EP1159578B1 - Procede de simulation de tir - Google Patents

Procede de simulation de tir Download PDF

Info

Publication number
EP1159578B1
EP1159578B1 EP00912514A EP00912514A EP1159578B1 EP 1159578 B1 EP1159578 B1 EP 1159578B1 EP 00912514 A EP00912514 A EP 00912514A EP 00912514 A EP00912514 A EP 00912514A EP 1159578 B1 EP1159578 B1 EP 1159578B1
Authority
EP
European Patent Office
Prior art keywords
target
weapon
information
tube
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00912514A
Other languages
German (de)
English (en)
Other versions
EP1159578A1 (fr
Inventor
Hermann JÜTTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
STN Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STN Atlas Elektronik GmbH filed Critical STN Atlas Elektronik GmbH
Publication of EP1159578A1 publication Critical patent/EP1159578A1/fr
Application granted granted Critical
Publication of EP1159578B1 publication Critical patent/EP1159578B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/265Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying the shape or the direction of the emitted beam

Definitions

  • the invention relates to a method for simulating a shot guns firing ballistic projectiles in the Preamble of claim 1 defined genus.
  • a known method for shooting or shooting simulation (DE 37 20 595 Al) is based on a so-called two-way simulation, first with a sight aimed at a target Distance to the target is measured, then that with a Retroreflector illuminated and lasered target the light reflected by the retroreflector on one position-resolving, electro-optical device on the Gun barrel is pictured.
  • the one determined from the illustration The location of the retroreflector is matched with the location of the hit simulated shot compared based on the measured Distance, the type of weapon and ammunition used and the Essay that the hypothetical projectile path with the Line of sight forms, is calculated. Is the location of the Retroreflector matches the target location, one Hit message triggered by the barrel weapon, both agree does not match, an error message is generated.
  • Matches the laser beam generating the scan pattern correct alignment of the barrel weapon on the retroreflector of a target located in the solid angle sector, so the laser beam reflects in itself, and the returning laser beam reaches a weapon side arranged optical receiver.
  • An assigned to the recipient Calculator uses stored data to calculate how the type of ammunition, from the target distance and the vertical Angular offset, the resulting at this target distance Projectile trajectory and the target attachment angle of the barrel weapon. This target gauging is repeated over and over again determined data target dimension, target distance and the data derived from this, the flight flight time and the target attachment angle are stored in a memory.
  • a Shot release button is connected to the computer. Your Pressing causes the target to stop measuring and the most recently saved data from memory read out and a laser beam emitted to the target be modulated.
  • the transferred and demodulated data calculated a virtual projectile impact and the target's own motion by measuring the Direction of reception of the laser beam and driving speed measured during the floor flight time and based on the position of the target at the end of the floor flight time and hit detection on the virtual floor impact met.
  • the invention has for its object a method for Shooting simulation of the type mentioned to indicate that significantly lower manufacturing costs for this Method realizing shot simulator enables and thereby a sufficient one for use in combat training areas Accuracy guaranteed.
  • the process according to the invention has the advantage that only one only optical transmission path from the shooter to the target is required and thus the simulator at high Sensitivity gets by with low laser power.
  • the Checking whether the shooter has set up his gun in this way has a goal that is reflected in an estimated Distance, has been hit or not, will be in the Target based on the data of the set gun carried out what is easily possible, since weapon and target continuously measure their position and target the position of the Gun is fired with firing.
  • the procedure allows a realistic handling of the weapon, the Canting of the weapon, the type of ammunition, the type of weapon, the Set azimuth and elevation angles (lead and Essay) in the hypothetical or virtual Meeting point determination are taken into account.
  • the method according to the invention can be used both in barrel weapons, such as Armored cannons, in which the setting of the attachment of the Gun should be practiced, as well as with barrel weapons, like Bazookas, which are based on the estimate of the advance arrives, be applied. To do this, only the Panning direction of the transmitted light from the vertical to one horizontal plane and the maximum swivel angle be adjusted.
  • the Transmitted light generated as a result of laser pulses, and the Weapon information is modulated on every laser pulse.
  • Laser pulses have the advantage, despite the high pulse level only to have a low energy density and thus with the required eye safety of the laser one for the shooting simulation to transfer sufficient power to the target.
  • the laser pulses can be relatively immune to interference modulate, so that the weapon information reliably to Target to be transferred.
  • FIG. 1 and 2 is an exercise scenario in one Combat training area in side view and top view shown, in which a with a barrel weapon (tank cannon) 11th equipped main battle tank 10 one of several in the terrain 12 targets 13, 14, 15.
  • the battle parfzer 10 selected target 13 is shown schematically and can For example, be an enemy battle tank whose Direction of movement in Fig. 2 is indicated by arrow 16.
  • the Goals 14 and 15 are fixed and for example buildings or natural obstacles.
  • a shooting simulator is used for the target practice, one of the gun 17 associated component 17 and one component 18 assigned to target 13.
  • 3 Gun-side component 17 shown in the block diagram is packaged in a housing 19 which is attached to the barrel weapon 11 is fixed and thus the pivoting movement of the tank cannon Azimuth and elevation, as well as any tilting of the Armored tank and thus the barrel weapon 11 when driving off-road participates.
  • An optical transmitter 20 is in the housing 19 arranged in the vertical direction, which is a narrow it bundles laser light as a result of at constant Timed pulse emits laser pulses.
  • a The optical transmitter 20 is pivoted by means of a Stepper motor 21 causes the same as the optical transmitter 20 is controlled by a central control unit 22.
  • the Central control unit 22 is on the input side with a Tilting sensor 22, the tilting of the tub of the Main battle tank 10 and thus the tube weapon 11 measures with one Inclination sensor 24, the elevation angle ⁇ of the gun 11, so the attachment of the barrel weapon 11 compared to the Horizontal, measures and connected to an interface 25, about which the central control unit 22 information about the Ammunition type, the type of weapon, the current position of the Main battle tank 10 in the field and the triggering of the simulated Shot are fed.
  • the interface 25 is over an entrance 27 with an arranged on the main battle tank 10, satellite-based positioning system 26, e.g.
  • the optical transmitter 22 is still one of the central Control unit 22 containing controlled optical modulator, of the information coming in via the interface 25 Weapon and ammunition type and the measured values of the Tilt sensor 23 and the inclination sensor 24 on each of the optical transmitter 20 emitted laser pulse modulated.
  • the target-side shown in Fig. 4 in the block diagram Component 18 of the shot simulator has an optical one Receiving device 31 with a variety of optical Sensors 32, e.g. B. laser diodes, on the incoming Convert laser pulses into electrical signals. If the goal is 13, as assumed, also a main battle tank, so they form Light detectors or optical sensors 32 - as this for the shooting main battle tank 10 is shown in Fig. 1 - in their multitude one horizontally revolving on the tank pan Belt. All optical sensors 32 are with one Signal processing 33 connected, which contains a demodulator and from the received laser pulses with them transferred weapon information (weapon position, weapon type, Bullet type, barrel weapon attachment) and eliminated Microprocessor 34 supplies.
  • optical Sensors 32 e.g. B. laser diodes
  • the microprocessor 34 receives from one attached to target 13, satellite-based Positioning system 35 (GPS or GDPS) additionally the current position of the target 13. Using the The weapon information and the target position determines the Microprocessor 34 a virtual impact of the projectile after putting one back through the gun alignment itself resulting hypothetical projectile trajectory as well as the distance between barrel weapon 11 and target 13. The microprocessor 34 leads a comparison of projectile impact and target range and if matched, drives a hit display 36 which an optical, acoustic or electromagnetic Sends hit signal. To determine the virtual Bullet hits are in the microprocessor 34 e.g.
  • the gunner usually uses a Gun 11 connected visor the gun 11 on the target 13 and poses based on the distance he estimates to target 13 a specific essay (elevation angle ⁇ ) for the gun 11 a. If goal 13 is a moving target is, as indicated in Fig. 2 - Consider a reserve for the barrel weapon 11 and the gun 11 by an azimuth angle ⁇ with respect to Set direct line of sight to goal 13.
  • the Input 30 given a trigger pulse to the interface 25 what the control unit 22 causes the optical transmitter 20 to activate.
  • the optical transmitter 20 transmits a sequence of Laser pulses out, going down in the vertical plane is successively pivoted.
  • the first laser pulses are emitted in a direction parallel to Pipe axis runs. Every laser pulse becomes information regarding the current position and orientation of the Pipe weapon, in the present case with respect to the Inclination sensor 24 supplied elevation angle ⁇ and the Canting sensor 23 supplied tilting angle, as well as the used weapon and projectile type modulated.
  • To any time of the vertical pivoting movement of the Laser transmitter 20 hits at least one laser pulse the light detectors or optical sensors 32 at the target 13.
  • This laser pulse is from the optical receiving device 31 received and in the units described processed in terms of signaling.
  • goal 13 is now the virtual bullet impact from the with the laser pulse transmitted weapon information (elevation angle ⁇ , Cant angle, weapon type, weapon ammunition) determined as well from the position of the weapon 11 and transmitted by the laser pulse the known target position the distance between target 13 and Gun 11 determined. Bullet impact and If the target distance is the same, a hit is displayed.
  • goal 14 is also included the target-side component 18 of the shot simulator according to FIG. 3 equipped.
  • goal 14 the same calculation as in Goal 13 accomplished. In this case, however, is the distance the target 14 to the gun 11 much smaller than that Removal of the virtual projectile impact from the barrel weapon 11, so that no hits are displayed.
  • To reduce sensors 32 could be the laser light of the optical Transmitter 20 are spread in the horizontal direction, so that the optical sensors 32 at the target 13 at greater distances can be arranged from each other. To be the same Ensure sensitivity of the optical sensors 32 however, the laser power would have to be increased by the now larger area at destination 13 with the same Illuminate energy density.
  • the optical Transmitter 20 emitted laser pulses additionally one Information about the time of transmission of each individual Laser pulse modulated.
  • the time specified for the transmission Information is the time between the triggering of the simulated shot and sending the respective one Laser pulse.
  • This information is provided in a central control unit 22 integrated counter removed, the started when the shot was fired and at a constant frequency is clocked.
  • the target 13 can now from the received laser pulse transmitted information about its Send time and the weapon information the distance between target and barrel weapon. With that, too If GPS reception is disturbed, hit positions are determined and the Target practice continues. In the case of intact GPS reception can the due to the known positions of Gun 11 and Target 13 controlled certain target range become.
  • FIG. 5 shows an exercise scenario in which the Firing a Panzerfaust 37 at a moving target tank 38 should be practiced.
  • the Panzerfaust 37 represents the barrel weapon 11 and the target tank 38 represents the target 13, which is in the direction Arrow 16 in Fig. 5 moves.
  • This exercise is about correct setting of a reserve of the gun 11, so a suitable azimuth angle ⁇ so that the moving Target 13 (target tank 38) after firing Panzerfaust 37 at the right time is hit; because the other Panzerfaust 37 missile armor-piercing ammunition required a certain flight time to the distance to destination 13 bridge in which the target 13 is one of his Speed corresponding distance from his at Shot trigger position taken has moved on.
  • the method for firing simulation described above is now modified in such a way that the optically closely bundled transmission light, i.e. the pulse train of laser pulses, is now pivoted in a horizontal plane (azimuth) at a constant speed and each laser pulse also has information regarding the barrel weapon axis in each pivoting position related, current swivel angle ⁇ i is modulated.
  • the laser pulses are sent at a constant clock rate (transmission frequency).
  • information regarding the instantaneous azimuthal pivot angle ⁇ i relating to the barrel weapon axis 39 is additionally modulated onto each laser pulse in each pivot position of the optical transmitter 20.
  • the pivot angles ⁇ 1 to ⁇ 4 are shown schematically in FIG. 5 for explanation.
  • the transmitter 20 is in turn integrated in the weapon-side component 17 of the shooting simulator, which is firmly connected to the barrel weapon 11, here combined with the sight of the apelooka 37 to form a structural unit. Since the optical axis of the transmitter 20 is somewhat offset vertically with respect to the barrel weapon axis 39 due to the attachment of the weapon-side component 17 to the barrel weapon 11, the reference line 39 'for the pivoting angle is offset by the same amount above the barrel weapon axis 39. The reference line 39' for however, the swivel angle information always runs in the center of the barrel weapon parallel to the barrel weapon axis 39. The range of the pivot angle of the optical transmitter 20 is limited to the same azimuth range on the right and left of the center of the barrel weapon, i.e.
  • the barrel weapon axis 39 which is at least as large as that for combating a cross-gun Gun barrel axis 39 moving target 13 required, taking into account the flight duration of the projectile fired at the moving target 13 projectile of the gun 11.
  • the swiveling movement of the optical transmitter 20 always takes place from one of the boundary edges of the swivel angle region, in the example of FIG. 5 from the left, outer boundary edge of the swivel angle region.
  • movable target 13 is the same equipped target component 18 of the shot simulator, as shown in Fig. 4 in the block diagram, wherein the number of optical sensors 32 of the optical Receiving device 31 on two to three per long side of the Target 13 is limited, and the optical sensors 32 in Turret area of the target tank 38 are arranged.
  • the laser pulses in be spread vertically so that with everyone Laser pulse of the target armor 38 in its maximum height up to Top of the tower is illuminated.
  • the target component 18 of the shot simulator is now the same evaluation of the information transmitted in the laser pulses, as already described above, with the only difference that the hit detection previously used target distance using the Swivel angle information and the known own movement of the Target 13 is corrected.
  • This correction takes place in the Way that calculates the target distance for a target position the target 13 moving at the target speed after going through one from the swivel angle information and the current distance resulting from the target distance would occupy within the storey flight time, which in turn is calculated from the weapon information.
  • This Swivel angle information corresponds to that with the barrel weapon 11 set lead ⁇ in azimuth, and if correct The setting of the lead ⁇ is correct from the Weapon information calculated bullet impact with the corrected target range and a hit is made displayed.
  • additional information about its transmission time is modulated onto the laser pulses emitted by the optical transmitter 20, as described above, the transmission of additional angle information ⁇ i about the transmission direction to the target 13 can be dispensed with in the shot simulator described in FIG This information about the respective transmission time of the laser pulses can be used to derive the angle information about the transmission direction.

Claims (15)

  1. Procédé de simulation de tir avec des armes à canon tirant des projectiles balistiques, comprenant les étapes suivantes qui se déroulent après le déclenchement du tir :
    a) une cible (13) est éclairée par un pivotement successif dans un seul plan dune lumière émise en faisceau étroit qui est diffusée par un émetteur optique (20) associé à l'arme à canon,
    b) la lumière émise permet de transmettre vers la cible (13) des informations modulées par superposition exclusivement spécifiques à l'arme, à savoir des informations sur la position momentanée et l'alignement vertical de la lunette dite de visée de l'arme à canon (11) ainsi que sur la nature de l'arme et du projectile,
    c) dans une cible (13) équipée d'un dispositif récepteur optique (31) pour la lumière émise et d'un système de détermination de la position (35) assisté par satellite pour détecter la position de la cible,
    c1) un impact virtuel du projectile est déterminé à partir des informations spécifiques à l'arme reçues et démodulées,
    c2) la distance entre la cible (13) et l'arme à canon (11) est déterminée à partir des informations spécifiques à l'arme reçues et démodulées sur la position de l'arme à canon (11) et à partir de la position de la cible obtenue du système de détermination de la position (35) et
    c3) un coup portant est confirmé ou infirmé à partir de la comparaison de la distance entre la cible (13) et l'arme à canon (11) d'une part, et de la distance entre l'impact virtuel du projectile et l'arme à canon (11) d'autre part.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un calage de l'arme à canon (11) par rapport à une ligne de référence verticale et/ou horizontale est mesuré et les valeurs mesurées sont modulées par superposition à la lumière émise sous la forme d'informations spécifiques à l'arme supplémentaires et que les informations relatives au calage de l'arme sont utilisées dans la cible (13) lors de la détermination de l'impact virtuel du projectile.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les trajectoires des projectiles sont enregistrées dans la cible (13) avec un paramétrage de la lunette de visée (ε) ainsi que de la nature de l'arme et du projectile et que la trajectoire concernée est recherchée avec les informations spécifiques à l'arme reçues et démodulées pour ensuite lire l'impact virtuel du projectile.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la lumière émise pivote vers le bas dans le plan vertical à partir d'un alignement parallèle à l'arme à canon (11).
  5. Procédé selon la revendication 4, caractérisé en ce que le dispositif de réception optique (31) de la cible (13) de préférence mobile est équipé d'une sangle fixée à la cible (13) et l'entourant dans le sens horizontal, comprenant une pluralité de détecteurs photoélectriques (32) espacés les uns des autres.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la lumière émise est élargie de manière optique dans le sens horizontal.
  7. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la lumière émise pivote à une vitesse constante dans un plan horizontal et des informations relatives à l'angle de pivotement momentané de l'arme à canon (11) sont modulées par superposition à la lumière émise dans chaque position de pivotement et que l'éloignement de la cible utilisé dans la cible pour confirmer ou infirmer l'impact est tout d'abord corrigé à l'aide de l'information de pivotement et du mouvement propre connu de la cible (13).
  8. Procédé selon la revendication 7, caractérisé en ce que la correction est effectuée de telle manière que l'éloigneme de la cible est calculé pour une position de la cible que prend la cible (13) qui se déplace à la vitesse de la cible après avoir parcouru un trajet résultant de l'information de l'angle de pivotement et de l'éloignement momentané de la cible pendant la durée de la trajectoire résultant des informations sur l'arme.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que la plage de pivotement de la lumière émise est limitée à un même angle azimutal à droite et à gauche du centre de l'arme à canon, lequel correspond au moins à un angle de jet maximum de l'arme à canon (11) dans l'azimut qui tient compte de la durée de vol maximale du projectile tiré lors de l'attaque d'une cible qui se déplace à une vitesse maximale transversalement par rapport à la direction du tir, et qu'en cas de déclenchement du tir simulé, le pivotement du sens d'émission s'effectue à partir de l'un des bords de délimitation de la plage de pivotement.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la lumière émise est générée sous la forme d'une série d'impulsions laser et les informations spécifiques à l'arme sont modulées par superposition à chaque impulsion laser.
  11. Procédé selon la revendication 10, caractérisé en ce que les impulsions laser sont émises avec un rapport cyclique constant.
  12. Procédé selon l'une des revendications 7 à 11, caractérisé en ce qu'une information relative à son moment d'émission est en plus modulée par superposition à chaque impulsion laser et que, en l'absence de transmission des informations sur l'angle de pivotement, les informations sur l'angle de pivotement sont déduites dans la cible (13) à partir des informations sur les moments d'êmission.
  13. Procédé selon la revendication 12, caractérisé en ce que l'information sur le moment d'émission fournie est le temps entre le déclenchement du tir simulé et l'émission de l'impulsion laser correspondante.
  14. Procédé selon la revendication 13, caractérisé en ce que les informations sur le moment d'émission sont prélevées à la sortie d'un compteur cadencé à une fréquence constante.
  15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que les positions de l'arme à canon (11) et de la cible (13) sont respectivement détectées à l'aide d'un système de détermination de la position assisté par satellite installé sur celles-ci, par exemple un GPS ou un DGPS.
EP00912514A 1999-03-18 2000-02-26 Procede de simulation de tir Expired - Lifetime EP1159578B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19912093 1999-03-18
DE19912093A DE19912093A1 (de) 1999-03-18 1999-03-18 Verfahren zur Schußsimulation
PCT/EP2000/001620 WO2000057123A1 (fr) 1999-03-18 2000-02-26 Procede de simulation de tir

Publications (2)

Publication Number Publication Date
EP1159578A1 EP1159578A1 (fr) 2001-12-05
EP1159578B1 true EP1159578B1 (fr) 2003-04-16

Family

ID=7901427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00912514A Expired - Lifetime EP1159578B1 (fr) 1999-03-18 2000-02-26 Procede de simulation de tir

Country Status (5)

Country Link
EP (1) EP1159578B1 (fr)
AU (1) AU754674B2 (fr)
CA (1) CA2366526C (fr)
DE (2) DE19912093A1 (fr)
WO (1) WO2000057123A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972881A1 (fr) 2007-03-22 2008-09-24 JENOPTIK Laser, Optik, Systeme GmbH Système optique et procédé de reconstitution de la trajectoire d'un projectile à l'aide d'un rayon laser

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050691A1 (de) 2000-10-13 2002-05-02 Stn Atlas Elektronik Gmbh Verfahren und Vorrichtung zur Schussimulation
DE602004010880T2 (de) 2004-03-26 2008-12-11 Saab Ab System und Verfahren zur Waffenwirkung-Simulation
DK1737146T3 (en) * 2005-06-22 2016-01-18 Saab Ab System and method for transmitting information
FR2931228B1 (fr) * 2008-05-16 2013-02-15 Gdi Simulation Procede de discrimination lors de simulation de tirs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114000C2 (de) * 1981-04-07 1983-04-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Schießsimulations- und -übungsverfahren für ballistische Munition und bewegliche Ziele
US4682953A (en) * 1985-07-09 1987-07-28 L B & M Associates, Inc. Combined arms effectiveness simulation system
DE3631421A1 (de) * 1986-09-16 1988-03-17 Philips Patentverwaltung Verfahren zur trefferermittlung bei schusssimulation sowie anordnung zur durchfuehrung des verfahrens
DE3720595A1 (de) * 1987-04-27 1988-11-10 Precitronic Verfahren und vorrichtung zur schusssimulation
DE4026207A1 (de) * 1990-08-18 1992-02-20 Telefunken Systemtechnik Verfahren zur darstellung der gefechtsfelddaten von mindestens zwei an einer militaerischen uebung teilnehmenden fahrzeugen
US5382958A (en) * 1992-12-17 1995-01-17 Motorola, Inc. Time transfer position location method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972881A1 (fr) 2007-03-22 2008-09-24 JENOPTIK Laser, Optik, Systeme GmbH Système optique et procédé de reconstitution de la trajectoire d'un projectile à l'aide d'un rayon laser
DE102007014290A1 (de) 2007-03-22 2008-09-25 Jenoptik Laser, Optik, Systeme Gmbh Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl

Also Published As

Publication number Publication date
CA2366526A1 (fr) 2000-09-28
DE50001795D1 (de) 2003-05-22
AU754674B2 (en) 2002-11-21
EP1159578A1 (fr) 2001-12-05
WO2000057123A1 (fr) 2000-09-28
CA2366526C (fr) 2004-10-05
DE19912093A1 (de) 2000-09-28
AU3425200A (en) 2000-10-09

Similar Documents

Publication Publication Date Title
DE2907590C2 (de) Verfahren und Vorrichtung zum Auswerten von simulierten Schießübungen mit am Ziel reflektierten Laser-Strahlen
DE60106010T2 (de) Genauigkeitsschusssimulatorsystem und -verfahren
EP1325281B1 (fr) Procede et dispositif de simulation de tir
DE2454453B2 (de) Vorrichtung zum Durchführen und Auswerten von Schießübungen mit Flugabwehrgeschützen mit simuliertem Feuer
DE602004010880T2 (de) System und Verfahren zur Waffenwirkung-Simulation
DE3114000A1 (de) Schiesssimulations- und -uebungsverfahren fuer ballistische munition und bewegliche ziele
DE1703109A1 (de) Anordnung zum UEben des Zielens mit Schusswaffen
EP0890818B1 (fr) Procédé de simulation de tir et dispositif pour l'exécution du procédé
DE3238848A1 (de) Verfahren und vorrichtung zum gesamten korrigieren des schiessvorganges von einem schuss auf den folgenden bei einer waffe mit gestreckter schussbahn
DE3507007C2 (fr)
DE102005055099A1 (de) Einrichtung zur Simulation der Wirkung von direkt und indirekt wirkenden Waffen zur Verbesserung der Ausbildung und zur Nutzung in Gefechtsübungszentren
DE2936643A1 (de) Verfahren und anordnung fuer die abschaetzung der richtgenauigkeit einer waffe
EP1159578B1 (fr) Procede de simulation de tir
DE3028545C2 (de) Verfahren zur Schußsimulation bei beweglichen Zielen mittels Lichtsignalen
DE1951622C3 (de) Anordnung zur simulierten Darstellung von Schußbahnen
DE19617061C2 (de) Verfahren und Einrichtung zur Gefechtssimulation auf einem Übungsplatz mit Lichtschußsimulatoren
EP1166029B2 (fr) Procede pour simulation sur un champ de bataille
EP0154809A1 (fr) Procédé de simulation de combat
DE4111935C2 (fr)
DE3545831C2 (fr)
DE2339164C3 (de) Verfahren und Einrichtung zur Simulation eines Schuß- oder Wurfvorganges
DE1728533C3 (de) Anordnung zum Üben des Zielens mit Schußwaffen
DE3004317A1 (de) Zuendsystem fuer eine granate zur hubschrauberbekaempfung
DE3132173A1 (de) Einrichtung zur bestimmung der treffpunktlage beim beschuss von luftzielen
DE2262605C3 (de) Übungsschießverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020408

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030416

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50001795

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1159578E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100219

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001795

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901