EP1149985B1 - Metallic shroud structure - Google Patents

Metallic shroud structure Download PDF

Info

Publication number
EP1149985B1
EP1149985B1 EP01110386A EP01110386A EP1149985B1 EP 1149985 B1 EP1149985 B1 EP 1149985B1 EP 01110386 A EP01110386 A EP 01110386A EP 01110386 A EP01110386 A EP 01110386A EP 1149985 B1 EP1149985 B1 EP 1149985B1
Authority
EP
European Patent Office
Prior art keywords
wall
hollow chamber
segmented
chamber structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01110386A
Other languages
German (de)
French (fr)
Other versions
EP1149985A2 (en
EP1149985A3 (en
Inventor
Werner Humhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1149985A2 publication Critical patent/EP1149985A2/en
Publication of EP1149985A3 publication Critical patent/EP1149985A3/en
Application granted granted Critical
Publication of EP1149985B1 publication Critical patent/EP1149985B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material

Definitions

  • the invention relates to a ring structure in metal construction for the blade area axial flow through compressor and turbine stages, according to the generic term of claim 1.
  • the wall structure should initially be sufficiently dimensionally stable and be geometrically accurate. Thermal and mechanical influences should affect the geometry change as little as possible. With the mostly hot working gas, i.w. only the inside of the structure must be acted on, leakage losses through the structure are to be minimized. In transient operation, it is advantageous if the particular thermally induced dimensional changes in the wall structure in terms of time and size those of the bladed rotor are aligned. Because there are mechanical contacts between the blade tips and the wall structure under special loads can hardly be avoided, the inside of the wall structure should at least blade tip deformable / resilient or abradable.
  • EP-B-0 728 258 relates to a shroud element of a turbine, which together with similar segments the inner wall and part of the connecting structure to the outer wall of a wall structure. Due to temperature differences between Inside and cooled outside of the segments in operation and as a result of different material behavior of the base material and one as a rule The existing coating tends to change the curvature of the segments. To prevent the segments from getting into the blade tip raceway they have a special, hook-like geometry on the front and Trailing edge connected to the outer area of the housing structure, which radial outward movement in places. Because the inner contour often deviates from the circular shape with a tendency to form polygons, is a defined one Difficult to keep gaps. The sealing of the segments with gaps and play is constructively also complex.
  • EP-B-0 781 371 deals with an arrangement for dynamic control of the Blade tip play in gas turbines.
  • the inner wall of the housing structure is there from radially outward-moving, circular arc-shaped overlapping in the circumferential direction curved segments whose movement radially inwards through one of their Front and rear edge hook-like, surrounding housing structure on one side is limited.
  • the segments are made by mechanical spring elements or by Gas pressure biased radially inwards against the stop.
  • the blades have wedge surfaces on the tip side, which, when rotating faster, a dynamic gas cushion generate, the pressure of the wall segments at a defined, small distance should stick to the blade tips.
  • the holding structure of the segments is exposed to the working gas and thus possibly subjected to high thermal loads, whereby they also contain a considerable amount of heat leads to the outer wall of the structure.
  • EP-B-0 616 113 relates to a gas turbine and a method for assembling one Seal in this gas turbine. From this patent, it is i.a. known, metallic Honeycombs to be used as inlet coverings for labyrinth seals.
  • the honeycomb are soldered on one side to a flat, metallic carrier, usually in ring-shaped closed geometry, its openings being cutting-like, ring-shaped Sealing tips are facing.
  • the deformation behavior of the ductile, thin, Upright honeycomb walls accelerate any necessary running-in process and protects the sealing tips.
  • the open structure with a variety of Chambers increase the sealing effect through flow deflection and swirling.
  • Sandwich-like lightweight structures are preferred in aircraft and boat construction uses a relatively thick, light core with a high empty volume, e.g. a honeycomb core, with thin, high-strength, closed on both sides Walls connected and covered
  • a relatively thick, light core with a high empty volume e.g. a honeycomb core
  • thin, high-strength closed on both sides Walls connected and covered
  • the walls are preferred in Fiber composite construction, glued to the core and in terms of its thickness and mechanical properties at least comparable.
  • DE-A-15 51 183 relates to composite sealing components for gas turbine engines. Such components are also used in specialist circles as jacket rings or liners referred to and are arranged around blade rings, in particular with the function of the blade tip seal. With regard to easy assembly and unimpeded thermal expansion, the liners are mostly segmented and left unchanged arranged by expansion joints.
  • the sealing components according to this published specification are in sandwich construction with a metallic honeycomb core and with these metallic walls / sheets covering on both sides, hence the expression "Composed”.
  • the inner, abradable wall (layer 58 ') can on the Angled edges of the sealing component up to the outer wall (rear layer 50 ') and connected to the latter by soldering (60) (see page 9 from the eighth last line).
  • the sealing components form either curved segments, such as shown in the figures, or complete rings (see page 10, lines 1 to 6).
  • the outer and inner walls are inevitably interrupted, i.e. segmented, in the second case none of the walls is segmented.
  • the Indicates a direct soldering of the outer and inner wall in the edge area there is no evidence of the type of connection between the walls and the Honeycomb core.
  • the outer wall is with flanges (52,53) so that they can be hung on the engine housing (11).
  • the outer wall (rear layer) of each sealing component is therefore not a housing wall.
  • the design of the core layer is limited to honeycomb material.
  • the object of the invention is based on the cited prior art in it, a ring structure in metal construction for the blade area from axial flow through compressor and turbine stages, which are characterized by a high Dimensional and shape accuracy under changing operating conditions and temperatures, high mechanical load bearing capacity, good thermal insulation as well as a minimal working fluid leakage due to the structure and through particularly small, little changing gaps to the blade tips enables a high level of efficiency or a high level of load.
  • the invention is thus in the combination of a segmented inner wall, one closed, formed by a housing wall, supporting outer wall, one connecting structure arranged between the walls and from their material connection See integration by soldering.
  • the connection structure is in itself known as filigree, light, practically the entire cavity between Hollow chamber structure occupying inner and outer wall - for example as a honeycomb structure - and connected to one or both walls by soldering. Due to the "quasi-flat" connection of the walls, it is possible to achieve dimensional accuracy the load-bearing outer wall in all operating states of the segmented Imprint on the inner wall. A warping or "polygonizing" of the inner contour leaves avoid yourself.
  • the solder connection is optimal due to its "flat character" in terms of mechanical strength and durability and has no negative Influence on the material structure.
  • the filigree connection structure elastic enough to accommodate thermal expansions / contractions of the inner wall segments in the circumferential direction without allowing critical constraining forces.
  • the connection structure has a thermally insulating effect, which is due to its high empty volume and can also be influenced by the selection of its material the inner wall assumes the mostly high temperature of the working gas, the outer wall can be kept significantly cooler, which is beneficial for their mechanical Properties is. Of course, the insulation effect is also good for the thermodynamic Efficiency of the machine.
  • the filigree connection structure is practically impermeable to gas in the circumferential and axial direction, so that additional sealing measures are not required. The leakage through the few, small expansion joints on the inner wall are of no importance.
  • Preferred embodiments of the housing structure are characterized in the subclaims.
  • the housing structure according to FIG. 1 is part of an axial compressor which runs from left to right to be flowed through on the right.
  • the radially outer part of a guide vane can be seen 21 and a shroud-less blade 20.
  • the outer wall 3 of the Housing structure extends over both blade areas, with the suspension the guide blade 21 in a form-fitting manner, i.e. is conventional.
  • the housing structure according to the invention 1 is on the right in the figure, i.e. in the area of the blade 20, and comprises an inner wall 5, a hollow chamber structure 10 and that of the inner wall 5 opposite part of the outer wall 3, i.e. the right part by Flange.
  • the inner wall 5 is to protect the blade tips when brushing provided with an inlet covering 9.
  • the inner wall 5 including the inlet covering 9 is segmented, i.e. it has several, at least distributed over the circumference predominantly axially extending expansion joints 7 (see Fig. 2).
  • the housing structure 1 represents an integral structure with a material connection of its elements 3, 5 and 10.
  • the hollow chamber structure 10 is with the outer wall 3 and with the inner wall 5 soldered. It is also possible to use one of the hollow chamber structures to manufacture both walls in one piece and then to solder them to the other wall.
  • FIG. 2 shows two different housing structures 1, 2 according to the invention in partial cross section, on the right or left side of a vertical, dash-dotted line in the middle of the drawing.
  • the right housing structure 1 corresponds to that from FIG. 1, an expansion joint 7 running through the inner wall 5 and the inlet covering 9 being evident.
  • the left housing structure 2 initially differs from the right one in that its inner wall 6 consists of a material that can be easily deformed or removed by the blade tips over the entire thickness. This can be a porous metal without or with embedded plastic, graphite or other substances, for example in the form of a sintered structure.
  • the outer wall 4 and the hollow chamber structure 11 have no special features compared to the corresponding positions 3 and 10.
  • the inner wall 6 is provided with geometrically defined openings 8 distributed uniformly over the circumference.
  • recesses 19 interact with the openings 8 and form recirculation chambers for part of the compressor flow in the area of the blade tips.
  • the openings 8 and cutouts 19 extend upstream to in front of the blade entry edges, downstream they end behind the axial center of the blade and in front of the blade exit edges. This is familiar to the person skilled in the art and is therefore not shown separately.
  • the recesses in the hollow chamber structure do not necessarily have to extend radially to the outer wall. It is conceivable to level the partially recessed hollow chamber structure with a filling material, ie to smooth it out in terms of flow technology. It can also be favorable to orient the longitudinal center planes of the openings and cutouts not radially, but rather inclined in the circumferential direction. All of this is clear to the person skilled in the art even without a separate illustration.
  • FIG. 3 shows an example of three different hollow chamber structures 12, 13 and 14 in sections parallel to the inner and outer wall of the housing structure.
  • On the left is a honeycomb structure with equilateral, hexagonal honeycombs, the coherent wall elements 15 of which are geometrically the same size and are at 120 ° angles to one another.
  • the middle structure 13 has rectangular chambers, which are delimited by smaller wall elements 16 and larger wall elements 17 in a rectangular arrangement.
  • the right structure 14 is similar to the left structure 12, but at 14 the hollow chambers have a round - instead of a hexagonal - shape. This results in wall elements 18 with locally different thicknesses.
  • the hollow chamber structure 14 can be produced, for example, by mechanical or electrochemical drilling in an initially thick-walled solid material.
  • the inner or outer wall can be produced in one piece with the hollow chamber structure, the other wall being integrated by soldering.
  • the more delicate structures 12 and 13 are rather manufactured separately from sheet metal strips, expanded metal or the like.

Abstract

The metal housing structure for the running blade area of axially through-flowed compressor and turbine stages, particularly in gas turbine drive units, has a circular ring-shaped, closed, mechanically stable outer wall and an inner wall segmented by multiple peripheral expansion seams and at a reduced radial distance from the running blade points. A connecting structure transmitting load at least in a radial direction is provided between the inner and outer wall. As a connecting structure, a hollow chamber structure (10) multiply divided extends at least over the main part of facing surface areas of inner (5) and outer (3) walls and has a number of thin, upright directly cohesive wall components on the inner and outer walls at an angle to each other. The hollow chamber structure is soldered to the inner and/or outer wall.

Description

Die Erfindung betrifft eine Ringstruktur in Metallbauweise für den Laufschaufelbereich von axial durchströmten Verdichter- und Turbinenstufen, gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a ring structure in metal construction for the blade area axial flow through compressor and turbine stages, according to the generic term of claim 1.

Für die strömungstechnischen Eigenschaften von axial durchströmten Verdichterund Turbinenstufen ist es sehr wichtig, dass der Radialspalt zwischen den Laufschaufelspitzen und der äußeren Strömungskanalwand möglichst klein und möglichst konstant gehalten wird. Dafür sollte die Wandstruktur zunächst ausreichend formstabil und geometrisch genau sein. Thermische und mechanische Einflüsse sollten die Geometrie möglichst wenig verändern. Mit dem zumeist heißen Arbeitsgas sollte i.w. nur die Innenseite der Struktur beaufschlagt sein, Leckageverluste durch die Struktur sind zu minimieren. Im instationären Betrieb ist es vorteilhaft, wenn die insbesondere thermisch induzierte Maßänderungen der Wandstruktur zeitlich und größenmäßig an diejenigen des beschaufelten Rotors angeglichen sind. Da sich mechanische Kontakte zwischen den Schaufelspitzen und der Wandstruktur unter besonderen Belastungen kaum vermeiden lassen, sollte die Innenseite der Wandstruktur zumindest schaufelspitzenseitig verformbar/nachgiebig bzw. abradierbar ausgeführt sein.For the fluidic properties of compressors with axial flow At turbine stages it is very important that the radial gap between the blade tips and the outer flow channel wall as small and constant as possible is held. For this, the wall structure should initially be sufficiently dimensionally stable and be geometrically accurate. Thermal and mechanical influences should affect the geometry change as little as possible. With the mostly hot working gas, i.w. only the inside of the structure must be acted on, leakage losses through the structure are to be minimized. In transient operation, it is advantageous if the particular thermally induced dimensional changes in the wall structure in terms of time and size those of the bladed rotor are aligned. Because there are mechanical contacts between the blade tips and the wall structure under special loads can hardly be avoided, the inside of the wall structure should at least blade tip deformable / resilient or abradable.

Die EP-B-0 728 258 betrifft ein Deckbandsement einer Turbine, welches zusammen mit gleichartigen Segmenten die Innenwand und einen Teil der Verbindungsstruktur zur Außenwand einer Wandstruktur bildet. Infolge von Temperaturunterschieden zwischen Innen- und gekühlter Außenseite der Segmente im Betrieb sowie infolge von unterschiedlichem Materialverhalten des Grundmaterials und einer in der Regel vor handenen Beschichtung tendieren die Segmente dazu, ihre Krümmung zu verändern. Um zu verhindern, dass die Segmente dabei stellenweise in die Laufbahn der Schaufelspitzen geraten, sind sie über eine spezielle, hakenartige Geometrie an Vorderund Hinterkante mit dem Außenbereich der Gehäusestruktur verbunden, welche stellenweise eine Radialbewegung nach außen zulässt. Da die Innenkontur somit häufig von der Kreisform mit Tendenz zur Polygonbildung abweicht, ist eine definierte Spalthaltung schwierig. Die Abdichtung der spalt- und spielbehafteten Segmente ist konstruktiv ebenfalls aufwendig. EP-B-0 728 258 relates to a shroud element of a turbine, which together with similar segments the inner wall and part of the connecting structure to the outer wall of a wall structure. Due to temperature differences between Inside and cooled outside of the segments in operation and as a result of different material behavior of the base material and one as a rule The existing coating tends to change the curvature of the segments. To prevent the segments from getting into the blade tip raceway they have a special, hook-like geometry on the front and Trailing edge connected to the outer area of the housing structure, which radial outward movement in places. Because the inner contour often deviates from the circular shape with a tendency to form polygons, is a defined one Difficult to keep gaps. The sealing of the segments with gaps and play is constructively also complex.

Die EP-B-0 781 371 behandelt eine Anordnung zur dynamischen Kontrolle des Schaufelspitzenspiels in Gasturbinen. Die Innenwand der Gehäusestruktur besteht aus radial nach außen beweglichen, in Umfangsrichtung überlappenden, kreisbogenförmig gekrümmten Segmenten, deren Bewegung radial nach innen durch eine ihre Vorder- und Hinterkante hakenartig einseitig haltende, umlaufende Gehäusestruktur begrenzt wird. Die Segmente werden durch mechanische Federelemente oder durch Gasdruck radial nach innen gegen Anschlag vorgespannt. Die Laufschaufeln weisen spitzenseitig Keilflächen auf, welche bei schneller.Rotation ein dynamisches Gaspolster erzeugen, dessen Druck die Wandsegmente in einem definierten, kleinen Abstand zu den Schaufelspitzen halten soll. Dabei muss sich ein Gleichgewicht zwischen innerer Gaskraft und äußerer Federkraft einstellen, das die Segmente in Balance hält. Ein solches System erscheint sehr störanfällig, schwer kalkulierbar und schwingungsgefährdet. Die Haltestruktur der Segmente ist dem Arbeitsgas ausgesetzt und somit ggf. thermisch hoch belastet, wobei sie auch eine erhebliche Wärmemenge zur Außenwand der Struktur leitet.EP-B-0 781 371 deals with an arrangement for dynamic control of the Blade tip play in gas turbines. The inner wall of the housing structure is there from radially outward-moving, circular arc-shaped overlapping in the circumferential direction curved segments whose movement radially inwards through one of their Front and rear edge hook-like, surrounding housing structure on one side is limited. The segments are made by mechanical spring elements or by Gas pressure biased radially inwards against the stop. The blades have wedge surfaces on the tip side, which, when rotating faster, a dynamic gas cushion generate, the pressure of the wall segments at a defined, small distance should stick to the blade tips. There must be a balance between internal gas force and external spring force adjust that the segments in balance holds. Such a system appears to be very prone to failure, difficult to calculate and vibration risk. The holding structure of the segments is exposed to the working gas and thus possibly subjected to high thermal loads, whereby they also contain a considerable amount of heat leads to the outer wall of the structure.

Die EP-B-0 616 113 betrifft eine Gasturbine und ein Verfahren zur Montage einer Dichtung in dieser Gasturbine. Aus dieser Patentschrift ist es u.a. bekannt, metallische Honigwaben als Einlaufbeläge für Labyrinthdichtungen zu verwenden. Die Waben sind einseitig auf einen flächigen, metallischen Träger gelötet, in der Regel in ringförmig geschlossener Geometrie, wobei ihre Öffnungen schneidenartigen, ringförmigen Dichtspitzen zugewandt sind. Das Verformungsverhalten der duktilen, dünnen, hochkant stehenden Wabenwände beschleunigt einen ggf. erforderlichen Einlaufvorgang und schont die Dichtspitzen. Die offene Struktur mit einer Vielzahl von Kammern erhöht die Dichtwirkung durch Strömungsumlenkung und -verwirbelung. Vorzugsweise im Flugzeug- und Bootsbau werden sandwichartige Leichtbaustrukturen verwendet, bei denen ein relativ dicker, leichter Kern mit einem hohen Leervolumenanteil, z.B. ein Wabenkern, beidseitig mit dünnen, hochfesten, geschlossenen Wänden verbunden und abgedeckt wird Bei Biegung einer solchen Struktur werden die Wände primär auf Zug oder Druck in ihrer Ebene belastet, der Kern überträgt die Kräfte von Wand zu Wand, insbesondere Schubkräfte. Die Wände sind bevorzugt in Faserverbundbauweise ausgeführt, mit dem Kern verklebt und hinsichtlich ihrer Dicke und mechanischen Eigenschaften zumindest vergleichbar.EP-B-0 616 113 relates to a gas turbine and a method for assembling one Seal in this gas turbine. From this patent, it is i.a. known, metallic Honeycombs to be used as inlet coverings for labyrinth seals. The honeycomb are soldered on one side to a flat, metallic carrier, usually in ring-shaped closed geometry, its openings being cutting-like, ring-shaped Sealing tips are facing. The deformation behavior of the ductile, thin, Upright honeycomb walls accelerate any necessary running-in process and protects the sealing tips. The open structure with a variety of Chambers increase the sealing effect through flow deflection and swirling. Sandwich-like lightweight structures are preferred in aircraft and boat construction uses a relatively thick, light core with a high empty volume, e.g. a honeycomb core, with thin, high-strength, closed on both sides Walls connected and covered When bending such a structure the walls are primarily subjected to tension or pressure in their plane, the core transmits them Wall-to-wall forces, especially thrust. The walls are preferred in Fiber composite construction, glued to the core and in terms of its thickness and mechanical properties at least comparable.

Die DE-A-15 51 183 betrifft zusammengesetzte Dichtungsbauteile für Gasturbinentriebwerke. Derartige Bauteile werden in Fachkreisen auch als Mantelringe bzw. Liner bezeichnet und sind rund um Laufschaufelkränze angeordnet, insbesondere mit der Funktion der Laufschaufelspitzenabdichtung. Im Hinblick auf einfache Montage und ungehinderte Wärmedehnung sind die Liner meist segmentiert und unter Belassung von Dehnfugen angeordnet. Die Dichtungsbauteile nach dieser Offenlegungsschrift sind in Sandwichbauweise mit einem metallischen Wabenkern und mit diesen beidseitig abdeckenden, metallischen Wänden/Blechen ausgeführt, daher der Ausdruck "zusammengesetzt". Die innere, abreibbare Wand (Schicht 58') kann an den Kanten des Dichtungsbauteils abgewinkelt, bis zur äußeren Wand (hinteren Schicht 50') verlängert und mit letzterer durch Verlötung (60) verbunden sein (siehe Seite 9 ab achtletzter Zeile). Die Dichtungsbauteile bilden entweder gewölbte Segmente, wie in den Figuren dargestellt, oder vollständige Ringe (siehe Seite 10, Zeilen 1 bis 6). Im ersten Fall sind somit zwangsläufig die Außen- und die Innenwand unterbrochen, d.h. segmentiert, im zweiten Fall ist keine der Wände segmentiert. Mit Ausnahme des Hinweises auf ein direktes Verlöten von Außen- und Innenwand im Kantenbereich gibt es keine Hinweise auf die Art der Verbindung zwischen den Wänden und dem Wabenkern. Wie aus den Figuren 2 bis 5 ersichtlich, ist die Außenwand mit Flanschen (52,53) versehen, um sie am Triebwerksgehäuse (11) aufhängen zu können. Somit ist die Außenwand (hintere Schicht) jedes Dichtungsbauteils keine Gehäusewand. Die Ausführung der Kernschicht ist auf Wabenmaterial beschränkt.DE-A-15 51 183 relates to composite sealing components for gas turbine engines. Such components are also used in specialist circles as jacket rings or liners referred to and are arranged around blade rings, in particular with the function of the blade tip seal. With regard to easy assembly and unimpeded thermal expansion, the liners are mostly segmented and left unchanged arranged by expansion joints. The sealing components according to this published specification are in sandwich construction with a metallic honeycomb core and with these metallic walls / sheets covering on both sides, hence the expression "Composed". The inner, abradable wall (layer 58 ') can on the Angled edges of the sealing component up to the outer wall (rear layer 50 ') and connected to the latter by soldering (60) (see page 9 from the eighth last line). The sealing components form either curved segments, such as shown in the figures, or complete rings (see page 10, lines 1 to 6). in the In the first case, the outer and inner walls are inevitably interrupted, i.e. segmented, in the second case none of the walls is segmented. With the exception of the Indicates a direct soldering of the outer and inner wall in the edge area there is no evidence of the type of connection between the walls and the Honeycomb core. As can be seen from Figures 2 to 5, the outer wall is with flanges (52,53) so that they can be hung on the engine housing (11). The outer wall (rear layer) of each sealing component is therefore not a housing wall. The design of the core layer is limited to honeycomb material.

Ausgehend von dem genannten Stand der Technik besteht die Aufgabe der Erfindung darin, eine Ringstruktur in Metallbauweise für den Laufschaufelbereich von axial durchströmten Verdichter- und Turbinenstufen zu schaffen, die sich durch eine hohe Maß- und Formgenauigkeit unter wechselnden Betriebsbedingungen und Temperaturen, eine hohe mechanische Lastaufnahmefähigkeit, eine gute thermische Isolationswirkung sowie eine minimale Arbeitsfluidleckage durch die Struktur auszeichnet und durch besonders kleine, sich wenig ändernde Spalte zu den Laufschaufelspitzen einen hohen Stufenwirkungsgrad bzw. eine hohe Stufenbelastung ermöglicht. The object of the invention is based on the cited prior art in it, a ring structure in metal construction for the blade area from axial flow through compressor and turbine stages, which are characterized by a high Dimensional and shape accuracy under changing operating conditions and temperatures, high mechanical load bearing capacity, good thermal insulation as well as a minimal working fluid leakage due to the structure and through particularly small, little changing gaps to the blade tips enables a high level of efficiency or a high level of load.

Diese Aufgabe wird durch die in Anspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenden Merkmalen in dessen Oberbegriff.This object is achieved by the features characterized in claim 1, in Connection with the generic features in its generic term.

Die Erfindung ist somit in der Kombination aus einer segmentierten Innenwand, einer geschlossenen, von einer Gehäusewand gebildeten, tragenden Außenwand, einer zwischen den Wänden angeordneten Verbindungsstruktur und aus deren stoffschlüssiger Integration durch Löten zu sehen. Die Verbindungsstruktur ist in an sich bekannter Weise als filigrane, leichte, praktisch den gesamten Hohlraum zwischen Innen- und Außenwand einnehmende Hohlkammerstruktur ausgeführt - beispielsweise als Honigwabenstruktur - und mit einer oder beiden Wänden durch Löten verbunden. Durch die "quasi-flächige" Verbindung der Wände ist es möglich, die Formgenauigkeit der tragenden Außenwand in allen Betriebszuständen der segmentierten Innenwand aufzuprägen. Ein Verwölben bzw. "Polygonisieren" der Innenkontur lässt sich so vermeiden. Die Lötverbindung ist durch ihren "flächigen Charakter" optimal hinsichtlich mechanischer Festigkeit sowie Dauerhaftigkeit und hat keinen negativen Einfluss auf das Werkstoffgefüge. Andererseits ist die filigrane Verbindungsstruktur elastisch genug, um thermische Dehnungen /Kontraktionen der Innenwandsegmente in Umfangsrichtung ohne kritische Zwangskräfte zuzulassen. Die Verbindungsstruktur wirkt thermisch isolierend, was durch ihren hohen Leervolumenanteil bedingt ist und durch die Auswahl ihres Werkstoffes ebenfalls beeinflussbar ist Somit nimmt die Innenwand etwa die meist hohe Temperatur des Arbeitsgases an, die Außenwand kann deutlich kühler gehalten werden, was günstig für ihre mechanischen Eigenschaften ist. Natürlich ist die Isolationswirkung auch gut für den thermodynamischen Wirkungsgrad der Maschine. Die filigrane Verbindungsstruktur ist in Umfangs- und Axialrichtung praktisch gasundurchlässig, so dass zusätzliche Dichtungsmaßnahmen entfallen. Die Leckage durch die wenigen, kleinen Dehnfugen der Innenwand ist dabei ohne jede Bedeutung. In den Unteransprüchen sind bevorzugte Ausgestaltungen der Gehäusestruktur gekennzeichnet.The invention is thus in the combination of a segmented inner wall, one closed, formed by a housing wall, supporting outer wall, one connecting structure arranged between the walls and from their material connection See integration by soldering. The connection structure is in itself known as filigree, light, practically the entire cavity between Hollow chamber structure occupying inner and outer wall - for example as a honeycomb structure - and connected to one or both walls by soldering. Due to the "quasi-flat" connection of the walls, it is possible to achieve dimensional accuracy the load-bearing outer wall in all operating states of the segmented Imprint on the inner wall. A warping or "polygonizing" of the inner contour leaves avoid yourself. The solder connection is optimal due to its "flat character" in terms of mechanical strength and durability and has no negative Influence on the material structure. On the other hand is the filigree connection structure elastic enough to accommodate thermal expansions / contractions of the inner wall segments in the circumferential direction without allowing critical constraining forces. The connection structure has a thermally insulating effect, which is due to its high empty volume and can also be influenced by the selection of its material the inner wall assumes the mostly high temperature of the working gas, the outer wall can be kept significantly cooler, which is beneficial for their mechanical Properties is. Of course, the insulation effect is also good for the thermodynamic Efficiency of the machine. The filigree connection structure is practically impermeable to gas in the circumferential and axial direction, so that additional sealing measures are not required. The leakage through the few, small expansion joints on the inner wall are of no importance. Preferred embodiments of the housing structure are characterized in the subclaims.

Die Erfindung wird anschließend anhand der Figuren noch näher erläutert. Dabei zeigen in vereinfachter, nicht maßstäblicher Darstellung:

  • Figur 1 einen Teillängsschnitt durch einen Verdichter im Bereich eines Leit- und eines Laufschaufelkranzes,
  • Figur 2 zwei nebeneinander gezeichnete Teilquerschnitte durch zwei unterschiedliche Gehäusestrukturen, und
  • Figur 3 drei nebeneinander gezeichnete Teilschnitte durch drei verschiedene Hohlkammerstrukturen.
  • The invention is subsequently explained in more detail with reference to the figures. Simplified, not to scale, show:
  • FIG. 1 shows a partial longitudinal section through a compressor in the region of a guide vane and a rotor blade ring,
  • Figure 2 shows two partial cross-sections drawn side by side through two different housing structures, and
  • 3 shows three partial sections drawn side by side through three different hollow chamber structures.
  • Die Gehäusestruktur gemäß Figur 1 ist Teil eines Axialverdichters, der von links nach rechts durchströmt werden soll. Man erkennt den radial äußeren Teil einer Leitschaufel 21 sowie einer -deckbandlosen- Laufschaufel 20. Die Außenwand 3 der Gehäusestruktur erstreckt sich über beide Schaufelbereiche, wobei die Aufhängung der Leitschaufel 21 formschlüssig, d.h. konventionell ist. Die erfindungsgemäße Gehäusestruktur 1 befindet sich in der Figur rechts, d.h. im Bereich der Laufschaufel 20, und umfasst eine Innenwand 5, eine Hohlkammerstruktur 10 sowie den der Innenwand 5 gegenüberliegenden Teil der Außenwand 3, d.h. den rechten Teil bis zum Flansch. Die Innenwand 5 ist zur Schonung der Laufschaufelspitzen beim Anstreifen mit einem Einlaufbelag 9 versehen. Die Innenwand 5 einschließlich des Einlaufbelages 9 ist segmentiert, d.h. sie weist über den Umfang verteilt mehrere, zumindest vorwiegend axial verlaufende Dehnfugen 7 auf (siehe Fig. 2). Die Gehäusestruktur 1 stellt ein integrales Gebilde mit stoffschlüssiger Verbindung seiner Elemente 3, 5 und 10 dar. Die Hohlkammerstruktur 10 ist dabei mit der Außenwand 3 und mit der Innenwand 5 verlötet. Es ist ebenso möglich, die Hohlkammerstruktur mit einer der beiden Wände einstückig zu fertigen und danach mit der anderen Wand zu verlöten. The housing structure according to FIG. 1 is part of an axial compressor which runs from left to right to be flowed through on the right. The radially outer part of a guide vane can be seen 21 and a shroud-less blade 20. The outer wall 3 of the Housing structure extends over both blade areas, with the suspension the guide blade 21 in a form-fitting manner, i.e. is conventional. The housing structure according to the invention 1 is on the right in the figure, i.e. in the area of the blade 20, and comprises an inner wall 5, a hollow chamber structure 10 and that of the inner wall 5 opposite part of the outer wall 3, i.e. the right part by Flange. The inner wall 5 is to protect the blade tips when brushing provided with an inlet covering 9. The inner wall 5 including the inlet covering 9 is segmented, i.e. it has several, at least distributed over the circumference predominantly axially extending expansion joints 7 (see Fig. 2). The housing structure 1 represents an integral structure with a material connection of its elements 3, 5 and 10. The hollow chamber structure 10 is with the outer wall 3 and with the inner wall 5 soldered. It is also possible to use one of the hollow chamber structures to manufacture both walls in one piece and then to solder them to the other wall.

    Figur 2 zeigt zwei unterschiedliche, erfindungsgemäße Gehäusestrukturen 1,2 im Teilquerschnitt, auf der rechten bzw. linken Seite einer vertikalen, strichpunktierten Linie in der Mitte der Zeichnung. Die rechte Gehäusestruktur 1 entspricht derjenigen aus Figur 1, wobei eine durch die Innenwand 5 und den Einlaufbelag 9 verlaufende Dehnfuge 7 zu erkennen ist.
    Die linke Gehäusestruktur 2 unterscheidet sich von der rechten zunächst dadurch, dass ihre Innenwand 6 über die gesamte Dicke aus einem von den Schaufelspitzen problemlos verformbaren bzw. abtragbaren Material besteht. Dieses kann ein poröses Metall ohne oder mit Einlagerungen von Kunststoff, Graphit oder anderen Stoffen sein, beispielsweise in Form einer gesinterten Struktur. Die Außenwand 4 und die Hohlkammerstruktur 11 weisen keine Besonderheiten gegenüber den entsprechenden Positionen 3 und 10 auf. Allerdings ist als spezielle, konstruktive Maßnahme ein sogenanntes "Casing Treatment" erkennbar, welches bei Verdichtern die Aerodynamik verbessern kann im Sinne einer Erhöhung des Wirkungsgrades bzw. der Pumpgrenze. Zu diesem Zweck ist die Innwand 6 mit gleichmäßig über den Umfang verteilten, geometrisch definierten Durchbrüchen 8 versehen. In der Hohlkammerstruktur 11 wirken Aussparungen 19 mit den Durchbrüchen 8 zusammen und bilden Rezirkulationskarnmern für einen Teil der Verdichterströmung im Schaufelspitzenbereich. In axialer Richtung erstrecken sich die Durchbrüche 8 und Aussparungen 19 stromaufwärts bis vor die Schaufeleintrittskanten, stromabwärts enden sie hinter der axialen Schaufelmitte und vor den Schaufelaustrittskanten. Dies ist dem Fachmann geläufig und daher nicht gesondert dargestellt. Die Aussparungen in der Hohlkammerstruktur müssen nicht zwingend radial bis zur Außenwand reichen. Es ist denkbar, die teilweise ausgesparte Hohlkammerstruktur mit einem Füllmaterial einzuebnen, d.h. strömungstechnisch zu glätten. Es kann auch günstig sein, die Längsmittelebenen der Durchbrüche und Aussparungen nicht radial, sondern in Umfangsrichtung geneigt zu orientieren. All dies ist für den Fachmann auch ohne gesonderte Darstellung klar.
    FIG. 2 shows two different housing structures 1, 2 according to the invention in partial cross section, on the right or left side of a vertical, dash-dotted line in the middle of the drawing. The right housing structure 1 corresponds to that from FIG. 1, an expansion joint 7 running through the inner wall 5 and the inlet covering 9 being evident.
    The left housing structure 2 initially differs from the right one in that its inner wall 6 consists of a material that can be easily deformed or removed by the blade tips over the entire thickness. This can be a porous metal without or with embedded plastic, graphite or other substances, for example in the form of a sintered structure. The outer wall 4 and the hollow chamber structure 11 have no special features compared to the corresponding positions 3 and 10. However, a so-called "casing treatment" can be recognized as a special, constructive measure, which can improve the aerodynamics of compressors in the sense of increasing the efficiency or the surge limit. For this purpose, the inner wall 6 is provided with geometrically defined openings 8 distributed uniformly over the circumference. In the hollow chamber structure 11, recesses 19 interact with the openings 8 and form recirculation chambers for part of the compressor flow in the area of the blade tips. In the axial direction, the openings 8 and cutouts 19 extend upstream to in front of the blade entry edges, downstream they end behind the axial center of the blade and in front of the blade exit edges. This is familiar to the person skilled in the art and is therefore not shown separately. The recesses in the hollow chamber structure do not necessarily have to extend radially to the outer wall. It is conceivable to level the partially recessed hollow chamber structure with a filling material, ie to smooth it out in terms of flow technology. It can also be favorable to orient the longitudinal center planes of the openings and cutouts not radially, but rather inclined in the circumferential direction. All of this is clear to the person skilled in the art even without a separate illustration.

    Figur 3 zeigt beispielhaft drei verschiedene Hohlkammerstrukturen 12,13 und 14 in Schnitten parallel zur Innen- bzw. Außenwand der Gehäusestruktur. Links ist eine Honigwabenstruktur mit gleichseitigen, sechseckigen Waben zu sehen, deren zusammenhängende Wandelemente 15 somit geometrisch gleich groß sind und in 120°-Winkeln zueinander stehen.
    Die mittlere Struktur 13 weist rechteckige Kammern auf, welche von kleineren Wandelementen 16 und größeren Wandelemente 17 in rechtwinkliger Anordnung begrenzt werden.
    Die rechte Struktur 14 ähnelt der linken Struktur 12, jedoch haben bei 14 die Hohlkammern eine runde - statt einer sechseckigen - Form. Somit ergeben sich Wandelemente 18 mit örtlich unterschiedlicher Dicke. Die Hohlkammerstruktur 14 kann beispielsweise durch mechanisches oder elektrochemisches Bohren in einem zunächst dickwandigen Vollmaterial erzeugt werden. Bezogen auf die erfindungsgemäße Gehäusestruktur kann auf diese Weise die innere oder äußere Wand einstückig mit der Hohlkammerstruktur gefertigt werden, wobei die jeweils andere Wand durch Löten integriert wird. Die filigraneren Strukturen 12 und 13 werden eher separat aus Blechstreifen, Streckmetall o. ä. gefertigt.
    FIG. 3 shows an example of three different hollow chamber structures 12, 13 and 14 in sections parallel to the inner and outer wall of the housing structure. On the left is a honeycomb structure with equilateral, hexagonal honeycombs, the coherent wall elements 15 of which are geometrically the same size and are at 120 ° angles to one another.
    The middle structure 13 has rectangular chambers, which are delimited by smaller wall elements 16 and larger wall elements 17 in a rectangular arrangement.
    The right structure 14 is similar to the left structure 12, but at 14 the hollow chambers have a round - instead of a hexagonal - shape. This results in wall elements 18 with locally different thicknesses. The hollow chamber structure 14 can be produced, for example, by mechanical or electrochemical drilling in an initially thick-walled solid material. In relation to the housing structure according to the invention, the inner or outer wall can be produced in one piece with the hollow chamber structure, the other wall being integrated by soldering. The more delicate structures 12 and 13 are rather manufactured separately from sheet metal strips, expanded metal or the like.

    Claims (6)

    1. Annular metallic structure (1, 2) for the rotor blade area of axial through-flow compressor and turbine stages, in particular in gas turbine engines, having a circular outer wall (3, 4), with a circular inner wall (5, 6) a small radial distance away from the rotor blade tips, and with a connecting structure which is load-transferring at least in the radial direction between the inner and outer walls, such that as the said connecting structure a multiply-subdivided, hollow chamber structure (10, 11, 12, 13, 14) is arranged between and extends at least over most of the surface areas of the inner and outer walls that face one another,
      characterised in that
      the outer wall (3, 4) is a closed, mechanically stable housing wall of the compressor or turbine stage,
      the inner wall (5, 6) is interrupted, i.e. segmented over its circumference by a plurality of axially or substantially axially extending expansion joints (7), and
      the hollow chamber structure (10, 11, 12, 13, 14) is connected to the inner wall (5, 6) and/or to the outer wall (3, 4) by brazing.
    2. Annular structure according to Claim 1,
      characterised in that
      on the side facing the blades the segmented inner wall (5) is provided with a coating in the form of an inlet lining (9) that can be mechanically deformed or abraded on contact with the rotor blade tips.
    3. Annular structure according to Claim 1,
      characterised in that
      the segmented inner wall (6) is made completely, i.e. throughout its material cross-section, as an inlet lining, preferably designed as a porous metallic body with or without inclusions of another material such as plastic or carbon.
    4. Annular structure according to Claims 1 to 3,
      characterised in that
      apart from the at least substantially axially extending expansion joints (7), the segmented inner wall (6)is provided with geometrically defined perforations (8) distributed around its circumference, and in the area of the said perforations (8) the hollow chamber structure (11) is set back or recessed (19).
    5. Annular structure according to any of Claims 1 to 4,
      characterised in that
      the hollow chamber structure (12) is made as a honeycomb structure.
    6. Annular structure according to any of Claims 1 to 5,
      characterised in that
      the hollow chamber structure (14) is produced as an integral part of the inner wall (5, 6) or the outer wall (3,4) by a material-removing production method, for example by milling, drilling or electrochemical machining.
    EP01110386A 2000-04-27 2001-04-26 Metallic shroud structure Expired - Lifetime EP1149985B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10020673A DE10020673C2 (en) 2000-04-27 2000-04-27 Ring structure in metal construction
    DE10020673 2000-04-27

    Publications (3)

    Publication Number Publication Date
    EP1149985A2 EP1149985A2 (en) 2001-10-31
    EP1149985A3 EP1149985A3 (en) 2003-09-17
    EP1149985B1 true EP1149985B1 (en) 2004-12-08

    Family

    ID=7640124

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01110386A Expired - Lifetime EP1149985B1 (en) 2000-04-27 2001-04-26 Metallic shroud structure

    Country Status (5)

    Country Link
    US (1) US6537020B2 (en)
    EP (1) EP1149985B1 (en)
    JP (1) JP4572042B2 (en)
    AT (1) ATE284480T1 (en)
    DE (2) DE10020673C2 (en)

    Families Citing this family (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2362432B (en) * 2000-05-19 2004-06-09 Rolls Royce Plc Tip treatment bars in a gas turbine engine
    GB0206136D0 (en) * 2002-03-15 2002-04-24 Rolls Royce Plc Improvements in or relating to cellular materials
    US6935836B2 (en) * 2002-06-05 2005-08-30 Allison Advanced Development Company Compressor casing with passive tip clearance control and endwall ovalization control
    DE102004010236A1 (en) 2004-03-03 2005-09-15 Mtu Aero Engines Gmbh Metal ring structure for sealing gap between rotor blade tips and stator in e.g. gas turbine, has inner wall formed by metal fabric or felt
    DE102006034424A1 (en) 2006-07-26 2008-01-31 Mtu Aero Engines Gmbh gas turbine
    JP2008180149A (en) * 2007-01-24 2008-08-07 Mitsubishi Heavy Ind Ltd Vane structure of gas turbine and gas turbine
    US8038388B2 (en) * 2007-03-05 2011-10-18 United Technologies Corporation Abradable component for a gas turbine engine
    US8061978B2 (en) * 2007-10-16 2011-11-22 United Technologies Corp. Systems and methods involving abradable air seals
    EP2075416B1 (en) * 2007-12-27 2011-05-18 Techspace Aero Method for manufacturing a turboshaft engine element and device obtained using same
    US8734085B2 (en) 2009-08-17 2014-05-27 Pratt & Whitney Canada Corp. Turbine section architecture for gas turbine engine
    US9062565B2 (en) * 2009-12-31 2015-06-23 Rolls-Royce Corporation Gas turbine engine containment device
    JP4916560B2 (en) * 2010-03-26 2012-04-11 川崎重工業株式会社 Gas turbine engine compressor
    GB201016335D0 (en) * 2010-09-29 2010-11-10 Rolls Royce Plc Endwall component for a turbine stage of a gas turbine engine
    EP2679777A1 (en) * 2012-06-28 2014-01-01 Alstom Technology Ltd Compressor for a gas turbine and method for repairing and/or changing the geometry of and/or servicing said compressor
    EP2728124B1 (en) 2012-10-30 2018-12-12 MTU Aero Engines AG Turbine ring and turbomachine
    DE102013212741A1 (en) * 2013-06-28 2014-12-31 Siemens Aktiengesellschaft Gas turbine and heat shield for a gas turbine
    DE202013010937U1 (en) * 2013-11-30 2015-03-02 Oerlikon Leybold Vacuum Gmbh Rotor disc and rotor for a vacuum pump
    DE102015224160A1 (en) * 2015-12-03 2017-06-08 MTU Aero Engines AG Inlet lining for an external air seal of a turbomachine
    US10422348B2 (en) * 2017-01-10 2019-09-24 General Electric Company Unsymmetrical turbofan abradable grind for reduced rub loads
    DE102017211316A1 (en) 2017-07-04 2019-01-10 MTU Aero Engines AG Turbomachinery sealing ring
    DE102018208040A1 (en) * 2018-05-23 2019-11-28 MTU Aero Engines AG Seal carrier and turbomachine
    US11674396B2 (en) 2021-07-30 2023-06-13 General Electric Company Cooling air delivery assembly
    US11674405B2 (en) 2021-08-30 2023-06-13 General Electric Company Abradable insert with lattice structure

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3126149A (en) * 1964-03-24 Foamed aluminum honeycomb motor
    US3425665A (en) * 1966-02-24 1969-02-04 Curtiss Wright Corp Gas turbine rotor blade shroud
    US3728039A (en) * 1966-11-02 1973-04-17 Gen Electric Fluid cooled porous stator structure
    US3423070A (en) * 1966-11-23 1969-01-21 Gen Electric Sealing means for turbomachinery
    GB2095749B (en) * 1981-03-25 1984-12-12 Rolls Royce Gas turbine engine having improved resistance for foreign object ingestion damage
    US4867639A (en) * 1987-09-22 1989-09-19 Allied-Signal Inc. Abradable shroud coating
    US5228195A (en) * 1990-09-25 1993-07-20 United Technologies Corporation Apparatus and method for a stator assembly of a rotary machine
    US5332358A (en) 1993-03-01 1994-07-26 General Electric Company Uncoupled seal support assembly
    US5380150A (en) 1993-11-08 1995-01-10 United Technologies Corporation Turbine shroud segment
    US5456576A (en) 1994-08-31 1995-10-10 United Technologies Corporation Dynamic control of tip clearance
    JP2820655B2 (en) * 1995-04-28 1998-11-05 三菱重工業株式会社 Segment type honeycomb brazing method and honeycomb brazing jig
    US5951892A (en) * 1996-12-10 1999-09-14 Chromalloy Gas Turbine Corporation Method of making an abradable seal by laser cutting
    JPH1113404A (en) * 1997-06-25 1999-01-19 Mitsubishi Heavy Ind Ltd Blade and sealing mechanism for moving blade

    Also Published As

    Publication number Publication date
    EP1149985A2 (en) 2001-10-31
    JP2002004806A (en) 2002-01-09
    EP1149985A3 (en) 2003-09-17
    DE10020673C2 (en) 2002-06-27
    US20010048876A1 (en) 2001-12-06
    JP4572042B2 (en) 2010-10-27
    ATE284480T1 (en) 2004-12-15
    US6537020B2 (en) 2003-03-25
    DE50104737D1 (en) 2005-01-13
    DE10020673A1 (en) 2001-10-31

    Similar Documents

    Publication Publication Date Title
    EP1149985B1 (en) Metallic shroud structure
    DE1476796C3 (en) A component of a gas turbine system made integrally from a high-strength material
    EP0806546B1 (en) Thermally stressed turbomachine vane with a ceramic insert in the leading edge
    EP0937864B1 (en) Guidevane assembly for an axial turbomachine
    DE602005004447T2 (en) Collar gasket for turbine vanes
    DE60029405T2 (en) Abrasion-resistant compressor stage
    DE102011057077B4 (en) Structural low ductility turbine shroud assembly
    DE60023979T2 (en) fan platform
    DE3814971C2 (en) Gas turbine engine
    DE60024541T2 (en) Stator arrangement for a rotary machine
    EP1320662B1 (en) Seal system
    DE69923935T2 (en) Mounting method for a turbomachine
    CH698036B1 (en) Seal assembly.
    EP0806548B1 (en) Turbine of an exhaust turbocharger
    DE19703033A1 (en) Exhaust gas turbine of a turbocharger
    EP2719484A1 (en) Component and process for producing the component
    EP1022437A1 (en) Construction element for use in a thermal machine
    CH647844A5 (en) FLOWING MACHINE WITH AN IMMEDIATELY DISC-SHAPED IMPELLER.
    EP0992656B1 (en) Turbomachine to compress or expand a compressible medium
    DE2934271C2 (en) Aerodynamic radial bearing for high-speed flow machines
    DE3507578A1 (en) TURBINE BLADE WITHOUT TAPE
    DE60217049T2 (en) Ölluftseparatorplug
    DE102017110050A1 (en) Exploded central recess behind the sash leading edge
    DE2412242C2 (en) Turbofan engine
    DE102014119415A1 (en) Structural configurations and cooling circuits in turbine blades

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20031021

    17Q First examination report despatched

    Effective date: 20031127

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041208

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041208

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041208

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041208

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50104737

    Country of ref document: DE

    Date of ref document: 20050113

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050308

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050308

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050319

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050225

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050426

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050426

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050426

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    BERE Be: lapsed

    Owner name: MTU AERO ENGINES G.M.B.H.

    Effective date: 20050430

    26N No opposition filed

    Effective date: 20050909

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: *MTU AERO ENGINES G.M.B.H.

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050508

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20150423

    Year of fee payment: 15

    Ref country code: GB

    Payment date: 20150423

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150422

    Year of fee payment: 15

    Ref country code: IT

    Payment date: 20150423

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160426

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20161230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160502

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160426

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160427

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160426

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190418

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50104737

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20201103