EP1259729B1 - Electromagnetic valve for controlling an injection valve of an internal combustion engine - Google Patents

Electromagnetic valve for controlling an injection valve of an internal combustion engine Download PDF

Info

Publication number
EP1259729B1
EP1259729B1 EP01994586A EP01994586A EP1259729B1 EP 1259729 B1 EP1259729 B1 EP 1259729B1 EP 01994586 A EP01994586 A EP 01994586A EP 01994586 A EP01994586 A EP 01994586A EP 1259729 B1 EP1259729 B1 EP 1259729B1
Authority
EP
European Patent Office
Prior art keywords
armature
solenoid valve
valve
plate
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01994586A
Other languages
German (de)
French (fr)
Other versions
EP1259729A2 (en
Inventor
Rainer Haeberer
Hermann Koch-Grober
Holger Rapp
Christoffer Uhr
Andreas Rettich
Wolfgang Fleiner
Markus Rueckle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10113008A external-priority patent/DE10113008A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1259729A2 publication Critical patent/EP1259729A2/en
Application granted granted Critical
Publication of EP1259729B1 publication Critical patent/EP1259729B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0036Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat with spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to a solenoid valve for controlling an injection valve of an internal combustion engine according to the preamble of claim 1.
  • Such, for example, from DE 197 08 104 A1 known solenoid valve is used to control the fuel pressure in the control pressure chamber of an injection valve, such as an injector of a common rail injection system.
  • the fuel pressure in the control pressure chamber controls the movement of a valve piston with which an injection opening of the injection valve is opened or closed.
  • the known solenoid valve has a solenoid disposed in a housing part, a movable armature and an armature moved, acted upon by a closing spring in the closing direction control valve member which cooperates with a valve seat of the solenoid valve and thus controls the fuel drain from the control pressure chamber.
  • a known disadvantage of the solenoid valves is the so-called anchor bounce.
  • the solenoid valve according to the invention with the characterizing features of claim 1 avoids the disadvantages occurring in the prior art.
  • the armature with armature plate, anchor bolt, return spring and overstroke stop outside the assembly line of the injector pre-assembled and the required displacement of the armature plate can be adjusted on the anchor bolt outside the housing of the injector.
  • the pre-assembled armature assembly can then be subsequently installed in the housing of the solenoid valve. A complex conversion of the assembly line is not required.
  • the return spring which presses the anchor plate with a first end in its rest position against a first stop on the anchor bolt, not stationary with the second end in the solenoid valve housing, but on a fixed to the anchor bolt and moving with the anchor bolt support member, is also advantageously achieved that the return spring does not counteract the force acting on the anchor bolt closing spring of the solenoid valve.
  • the spring tension of the closing spring of the solenoid valve can therefore be made smaller. Since the return spring of the closing spring no longer counteracts, the return spring has no influence on the dynamic behavior of the anchor bolt.
  • Fig. 1 shows the upper part of a known from the prior art fuel injection valve 1, which is for use is determined in a fuel injection system, which is equipped with a high-pressure fuel storage, which is continuously supplied by a high-pressure feed pump with high-pressure fuel.
  • the fuel injection valve 1 shown has a valve housing 4 with a longitudinal bore 5, in which a valve piston 6 is arranged, which acts with its one end on a nozzle needle, not shown, valve needle.
  • the valve needle is arranged in a pressure chamber, which is supplied via a pressure bore 8 with fuel under high pressure.
  • the valve needle In an opening stroke of the valve piston 6, the valve needle is raised by the constantly acting on a pressure shoulder of the valve needle high fuel pressure in the pressure chamber against the closing force of a spring.
  • the injection of the fuel takes place in the combustion chamber of the internal combustion engine.
  • the valve needle By lowering the valve piston 6, the valve needle is pressed in the closing direction in the valve seat of the injection valve and the injection process terminated.
  • valve piston 6 is guided at its end facing away from the valve needle in a cylinder bore 11 which is incorporated in a valve member 12 which is inserted into the valve housing 4.
  • the end face 13 of the valve piston 6 includes a control pressure chamber 14, which is connected via an inlet channel with a high-pressure fuel connection.
  • the inlet channel is formed substantially in three parts.
  • a radially leading through the wall of the valve piece 12 bore whose inner walls form part of their length an inlet throttle 15 is connected to the valve piece circumferentially surrounding annulus 16 constantly, which annular space in turn via a inserted into the inlet channel fuel filter in constant communication with the High-pressure fuel connection of a screwed into the valve housing 4 connecting piece 9 is.
  • the annulus 16 is sealed by a sealing ring 39 to the longitudinal bore 5.
  • About the inlet throttle 15 of the control pressure chamber 14 is exposed to the ruling in high-pressure fuel storage high fuel pressure.
  • Coaxially to the valve piston 6 branches off from the control pressure chamber 14 extending in the valve piece 12 bore which forms a flow restrictor 18 provided with fuel drain passage 17 which opens into a discharge chamber 19 which is connected to a fuel low-pressure connection 10, which in turn in a manner not shown is connected to a fuel return of the injection valve 1.
  • the outlet of the fuel drain channel 17 from the valve piece 12 takes place in the region of a conically countersunk part 21 of the outer end face of the valve piece 12.
  • the valve piece 12 is clamped in a flange portion 22 fixed via a screw member 23 with the valve housing 4.
  • a valve seat 24 is formed, with which a control valve member 25 of the injection valve controlling solenoid valve 30 cooperates.
  • the control valve member 25 is coupled to a two-piece armature in the form of an anchor bolt 27 and an armature plate 28, which armature cooperates with an electromagnet 29 of the solenoid valve 30.
  • the solenoid valve 30 further comprises a housing housing part 60 which shelters the electromagnet and which is fixedly connected to the valve housing 4 via screwable connection means 7.
  • the armature plate 28 is mounted under the action of its inertial mass against the biasing force of a return spring 35 dynamically displaceable on the anchor bolt 27 and is pressed by this return spring at rest against a fixed to the anchor bolt sickle plate 26.
  • the return spring 35 With its other end, the return spring 35 is fixed to the housing on a flange 32 of the anchor bolt 27 leading slider 34, with this flange between an attached to the valve piece 12 spacer 38 and the screw member 23 in the valve housing is firmly clamped.
  • the anchor bolt 27 and with it the armature disk 28 and coupled with the anchor bolt control valve member 25 are constantly acted upon by a housing fixedly supporting closing spring 31 in the closing direction, so that the control valve member 25 normally rests in the closed position on the valve seat 24.
  • the armature plate 28 Upon energization of the electromagnet, the armature plate 28 is attracted by the electromagnet while the drain channel 17 is opened to the discharge chamber 19 out.
  • an annular shoulder 33 on the anchor bolt 27 which abuts when the solenoid is energized on the flange 32 and so limits the opening stroke of the control valve member 25.
  • the spacer disc 38 arranged between the flange 32 and the valve piece 12 is used for adjusting the opening stroke.
  • the opening stroke of the control valve member 25 is adjusted by a stop element arranged between the anchor plate 28 and the electromagnet 29.
  • the opening and closing of the injection valve is controlled by the solenoid valve 30 as described below.
  • the anchor bolt 27 is constantly acted upon by the closing spring 31 in the closing direction, so that the control valve member 25 rests in non-energized electromagnet in the closed position on the valve seat 24 and the control pressure chamber 14 is closed to the discharge side 19, so that very quickly there via the inlet channel high Pressure builds up, which is also present in the high-pressure fuel storage.
  • the pressure in the control pressure chamber 14 Over the surface of the end face 13, the pressure in the control pressure chamber 14 generates a closing force on the valve piston 6 and the associated valve needle, which is greater than the forces acting on the other hand in the opening direction as a result of the upcoming high pressure.
  • control pressure chamber 14 If the control pressure chamber 14 is opened by opening the solenoid valve to the discharge side 19, the pressure in the small volume of the control pressure chamber 14 degrades very rapidly, since this pressure via the inlet throttle 15 is disconnected from the high pressure side. As a result, the force acting on the valve needle in the opening direction predominates from the fuel high pressure applied to the valve needle, so that the valve needle moves upward while the at least one injection port is opened for injection. However, closes the solenoid valve 30, the fuel drain passage 17, the pressure in the control pressure chamber 14 can be rebuilt by the inflowing over the inlet channel 15 fuel so that the original closing force is present and the valve needle of the fuel injection valve closes.
  • the closing spring 31 pushes the anchor bolt 27 with the control valve member 25 abruptly against the valve seat 24.
  • An adverse bouncing or ringing of the control valve member is due to the fact that the impact of the anchor bolt on the valve seat causes an elastic deformation thereof, which acts as an energy storage, a portion of the energy is in turn transmitted to the control valve member, which then rebounds off the valve seat 24 together with the anchor bolt.
  • the known solenoid valve shown in Fig. 1 therefore uses a two-piece armature with a decoupled from the anchor bolt 27 anchor plate 28. In this way, while the total impact on the valve seat mass can be reduced, however, the anchor plate 28 can resonate disadvantageously.
  • the thickness of the Kochhubeinstellhunt but also affects the distance of the armature plate 28 from the electromagnet 29. This is the case when, for example, the end face of the solenoid valve housing 60 is clamped against the flange 32. In these cases, an inner and an outer disc is used in place of Kochhubeinstellhunt.
  • the production of the solenoid valve and provided with the solenoid valve injection valve is therefore quite complicated and complicated. A presetting of the overstroke path or the displacement path d of the anchor plate 28 on the anchor bolt 27 outside the Magentventilgephinuses 60 is not possible.
  • Fig. 3 shows a first embodiment of the solenoid valve according to the invention. Shown is only the slider 34 and the anchor with anchor bolt 27, armature plate 28 and return spring 35. The same parts are provided with the same reference numerals.
  • the illustrated armature assembly may be used, for example, in the solenoid valve housing 60 shown in FIG.
  • An important difference from the known arrangement shown in Fig. 2 is that instead of the fixedly arranged in the solenoid valve housing
  • a support member 50 is provided which is fixedly connected to the anchor bolt 27.
  • a support member for example, a fixed to the anchor bolt 27 disc can be provided.
  • the disc is pushed onto the anchor bolt 27 and then firmly connected to the anchor bolt by, for example, welding or gluing. Also other types of attachment we shrinking are possible.
  • the support member 50 is welded to the armature plate 27 on the side facing away from the armature plate 59. The weld 51 on the bottom 59 of the support member 50 can be seen in Fig. 1.
  • the return spring 35 is supported with its one end 61 on the anchor plate 28 and with its other end 62 on that side 57 of the support member 50, which faces the anchor plate 28.
  • the anchor plate 28 is first pushed onto the anchor bolt 27 until the anchor plate strikes a head 55 of the anchor bolt.
  • the head 55 replaces the sickle plate 26 in Fig. 1 and 2 and serves as this as a stop for the anchor plate.
  • the return spring 35 is pushed over the guide piece 65 of the anchor plate 28 until it rests with the end 61 of the anchor plate.
  • the disc-shaped support member 50 is pushed so far onto the anchor bolt 27 that remains between the facing sides 57 and 58 of the support member 50 and the guide stub 65, the required Studentshubweg d. Finally, the support member 50 is fixed in this position on the anchor bolt 27.
  • the armature bolt 27, armature plate 28, return spring 35 and support member 50 existing anchor assembly is then inserted into the slider 34.
  • the anchor bolt 27 is inserted into a central bore 68 of the slider 34.
  • the slider 34 may already be clamped to the flange 36 in the housing 60 of the solenoid valve.
  • no annular shoulder 33 is provided which limits the opening stroke of the anchor bolt by a stop on the slider 34. Instead, the opening stroke is limited by a stop of the anchor bolt head 55 on the electromagnet or a projection of the electromagnet. This is necessary so that the anchor bolt 27 in Fig. 3 can be inserted from above into the slider 34.
  • the side of the slider 34 facing the support part 50 has a recess 52 in which the support part engages.
  • the lower end 67 of the anchor bolt 27 acts on the control valve member 25, which is pressed against the valve seat 24 by the closing force of the spring 31 when the electromagnet is not energized.
  • the side facing away from the anchor plate 28 side 59 of the support member 50 and the weld 51 is spaced from the inner wall of the recess 52 by a gap.
  • a hydraulic damping chamber (The between the support member 50 and the recess 52 compressed fuel which can only escape laterally through the gap, advantageously dampens the impact of the anchor bolt 27 and the control valve member 25 coupled therewith on the valve seat 24.
  • Fig. 4 shows a further embodiment of the invention, which differs from the embodiment shown in Fig. 3 in that the support member 50 is positively fixed to the anchor bolt 27.
  • the support member 50 is formed in this embodiment as a sickle disc with an open recess 56 which is pushed laterally with the open end on the anchor bolt.
  • the anchor bolt 27 has a circumferential groove 54 into which the inner contour of the recess 56 of the sickle disc 50 engages positively.
  • the deferred on the anchor bolt sickle plate 50 is secured perpendicular to the anchor bolt through the recess 52 of the slider 34 in position.
  • the path length by which the anchor bolt is displaced in the axial direction when opening and closing the solenoid valve is significantly smaller than the depth of the recess 52, so that the sickle disc 50 can not accidentally slip out of its position on the anchor bolt 27.
  • Fig. 5 shows a third embodiment which shows a modification of the embodiment shown in Fig. 4.
  • the support member 50 is again formed as a sickle disc, which is pushed with the open end, not shown, on a portion 72 of the anchor bolt 27.
  • the diameter of the portion 72 is formed smaller than the diameter of the guided in the slider 34 portion of the anchor bolt 27 and by a circumferential shoulder 71 delimited therefrom.
  • the return spring 35 is supported at one end on the anchor plate 28. With the other end, the return spring 35 presses the Sickle disc 50 against the formed on the anchor bolt 27 circumferential shoulder 71.
  • the anchor assembly can be used as a preassembled unit in the slider 34, wherein the anchor bolt 27 is inserted into the opening 68 and the sickle plate 50 at least partially penetrates into the recess 52. By the inner contour of the recess 52, the sickle plate 50 is secured against lateral slipping of the anchor bolt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an electromagnetic valve for controlling an injection valve of an internal combustion engine, comprising an electromagnet (29), a moving armature with an armature plate (28) and an armature pin (27); and a control valve member (25) which is moved with the armature and which interacts with a valve seat (24), for opening and closing a fuel drainage channel (17) of a control pressure chamber (14) of the injection valve (1). The armature plate (28) is mounted in such a way that under the influence of its inert mass, the armature plate can slide on the armature pin in the closing direction of the control valve member (25), in the opposite direction to the clamping force of a return spring (35) which acts on the armature plate. The inventive electromagnetic valve also comprises a hydraulic damping device with which the post-oscillation of the armature plate (28) after its dynamic displacement on the armature pin (27) can be damped. In order to simplify the assembly and reduce a disadvantageous post-oscillation process of the armature plate, the invention provides that the return spring (35) is supported on a support part (50) which is situated on the armature pin (27) and which is moved with said armature pin, by the end (62) of the return spring facing away from the armature plate (28). Said support part (50) also forms part (57) of the damping device.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.The invention relates to a solenoid valve for controlling an injection valve of an internal combustion engine according to the preamble of claim 1.

Ein solches, beispielsweise aus der DE 197 08 104 A1 bekanntes Magnetventil wird zur Steuerung des Kraftstoffdrucks im Steuerdruckraum eines Einspritzventils, beispielsweise eines Injektors einer Common-Rail-Einspritzanlage verwandt. Über den Kraftstoffdruck im Steuerdruckraum wird die Bewegung eines Ventilkolbens gesteuert, mit dem eine Einspritzöffnung des Einspritzventils geöffnet oder geschlossen wird. Das bekannte Magnetventil weist einen in einem Gehäuseteil angeordneten Elektromagneten, einen beweglichen Anker und ein mit dem Anker bewegtes, von einer Schließfeder in Schließrichtung beaufschlagtes Steuerventilglied auf, das mit einem Ventilsitz des Magnetventils zusammenwirkt und so den Kraftstoffabfluß aus dem Steuerdruckraum steuert. Ein bekannter Nachteil der Magnetventile besteht im sogenannten Ankerprellen. Beim Abschalten des Magneten wird der Anker und mit ihm das Steuerventilglied von der Schließfeder des Magnetventils zum Ventilsitz hin beschleunigt, um einen Kraftstoffablaufkanal aus dem Steuerdruckraum zu verschließen. Der Aufprall des Steuerventilgliedes am Ventilsitz kann ein nachteiliges Schwingen und/oder Prellen des Steuerventilgliedes am Ventilsitz zur Folge haben, wodurch die Steuerung des Einspritzvorgangs beeinträchtigt wird.Such, for example, from DE 197 08 104 A1 known solenoid valve is used to control the fuel pressure in the control pressure chamber of an injection valve, such as an injector of a common rail injection system. The fuel pressure in the control pressure chamber controls the movement of a valve piston with which an injection opening of the injection valve is opened or closed. The known solenoid valve has a solenoid disposed in a housing part, a movable armature and an armature moved, acted upon by a closing spring in the closing direction control valve member which cooperates with a valve seat of the solenoid valve and thus controls the fuel drain from the control pressure chamber. A known disadvantage of the solenoid valves is the so-called anchor bounce. When switching off the magnet of the armature and with it the control valve member is accelerated by the closing spring of the solenoid valve to the valve seat to close a fuel drain passage from the control pressure chamber. The impact of the control valve member on the valve seat can result in adverse swinging and / or bouncing of the control valve member on the valve seat, thereby affecting the control of the injection event.

Bei dem aus der DE 197 08 104 A1 bekannten Magnetventil ist deshalb der Anker zweiteilig mit einem Ankerbolzen und einer auf dem Ankerbolzen gleitverschiebbar gelagerten Ankerplatte ausgeführt, so daß sich die Ankerplatte beim Aufprall des Steuerventilgliedes auf den Ventilsitz gegen die Spannkraft einer Rückholfeder weiterbewegt. Die Rückholfeder befördert die Ankerplatte anschließend wieder in ihre Ausgangsposition an einem Anschlag des Ankerbolzens zurück. Durch die zweiteilige Ausführung des Ankers wird zwar die effektiv abgebremste Masse und damit die das Prellen verursachende kinetische Energie des auf den Ventilsitz auftreffenden Ankers verringert, jedoch kann die Ankerplatte nach dem Schließen des Magnetventils auf dem Ankerbolzen in nachteiliger Weise nachschwingen. Da ein Ansteuern des Magnetventils erst wieder zu einer definierten Einspritzmenge führt, wenn die Ankerplatte nicht mehr nachschwingt, sind Maßnahmen erforderlich, um das Nachschwingen der Ankerplatte zu reduzieren. Dies ist insbesondere zur Darstellung kurzer zeitlicher Abstände zwischen beispielsweise einer Vor- und Haupteinspritzung erforderlich.In the known from DE 197 08 104 A1 solenoid valve therefore the armature is made in two parts with an anchor bolt and an anchor bolt slidably mounted on the armature plate, so that the armature plate on impact of the control valve member on the valve seat against the clamping force of a return spring moves on. The return spring then conveys the anchor plate back to its original position at a stop of the anchor bolt back. Although the effectively braked mass and thus the bouncing causing kinetic energy of the impacting on the valve seat anchor is reduced by the two-part design of the armature, however, the armature plate can swing after closing the solenoid valve on the anchor bolt in a disadvantageous manner. Since a triggering of the solenoid valve again leads to a defined injection quantity when the armature plate does not resonate, measures are required to reduce the ringing of the armature plate. This is particularly necessary for the presentation of short time intervals between, for example, a pre-injection and main injection.

In der DE 197 08 104 A1 wird zur Lösung dieses Problems vorgeschlagen, einen Überhubanschlag zu verwenden, welcher die Weglänge begrenzt, um den sich die Ankerplatte auf dem Ankerbolzen verschieben kann. Der Überhubanschlag ist zwischen der Ankerplatte und einem den Ankerbolzen führenden Gleitstück ortsfest im Gehäuse des Magnetventils angeordnet. Bei einer Annäherung der Ankerplatte an den Überhubanschlag entsteht zwischen den einander zugewandten ebenen Seiten der Ankerplatte und des Überhubanschlags ein hydraulischer Dämpfungsraum. Der in dem Dämpfungsraum enthaltene Kraftstoff erzeugt eine Kraft, die der Bewegung der Ankerplatte entgegenwirkt. Das Nachschwingen der Ankerplatte wird daher stark gedämpft. Mittels des Überhubanschlags wird zwar die Nachschwingzeit der Ankerplatte verkürzt, jedoch muß der erforderliche Überhubweg der Ankerplatte während der Montage des Magnetventils im Gehäuse des Magnetventils eingestellt werden. Dies macht eine aufwendige Änderung des Herstellungsverfahrens erforderlich, da die Fertigungseinrichtungen entsprechend nachgerüstet werden müssen.In DE 197 08 104 A1 is proposed to solve this problem, to use an overstroke, which limits the path length by which the anchor plate can move on the anchor bolt. The overstroke stop is arranged fixedly in the housing of the solenoid valve between the anchor plate and a slider bolt leading the slider. When the anchor plate approaches the overstroke stop, a hydraulic damping chamber is created between the mutually facing planar sides of the anchor plate and the overstroke stop. The fuel contained in the damping chamber generates a force which counteracts the movement of the armature plate. The ringing of the anchor plate is therefore strongly attenuated. Although the Nachschwingzeit the anchor plate is shortened by means of Überhubanschlags, but the required Überhubweg the anchor plate during assembly of the Solenoid valve can be adjusted in the housing of the solenoid valve. This makes a costly change in the manufacturing process required because the manufacturing equipment must be retrofitted accordingly.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Magnetventil mit den kennzeichnenden Merkmalen des Anspruchs 1 vermeidet die im Stand der Technik auftretenden Nachteile. Vorteilhaft kann der Anker mit Ankerplatte, Ankerbolzen, Rückholfeder und Überhubanschlag außerhalb der Montagelinie des Einspritzventils vormontiert und der erforderliche Verschiebeweg der Ankerplatte auf dem Ankerbolzen außerhalb des Gehäuses des Einspritzventils eingestellt werden. Die vormontierte Ankerbaugruppe kann dann anschließend in das Gehäuse des Magnetventils eingebaut werden. Ein aufwendiger Umbau der Montagelinie ist nicht erforderlich. Dadurch, daß sich die Rückholfeder, welche die Ankerplatte mit einem ersten Ende in ihrer Ruhelage gegen einen ersten Anschlag an dem Ankerbolzen andrückt, mit dem zweiten Ende nicht ortsfest im Magnetventilgehäuse abstützt, sondern an einem an dem Ankerbolzen festgelegten und mit dem Ankerbolzen bewegten Stützteil, wird außerdem vorteilhaft erreicht, daß die Rückholfeder der auf den Ankerbolzen einwirkenden Schließfeder des Magnetventils nicht entgegenwirkt. Die Federspannkraft der Schließfeder des Magnetventils kann daher geringer ausgelegt werden. Da die Rückholfeder der Schließfeder nicht mehr entgegenwirkt, hat die Rückholfeder keinen Einfluß mehr auf das dynamische Verhalten des Ankerbolzens.The solenoid valve according to the invention with the characterizing features of claim 1 avoids the disadvantages occurring in the prior art. Advantageously, the armature with armature plate, anchor bolt, return spring and overstroke stop outside the assembly line of the injector pre-assembled and the required displacement of the armature plate can be adjusted on the anchor bolt outside the housing of the injector. The pre-assembled armature assembly can then be subsequently installed in the housing of the solenoid valve. A complex conversion of the assembly line is not required. Characterized in that the return spring, which presses the anchor plate with a first end in its rest position against a first stop on the anchor bolt, not stationary with the second end in the solenoid valve housing, but on a fixed to the anchor bolt and moving with the anchor bolt support member, is also advantageously achieved that the return spring does not counteract the force acting on the anchor bolt closing spring of the solenoid valve. The spring tension of the closing spring of the solenoid valve can therefore be made smaller. Since the return spring of the closing spring no longer counteracts, the return spring has no influence on the dynamic behavior of the anchor bolt.

Vorteilhafte Ausführungsbeispiele und Weiterbildungen der Erfindung werden durch die in den Unteransprüchen enthaltenen Merkmale ermöglicht.Advantageous embodiments and further developments of the invention are made possible by the features contained in the subclaims.

Besonders vorteilhaft ist es, den Ankerbolzen in einer Öffnung eines in dem Gehäuse des Magnetventils ortsfest angeordneten Gleitstücks gleitverschiebbar zu lagern und die der Ankerplatte zugewandten Seite des Gleitstücks mit einer Ausnehmung zu versehen, in welcher das an dem Ankerbolzen festgelegte Stützteil angeordnet ist, wobei die Außenkontur des Stützteils durch einen Spalt von der Innenkontur der Ausnehmung beabstandet ist. Durch diese Maßnahmen wird erreicht, daß durch die Annäherung des Stützteils an die Innenwand der Ausnehmung des Gleitstücks ein hydraulischer Dämpfungsraum entsteht und der zwischen dem Stützteil und der Ausnehmung komprimierte Kraftstoff den Aufprall des mit dem Ankerbolzen gekoppelten Steuerventilgliedes auf den Ventilsitz zusätzlich dämpft.To store the anchor bolt in an opening of a fixedly arranged in the housing of the solenoid valve slider and to provide the armature plate facing side of the slider with a recess in which the fixed to the anchor bolt support member is arranged, wherein the outer contour is particularly advantageous of the support member is spaced by a gap from the inner contour of the recess. By these measures it is achieved that by the approach of the support member to the inner wall of the recess of the slider, a hydraulic damping chamber is formed and the fuel compressed between the support member and the recess additionally damps the impact of the coupled with the anchor bolt control valve member on the valve seat.

Zeichnungendrawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung erläutert. Es zeigt

  • Fig. 1 einen Querschnitt durch den oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils mit einem Magnetventil,
  • Fig. 2 einen Teilbereich des aus dem Stand der Technik bekannten Magnetventils mit Überhubeinstellscheibe,
  • Fig. 3 einen Querschnitt durch die Ankerbaugruppe mit Gleitstück nach einem ersten Ausführungsbeispiel der Erfindung,
  • Fig. 4 einen Querschnitt durch die Ankerbaugruppe mit Gleitstück nach einem zweiten Ausführungsbeispiel der Erfindung.
  • Fig. 5 einen Querschnitt durch die Ankerbaugruppe mit Gleitstück nach einem dritten Ausführungsbeispiel der Erfindung.
Embodiments of the invention are illustrated in the drawings and will be explained in the following description. It shows
  • 1 shows a cross section through the upper part of a known from the prior art fuel injection valve with a solenoid valve,
  • 2 shows a portion of the known from the prior art solenoid valve with Überhubeinstellscheibe,
  • 3 shows a cross section through the armature assembly with slider according to a first embodiment of the invention,
  • 4 shows a cross section through the armature assembly with slider according to a second embodiment of the invention.
  • Fig. 5 shows a cross section through the armature assembly with slider according to a third embodiment of the invention.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Fig. 1 zeigt den oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils 1, welches zur Verwendung in einer Kraftstoffeinspritzanlage bestimmt ist, die mit einem Kraftstoffhochdruckspeicher ausgerüstet ist, der durch eine Hochdruckförderpumpe kontinuierlich mit Hochdruckkraftstoff versorgt wird. Das dargestellte Kraftstoffeinspritzventil 1 weist ein Ventilgehäuse 4 mit einer Längsbohrung 5 auf, in der ein Ventilkolben 6 angeordnet ist, der mit seinem einen Ende auf eine in einem nicht dargestellten Düsenkörper angeordnete Ventilnadel einwirkt. Die Ventilnadel ist in einem Druckraum angeordnet, der über eine Druckbohrung 8 mit unter Hochdruck stehendem Kraftstoff versorgt ist. Bei einer Öffnungshubbewegung des Ventilkolbens 6 wird die Ventilnadel durch den ständig an einer Druckschulter der Ventilnadel angreifenden Kraftstoffhochdruck im Druckraum entgegen der Schließkraft einer Feder angehoben. Durch eine dann mit dem Druckraum verbundene Einspritzöffnung erfolgt die Einspritzung des Kraftstoffs in den Brennraum der Brennkraftmaschine. Durch Absenken des Ventilkolbens 6 wird die Ventilnadel in Schließrichtung in den Ventilsitz des Einspritzventils gedrückt und der Einspritzvorgang beendet.Fig. 1 shows the upper part of a known from the prior art fuel injection valve 1, which is for use is determined in a fuel injection system, which is equipped with a high-pressure fuel storage, which is continuously supplied by a high-pressure feed pump with high-pressure fuel. The fuel injection valve 1 shown has a valve housing 4 with a longitudinal bore 5, in which a valve piston 6 is arranged, which acts with its one end on a nozzle needle, not shown, valve needle. The valve needle is arranged in a pressure chamber, which is supplied via a pressure bore 8 with fuel under high pressure. In an opening stroke of the valve piston 6, the valve needle is raised by the constantly acting on a pressure shoulder of the valve needle high fuel pressure in the pressure chamber against the closing force of a spring. By then connected to the pressure chamber injection port, the injection of the fuel takes place in the combustion chamber of the internal combustion engine. By lowering the valve piston 6, the valve needle is pressed in the closing direction in the valve seat of the injection valve and the injection process terminated.

Wie in Fig. 1 zu erkennen ist, wird der Ventilkolben 6 an seinem von der Ventilnadel abgewandten Ende in einer Zylinderbohrung 11 geführt, die in einem Ventilstück 12 eingebracht ist, welches in das Ventilgehäuse 4 eingesetzt ist. In der Zylinderbohrung 11 schließt die Stirnseite 13 des Ventilkolbens 6 einen Steuerdruckraum 14 ein, der über einen Zulaufkanal mit einem Kraftstoffhochdruckanschluß verbunden ist. Der Zulaufkanal ist im wesentlichen dreiteilig ausgebildet. Eine radial durch die Wand des Ventilstücks 12 führende Bohrung, deren Innenwände auf einem Teil ihrer Länge eine Zulaufdrossel 15 ausbilden, ist mit einem das Ventilstück umfangsseitig umgebenden Ringraum 16 ständig verbunden, welcher Ringraum wiederum über einen in den Zulaufkanal eingeschobenen Kraftstoffilter in ständiger Verbindung mit dem Kraftstoffhochdruckanschluß eines in das Ventilgehäuse 4 einschraubbaren Anschlußstutzens 9 steht. Der Ringraum 16 ist über einen Dichtring 39 zur Längsbohrung 5 abgedichtet. Über die Zulaufdrossel 15 ist der Steuerdruckraum 14 dem im Kraftstoffhochdruckspeicher herrschenden hohen Kraftstoffdruck ausgesetzt. Koaxial zum Ventilkolben 6 zweigt aus dem Steuerdruckraum 14 eine im Ventilstück 12 verlaufende Bohrung ab, die einen mit einer Ablaufdrossel 18 versehenen Kraftstoffablaufkanal 17 bildet, der in einen Entlastungsraum 19 einmündet, der mit einem Kraftstoffniederdruckanschluß 10 verbunden ist, welcher wiederum in nicht weiter dargestellter Weise mit einem Kraftstoffrücklauf des Einspritzventils 1 verbunden ist. Der Austritt des Kraftstoffablaufkanals 17 aus dem Ventilstück 12 erfolgt im Bereich eines kegelförmig angesenkten Teiles 21 der außenliegenden Stirnseite des Ventilstückes 12. Das Ventilstück 12 ist in einem Flanschbereich 22 fest über ein Schraubglied 23 mit dem Ventilgehäuse 4 verspannt.As can be seen in Fig. 1, the valve piston 6 is guided at its end facing away from the valve needle in a cylinder bore 11 which is incorporated in a valve member 12 which is inserted into the valve housing 4. In the cylinder bore 11, the end face 13 of the valve piston 6 includes a control pressure chamber 14, which is connected via an inlet channel with a high-pressure fuel connection. The inlet channel is formed substantially in three parts. A radially leading through the wall of the valve piece 12 bore whose inner walls form part of their length an inlet throttle 15 is connected to the valve piece circumferentially surrounding annulus 16 constantly, which annular space in turn via a inserted into the inlet channel fuel filter in constant communication with the High-pressure fuel connection of a screwed into the valve housing 4 connecting piece 9 is. The annulus 16 is sealed by a sealing ring 39 to the longitudinal bore 5. About the inlet throttle 15 of the control pressure chamber 14 is exposed to the ruling in high-pressure fuel storage high fuel pressure. Coaxially to the valve piston 6 branches off from the control pressure chamber 14 extending in the valve piece 12 bore which forms a flow restrictor 18 provided with fuel drain passage 17 which opens into a discharge chamber 19 which is connected to a fuel low-pressure connection 10, which in turn in a manner not shown is connected to a fuel return of the injection valve 1. The outlet of the fuel drain channel 17 from the valve piece 12 takes place in the region of a conically countersunk part 21 of the outer end face of the valve piece 12. The valve piece 12 is clamped in a flange portion 22 fixed via a screw member 23 with the valve housing 4.

In dem kegelförmigen Teil 21 ist ein Ventilsitz 24 ausgebildet, mit dem ein Steuerventilglied 25 eines das Einspritzventil steuernden Magnetventils 30 zusammen wirkt. Das Steuerventilglied 25 ist mit einem zweiteiligen Anker in Form eines Ankerbolzens 27 und einer Ankerplatte 28 gekoppelt, welcher Anker mit einem Elektromagneten 29 des Magnetventils 30 zusammen wirkt. Das Magnetventil 30 umfaßt weiterhin ein den Elektromagneten bergendes Gehäuseteil 60, das mit dem Ventilgehäuse 4 über schraubbare Verbindungsmittel 7 fest verbunden ist. Bei dem bekannten Magnetventil ist die Ankerplatte 28 unter Einwirkung ihrer trägen Masse gegen die Vorspannkraft einer Rückholfeder 35 dynamisch verschiebbar auf dem Ankerbolzen 27 gelagert und wird durch diese Rückholfeder im Ruhezustand gegen eine am Ankerbolzen festgelegte Sichelscheibe 26 gedrückt. Mit ihrem anderen Ende stützt sich die Rückholfeder 35 gehäusefest an einem Flansch 32 eines den Ankerbolzen 27 führenden Gleitstücks 34 ab, das mit diesem Flansch zwischen einer auf das Ventilstück 12 aufgelegten Distanzscheibe 38 und dem Schraubglied 23 im Ventilgehäuse fest eingespannt ist. Der Ankerbolzen 27 und mit ihm die Ankerscheibe 28 und das mit dem Ankerbolzen gekoppelte Steuerventilglied 25 sind ständig durch eine sich gehäusefest abstützende Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 normalerweise in Schließstellung am Ventilsitz 24 anliegt. Bei Erregung des Elektromagneten wird die Ankerplatte 28 vom Elektromagneten angezogen und dabei der Ablaufkanal 17 zum Entlastungsraum 19 hin geöffnet. Zwischen dem Steuerventilglied 25 und der Ankerplatte 28 befindet sich eine Ringschulter 33 am Ankerbolzen 27, die bei erregtem Elektromagneten am Flansch 32 anschlägt und so den Öffnungshub des Steuerventilglieds 25 begrenzt. Zur Einstellung des Öffnungshubes dient die zwischen dem Flansch 32 und dem Ventilstück 12 angeordnete Distanzscheibe 38. Bei anderen bekannten Magnetventilen wird der Öffnungshub des Steuerventilgliedes 25 durch ein zwischen der Ankerplatte 28 und dem Elektromagneten 29 angeordnetes Anschlagelement eingestellt.In the conical part 21, a valve seat 24 is formed, with which a control valve member 25 of the injection valve controlling solenoid valve 30 cooperates. The control valve member 25 is coupled to a two-piece armature in the form of an anchor bolt 27 and an armature plate 28, which armature cooperates with an electromagnet 29 of the solenoid valve 30. The solenoid valve 30 further comprises a housing housing part 60 which shelters the electromagnet and which is fixedly connected to the valve housing 4 via screwable connection means 7. In the known solenoid valve, the armature plate 28 is mounted under the action of its inertial mass against the biasing force of a return spring 35 dynamically displaceable on the anchor bolt 27 and is pressed by this return spring at rest against a fixed to the anchor bolt sickle plate 26. With its other end, the return spring 35 is fixed to the housing on a flange 32 of the anchor bolt 27 leading slider 34, with this flange between an attached to the valve piece 12 spacer 38 and the screw member 23 in the valve housing is firmly clamped. The anchor bolt 27 and with it the armature disk 28 and coupled with the anchor bolt control valve member 25 are constantly acted upon by a housing fixedly supporting closing spring 31 in the closing direction, so that the control valve member 25 normally rests in the closed position on the valve seat 24. Upon energization of the electromagnet, the armature plate 28 is attracted by the electromagnet while the drain channel 17 is opened to the discharge chamber 19 out. Between the control valve member 25 and the armature plate 28 is an annular shoulder 33 on the anchor bolt 27 which abuts when the solenoid is energized on the flange 32 and so limits the opening stroke of the control valve member 25. For adjusting the opening stroke, the spacer disc 38 arranged between the flange 32 and the valve piece 12 is used. In other known solenoid valves, the opening stroke of the control valve member 25 is adjusted by a stop element arranged between the anchor plate 28 and the electromagnet 29.

Das Öffnen und Schließen des Einspritzventils wird wie nachfolgend beschrieben von dem Magnetventil 30 gesteuert. Der Ankerbolzen 27 ist ständig durch die Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 bei nicht erregtem Elektromagneten in Schließstellung am Ventilsitz 24 anliegt und der Steuerdruckraum 14 zur Entlastungsseite 19 hin verschlossen ist, so daß sich dort über den Zulaufkanal sehr schnell der hohe Druck aufbaut, der auch im Kraftstoffhochdruckspeicher ansteht. Über die Fläche der Stirnseite 13 erzeugt der Druck im Steuerdruckraum 14 eine Schließkraft auf den Ventilkolben 6 und die damit in Verbindung stehende Ventilnadel, die größer ist als die andererseits in Öffnungsrichtung in Folge des anstehenden Hochdrucks wirkenden Kräfte. Wird der Steuerdruckraum 14 durch Öffnen des Magnetventils zur Entlastungsseite 19 hin geöffnet, baut sich der Druck in dem geringen Volumen des Steuerdruckraumes 14 sehr schnell ab, da dieser über die Zulaufdrossel 15 von der Hochdruckseite abgekoppelt ist. Infolgedessen überwiegt die auf die Ventilnadel in Öffnungsrichtung wirkende Kraft aus dem an der Ventilnadel anstehenden Kraftstoffhochdruck, so daß die Ventilnadel nach oben bewegt und dabei die wenigstens eine Einspritzöffnung zur Einspritzung geöffnet wird. Schließt jedoch das Magnetventil 30 den Kraftstoffablaufkanal 17, kann der Druck im Steuerdruckraum 14 durch den über den Zulaufkanal 15 nachfließenden Kraftstoff wieder aufgebaut werden, so daß die ursprüngliche Schließkraft ansteht und die Ventilnadel des Kraftstoffeinspritzventils schließt.The opening and closing of the injection valve is controlled by the solenoid valve 30 as described below. The anchor bolt 27 is constantly acted upon by the closing spring 31 in the closing direction, so that the control valve member 25 rests in non-energized electromagnet in the closed position on the valve seat 24 and the control pressure chamber 14 is closed to the discharge side 19, so that very quickly there via the inlet channel high Pressure builds up, which is also present in the high-pressure fuel storage. Over the surface of the end face 13, the pressure in the control pressure chamber 14 generates a closing force on the valve piston 6 and the associated valve needle, which is greater than the forces acting on the other hand in the opening direction as a result of the upcoming high pressure. If the control pressure chamber 14 is opened by opening the solenoid valve to the discharge side 19, the pressure in the small volume of the control pressure chamber 14 degrades very rapidly, since this pressure via the inlet throttle 15 is disconnected from the high pressure side. As a result, the force acting on the valve needle in the opening direction predominates from the fuel high pressure applied to the valve needle, so that the valve needle moves upward while the at least one injection port is opened for injection. However, closes the solenoid valve 30, the fuel drain passage 17, the pressure in the control pressure chamber 14 can be rebuilt by the inflowing over the inlet channel 15 fuel so that the original closing force is present and the valve needle of the fuel injection valve closes.

Beim Schließen des Magnetventils drückt die Schließfeder 31 den Ankerbolzen 27 mit dem Steuerventilglied 25 schlagartig gegen den Ventilsitz 24. Ein nachteiliges Abprellen oder Nachschwingen des Steuerventilgliedes entsteht dadurch, daß der Aufschlag des Ankerbolzen am Ventilsitz eine elastische Verformung desselben bewirkt, welche als Energiespeicher wirkt, wobei ein Teil der Energie wiederum auf das Steuerventilglied übertragen wird, das dann zusammen mit dem Ankerbolzen vom Ventilsitz 24 abprellt. Das in Fig. 1 gezeigte bekannte Magnetventil verwendet daher einen zweiteiligen Anker mit einer vom Ankerbolzen 27 abgekoppelten Ankerplatte 28. Auf diese Weise läßt sich zwar die insgesamt auf den Ventilsitz auftreffende Masse verringern, jedoch kann die Ankerplatte 28 in nachteiliger Weise nachschwingen. Aus diesem Grund ist bei dem bekannten Magnetventil eine zwischen der Ankerplatte 28 und der Gleithülse 34 angeordnete Überhubeinstellscheibe 70 vorgesehen, wie dies in Fig. 2 dargestellt ist. Die Überhubeinstellscheibe 70 beschränkt den Verschiebeweg der Ankerplatte 28 auf dem Ankerbolzen 27 auf das Maß d. Das Nachschwingen der Ankerplatte 28 wird durch die Überhubeinstellscheibe 70 reduziert und die Ankerplatte 28 gelangt schneller wieder in ihre Ausgangslage am Anschlag 26 zurück. Die Distanzscheibe 38, das Gleitstück 34 und die Überhubeinstellscheibe 70 werden im Magnetventilgehäuse ortsfest eingespannt. Der Überhubweg d muß bei den im Stand der Technik bekannten Magnetventilen daher während der Montage im Magnetventilgehäuse über die Dicke der verwandten Überhubeinstellscheibe eingestellt werden. In manchen Ausführungsformen beeinflußt die Dicke der Überhubeinstellscheibe aber auch den Abstand der Ankerplatte 28 vom Elektromagneten 29. Dies ist der Fall, wenn beispielsweise die Stirnseite des Magnetventilgehäuses 60 gegen den Flansch 32 verspannt wird. In diesen Fällen wird an Stelle der Überhubeinstellscheibe eine innere und eine äußere Scheibe verwandt. Die Fertigung des Magnetventils und des mit dem Magnetventil versehenen Einspritzventils ist daher recht aufwendig und kompliziert. Eine Voreinstellung des Überhubweges beziehungsweise des Verschiebeweges d der Ankerplatte 28 auf dem Ankerbolzen 27 außerhalb des Magentventilgehäuses 60 ist nicht möglich.When closing the solenoid valve, the closing spring 31 pushes the anchor bolt 27 with the control valve member 25 abruptly against the valve seat 24. An adverse bouncing or ringing of the control valve member is due to the fact that the impact of the anchor bolt on the valve seat causes an elastic deformation thereof, which acts as an energy storage, a portion of the energy is in turn transmitted to the control valve member, which then rebounds off the valve seat 24 together with the anchor bolt. The known solenoid valve shown in Fig. 1 therefore uses a two-piece armature with a decoupled from the anchor bolt 27 anchor plate 28. In this way, while the total impact on the valve seat mass can be reduced, however, the anchor plate 28 can resonate disadvantageously. For this reason, provided in the known solenoid valve between the armature plate 28 and the sliding sleeve 34 Überhubeinstellscheibe 70, as shown in Fig. 2. The Überhubeinstellscheibe 70 limits the displacement of the armature plate 28 on the anchor bolt 27 to the dimension d. The ringing of the anchor plate 28 is reduced by the Überhubeinstellscheibe 70 and the anchor plate 28 is faster back to its original position on the stop 26 back. The spacer 38, the slider 34 and the Überhubeinstellscheibe 70 are clamped in place in the solenoid valve housing. The Überhubweg d must therefore be set in the known in the prior art solenoid valves during assembly in the solenoid valve housing over the thickness of the related Überhubeinstellscheibe. In some embodiments, the thickness of the Überhubeinstellscheibe but also affects the distance of the armature plate 28 from the electromagnet 29. This is the case when, for example, the end face of the solenoid valve housing 60 is clamped against the flange 32. In these cases, an inner and an outer disc is used in place of Überhubeinstellscheibe. The production of the solenoid valve and provided with the solenoid valve injection valve is therefore quite complicated and complicated. A presetting of the overstroke path or the displacement path d of the anchor plate 28 on the anchor bolt 27 outside the Magentventilgehäuses 60 is not possible.

Fig. 3 zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Magnetventils. Dargestellt ist nur das Gleitstück 34 und der Anker mit Ankerbolzen 27, Ankerplatte 28 und Rückholfeder 35. Gleiche Teile sind mit gleichen Bezugszeichen versehen. Die dargestellte Ankerbaugruppe kann beispielsweise in das in Fig. 1 gezeigte Magnetventilgehäuse 60 eingesetzt werden. Ein wichtiger Unterschied zu der in Fig. 2 gezeigten bekannten Anordnung besteht darin, daß an Stelle der ortsfest im Magnetventilgehäuse angeordneten Überhubeinstellscheibe ein Stützteil 50 vorgesehen ist, das fest mit dem Ankerbolzen 27 verbunden ist. Als Stützteil kann beispielsweise eine an dem Ankerbolzen 27 festgelegte Scheibe vorgesehen sein. In dem Ausführungsbeispiel von Fig. 3 wird die Scheibe auf den Ankerbolzen 27 aufgeschoben und anschließend mit dem Ankerbolzen durch beispielsweise Schweißen oder Kleben fest verbunden. Auch andere Befestigungsarten wir Aufschrumpfen sind möglich. In einem bevorzugten Ausführungsbeispiel ist das Stützteil 50 auf der von der Ankerplatte abgewandten Seite 59 mit dem Ankerbolzen 27 verschweißt. Die Schweißnaht 51 auf der Unterseite 59 des Stützteils 50 ist in Fig. 1 erkennbar.Fig. 3 shows a first embodiment of the solenoid valve according to the invention. Shown is only the slider 34 and the anchor with anchor bolt 27, armature plate 28 and return spring 35. The same parts are provided with the same reference numerals. The illustrated armature assembly may be used, for example, in the solenoid valve housing 60 shown in FIG. An important difference from the known arrangement shown in Fig. 2 is that instead of the fixedly arranged in the solenoid valve housing Überhubeinstellscheibe a support member 50 is provided which is fixedly connected to the anchor bolt 27. As a support member, for example, a fixed to the anchor bolt 27 disc can be provided. In the embodiment of Fig. 3, the disc is pushed onto the anchor bolt 27 and then firmly connected to the anchor bolt by, for example, welding or gluing. Also other types of attachment we shrinking are possible. In a preferred embodiment, the support member 50 is welded to the armature plate 27 on the side facing away from the armature plate 59. The weld 51 on the bottom 59 of the support member 50 can be seen in Fig. 1.

Die Rückholfeder 35 stützt sich mit ihrem einen Ende 61 an der Ankerplatte 28 ab und mit ihrem anderen Ende 62 an derjenigen Seite 57 des Stützteils 50, welche der Ankerplatte 28 zugewandt ist.The return spring 35 is supported with its one end 61 on the anchor plate 28 and with its other end 62 on that side 57 of the support member 50, which faces the anchor plate 28.

Bei der Herstellung der Ankerbaugruppe wird zunächst die Ankerplatte 28 auf den Ankerbolzen 27 aufgeschoben, bis die Ankerplatte an einem Kopf 55 des Ankerbolzens anschlägt. Der Kopf 55 ersetzt die Sichelscheibe 26 in Fig. 1 und 2 und dient wie diese als Anschlag für die Ankerplatte. Anschließend wird die Rückholfeder 35 über den Führungsstutzen 65 der Ankerplatte 28 geschoben, bis sie mit dem Ende 61 an der Ankerplatte anliegt. Zuletzt wird das scheibenförmige Stützteil 50 so weit auf den Ankerbolzen 27 geschoben, daß zwischen den einander zugewandten Seiten 57 und 58 des Stützteils 50 und des Führungsstutzens 65 der erforderliche Überhubweg d verbleibt. Schließlich wird das Stützteil 50 in dieser Position am Ankerbolzen 27 festgelegt. Die aus Ankerbolzen 27, Ankerplatte 28, Rückholfeder 35 und Stützteil 50 bestehende Ankerbaugruppe wird anschließend in das Gleitstück 34 eingesetzt. Dabei wird der Ankerbolzen 27 in eine zentrale Bohrung 68 des Gleitstücks 34 eingesetzt. Das Gleitstück 34 kann bereits mit dem Flansch 36 im Gehäuse 60 des Magnetventils eingespannt sein. Wie in Fig. 3 weiterhin zu erkennen ist, ist abweichend von der in Fig. 2 dargestellten bekannten Anordnung keine Ringschulter 33 vorgesehen, welche durch einen Anschlag an dem Gleitstück 34 den Öffnungshub des Ankerbolzens begrenzt. Statt dessen wird der Öffnungshub durch einen Anschlag des Ankerbolzenkopfes 55 am Elektromagneten oder einem Vorsprung des Elektromagneten begrenzt. Dies ist erforderlich, damit der Ankerbolzen 27 in Fig. 3 von oben in das Gleitstück 34 eingesetzt werden kann. Wie in Fig. 3 weiterhin erkennbar ist, weist die dem Stützteil 50 zugewandte Seite des Gleitstücks 34 eine Ausnehmung 52 auf, in welche das Stützteil eingreift.In the manufacture of the armature assembly, the anchor plate 28 is first pushed onto the anchor bolt 27 until the anchor plate strikes a head 55 of the anchor bolt. The head 55 replaces the sickle plate 26 in Fig. 1 and 2 and serves as this as a stop for the anchor plate. Subsequently, the return spring 35 is pushed over the guide piece 65 of the anchor plate 28 until it rests with the end 61 of the anchor plate. Finally, the disc-shaped support member 50 is pushed so far onto the anchor bolt 27 that remains between the facing sides 57 and 58 of the support member 50 and the guide stub 65, the required Überhubweg d. Finally, the support member 50 is fixed in this position on the anchor bolt 27. The armature bolt 27, armature plate 28, return spring 35 and support member 50 existing anchor assembly is then inserted into the slider 34. In this case, the anchor bolt 27 is inserted into a central bore 68 of the slider 34. The slider 34 may already be clamped to the flange 36 in the housing 60 of the solenoid valve. As can also be seen in FIG. 3, deviating from the known arrangement shown in FIG. 2, no annular shoulder 33 is provided which limits the opening stroke of the anchor bolt by a stop on the slider 34. Instead, the opening stroke is limited by a stop of the anchor bolt head 55 on the electromagnet or a projection of the electromagnet. This is necessary so that the anchor bolt 27 in Fig. 3 can be inserted from above into the slider 34. As can also be seen in FIG. 3, the side of the slider 34 facing the support part 50 has a recess 52 in which the support part engages.

Wie bereits oben ausführlich beschrieben wurde, wirkt im eingebauten Zustand das untere Ende 67 des Ankerbolzens 27 auf das Steuerventilglied 25 ein, welches bei nicht erregtem Elektromagneten durch die Schließkraft der Feder 31 gegen den Ventilsitz 24 gedrückt wird. In dieser Lage ist die von der Ankerplatte 28 abgewandte Seite 59 des Stützteils 50 und die Schweißnaht 51 von der Innenwand der Ausnehmung 52 durch einen Spalt beabstandet. Durch diese Maßnahme wird beim Schließen des Magnetventils ein Anstoßen des mit dem Ankerbolzen bewegten Stützteils 50 an der Innenwand der Ausnehmung 52 verhindert, da ein solches Anstoßen zur Folge haben könnte, daß das Steuerventilglied 25 am Ventilsitz 24 nicht zur Anlage gelangt. Die Ausnehmung 52 ist daher so gestaltet, daß sie auch die Schweißnaht 51 aufnehmen kann und immer ein Stück von dieser beabstandet ist.As already described in detail above, in the installed state, the lower end 67 of the anchor bolt 27 acts on the control valve member 25, which is pressed against the valve seat 24 by the closing force of the spring 31 when the electromagnet is not energized. In this position, the side facing away from the anchor plate 28 side 59 of the support member 50 and the weld 51 is spaced from the inner wall of the recess 52 by a gap. By this measure, a collision of the moving with the anchor bolt support member 50 is prevented on closing the solenoid valve on the inner wall of the recess 52, since such an impact could result in that the control valve member 25 does not come to rest on the valve seat 24. The recess 52 is therefore designed so that it can also absorb the weld 51 and is always a piece away from this.

Wie weiterhin in Fig. 3 zu erkennen ist, entsteht durch die Annäherung der Unterseite 59 des Stützteils 50 an die Innenwand der zylindrischen Ausnehmung 52 des Gleitstücks 34 beim Schließen des Magnetventils ein hydraulischer Dämpfungsraum-Der zwischen dem Stützteil 50 und der Ausnehmung 52 komprimierte Kraftstoff, welcher nur seitlich durch den Spalt entweichen kann, dämpft in vorteilhafter Weise den Aufprall des Ankerbolzens 27 und des damit gekoppelten Steuerventilgliedes 25 auf den Ventilsitz 24.As can be further seen in Fig. 3, is formed by the approach of the bottom 59 of the support member 50 to the inner wall of the cylindrical recess 52 of the slider 34 when closing the solenoid valve, a hydraulic damping chamber-The between the support member 50 and the recess 52 compressed fuel which can only escape laterally through the gap, advantageously dampens the impact of the anchor bolt 27 and the control valve member 25 coupled therewith on the valve seat 24.

Sobald der Ankerbolzen 27 und das Steuerventilglied 25 am Ventilsitz 24 zur Anlage gelangt sind, gleitet die Ankerplatte 28 bedingt durch ihre träge Masse entgegen der Spannkraft der Rückholfeder 35 auf dem Ankerbolzen nach unten. Zwischen der dem Stützteil 50 zugewandten unteren Stirnseite 58 der Ankerplatte 28 und der der Ankerplatte 28 zugewandten Seite 57 des in diesem Moment nicht mehr bewegten Stützteils 50 bildet sich bedingt durch die Annäherung der Ankerplatte 28 ein weiterer hydraulischer Dämpfungsraum aus. Der in dem Spalt zwischen der Ankerplatte 28 und dem Stützteil 50 enthaltene Kraftstoff bringt eine Gegenkraft auf, welche der Bewegung der Ankerplatte entgegenwirkt. Die Ausgleichsbewegung der Ankerplatte 28 wird daher durch die Position des Stützteils auf dem Ankerbolzen 27 begrenzt, was zu einer Bewegungsumkehr nach vorheriger Dämpfung und damit zu einer Reduzierung des Nachschwingvorgangs führt.Once the anchor bolt 27 and the control valve member 25 have come to rest on the valve seat 24, the anchor plate 28 slides due to their inertial mass against the clamping force of the return spring 35 on the anchor bolt down. Between the support member 50 facing the lower end face 58 of the anchor plate 28 and the armature plate 28 facing side 57 of the momentarily no longer moving support member 50 forms due to the approach of the armature plate 28, a further hydraulic damping chamber. The included in the gap between the anchor plate 28 and the support member 50 Fuel brings a counter force, which counteracts the movement of the anchor plate. The compensating movement of the armature plate 28 is therefore limited by the position of the support member on the anchor bolt 27, which leads to a reversal of motion after previous damping and thus to a reduction of the Nachschwingvorgangs.

Fig. 4 zeigt ein weiteres Ausführungsbeispiel der Erfindung, welches sich von dem in Fig. 3 gezeigten Ausführungsbeispiel dadurch unterscheidet, daß das Stützteil 50 formschlüssig an dem Ankerbolzen 27 festgelegt ist. Das Stützteil 50 ist in diesem Ausführungsbeispiel als Sichelscheibe mit einer offenen Aussparung 56 ausgebildet, welche mit dem offenen Ende seitlich auf den Ankerbolzen aufgeschoben wird. Der Ankerbolzen 27 weist eine umlaufende Nut 54 auf, in welche die Innenkontur der Aussparung 56 der Sichelscheibe 50 formschlüssig eingreift. Die auf den Ankerbolzen aufgeschobene Sichelscheibe 50 ist senkrecht zum Ankerbolzen durch die Ausnehmung 52 des Gleitstücks 34 in ihrer Lage gesichert. Die Weglänge, um die der Ankerbolzen beim Öffnen und Schließen des Magnetventils in axialer Richtung verschoben wird, ist deutlich kleiner als die Tiefe der Ausnehmung 52, so daß die Sichelscheibe 50 nicht versehentlich aus ihrer Lage am Ankerbolzen 27 herausrutschen kann.Fig. 4 shows a further embodiment of the invention, which differs from the embodiment shown in Fig. 3 in that the support member 50 is positively fixed to the anchor bolt 27. The support member 50 is formed in this embodiment as a sickle disc with an open recess 56 which is pushed laterally with the open end on the anchor bolt. The anchor bolt 27 has a circumferential groove 54 into which the inner contour of the recess 56 of the sickle disc 50 engages positively. The deferred on the anchor bolt sickle plate 50 is secured perpendicular to the anchor bolt through the recess 52 of the slider 34 in position. The path length by which the anchor bolt is displaced in the axial direction when opening and closing the solenoid valve is significantly smaller than the depth of the recess 52, so that the sickle disc 50 can not accidentally slip out of its position on the anchor bolt 27.

Fig. 5 zeigt ein drittes Ausführungsbeispiel, welches eine Abwandlung des in Fig. 4 dargestellten Ausführungsbeispiels zeigt. Bei diesem Ausführungsbeispiel ist das Stützteil 50 wieder als Sichelscheibe ausgebildet, welche mit dem nicht gezeigten offenen Ende auf einen Abschnitt 72 des Ankerbolzens 27 aufgeschoben ist. Der Durchmesser des Abschnitts 72 ist kleiner ausgebildet als der Durchmesser des in dem Gleitstück 34 geführten Abschnitts des Ankerbolzens 27 und durch eine umlaufende Schulter 71 von diesem abgegrenzt. Die Rückholfeder 35 stützt sich mit dem einen Ende an der Ankerplatte 28 ab. Mit dem anderen Ende drückt die Rückholfeder 35 die Sichelscheibe 50 gegen die an dem Ankerbolzen 27 ausgebildete umlaufende Schulter 71. Die Ankerbaugruppe kann als vormontierte Baueinheit in das Gleitstück 34 eingesetzt werden, wobei der Ankerbolzen 27 in die Öffnung 68 eingeführt wird und die Sichelscheibe 50 wenigstens teilweise in die Ausnehmung 52 eindringt. Durch die Innenkontur der Ausnehmung 52 ist die Sichelscheibe 50 gegen ein seitliches Abrutschen von dem Ankerbolzen gesichert.Fig. 5 shows a third embodiment which shows a modification of the embodiment shown in Fig. 4. In this embodiment, the support member 50 is again formed as a sickle disc, which is pushed with the open end, not shown, on a portion 72 of the anchor bolt 27. The diameter of the portion 72 is formed smaller than the diameter of the guided in the slider 34 portion of the anchor bolt 27 and by a circumferential shoulder 71 delimited therefrom. The return spring 35 is supported at one end on the anchor plate 28. With the other end, the return spring 35 presses the Sickle disc 50 against the formed on the anchor bolt 27 circumferential shoulder 71. The anchor assembly can be used as a preassembled unit in the slider 34, wherein the anchor bolt 27 is inserted into the opening 68 and the sickle plate 50 at least partially penetrates into the recess 52. By the inner contour of the recess 52, the sickle plate 50 is secured against lateral slipping of the anchor bolt.

Claims (10)

  1. Solenoid valve for controlling an injection valve of an internal combustion engine, comprising an electromagnet (29), a movable armature with armature plate (28) and armature bolt (27), and a control-valve member (25), moved by means of the armature and cooperating with a valve seat (24), for opening and closing a fuel outflow duct (17) of a control-pressure space (14) of the injection valve (1), which armature plate (28), under the action of its inert mass, is mounted on the armature bolt (27) so as to be slidably displaceable in a closing direction of the control-valve member (25), counter to the tension force of a return spring (35) acting on the armature plate (28), and with a hydraulic damping device, by means of which an after-oscillation of the armature plate (28) during its dynamic displacement on the armature bolt (27) can be damped, characterized in that the return spring (35) is supported with its end (62) facing away from the armature plate (28) on a supporting part (50) arranged on the armature bolt (27) and moved by means of the armature bolt, which supporting part (50) at the same time forms part (57) of the damping device.
  2. Solenoid valve according to Claim 1, characterized in that the armature bolt (27), the armature plate (28), the return spring (35) and the supporting part (50) secured to the armature bolt are inserted as a preassembled armature subgroup into the solenoid-valve housing (60).
  3. Solenoid valve according to Claim 1 or 2, characterized in that the armature bolt (27) is mounted so as to be slidably displaceable in an orifice (68) of a sliding piece (34) arranged fixedly in the housing (60) of the solenoid valve (30).
  4. Solenoid valve according to Claim 3, characterized in that that side of the sliding piece (34) which faces the armature plate (28) has a recess (52) in which the supporting part (50) arranged on the armature bolt (27) is arranged, the outer contour of the supporting part (50) being spaced apart from the inner contour of the recess (52) by means of a gap.
  5. Solenoid valve according to Claim 4, characterized in that the fuel-filled gap between the supporting part (50) and the inner wall of the recess (52) forms a further damping device, by means of which an impingement of the control-valve member (25) coupled to the armature bolt (27) against the valve seat (24) can be damped.
  6. Solenoid valve according to one of Claims 1 to 5, characterized in that the supporting part (50) is of disc-shaped design.
  7. Solenoid valve according to one of Claims 1 to 6, characterized in that the supporting part (50) is secured to the armature bolt (27) by welding, adhesive bonding, soldering or shrink-fitting.
  8. Solenoid valve according to one of Claims 1 to 5, characterized in that the support part (50) is designed as a sickle-shaped disc.
  9. Solenoid valve according to Claim 8, characterized in that the supporting part is secured positively in a peripheral groove (54) of the armature bolt (27).
  10. Solenoid valve according to Claims 4 and 8, characterized in that the sickle-shaped disc (50) is pushed laterally onto a portion (72) of the armature bolt (27), the said portion not being guided in the sliding piece (34), and is pressed by means of the spring force of the return spring (35) against a shoulder (71) formed on the armature bolt (27) and is secured in the radial direction against slipping off the armature bolt by means of the inner contour of the recess (52).
EP01994586A 2000-11-23 2001-11-16 Electromagnetic valve for controlling an injection valve of an internal combustion engine Expired - Lifetime EP1259729B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10058007 2000-11-23
DE10058007 2000-11-23
DE10113008 2001-03-17
DE10113008A DE10113008A1 (en) 2000-11-23 2001-03-17 Solenoid valve for controlling an injection valve of an internal combustion engine
PCT/DE2001/004318 WO2002042632A2 (en) 2000-11-23 2001-11-16 Electromagnetic valve for controlling an injection valve of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1259729A2 EP1259729A2 (en) 2002-11-27
EP1259729B1 true EP1259729B1 (en) 2006-01-18

Family

ID=26007749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01994586A Expired - Lifetime EP1259729B1 (en) 2000-11-23 2001-11-16 Electromagnetic valve for controlling an injection valve of an internal combustion engine

Country Status (6)

Country Link
US (1) US6796543B2 (en)
EP (1) EP1259729B1 (en)
JP (1) JP4138481B2 (en)
DE (1) DE50108770D1 (en)
ES (1) ES2256333T3 (en)
WO (1) WO2002042632A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156368B2 (en) * 2004-04-14 2007-01-02 Cummins Inc. Solenoid actuated flow controller valve
DE102004035291A1 (en) * 2004-07-21 2006-03-16 Robert Bosch Gmbh Solenoid valve for an injector for common rail fuel injection systems with damping element
DE102005043352B9 (en) * 2004-09-13 2011-03-17 Guk Hyun Park Fuel injection system
DE102004046888A1 (en) * 2004-09-28 2006-03-30 Robert Bosch Gmbh Injector for fuel injection on an internal combustion engine
ATE503105T1 (en) * 2005-01-07 2011-04-15 Delphi Technologies Holding FUEL INJECTOR
DE102005053115A1 (en) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Optimized anchor group guidance for solenoid valves
ATE406517T1 (en) * 2005-12-23 2008-09-15 Delphi Tech Inc FUEL INJECTOR
DE102006045357A1 (en) * 2006-09-26 2008-04-03 Robert Bosch Gmbh Lock washer for a solenoid valve
DE102008000907A1 (en) * 2008-04-01 2009-10-08 Robert Bosch Gmbh Solenoid valve with multipart anchor without armature guide
DE602008005725D1 (en) * 2008-06-27 2011-05-05 Fiat Ricerche Fuel injection device with balanced measuring servo valve for an internal combustion engine
US8459577B2 (en) * 2008-07-08 2013-06-11 Caterpillar Inc. Decoupled valve assembly and fuel injector using same
DE602008005349D1 (en) * 2008-12-29 2011-04-14 Fiat Ricerche Fuel injection system with high repeatability and stability for an internal combustion engine
US8316826B2 (en) * 2009-01-15 2012-11-27 Caterpillar Inc. Reducing variations in close coupled post injections in a fuel injector and fuel system using same
EP2444651B1 (en) 2010-10-19 2013-07-10 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
US8689772B2 (en) 2011-05-19 2014-04-08 Caterpillar Inc. Fuel injector with telescoping armature overtravel feature
CN104066965B (en) * 2011-11-01 2017-05-10 康明斯公司 Fuel injector with injection control valve assembly
US8943906B2 (en) * 2011-12-22 2015-02-03 Caterpillar Inc. Solenoid force measurement system and method
DE102012202253A1 (en) * 2012-02-15 2013-08-22 Robert Bosch Gmbh Fuel injector
DE102012215448B3 (en) 2012-08-31 2013-12-12 Continental Automotive Gmbh Injector for force injection in an internal combustion engine
US9212639B2 (en) * 2012-11-02 2015-12-15 Caterpillar Inc. Debris robust fuel injector with co-axial control valve members and fuel system using same
US9644589B2 (en) * 2013-11-20 2017-05-09 Stanadyne Llc Debris diverter shield for fuel injector
EP2896813B1 (en) 2014-01-17 2018-01-10 Continental Automotive GmbH Fuel injection valve for an internal combustion engine
US9797342B2 (en) * 2014-10-28 2017-10-24 Caterpillar Inc. Port injection system for gaseous fuels
CN106894926B (en) * 2017-01-25 2018-12-18 中国第一汽车股份有限公司 The control valve of automatically controlled fuel injection valve
US11603815B1 (en) * 2021-11-04 2023-03-14 Standard Motor Products, Inc. Modular armature-needle assembly for fuel injectors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8729087D0 (en) * 1987-12-12 1988-01-27 Lucas Ind Plc Control valve
IT227711Y1 (en) * 1992-12-29 1997-12-15 Elasis Sistema Ricerca Fiat ELECTROMAGNETIC CONTROLLED METERING VALVE FOR A FUEL INJECTOR
DE19650865A1 (en) 1996-12-07 1998-06-10 Bosch Gmbh Robert magnetic valve
DE19708104A1 (en) 1997-02-28 1998-09-03 Bosch Gmbh Robert magnetic valve
IT1293432B1 (en) 1997-07-11 1999-03-01 Elasis Sistema Ricerca Fiat FUEL INJECTOR FOR INTERNAL COMBUSTION ENGINES.
US5986871A (en) 1997-11-04 1999-11-16 Caterpillar Inc. Method of operating a fuel injector
IT1296144B1 (en) * 1997-11-18 1999-06-09 Elasis Sistema Ricerca Fiat ADJUSTABLE DOSING VALVE FOR ONE FUEL INJECTOR FOR INTERNAL COMBUSTION ENGINES.
DE19751240A1 (en) 1997-11-19 1999-05-20 Itt Mfg Enterprises Inc Solenoid valve with valve closing element fitted at magnet armature

Also Published As

Publication number Publication date
ES2256333T3 (en) 2006-07-16
WO2002042632A2 (en) 2002-05-30
DE50108770D1 (en) 2006-04-06
WO2002042632A3 (en) 2002-08-08
US20040026540A1 (en) 2004-02-12
JP4138481B2 (en) 2008-08-27
JP2004514823A (en) 2004-05-20
EP1259729A2 (en) 2002-11-27
US6796543B2 (en) 2004-09-28

Similar Documents

Publication Publication Date Title
EP1259729B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1266135B1 (en) Electrovalve for controlling an injection valve in an internal combustion engine
EP0897469B1 (en) Magnetic valve
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP2220360B1 (en) Switching valve for injectors
EP2171258B1 (en) Control valve for a fuel injection valve
DE19650865A1 (en) magnetic valve
EP1342005B1 (en) Fuel injection system for internal combustion engines
EP1203151B1 (en) Two-stage electromagnetic valve for an injector of internal combustion engines
EP1387937B1 (en) Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations
EP1234112A1 (en) Fuel injection system for internal combustion engines
EP1390614B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1339969B1 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
EP1348074A1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
WO2002050424A2 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
WO2008049671A1 (en) Fuel injector
EP1256709B1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
DE10113008A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
WO2010052099A1 (en) Fuel injection valve
EP1208297B1 (en) Injection valve for a combustion engine
DE102008000697A1 (en) Switching valve for injectors, particularly for fuel injectors, has closing element, with which control chamber is pressure released for actuating injection valve unit
EP2229527B1 (en) On-off valve for injectors
DE102013225376A1 (en) Solenoid valve for a fuel injector
DE102009029231A1 (en) Fuel injector for injecting fuel into combustion chamber of internal combustion engine, comprises control valve arrangement for controlling nozzle needle
AT7767U1 (en) DEVICE FOR INFLUENCING THE MOVEMENT OF THE LOCKING ORGANIZER OF A DIFFERENTIAL PRESSURE-CONTROLLED VALVE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030208

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060118

REF Corresponds to:

Ref document number: 50108770

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256333

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101123

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170126

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108770

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130