EP1223308B1 - Turbomachine component - Google Patents

Turbomachine component Download PDF

Info

Publication number
EP1223308B1
EP1223308B1 EP01129169A EP01129169A EP1223308B1 EP 1223308 B1 EP1223308 B1 EP 1223308B1 EP 01129169 A EP01129169 A EP 01129169A EP 01129169 A EP01129169 A EP 01129169A EP 1223308 B1 EP1223308 B1 EP 1223308B1
Authority
EP
European Patent Office
Prior art keywords
flow
duct
cooling
deflection
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01129169A
Other languages
German (de)
French (fr)
Other versions
EP1223308A3 (en
EP1223308A2 (en
Inventor
Sacha Parneix
Martin Dr. Schnieder
Jens Prof. Dr. Von Wolfersdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1223308A2 publication Critical patent/EP1223308A2/en
Publication of EP1223308A3 publication Critical patent/EP1223308A3/en
Application granted granted Critical
Publication of EP1223308B1 publication Critical patent/EP1223308B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling

Definitions

  • the present invention relates to a component of a turbomachine, in particular a turbine blade, which has a cooling channel through which a cooling medium with at least one deflection formed by the wall of the cooling channel, through which the flow of the cooling medium is deflected from a first channel section into a downstream second channel section , Wherein in the region of the deflection at least one flow guide is arranged in the cooling channel, by which the cooling channel is divided in the deflection in an inner and an outer flow channel.
  • cooling air is introduced through the rotor shaft into the blade root and from there into guided inside the airfoil cooling ducts, in which it receives the heat of the turbine blade.
  • the heated cooling air is finally blown out through suitably arranged holes and slots in the turbine blade.
  • FIG. 1 An exemplary profile of the cooling air ducts in a gas turbine blade (according to Thalin et al., 1982: NASA CR 1656087) is shown in FIG.
  • the cooling air enters the turbine blade via the blade root 1, is guided via a cooling channel 2 to the rear side of the blade and finally blown out via corresponding opening slots 3.
  • a separate cooling channel 2a is additionally provided, via which a part of the cooling air is guided to the front and tip of the blade in order to exit there via corresponding openings 4.
  • the flow profile of the cooling air within the airfoil is indicated by the arrows.
  • FIG. 2 schematically shows a section of a cooling air channel 2 with a deflection 5, in which the recirculation areas, i. the areas which generate the high pressure loss are indicated by the reference numeral 6.
  • the flow path of the cooling medium is again shown by the arrows.
  • the recirculation areas are only slightly flowed through, so here there are areas of low heat transfer.
  • the object of the present invention is to specify a component of a turbomachine with improved cooling, in which the pressure loss is reduced in the region of the deflections of the cooling channel and a homogeneous heat transfer is achieved.
  • the proposed component of the turbomachine usually a turbine blade, has, in a known manner, a cooling channel, through which a cooling medium can flow, with at least one deflection formed by the wall of the cooling channel, through which the Flow of the cooling medium is deflected from a first channel portion in a downstream second channel section.
  • a flow-guiding element for example in the form of a deflection guide plate, is also arranged in the cooling channel in the present component, by which the cooling channel in the deflection is completely divided into an inner and an outer flow channel.
  • the present component is characterized in that the inner flow channel has a constriction in the flow cross-section.
  • constriction ie a constriction and subsequent re-expansion of the flow cross-section occurs a nozzle effect in the inner flow channel, which increases the heat transfer by the acceleration of the flow in an advantageous manner and simultaneously homogenized.
  • the constriction is preferably formed by a suitable shaping or contouring of the flow-guiding element and / or the wall of the cooling channel in the region of the deflection.
  • one or more outlet bores for the cooling medium are additionally formed in the wall of the cooling channel, via which a small part of the cooling medium can escape from the cooling channel into the external flow outside the component.
  • the proposed solution thus achieves a reduction in the pressure losses in the deflection while simultaneously homogenizing the heat transfer between the cooling medium and the wall material of the component.
  • the present embodiment is independent of the further configuration of the component, in particular independent of the rib configuration in the first and second channel section, hereinafter also referred to as inlet and outlet channel, as well as possible curves at the outer edge regions of the deflection. Such details that occur in a variety of gas turbine blades do not affect the beneficial effect of the present invention.
  • constriction of the flow cross-section in the inner flow channel of the deflection ie in the flow channel having the shorter flow path in the deflection, on the one hand by appropriate design of the flow, for example, by a thickening, and on the other hand by a corresponding Forming of the flow guide in the inner flow channel opposite channel wall can be achieved.
  • constriction can also be achieved by a corresponding shaping of both elements or the further wall regions surrounding the inner flow channel.
  • the thickness of the partition increases in the region of the deflection in order to achieve the corresponding constriction within the region due to this increase in thickness to cause internal flow channel.
  • the shape of the contour of this partition, which separates the outlet channel from the inlet channel, may be different in order to produce the said effect.
  • the flow guide which divides the cooling channel in the deflection in an inner and an outer flow channel is formed as a rule Strömungsleitblech.
  • This flow-guiding element preferably extends over a certain distance into the second channel section or outlet channel.
  • the distance by which the flow-guiding element extends into the second channel section preferably corresponds approximately to the distance between the flow-guiding element and the wall of the cooling channel opposite the inner flow channel at the inlet or outlet of the deflection.
  • the flow guiding element is preferably designed and arranged within the deflection such that approximately 25 to 45% of the mass flow of the flow entering the deflection from the inlet channel into the region within the flow guiding element, i. enters the inner flow channel, and the remainder outside the baffle, i. in the outer flow channel, flows.
  • the mass flow ratio corresponds to the inlet cross-sectional area ratio of the outer and inner flow channels.
  • the area ratio on the outlet channel should be approximately equal to that of the inlet channel, i. it should not deviate from this ratio by more than 20%.
  • the deflecting guide plate which is generally round in shape, may vary in thickness, or may itself be provided with guide devices.
  • the flow guide on means which prevent accumulation of dust or dirt in one of the flow channels. This can be achieved, for example, by providing the flow-guiding element with passage openings or otherwise configuring it in a suitable manner.
  • FIG. 3 shows a schematic representation of an embodiment of the embodiment of the cooling duct deflection 5 of the component of a turbomachine according to the present invention.
  • the flow direction of the cooling medium is again indicated in this figure by thick arrows.
  • the cooling medium flows via a first channel section 9 into the deflection 5 and from there into a second channel section 10.
  • the two channel sections 9 and 10 are separated from one another in this example by a partition wall 11, which is part of the cooling channel wall 12.
  • Such a cooling channel may be in a conventional gas turbine blade, as shown for example in FIG. 1, be arranged.
  • a shaped flow or Umlenkleitblech 8 is formed, which divides the cooling channel within the deflection 5 in a radially inner flow channel 13 and a radially outer flow channel 14. Both flow channels are completely separated by the Umlenkleitblech 8.
  • the deflecting baffle 8 also extends into the second channel section 10. The distance by which the Umlenkleitblech 8 protrudes into the second channel section 10, approximately corresponds to the width B 'and B "of the distance between the partition wall 11 and the inlet and outlet channel and the baffle. 8
  • the deflection baffle is designed in this example so that approximately 25 to 45% of the mass flow of the flow entering from the inlet channel 9 into the deflection 5 flows into the region of the inner flow channel 13 and the remainder flows into the region of the outer flow channel 14.
  • the mass flow ratio corresponds to the inlet area ratio A '/ B'.
  • the area ratio at the exhaust duct A "/ B" in this example corresponds to the area ratio at the intake port and should not deviate more than ⁇ 20% from A '/ B'.
  • the contouring is in this example by a thicker thickness of the partition 11 reached.
  • the linear increase in the thickness of the dividing wall 11 shown in FIG. 4 and the deflecting end or edge adapted to the rounded profile of the flow deflector 8 form a nozzle-like constriction at the inlet to the inner flow passage 13 and a correspondingly shaped widening at the outlet into the second passage section 10 reached.
  • a nozzle effect occurs, which increases the heat transfer between the cooling medium and the component in this area by the acceleration of the flow and thus simultaneously homogenized. Without such a constriction areas of low heat transfer within the baffle 8, ie in the inner flow channel 13 would occur.
  • the constriction of the cross-sectional area of the inner flow channel 13 should be about 5 to 20%.
  • the holes 15 are aligned depending on the location with their bore axes approximately in the direction of the flow lines of the flow of the cooling medium, so that - as an additional side effect - the discharge of small particles or dust in the cooling air through the holes 15 can take place.
  • FIG. 4 shows a possible arrangement of the holes 15 as well as a favorable orientation of the associated bore axes (indicated by the dot-dashed lines).
  • the illustration corresponds to a section through a gas turbine blade tip perpendicular to the viewing plane of FIG. 3.
  • FIG. 5 shows a further preferred embodiment of the invention shown in FIG.
  • the flow guide 8 has a number of holes 16, which help to avoid dust and dirt accumulation in the outer 14 or inner 13 flow channel.
  • Figure 6 shows another way to achieve this effect.
  • the flow guide is divided into a plurality of sub-elements, 8a and 8b, between which a gap is formed, which has the same effect as the holes 16 in Figure 5.

Description

Technisches AnwendungsgebietTechnical application

Die vorliegende Erfindung betrifft eine Komponente einer Strömungsmaschine, insbesondere eine Turbinenschaufel, die einen von einem Kühlmedium durchströmbaren Kühlkanal mit zumindest einer durch die Wandung des Kühlkanals gebildeten Umlenkung aufweist, durch die die Strömung des Kühlmediums von einem ersten Kanalabschnitt in einen stromab gelegenen zweiten Kanalabschnitt umgelenkt wird, wobei im Bereich der Umlenkung zumindest ein Strömungsleitelement im Kühlkanal angeordnet ist, durch das der Kühlkanal in der Umlenkung in einen inneren und einen äußeren Strömungskanal aufgeteilt wird.The present invention relates to a component of a turbomachine, in particular a turbine blade, which has a cooling channel through which a cooling medium with at least one deflection formed by the wall of the cooling channel, through which the flow of the cooling medium is deflected from a first channel section into a downstream second channel section , Wherein in the region of the deflection at least one flow guide is arranged in the cooling channel, by which the cooling channel is divided in the deflection in an inner and an outer flow channel.

Auf dem Gebiet der Strömungsmaschinen, insbesondere der Gasturbinen, werden zur Steigerung der Leistung zunehmend höhere Turbineneintrittstemperaturen angestrebt und verwirklicht. Die höheren Temperaturen werden einerseits durch Fortschritte in der Werkstofftechnik in Richtung höherer zulässiger Materialtemperaturen und andererseits durch eine verbesserte Kühlung der Komponenten erreicht, die den hohen Temperaturen ausgesetzt sind. Gerade im Bereich der Gasturbinen besteht hierbei die Notwendigkeit, die Kühlung für neue Generationen von Gasturbinenschaufeln weiter zu verbessern.In the field of turbomachines, in particular gas turbines, increasingly higher turbine inlet temperatures are sought and realized to increase the power. The higher temperatures are achieved on the one hand by advances in materials technology towards higher allowable material temperatures and on the other hand by improved cooling of the components which are exposed to high temperatures. Especially in the field of gas turbines, there is a need to further improve cooling for new generations of gas turbine blades.

Eine bekannte Kühlungsmethode für die Kühlung von Gasturbinenschaufeln ist die interne, konvektive Kühlung. Bei dieser Kühltechnik wird Kühlluft durch die Rotorwelle in den Schaufelfuß eingeleitet und von dort in innerhalb des Schaufelblattes verlaufenden Kühlkanälen geführt, in denen sie die Wärme der Turbinenschaufel aufnimmt. Die erwärmte Kühlluft wird schließlich durch geeignet angeordnete Bohrungen und Schlitze aus der Turbinenschaufel ausgeblasen.One known cooling method for gas turbine blade cooling is internal convective cooling. In this cooling technique, cooling air is introduced through the rotor shaft into the blade root and from there into guided inside the airfoil cooling ducts, in which it receives the heat of the turbine blade. The heated cooling air is finally blown out through suitably arranged holes and slots in the turbine blade.

Ein beispielhafter Verlauf der Kühlluftkanäle in einer Gasturbinenschaufel (nach: Thalin et al. 1982: NASA CR 1656087) ist in Figur 1 dargestellt. Die Kühlluft tritt über den Schaufelfuß 1 in die Turbinenschaufel ein, wird über einen Kühlkanal 2 bis zur Hinterseite der Schaufel geführt und schließlich über entsprechende Öffnungsschlitze 3 ausgeblasen. In dem in Figur 1 gezeigten Beispiel ist zusätzlich ein gesonderter Kühlkanal 2a vorgesehen, über den ein Teil der Kühlluft an die Vorderseite und Spitze der Schaufel geführt wird, um dort über entsprechende Öffnungen 4 auszutreten. Der Strömungsverlauf der Kühlluft innerhalb des Schaufelblattes ist durch die Pfeile angedeutet.An exemplary profile of the cooling air ducts in a gas turbine blade (according to Thalin et al., 1982: NASA CR 1656087) is shown in FIG. The cooling air enters the turbine blade via the blade root 1, is guided via a cooling channel 2 to the rear side of the blade and finally blown out via corresponding opening slots 3. In the example shown in FIG. 1, a separate cooling channel 2a is additionally provided, via which a part of the cooling air is guided to the front and tip of the blade in order to exit there via corresponding openings 4. The flow profile of the cooling air within the airfoil is indicated by the arrows.

Bei einem typischen Verlauf des Kühlluftkanals sind 180°-Umlenkungen 5 in der Nähe der Schaufelspitze oder des Schaufelfußes erforderlich, die die unterschiedlichen Abschnitte des Kühlluftkanals 2 miteinander verbinden. Im Bereich dieser Umlenkungen 5 entwickeln sich jedoch komplizierte Strömungsmuster mit Totwassergebieten, die zu großen Druckverlusten über die Länge des Kühlluftkanals 2 führen und somit eine erhöhte Pumpleistung für den Transport der Kühlluft erfordern. Weiterhin entstehen in diesen Bereichen Gebiete geringen Wärmeübergangs zur Turbinenschaufel, die zu lokalen Temperaturspitzen auf der Außenhaut der Turbinenschaufel führen.In a typical course of the cooling air channel 180 ° deflections 5 in the vicinity of the blade tip or the blade root are required, which connect the different sections of the cooling air channel 2 together. In the area of these deflections 5, however, complicated flow patterns develop with dead water areas, which lead to large pressure losses over the length of the cooling air channel 2 and thus require an increased pumping power for the transport of the cooling air. Furthermore arise in these areas Areas of low heat transfer to the turbine blade, which lead to local temperature peaks on the outer skin of the turbine blade.

Figur 2 zeigt hierzu schematisch einen Ausschnitt aus einem Kühlluftkanal 2 mit einer Umlenkung 5, in dem die Rezirkulationsgebiete, d.h. die Gebiete, die den hohen Druckverlust generieren, mit dem Bezugszeichen 6 gekennzeichnet sind. Der Strömungsverlauf des Kühlmediums ist wiederum über die Pfeile dargestellt. Neben den Druckverlust sind die Rezirkulationsgebiete nur gering durchströmt, weshalb hier Gebiete geringen Wärmeübergangs vorliegen.FIG. 2 schematically shows a section of a cooling air channel 2 with a deflection 5, in which the recirculation areas, i. the areas which generate the high pressure loss are indicated by the reference numeral 6. The flow path of the cooling medium is again shown by the arrows. In addition to the pressure loss, the recirculation areas are only slightly flowed through, so here there are areas of low heat transfer.

Stand der TechnikState of the art

Bei den bisher bekannten technischen Entwicklungen konnte zum Teil der Druckverlust über die Länge des Kühlkanals durch geeignete Anordnung von strömungsleitenden Elementen, wie sie beispielsweise in der Figur 1 zu erkennen sind, verringert werden.In the hitherto known technical developments, it has been possible in part to reduce the pressure loss over the length of the cooling channel by means of a suitable arrangement of flow-conducting elements, as can be seen, for example, in FIG.

Aus der US 5,073,086 ist hierbei eine Anordnung bekannt, bei der im Bereich der Umlenkung ein Strömungsleitelement im Kühlkanal angeordnet ist, durch das der Kühlkanal in der Umlenkung vollständig in einen inneren und einen äußeren Strömungskanal aufgeteilt wird. Durch diese vollständige Aufteilung der Strömung kann zwar der durch die Umlenkung hervorgerufene Druckverlust verringert werden, eine deutlich homogenere Abführung der Wärme aus dem Bereich der Umlenkung wird dadurch jedoch nicht erreicht. Vielmehr entstehen neue Gebiete geringen Wärmeübergangs im Bereich des als Umlenkleitblech ausgebildeten Strömungsleitelementes.An arrangement is known from US Pat. No. 5,073,086, in which a flow-guiding element is arranged in the cooling channel in the region of the deflection, by which the cooling channel in the deflection is completely divided into an inner and an outer flow channel. Although the pressure loss caused by the deflection can be reduced by this complete division of the flow, a much more homogeneous dissipation of the heat from the region of the deflection is not achieved. Rather, new areas of low heat transfer in the Area of the formed as Umlenkleitblech flow guide.

Aus der US 4,775,296 und der US 4,604,031 sind ebenfalls Anordnungen bekannt, bei denen im Umlenkbereich eines Kühlkanals einer Turbinenschaufel Strömungsleitelemente angeordnet sind. In der US 4,775,296 ist eine Anordnung einer Mehrzahl in Strömungsrichtung aufeinanderfolgend angeordneter Strömungsleitelemente erkennbar, welche den inneren Strömungskanal zusehends einengen. US 4,604,031 offenbart eine Anordnung, bei der der vom Strömungsleitelement abgetrennte radial innere Strömungskanal des Umlenkbereichs sich in Strömungsrichtung verjüngt.Arrangements are also known from US Pat. No. 4,775,296 and US Pat. No. 4,604,031, in which flow guide elements are arranged in the deflection region of a cooling channel of a turbine blade. In US 4,775,296 an arrangement of a plurality in the flow direction successively arranged flow guide can be seen, which narrow the inner flow channel visibly. No. 4,604,031 discloses an arrangement in which the radially inner flow channel of the deflection region separated from the flow guide element tapers in the flow direction.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Komponente einer Strömungsmaschine mit verbesserter Kühlung anzugeben, bei der im Bereich der Umlenkungen des Kühlkanals der Druckverlust verringert und ein homogener Wärmeübergang erreicht wird.The object of the present invention is to specify a component of a turbomachine with improved cooling, in which the pressure loss is reduced in the region of the deflections of the cooling channel and a homogeneous heat transfer is achieved.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe wird mit der Komponente gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Komponente sind Gegenstand der Unteransprüche.The object is achieved with the component according to claim 1. Advantageous embodiments of the component are the subject of the dependent claims.

Die vorgeschlagene Komponente der Strömungsmaschine, in der Regel eine Turbinenschaufel, weist in bekannter Weise einen von einem Kühlmedium durchströmbaren Kühlkanal mit zumindest einer durch die Wandung des Kühlkanals gebildeten Umlenkung auf, durch die die Strömung des Kühlmediums von einem ersten Kanalabschnitt in einen stromab gelegenen zweiten Kanalabschnitt umgelenkt wird. Im Bereich dieser Umlenkung ist auch bei der vorliegenden Komponente ein Strömungsleitelement, beispielsweise in Form eines Umlenkleitbleches, im Kühlkanal angeordnet, durch das der Kühlkanal in der Umlenkung vollständig in einen inneren und einen äußeren Strömungskanal aufgeteilt wird. Die vorliegende Komponente zeichnet sich dadurch aus, dass der innere Strömungskanal eine Einschnürung im Strömungsquerschnitt aufweist. Durch diese Einschnürung, d.h. eine Verengung und anschließende erneute Aufweitung des Strömungsquerschnittes, tritt ein Düseneffekt im inneren Strömungskanal auf, der den Wärmeübergang durch die Beschleunigung der Strömung in vorteilhafter Weise erhöht und gleichzeitig homogenisiert. Die Einschnürung wird vorzugsweise durch eine geeignete Formgebung bzw. Konturierung des Strömungsleitelementes und/oder der Wandung des Kühlkanals im Bereich der Umlenkung gebildet. Im äußeren Strömungskanal der Umlenkung sind zusätzlich ein oder mehrere Auslassbohrungen für das Kühlmedium in der Wandung des Kühlkanals ausgebildet, über die ein geringer Teil des Kühlmediums aus dem Kühlkanal in die externe Strömung außerhalb der Komponente austreten kann. Diese so genannte Kühlluftausblasung - im Falle von Luft als Kühlmedium - trägt in Verbindung mit den bereits erläuterten Merkmalen nochmals zu einer deutlichen Verbesserung des Wärmeübergangs bei, so dass eine Komponente erhalten wird, bei der einerseits keine lokalen Temperaturspitzen im Bereich der Umlenkung mehr auftreten und andererseits hohe Mittelwerte des Wärmeüberganges auf das Kühlmedium erreicht werden. Durch die Anordnung dieser Auslassbohrungen in Eckbereichen der Umlenkung, in denen ansonsten Totwassergebiete auftreten, wird gerade dort ein deutlich verbesserter Wärmeübergang erreicht. Die Bohrungen führen zum Auflösen der Totwassergebiete und tragen somit zu einer Homogenisierung des Wärmeüberganges bei. Weiterhin können diese Bohrungen den gewünschten Nebeneffekt herbeiführen, dass Staubpartikel im Kühlmedium durch die Bohrungen ausgeblasen werden. Zur Verstärkung dieses Nebeneffektes werden die Längsachsen der Bohrungen in etwa in Richtung der lokalen Stromlinien der Strömung des Kühlmediums im Kühlkanal ausgerichtet.The proposed component of the turbomachine, usually a turbine blade, has, in a known manner, a cooling channel, through which a cooling medium can flow, with at least one deflection formed by the wall of the cooling channel, through which the Flow of the cooling medium is deflected from a first channel portion in a downstream second channel section. In the region of this deflection, a flow-guiding element, for example in the form of a deflection guide plate, is also arranged in the cooling channel in the present component, by which the cooling channel in the deflection is completely divided into an inner and an outer flow channel. The present component is characterized in that the inner flow channel has a constriction in the flow cross-section. By this constriction, ie a constriction and subsequent re-expansion of the flow cross-section occurs a nozzle effect in the inner flow channel, which increases the heat transfer by the acceleration of the flow in an advantageous manner and simultaneously homogenized. The constriction is preferably formed by a suitable shaping or contouring of the flow-guiding element and / or the wall of the cooling channel in the region of the deflection. In the outer flow channel of the diversion, one or more outlet bores for the cooling medium are additionally formed in the wall of the cooling channel, via which a small part of the cooling medium can escape from the cooling channel into the external flow outside the component. This so-called Kühlluftausblasung - in the case of air as a cooling medium - contributes in conjunction with the features already explained again to a significant improvement in heat transfer, so that a component is obtained in which on the one hand no local temperature peaks in the area of the deflection occur more and on the other hand high average values of the heat transfer to the cooling medium can be achieved. Due to the arrangement of these outlet holes in corner regions of the deflection, in which otherwise dead water areas occur, a significantly improved heat transfer is achieved there. The holes lead to the dissolution of the dead water areas and thus contribute to a homogenization of the heat transfer. Furthermore, these holes can bring about the desired side effect that dust particles in the cooling medium are blown through the holes. To enhance this side effect, the longitudinal axes of the bores are aligned approximately in the direction of the local streamlines of the flow of the cooling medium in the cooling channel.

Durch die vorgeschlagene Lösung wird somit eine Verringerung der Druckverluste in der Umlenkung bei gleichzeitiger Homogenisierung des Wärmeübergangs zwischen dem Kühlmedium und dem Wandmaterial der Komponente erreicht. Die vorliegende Ausgestaltung ist unabhängig von der weiteren Konfiguration der Komponente, insbesondere unabhängig von der Rippenkonfiguration im ersten und zweiten Kanalabschnitt, im Folgenden auch als Ein- und Auslasskanal bezeichnet, sowie von möglichen Rundungen an den äußeren Randbereichen der Umlenkung. Derartige Einzelheiten, die bei einer Vielzahl von Gasturbinenschaufeln auftreten, haben keinen Einfluss auf die vorteilhafte Wirkung der vorliegenden Erfindung.The proposed solution thus achieves a reduction in the pressure losses in the deflection while simultaneously homogenizing the heat transfer between the cooling medium and the wall material of the component. The present embodiment is independent of the further configuration of the component, in particular independent of the rib configuration in the first and second channel section, hereinafter also referred to as inlet and outlet channel, as well as possible curves at the outer edge regions of the deflection. Such details that occur in a variety of gas turbine blades do not affect the beneficial effect of the present invention.

Die für die bestmögliche Funktion der vorliegenden Erfindung erforderliche Einschnürung des Strömungsquerschnittes im inneren Strömungskanal der Umlenkung, d.h. in dem Strömungskanal, der den kürzeren Strömungsweg in der Umlenkung aufweist, kann einerseits durch entsprechende Gestaltung des Strömungsleitelementes, beispielsweise durch eine Verdickung, und andererseits durch eine entsprechende Ausformung der dem Strömungsleitelement im inneren Strömungskanal gegenüberliegenden Kanalwandung erreicht werden. Selbstverständlich kann die Einschnürung auch durch eine entsprechende Ausformung beider Elemente oder der weiteren den inneren Strömungskanal umgebenden Wandbereiche erreicht werden.The required for the best possible function of the present invention constriction of the flow cross-section in the inner flow channel of the deflection, ie in the flow channel having the shorter flow path in the deflection, on the one hand by appropriate design of the flow, for example, by a thickening, and on the other hand by a corresponding Forming of the flow guide in the inner flow channel opposite channel wall can be achieved. Of course the constriction can also be achieved by a corresponding shaping of both elements or the further wall regions surrounding the inner flow channel.

In einer vorteilhaften Ausgestaltung, bei der der erste und zweite Kanalabschnitt annähernd parallel beidseitig einer Trennwand verlaufen, welche eine Seite der Wandung des Kühlkanals bildet, nimmt die Dicke der Trennwand im Bereich der Umlenkung zu, um durch diese Zunahme der Dicke die entsprechende Einschnürung innerhalb des inneren Strömungskanals hervorzurufen. Die Form der Konturierung dieser Trennwand, die den Auslasskanal vom Einlasskanal trennt, kann unterschiedlich ausfallen, um den genannten Effekt herbeizuführen.In an advantageous embodiment, in which the first and second channel section extend approximately parallel on both sides of a partition which forms one side of the wall of the cooling channel, the thickness of the partition increases in the region of the deflection in order to achieve the corresponding constriction within the region due to this increase in thickness to cause internal flow channel. The shape of the contour of this partition, which separates the outlet channel from the inlet channel, may be different in order to produce the said effect.

Das Strömungsleitelement, das den Kühlkanal in der Umlenkung in einen inneren und einen äußeren Strömungskanal aufteilt, ist in der Regel als Strömungsleitblech ausgebildet. Vorzugsweise erstreckt sich dieses Strömungsleitelement über eine gewisse Distanz bis in den zweiten Kanalabschnitt bzw. Auslasskanal hinein. Die Distanz, um den das Strömungsleitelement in den zweiten Kanalabschnitt hineinreicht, entspricht vorzugsweise in etwa dem Abstand zwischen dem Strömungsleitelement und der im inneren Strömungskanal gegenüberliegenden Wandung des Kühlkanals am Einlass oder Auslass der Umlenkung. Durch die Verlängerung des Strömungsleitelementes wird eine Verlängerung der Aufteilung des Kühlkanals in einen inneren und einen äußeren Strömungskanal erreicht. Am Austritt des inneren Strömungskanals kann eine leichte Einschnürung oder Aufweitung des Kanalquerschnitts vorgesehen sein, so dass die Wand des Strömungsleitelementes in diesem Bereich nicht unbedingt parallel zur Kanalwand des zweiten Kanalabschnittes bzw. Auslasskanals verlaufen muss.The flow guide, which divides the cooling channel in the deflection in an inner and an outer flow channel is formed as a rule Strömungsleitblech. This flow-guiding element preferably extends over a certain distance into the second channel section or outlet channel. The distance by which the flow-guiding element extends into the second channel section preferably corresponds approximately to the distance between the flow-guiding element and the wall of the cooling channel opposite the inner flow channel at the inlet or outlet of the deflection. By extending the flow guide an extension of the distribution of the cooling channel is achieved in an inner and an outer flow channel. At the outlet of the inner flow channel a slight constriction or widening of the channel cross-section may be provided, so that the wall of the flow-guiding element does not necessarily have to run parallel to the channel wall of the second channel section or outlet channel in this area.

Das Strömungsleitelement ist vorzugsweise derart ausgebildet und innerhalb der Umlenkung angeordnet, dass ca. 25 bis 45% des Massenstroms der aus dem Einlasskanal in die Umlenkung eintretenden Strömung in den Bereich innerhalb des Strömungsleitelementes, d.h. in den inneren Strömungskanal, eintritt und der Rest ausserhalb des Leitbleches, d.h. im äußeren Strömungskanal, fließt. Das Massenstromverhältnis entspricht dem Eintrittsquerschnittsflächenverhältnis des äußeren und inneren Strömungskanals. Das Flächenverhältnis am Auslasskanal sollte in etwa demjenigen des Einlasskanals entsprechen, d.h. es sollte nicht um mehr als 20% von diesem Verhältnis abweichen. Selbstverständlich kann das in der Regel rund ausgeformte Umlenkleitblech in der Dicke variieren, oder auch selbst wieder mit Leitvorrichtungen versehen sein.The flow guiding element is preferably designed and arranged within the deflection such that approximately 25 to 45% of the mass flow of the flow entering the deflection from the inlet channel into the region within the flow guiding element, i. enters the inner flow channel, and the remainder outside the baffle, i. in the outer flow channel, flows. The mass flow ratio corresponds to the inlet cross-sectional area ratio of the outer and inner flow channels. The area ratio on the outlet channel should be approximately equal to that of the inlet channel, i. it should not deviate from this ratio by more than 20%. Of course, the deflecting guide plate, which is generally round in shape, may vary in thickness, or may itself be provided with guide devices.

In einer weiteren Vorzugsvariante der Erfindung weist das Strömungsleitelement Mittel auf, welche eine Ansammlung von Staub oder Schmutz in einem der Strömungskanäle verhindern. Dies kann beispielsweise erreicht werden, indem das Strömungsleitelement mit Durchtrittsöffnungen versehen oder sonst auf geeignete Weise ausgestaltet wird.In a further preferred variant of the invention, the flow guide on means which prevent accumulation of dust or dirt in one of the flow channels. This can be achieved, for example, by providing the flow-guiding element with passage openings or otherwise configuring it in a suitable manner.

Durch die Summe der in den Weiterbildungen angeführten Maßnahmen bzw. Merkmale, d.h. durch die Optimierung der Geometrie und durch die Kühlluftausblasung an kritischen Stellen, wird eine optimierte Kühlung im Bereich des Umlenkelementes bei minimiertem Druckverlust erreicht. Die einzelnen Maßnahmen sind hierbei unabhängig von der konkreten Geometrie der Komponente und des Kühlkanals und lassen sich beispielsweise auch bei Kühlkanalumlenkungen einsetzen, deren Umlenkwinkel ungleich 180° beträgt. Weiterhin ist die vorliegende Erfindung weder auf Turbinenschaufeln noch auf gasgekühlte Komponenten beschränkt, sondern lässt sich insbesondere auch bei Komponenten mit anderen strömenden Kühlmedien einsetzen.By the sum of the measures or features cited in the developments, ie by the optimization of the geometry and by the Kühlluftausblasung At critical points, optimized cooling in the area of the deflection element is achieved with minimized pressure loss. The individual measures are independent of the specific geometry of the component and the cooling channel and can be used for example in Kühlkanalumlenkungen whose deflection is not equal to 180 °. Furthermore, the present invention is not limited to turbine blades or gas-cooled components, but can also be used in particular with components with other flowing cooling media.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die vorliegende Erfindung wird nachfolgend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen nochmals kurz erläutert. Hierbei zeigen

Fig. 1
einen Schnitt durch eine Turbinenschaufel mit Kühlkanalumlenkungen gemäß dem Stand der Technik;
Fig. 2
eine schematische Darstellung der Ablösegebiete innerhalb einer Kühlkanalumlenkung;
Fig. 3
schematisch ein Ausführungsbeispiel für die erfindungsgemäße Ausgestaltung einer Kühlkanalumlenkung;
Fig. 4
ein Beispiel für eine Anordnung zusätzlicher Auslassbohrungen in der Kühlkanalumlenkung;
Fig. 5
die in Figur 3 dargestellte Konfiguration, mit Massnahmen zur Vermeidung einseitigen von Staub- und Schmutzansammlungen;
Fig. 6
Eine Ausgestaltung des Strömungsleitelementes zur Vermeidung von einseitigen Staub- und Schmutzansammlungen.
The present invention will be briefly explained again below without limiting the general inventive idea using an exemplary embodiment in conjunction with the drawings. Show here
Fig. 1
a section through a turbine blade with Kühlkanalverlenkungen according to the prior art;
Fig. 2
a schematic representation of the detachment areas within a cooling duct deflection;
Fig. 3
schematically an embodiment of the inventive design of a cooling duct deflection;
Fig. 4
an example of an arrangement of additional Outlet holes in the cooling duct deflection;
Fig. 5
the configuration shown in Figure 3, with measures to prevent one-sided dust and dirt accumulation;
Fig. 6
An embodiment of the flow guide to avoid unilateral dust and dirt accumulation.

Wege zur Ausführung der ErfindungWays to carry out the invention

Die Figuren 1 und 2 wurden bereits in Zusammenhang mit der Beschreibung des Standes der Technik erläutert, um die dort auftretende Problematik des Druckverlustes und der Gebiete geringen Wärmeübergangs innerhalb der Umlenkung eines Kühlkanals aufzuzeigen.Figures 1 and 2 have already been explained in connection with the description of the prior art in order to show the problems occurring there of the pressure loss and the areas of low heat transfer within the deflection of a cooling channel.

Figur 3 zeigt in schematisierter Darstellung ein Ausführungsbeispiel für die Ausgestaltung der Kühlkanalumlenkung 5 der Komponente einer Strömungsmaschine gemäß der vorliegenden Erfindung. Die Strömungsrichtung des Kühlmediums ist in dieser Figur wiederum durch dicke Pfeile angedeutet. Das Kühlmedium strömt über einen ersten Kanalabschnitt 9 in die Umlenkung 5 und von dort in einen zweiten Kanalabschnitt 10. Die beiden Kanalabschnitte 9 und 10 werden in diesem Beispiel durch eine Trennwand 11 voneinander abgetrennt, die Bestandteil der Kühlkanalwandung 12 ist. Ein derartiger Kühlkanal kann in einer üblichen Gasturbinenschaufel, wie sie beispielsweise in der Fig. 1 dargestellt ist, angeordnet sein.Figure 3 shows a schematic representation of an embodiment of the embodiment of the cooling duct deflection 5 of the component of a turbomachine according to the present invention. The flow direction of the cooling medium is again indicated in this figure by thick arrows. The cooling medium flows via a first channel section 9 into the deflection 5 and from there into a second channel section 10. The two channel sections 9 and 10 are separated from one another in this example by a partition wall 11, which is part of the cooling channel wall 12. Such a cooling channel may be in a conventional gas turbine blade, as shown for example in FIG. 1, be arranged.

Innerhalb der Umlenkung 5 ist ein geformtes Strömungs- bzw. Umlenkleitblech 8 ausgebildet, das den Kühlkanal innerhalb der Umlenkung 5 in einen radial inneren Strömungskanal 13 und einen radial äußeren Strömungskanal 14 aufteilt. Beide Strömungskanäle werden durch das Umlenkleitblech 8 vollständig voneinander getrennt. Im vorliegenden Beispiel erstreckt sich das Umlenkleitblech 8 zudem bis in den zweiten Kanalabschnitt 10 hinein. Die Strecke, um die das Umlenkleitblech 8 in den zweiten Kanalabschnitt 10 hineinragt, entspricht etwa der Breite B' bzw. B" des Abstandes zwischen der Trennwand 11 und am Einlass- bzw. Auslasskanal und dem Leitblech 8.Within the deflection 5, a shaped flow or Umlenkleitblech 8 is formed, which divides the cooling channel within the deflection 5 in a radially inner flow channel 13 and a radially outer flow channel 14. Both flow channels are completely separated by the Umlenkleitblech 8. In the present example, the deflecting baffle 8 also extends into the second channel section 10. The distance by which the Umlenkleitblech 8 protrudes into the second channel section 10, approximately corresponds to the width B 'and B "of the distance between the partition wall 11 and the inlet and outlet channel and the baffle. 8

Das Umlenkleitblech ist in diesem Beispiel so ausgelegt, dass ca. 25 bis 45% des Massenstroms der aus dem Einlasskanal 9 in die Umlenkung 5 eintretenden Strömung in den Bereich des inneren Strömungskanals 13 und der Rest in den Bereich des äußeren Strömungskanals 14 fließt. Das Massenstromverhältnis entspricht hierbei dem Eintrittsflächenverhältnis A'/B'. Das Flächenverhältnis am Auslasskanal A"/B" entspricht in diesem Beispiel dem Flächenverhältnis am Einlasskanal und sollte nicht mehr als ± 20% von A'/B' abweichen.The deflection baffle is designed in this example so that approximately 25 to 45% of the mass flow of the flow entering from the inlet channel 9 into the deflection 5 flows into the region of the inner flow channel 13 and the remainder flows into the region of the outer flow channel 14. The mass flow ratio corresponds to the inlet area ratio A '/ B'. The area ratio at the exhaust duct A "/ B" in this example corresponds to the area ratio at the intake port and should not deviate more than ± 20% from A '/ B'.

Im vorliegenden Beispiel ist die Trennwand 11 im Bereich der Umlenkung 5, d.h. an ihrem umlenkungsseitigen Ende derart konturiert, dass sie zu einer Einschnürung des Strömungsquerschnitts im inneren Strömungskanal 13 führt. Die Konturierung wird in diesem Beispiel durch eine stärkere Dicke der Trennwand 11 erreicht. Durch die in der Figur 4 dargestellte lineare Zunahme der Dicke der Trennwand 11 und gleichzeitig an den abgerundeten Verlauf des Strömungsleitbleches 8 angepassten umlenkungsseitigen Ende bzw. Rand wird eine düsenartige Verengung am Einlass zum inneren Strömungskanal 13 und eine entsprechend geformte Aufweitung am Auslass in den zweiten Kanalabschnitt 10 erreicht. Durch diese Ausgestaltung tritt ein Düseneffekt auf, der den Wärmeübergang zwischen dem Kühlmedium und der Komponente in diesem Bereich durch die Beschleunigung der Strömung erhöht und damit gleichzeitig homogenisiert. Ohne eine derartige Einschnürung würden Gebiete geringen Wärmeüberganges innerhalb des Leitbleches 8, d.h. im inneren Strömungskanal 13 auftreten. Die Einschnürung der Querschnittsfläche des inneren Strömungskanals 13 sollte etwa 5 bis 20% betragen.In the present example, the partition wall 11 in the region of the deflection 5, that is contoured at its deflection-side end such that it leads to a constriction of the flow cross section in the inner flow channel 13. The contouring is in this example by a thicker thickness of the partition 11 reached. The linear increase in the thickness of the dividing wall 11 shown in FIG. 4 and the deflecting end or edge adapted to the rounded profile of the flow deflector 8 form a nozzle-like constriction at the inlet to the inner flow passage 13 and a correspondingly shaped widening at the outlet into the second passage section 10 reached. By this configuration, a nozzle effect occurs, which increases the heat transfer between the cooling medium and the component in this area by the acceleration of the flow and thus simultaneously homogenized. Without such a constriction areas of low heat transfer within the baffle 8, ie in the inner flow channel 13 would occur. The constriction of the cross-sectional area of the inner flow channel 13 should be about 5 to 20%.

Zusätzlich zu dem Strömungsleitblech 8 und der durch die Trennwand 11 verursachten Einschnürung des inneren Strömungskanals 13 sind in der vorliegenden Figur 3 zwei Bohrungen 15 in den Eckbereichen der Umlenkung 5 zu erkennen. Durch diese zusätzlichen Bohrungen 15 wird ein geringer Teil der Kühlluft in die externe Strömung ausserhalb der Komponente ausgeblasen. Dies führt in vorteilhafter Weise zu einer Beschleunigung der Strömung im Bereich der Ablöse- bzw. Totwassergebiete an den äußeren Ecken, und erzwingt eine konvektive Durchströmung der Totwassergebiete 6 mit Kühlmittel, so, dass sich die Totwassergebiete füllen, was zu einer weiteren Homogenisierung des Wärmeüberganges beiträgt.In addition to the flow guide plate 8 and the constriction caused by the partition 11 of the inner flow channel 13, two bores 15 in the corner regions of the deflection 5 can be seen in the present FIG. Through these additional holes 15, a small portion of the cooling air is blown into the external flow outside the component. This advantageously leads to an acceleration of the flow in the region of the detachment or dead water areas at the outer corners, and forces a convective flow through the dead water areas 6 with coolant, so that the dead water areas fill, which contributes to a further homogenization of the heat transfer ,

Vorzugsweise werden die Bohrungen 15 je nach örtlicher Lage mit ihren Bohrungsachsen ungefähr in Richtung der Stromlinien der Strömung des Kühlmediums ausgerichtet, so dass - als zusätzlicher Nebeneffekt - die Austragung von kleinen Partikeln bzw. Staub in der Kühlluft über die Bohrungen 15 erfolgen kann.Preferably, the holes 15 are aligned depending on the location with their bore axes approximately in the direction of the flow lines of the flow of the cooling medium, so that - as an additional side effect - the discharge of small particles or dust in the cooling air through the holes 15 can take place.

Figur 4 zeigt hierzu eine mögliche Anordnung der Bohrungen 15 sowie eine günstige Orientierung der zugehörigen Bohrungsachsen (durch die strichpunktierten Linien angedeutet). Die Darstellung entspricht einem Schnitt durch eine Gasturbinenschaufelspitze senkrecht zur Betrachtungsebene der Figur 3.FIG. 4 shows a possible arrangement of the holes 15 as well as a favorable orientation of the associated bore axes (indicated by the dot-dashed lines). The illustration corresponds to a section through a gas turbine blade tip perpendicular to the viewing plane of FIG. 3.

Figur 5 zeigt eine weitere bevorzugte Ausgestaltung der in Figur 3 dargestellten Erfindung. Das Strömungsleitelement 8 weist eine Anzahl Bohrungen 16 auf, welche dazu beitragen, Staub- und Schmutzansammlungen im äusseren 14 oder inneren 13 Strömungskanal zu vermeiden. Figur 6 zeigt eine weitere Möglichkeit, diesen Effekt zu erzielen. Das Strömungsleitelement ist dabei in mehrere Teilelemente, 8a und 8b, unterteilt, zwischen denen ein Spalt ausgebildet ist, welcher die gleiche Wirkung hat wie die Bohrungen 16 in Figur 5.FIG. 5 shows a further preferred embodiment of the invention shown in FIG. The flow guide 8 has a number of holes 16, which help to avoid dust and dirt accumulation in the outer 14 or inner 13 flow channel. Figure 6 shows another way to achieve this effect. The flow guide is divided into a plurality of sub-elements, 8a and 8b, between which a gap is formed, which has the same effect as the holes 16 in Figure 5.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Schaufelfußblade
2,2a2,2a
Kühlkanalcooling channel
33
Austrittsschlitze, HinterkantenausblasungOutlet slits, trailing edge blowing
44
Austrittsöffnungenoutlet openings
55
Umlenkungredirection
66
Totwasser- bzw. Rezirkulationsgebiet, Gebiet mit hohem DruckverlustDead water or recirculation area, area with high pressure loss
88th
Strömungsleitendes Element, Strömungs- bzw. UmlenkleitblechFlow-conducting element, flow or deflection guide plate
8a, 8b8a, 8b
Teilelementepartial elements
99
Erster, stromaufwärtiger, KanalabschnittFirst, upstream, channel section
1010
Zweiter, stromabwärtiger, KanalabschnittSecond, downstream, channel section
1111
Trennwandpartition wall
1212
KühlkanalwandungKühlkanalwandung
1313
Innerer StrömungskanalInner flow channel
1414
Äußerer StrömungskanalOuter flow channel
1515
Auslassbohrungenoutlet bores
1616
Bohrung, Durchtrittsöffnung :Bore, opening:

Claims (11)

  1. Component of a turbomachine, in particular a turbine blade, which has a cooling duct (2) through which a cooling medium is capable of flowing, with at least one deflection (5) which is formed by the wall (11, 12) of the cooling duct (2) and by which the flow of the cooling medium is deflected from the first duct portion (9)into a downstream second duct portion (10), at least one flow guide element (8) being arranged in the cooling duct (2) in the region of the deflection (5), the cooling duct (2) being divided in the deflection (5) into an inner (13) and an outer (14) flow duct by means of the said flow guide element, the inner flow duct (13) having a contraction in the flow cross section and at least one outlet bore (15) being formed in the wall (12) of the cooling duct (2) in corner regions of the deflection in the outer flow duct (14), characterized in that the at least one outlet bore (15) is arranged such that, via the latter, a small part of the cooling medium can emerge from the cooling duct (2) into an external flow outside the component.
  2. Component according to Claim 1, characterized in that the contraction is brought about the shaping of or contouring of the flow guide element (8) and/or of the wall (11, 12) of the cooling duct (2).
  3. Component according to Claim 2, characterized in that the first (9) and the second (10) duct portion run on both sides of a partition (11) as part of the wall (11, 12) of the cooling duct, the thickness of the partition (11) increasing in the region of the deflection (5), in order to bring about the contraction of the flow cross section in the inner flow duct (13).
  4. Component according to one of Claims 1 to 3, characterized in that the flow guide element (8) extends into the second duct portion (10).
  5. Component according to Claim 4, characterized in that the flow guide element (8) extends into the second duct portion (10) over a distance which corresponds approximately to the distance between the flow guide element (8) and that wall (11) of the cooling duct (2) which lies opposite in the inner flow duct (13) at the transition of the first (9) or second (10) duct portion to the deflection (5).
  6. Component according to one of Claims 1 to 5, characterized in that the flow guide element (8) is arranged in the cooling duct (2) in such a way that 25 to 45% of the mass flow of cooling medium entering via the first duct portion (9) flows through the inner flow duct (13).
  7. Component according to one of Claims 1 to 6, characterized in that the flow guide element (8) and/or the wall (11, 12) of the cooling duct (2) are/is designed in such a way that they bring about a contraction of the flow cross section in the inner flow duct (13) of 5 - 20%.
  8. Component according to one of the preceding claims, characterized in that the outlet bores (15) extend at least approximately in the direction of local flow lines of the flow of the cooling medium.
  9. Component according to one of the preceding claims, characterized in that the outlet bores (15) are dimensioned in such a way that they allow a discharge of dust from the cooling medium.
  10. Component according to one of the preceding claims, characterized in that the outlet bores (15) are arranged in dead-water zones (6) of the cooling duct which have a low throughflow, and there ensure that a convective cooling-medium throughflow is maintained.
  11. Component according to one of the preceding claims, characterized in that the flow guide element (8) has suitable means (16) and/or a suitable configuration for avoiding dust accumulation on one side.
EP01129169A 2000-12-16 2001-12-08 Turbomachine component Expired - Lifetime EP1223308B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10062906 2000-12-16
DE10062906 2000-12-16
DE10126215 2001-05-30
DE10126215 2001-05-30

Publications (3)

Publication Number Publication Date
EP1223308A2 EP1223308A2 (en) 2002-07-17
EP1223308A3 EP1223308A3 (en) 2004-01-02
EP1223308B1 true EP1223308B1 (en) 2007-01-24

Family

ID=26007995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129169A Expired - Lifetime EP1223308B1 (en) 2000-12-16 2001-12-08 Turbomachine component

Country Status (3)

Country Link
US (1) US6595750B2 (en)
EP (1) EP1223308B1 (en)
DE (1) DE50111949D1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1456505A1 (en) * 2001-12-10 2004-09-15 ALSTOM Technology Ltd Thermally loaded component
US6939102B2 (en) * 2003-09-25 2005-09-06 Siemens Westinghouse Power Corporation Flow guide component with enhanced cooling
US7118325B2 (en) 2004-06-14 2006-10-10 United Technologies Corporation Cooling passageway turn
US7377747B2 (en) * 2005-06-06 2008-05-27 General Electric Company Turbine airfoil with integrated impingement and serpentine cooling circuit
US20070227706A1 (en) * 2005-09-19 2007-10-04 United Technologies Corporation Compact heat exchanger
US7445432B2 (en) * 2006-03-28 2008-11-04 United Technologies Corporation Enhanced serpentine cooling with U-shaped divider rib
CL2007002026A1 (en) 2006-07-13 2008-06-06 Los Angeles Biomed Res Inst COMPOSITION THAT INCLUDES AT LEAST AN IRONING COMBINING COMPOUND AND AT LEAST AN ANTIFUNGIC AGENT; AND METHOD FOR THE TREATMENT OR PREVENTION OF A FUNGICAL CONDITION.
US7625178B2 (en) * 2006-08-30 2009-12-01 Honeywell International Inc. High effectiveness cooled turbine blade
US7967563B1 (en) * 2007-11-19 2011-06-28 Florida Turbine Technologies, Inc. Turbine blade with tip section cooling channel
ES2542064T3 (en) 2008-03-28 2015-07-30 Alstom Technology Ltd Guide blade for a gas turbine and gas turbine with a guide blade of this class
WO2010107500A1 (en) * 2009-03-19 2010-09-23 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Vaccine compositions and methods for treatment of mucormycosis and other fungal diseases
US8562286B2 (en) * 2010-04-06 2013-10-22 United Technologies Corporation Dead ended bulbed rib geometry for a gas turbine engine
GB201102719D0 (en) * 2011-02-17 2011-03-30 Rolls Royce Plc Cooled component for the turbine of a gas turbine engine
US20120315139A1 (en) * 2011-06-10 2012-12-13 General Electric Company Cooling flow control members for turbomachine buckets and method
US8807945B2 (en) 2011-06-22 2014-08-19 United Technologies Corporation Cooling system for turbine airfoil including ice-cream-cone-shaped pedestals
US8985940B2 (en) 2012-03-30 2015-03-24 Solar Turbines Incorporated Turbine cooling apparatus
US9228439B2 (en) * 2012-09-28 2016-01-05 Solar Turbines Incorporated Cooled turbine blade with leading edge flow redirection and diffusion
US20140093388A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with leading edge flow deflection and division
US9551226B2 (en) 2013-10-23 2017-01-24 General Electric Company Turbine bucket with endwall contour and airfoil profile
US9670784B2 (en) 2013-10-23 2017-06-06 General Electric Company Turbine bucket base having serpentine cooling passage with leading edge cooling
US9638041B2 (en) 2013-10-23 2017-05-02 General Electric Company Turbine bucket having non-axisymmetric base contour
US9528379B2 (en) 2013-10-23 2016-12-27 General Electric Company Turbine bucket having serpentine core
US9797258B2 (en) * 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
EP3271553A1 (en) 2015-03-17 2018-01-24 Siemens Energy, Inc. Turbine blade with a non-constraint flow turning guide structure
EP3277931B1 (en) 2015-04-03 2020-08-19 Siemens Aktiengesellschaft Turbine blade trailing edge with low flow framing channel
WO2016163980A1 (en) * 2015-04-06 2016-10-13 Siemens Energy, Inc. Turbine airfoil with flow splitter enhanced serpentine channel cooling system
US10107108B2 (en) 2015-04-29 2018-10-23 General Electric Company Rotor blade having a flared tip
DE102015112643A1 (en) * 2015-07-31 2017-02-02 Wobben Properties Gmbh Wind turbine rotor blade
US10119406B2 (en) * 2016-05-12 2018-11-06 General Electric Company Blade with stress-reducing bulbous projection at turn opening of coolant passages
WO2018143997A1 (en) * 2017-02-03 2018-08-09 Siemens Aktiengesellschaft Turbine blade
CN111247313B (en) * 2017-08-24 2023-01-31 西门子能源全球两合公司 Turbine rotor airfoil and corresponding method for reducing pressure loss in cavity within blade
US10641106B2 (en) 2017-11-13 2020-05-05 Honeywell International Inc. Gas turbine engines with improved airfoil dust removal
US10533454B2 (en) 2017-12-13 2020-01-14 Pratt & Whitney Canada Corp. Turbine shroud cooling
US11274569B2 (en) 2017-12-13 2022-03-15 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10815791B2 (en) * 2017-12-13 2020-10-27 Solar Turbines Incorporated Turbine blade cooling system with upper turning vane bank
US10570773B2 (en) * 2017-12-13 2020-02-25 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10502093B2 (en) * 2017-12-13 2019-12-10 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10655476B2 (en) * 2017-12-14 2020-05-19 Honeywell International Inc. Gas turbine engines with airfoils having improved dust tolerance
DE102019125779B4 (en) * 2019-09-25 2024-03-21 Man Energy Solutions Se Blade of a turbomachine
US11319839B2 (en) 2019-12-20 2022-05-03 Raytheon Technologies Corporation Component having a dirt tolerant passage turn
US11365645B2 (en) 2020-10-07 2022-06-21 Pratt & Whitney Canada Corp. Turbine shroud cooling

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474532A (en) * 1981-12-28 1984-10-02 United Technologies Corporation Coolable airfoil for a rotary machine
US4775296A (en) * 1981-12-28 1988-10-04 United Technologies Corporation Coolable airfoil for a rotary machine
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
GB9014762D0 (en) 1990-07-03 1990-10-17 Rolls Royce Plc Cooled aerofoil vane
GB9402442D0 (en) 1994-02-09 1994-04-20 Rolls Royce Plc Cooling air cooled gas turbine aerofoil
JP3137527B2 (en) 1994-04-21 2001-02-26 三菱重工業株式会社 Gas turbine blade tip cooling system
US5498126A (en) * 1994-04-28 1996-03-12 United Technologies Corporation Airfoil with dual source cooling
DE19921644B4 (en) * 1999-05-10 2012-01-05 Alstom Coolable blade for a gas turbine

Also Published As

Publication number Publication date
EP1223308A3 (en) 2004-01-02
US6595750B2 (en) 2003-07-22
US20020176776A1 (en) 2002-11-28
DE50111949D1 (en) 2007-03-15
EP1223308A2 (en) 2002-07-17

Similar Documents

Publication Publication Date Title
EP1223308B1 (en) Turbomachine component
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
EP2304185B1 (en) Turbine vane for a gas turbine and casting core for the production of such
DE602005000449T2 (en) Cooling with microchannels for a turbine blade
EP2087206B1 (en) Turbine blade
CH697919A2 (en) Turbine blade having a concave cooling passage and arranged therein opposite swirling currents causing turbulators.
EP1126136B1 (en) Turbine blade with air cooled tip shroud
EP2611990B1 (en) Turbine blade for a gas turbine
DE2241194A1 (en) FLOW MACHINE SHOVEL WITH A WING-SHAPED CROSS-SECTIONAL PROFILE AND WITH A NUMBER OF COOLING DUCTS RUNNING IN THE LENGTH DIRECTION OF THE SHOVEL
EP1267039A1 (en) Cooling configuration for an airfoil trailing edge
WO2011029420A1 (en) Deflecting device for a leakage flow in a gas turbine, and gas turbine
EP1789653A1 (en) Rotor for a power plant
EP2087207B1 (en) Turbine blade
EP1292760B1 (en) Configuration of a coolable turbine blade
EP1165939A1 (en) Cast gas turbine blade that is flown through by a coolant and device and method for producing a distribution chamber for the gas turbine blade
EP1288435B1 (en) Turbine blade with at least one cooling orifice
EP1192333A1 (en) Component that can be subjected to hot gas, especially a turbine blade
EP1138878B1 (en) Gas turbine component
EP1644614A1 (en) Cooled blade for a gas turbine
EP3232001A1 (en) Rotor blade for a turbine
DE19926949B4 (en) Cooling arrangement for blades of a gas turbine
DE10236676A1 (en) Turbine paddle, for a gas turbine, has at least one cooling passage opening with a structured cooling air flow linking the inner zone with the outer surface
WO2018010918A1 (en) Turbine vane having strut-shaped cooling fins
DE102010044819B4 (en) Axial flow turbine and method of removing flow from an axial flow turbine
DE19813779B4 (en) Arrangement for cooling the platforms of guide vanes of a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040527

17Q First examination report despatched

Effective date: 20040805

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: TURBOMACHINE COMPONENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50111949

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111949

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 16

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111949

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111949

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171208