLS-based protocol
EP2052572B1 (en) Streaming quality optimization
EP1472835B1 (en) Processing different size packet headers for a packet based conversational service in a mobile communications system
JP3964865B2 (en) Bearer permission method and system in wireless communication network
EP1564929B1 (en) Packet-data-based group communication
US7286475B2 (en) GPRS system and in-zone node apparatus, and bearer setting method used therefor
EP1281266B1 (en) Data bearers in a communication system
EP2982166B1 (en) Traffic classification over the base station subsystem transport network
EP1260112A1 (en) Intersystem handover with modified parameters
EP2078262B1 (en) Systems and methods for signal reduction in wireless communication
US8004972B2 (en) Quality of service in communication systems
EP1262046B1 (en) Interworking in a communication system
KR20010103650A (en) Resource reservation in 3g or future generation telecommunication network iii
KR100436139B1 (en) System and Method for Packet Service in the IMT-2000 SGSN
KR20050007990A (en) Method for multplexing of user traffic in a mobile communication system
Baumann et al. From GPRS to UMTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020920

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREIS, MARC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60114781

Country of ref document: DE

Date of ref document: 20051215

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060209

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060209

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2252196

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060810

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090317

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090212

Year of fee payment: 9

Ref country code: NL

Payment date: 20090203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090213

Year of fee payment: 9

Ref country code: GB

Payment date: 20090204

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090213

Year of fee payment: 9

Ref country code: SE

Payment date: 20090206

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 9

BERE Be: lapsed

Owner name: *NOKIA CORP.

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100209

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60114781

Country of ref document: DE

Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60114781

Country of ref document: DE

Owner name: NOKIA TECHNOLOGIES OY, FI

Free format text: FORMER OWNER: NOKIA CORP., 02610 ESPOO, FI

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200129

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60114781

Country of ref document: DE