EP1143132A2 - Method and device for controlling an internal combustion engine - Google Patents

Method and device for controlling an internal combustion engine Download PDF

Info

Publication number
EP1143132A2
EP1143132A2 EP01106488A EP01106488A EP1143132A2 EP 1143132 A2 EP1143132 A2 EP 1143132A2 EP 01106488 A EP01106488 A EP 01106488A EP 01106488 A EP01106488 A EP 01106488A EP 1143132 A2 EP1143132 A2 EP 1143132A2
Authority
EP
European Patent Office
Prior art keywords
lsu
internal combustion
signal
lambda probe
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01106488A
Other languages
German (de)
French (fr)
Other versions
EP1143132B1 (en
EP1143132A3 (en
Inventor
Jens Dr. Drückhammer
Rudolf Dr. Krebs
Wolfgang Wehling
Axel Lang
Frank-Michael Wittig
Kurt Dr. Almstadt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1143132A2 publication Critical patent/EP1143132A2/en
Publication of EP1143132A3 publication Critical patent/EP1143132A3/en
Application granted granted Critical
Publication of EP1143132B1 publication Critical patent/EP1143132B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors

Definitions

  • the invention relates to a method for controlling an internal combustion engine the features mentioned in the preamble of claim 1 and a device with the features mentioned in the preamble of claim 8.
  • Lambda probe To control an operating mode of an internal combustion engine, it is known in to arrange at least one lambda probe in an exhaust gas duct. With the help of Lambda probe, a residual oxygen concentration in the exhaust gas can be detected and from this a conclusion on the ratio of an oxygen fraction to one Fuel fraction in an air-fuel mixture supplied to the combustion process respectively.
  • a signal provided by the lambda probe is fed to an engine control unit, this results in an influence on the composition of the fuel-air mixture Control signal generated.
  • this control signal for example Fuel injection or an air supply to the Internal combustion engine to be regulated.
  • DE 196 29 552 C1 describes a device for compensating for the temperature drift a linear broadband lambda probe known.
  • a Control unit it is suggested in one Control unit to store a map that depends on the working temperature of the Lambda probe contains associated values for the output signal. This will possible, depending on the actual temperature, a temperature drift of the lambda sensor compensate.
  • DE 195 45 706 A1 describes a method for calibrating a two-point lambda probe known in an internal combustion engine in which a catalyst for a certain period of time with an over-rich fuel-air mixture is supplied and the signal values of the lambda probe during this period can be measured independently of other control signals. This is supposed to Correction value are formed during normal operation of the internal combustion engine is fed to the probe signal.
  • US Pat. No. 5,473,889 describes an arrangement in which, on the one hand, a linear Broadband lambda probe and, on the other hand, a further gas measuring probe are provided are. Based on the measurement results provided by the two probes, the linear broadband lambda probe signal can be verified.
  • EP 0 894 187 B1 describes a method for model-based Transient control of an internal combustion engine is known in which Fuel deposits in the intake manifold using a so-called wall film model are taken into account, whereby the parameters of the wall film model include an output signal of one in the exhaust tract of the internal combustion engine arranged linear broadband lambda probe can be adapted.
  • the invention has for its object a method and an apparatus Specify generic type, by means of which an accurate Lambda control of internal combustion engines in a wide control range is feasible.
  • this object is achieved by a method with the method described in claim 1 Features mentioned and a device with those mentioned in claim 8 Features resolved. Because an increase in the actual characteristic curve of the linear broadband lambda probe - During the intended use of the linear broadband lambda sensor in the control of an internal combustion engine - is determined Deviation of the slope from a target characteristic curve is determined and from the deviation a correction value is determined with which the control signal for influencing the Composition of the fuel-air mixture for operating the Correcting the internal combustion engine is advantageously possible, automatically continuously adapt the actual characteristic of the linear broadband lambda probe. So you can in particular without additional component expenditure, for example by additional Probes or the like, for calibrating the linear broadband lambda probe exact Lambda values can be specified.
  • the method according to the invention is advantageously possible for the method according to the invention to be age-related or to compensate for changes in the characteristic curves caused by poisoning that the service life of the linear broadband lambda sensors can be increased.
  • the slope of the actual characteristic curve is determined by a regression calculation, in which preferably the Regression calculation the output signals of the linear broadband lambda probe and evaluates a lambda target signal for operating the internal combustion engine.
  • a regression factor which is the represents the average slope of the actual characteristic curve at the point of the lambda target mean value.
  • This regression factor can preferably be used with the desired characteristic curve linear broadband lambda probe and the desired lambda value are linked, so that a correction factor is available by means of which the linear Broadband lambda sensor supplied signal can be corrected. This will create a exact lambda control of the internal combustion engine, in particular also via a wide lambda control range, in rich and lean operating modes Internal combustion engine possible.
  • the method according to the invention makes onboard diagnosis simple possible because the regression means the deviation of the actual characteristic the linear broadband lambda probe can be determined from the ideal characteristic curve.
  • This Deviation of the actual from the ideal characteristic can be done in a simple manner a maximum allowable deviation are compared so that when the maximum permissible deviations to an error case is detected, for example an exchange of the linear broadband lambda probe requires.
  • FIG. 1 schematically shows an internal combustion engine 10, the exhaust pipe 12 of which is connected to a catalyst, in particular a 3-way catalyst 14.
  • a linear broadband lambda probe 16 (hereinafter lambda probe 16) arranged in the Exhaust line 12 .
  • a signal line 18 of the lambda probe 16 is connected to a Engine control unit 20 connected.
  • the internal combustion engine 10 further comprises an intake line 22 in which a Means 24 for adjusting an amount of intake air is arranged. There is also a means 26 for introducing, for example injecting, a fuel into the Internal combustion engine 10, in particular in the intake air, is provided. The means 24 and 26 are also connected to the control lines 28 and 30, respectively Engine control unit 20 connected.
  • the engine control unit 20 has more, only here indicated connections with which a variety of monitoring, control, Regulations or the like of the internal combustion engine 10 are adopted can. However, this will not be further discussed in the present description received.
  • a fuel-air mixture is burned in the internal combustion engine 10 in order to generate drive energy, for example for a motor vehicle.
  • the exhaust gas from the combustion process is fed via the exhaust gas line 12 to a catalytic converter 14, by means of which nitrogen oxides NO x , hydrocarbons HC or carbon monoxide CO are absorbed, for example.
  • the exhaust gas is guided past the lambda probe 16, by means of which a residual oxygen content of the exhaust gas 12 can be measured in a known manner.
  • a signal corresponding to the residual oxygen content is transmitted from the lambda probe 16 to the engine control unit 20.
  • the engine control unit 20 provides control signals for the means 24 and 26, by means of which an air quantity and / or a fuel quantity for the fuel-air mixture to be burned in the internal combustion engine 10 is metered.
  • the signal provided by the lambda probe 16 is taken into account here in accordance with a predetermined lambda value.
  • a characteristic curve of the linear broadband lambda probe 16 is denoted by 32 in FIG.
  • the output voltage U LSU of the lambda probe 16 is plotted against the lambda value.
  • Such faulty characteristic curves 34 can be caused, for example, by Manufacturing tolerances, signs of aging or poisoning appear. In any case, this leads to a deviation of the slope of the actual characteristic curve 34 from the Target characteristic curve 32.
  • FIG. 3 shows the lambda probe correction according to the invention in a block diagram, by means of the when the lambda probe 16 (FIG. 1) is used as intended for example, the offset of the characteristic curve 34 from the target characteristic curve explained with reference to FIG. 2 32 can be compensated.
  • the individual components of the lambda sensor correction are in the engine control unit 20 integrated.
  • the voltage signal U LSU of the lambda probe 16 is supplied on the one hand to a regression calculation 36 and on the other hand to a subtractor 38.
  • the regression calculation 36 is also supplied with a signal ⁇ target .
  • the signal ⁇ target is also fed to a storage means 40 in which the target characteristic curve 32 is stored.
  • a signal U LSU model is determined from the signal ⁇ target and is supplied to a differentiator 42.
  • the differentiator 42 is simultaneously subjected to the signal ⁇ target .
  • At the output of the differentiator 42 there is a signal d U LSU model / d ⁇ target which corresponds to the target slope of the characteristic curve 32.
  • a signal d U LSU / d ⁇ Soll which corresponds to the actual slope of the characteristic curve 34.
  • This signal corresponds to the regression factor R LSU of the lambda probe 16. This represents the average slope of the actual characteristic curve 34 at the point of the lambda target mean value.
  • the regression factor R LSU is linked to the nominal slope of the characteristic curve 32 via a ratio element 44 and fed to an adaptation element 46 .
  • the adaptation element 46 determines a correction factor K LSU for the lambda probe 16 from the input signal.
  • the resulting difference is linked to the correction factor LSU via a multiplier 48.
  • the multiplier 48 is connected to a summing element 50, via which the voltage value 2.5 V previously subtracted in the subtractor 38 is added to the signal again, so that a corrected voltage signal U LSU-corrected is available to the lambda probe 16 and by the engine control unit as the output signal 20 ( Figure 1) can be used for the control of the internal combustion engine 10.
  • FIG. 4 shows typical signal profiles of the lambda sensor correction explained with reference to FIG. 3.
  • the individual signal curves are plotted against time t.
  • a setpoint for the slope of the setpoint characteristic curve 32, ie d U LSU - model / d ⁇ setpoint, is shown at 60 .
  • a curve of the regression factor R LSU is also shown at 62.
  • a characteristic curve is plotted at 64, which represents noise of the voltage signal U LSU .
  • the characteristic curve 64 oscillates here by a noise factor RF of 1.
  • the characteristic curve of the voltage signal U LSU corresponding to the desired characteristic curve 32 (FIG. 2) is plotted at 66 for a lambda control of ⁇ 3%. This means that the value ⁇ target fluctuates (toggles) by a value of 0.97 to 1.03.
  • the signal disturbances actually present by the noise signals 64 lead to a characteristic curve 68, which results from a superimposition of the characteristic curve 66 with the characteristic curve 64.
  • the characteristic curve 66 thus corresponds to the desired signal, while the characteristic curve 68 corresponds to the actual signal.
  • the regression factor R LSU approaches the characteristic curve 60, which corresponds to the nominal slope of the characteristic curve 32, after a short time.
  • the regression factor 62 is recalculated for all newly added measured value pairs, this is the actual measured voltage U LSU of the lambda probe 16 and the value ⁇ target at any time, over all measured values of the measurement cycle.
  • the measuring cycle begins, for example, each time the internal combustion engine 10 is restarted.
  • the number of measured values included in the regression increases with each new pair of measured values. It becomes clear that after a short time, in particular within a few seconds, the course 62 of the regression factor approaches the course of the characteristic curve 60.
  • the lambda probe correction can cause the gradient of the actual characteristic curve 34 to deviate from the target characteristic curve 32 for each linear broadband lambda probe 16. This deviation can be caused by manufacturing tolerances, aging or signs of poisoning. This is not a criterion for the correction of the lambda probe voltage signal U LSU .
  • the on-board diagnosis of the motor vehicle having the internal combustion engine 10 can be carried out simultaneously by the lambda sensor correction. If the regression factor R LSU and / or the correction factor K LSU is so large that the deviation of the actual characteristic curve 34 from the target characteristic curve 32 exceeds a predeterminable maximum deviation, an error of the lambda probe 16 which can no longer be caused by the inventive method can be derived from this Correction can be compensated, be closed. The exchange of the corresponding lambda probe 16 can be displayed by providing a corresponding signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The method involves measuring the residual oxygen in the exhaust gas with a linear broad band lambda probe and passing a corresponding signal to a controller that generates a signal for influencing the air-fuel ratio into the engine. The actual lambda probe characteristic gradient is determined while it is in use for controlling an engine and its deviation from a desired gradient determined, from which a probe signal correction value is derived. An Independent claim is also included for an arrangement for lambda control of an internal combustion engine.

Description

Die Erfindung betrifft ein Verfahren zur Regelung einer Verbrennungskraftmaschine mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen sowie eine Vorrichtung mit den im Obergriff des Anspruchs 8 genannten Merkmalen.The invention relates to a method for controlling an internal combustion engine the features mentioned in the preamble of claim 1 and a device with the features mentioned in the preamble of claim 8.

Zur Regelung eines Betriebsmodus einer Verbrennungskraftmaschine ist es bekannt, in einem Abgaskanal wenigstens eine Lambdasonde anzuordnen. Mit Hilfe der Lambdasonde kann eine Restsauerstoffkonzentration in dem Abgas erfasst werden und hieraus ein Rückschluss auf das Verhältnis eines Sauerstoffanteils zu einem Kraftstoffanteil in einem dem Verbrennungsprozess zugeführten Luft-Kraftstoff-Gemisch erfolgen.To control an operating mode of an internal combustion engine, it is known in to arrange at least one lambda probe in an exhaust gas duct. With the help of Lambda probe, a residual oxygen concentration in the exhaust gas can be detected and from this a conclusion on the ratio of an oxygen fraction to one Fuel fraction in an air-fuel mixture supplied to the combustion process respectively.

Ein von der Lambdasonde bereitgestelltes Signal wird einem Motorsteuergerät zugeführt, das hieraus ein die Zusammensetzung des Kraftstoff-Luft-Gemisches beeinflussendes Stellsignal generiert. Mittels diesem Stellsignal kann beispielsweise eine Kraftstoffeinspritzung oder eine Luftmengenzuführung zu der Verbrennungskraftmaschine geregelt werden.A signal provided by the lambda probe is fed to an engine control unit, this results in an influence on the composition of the fuel-air mixture Control signal generated. Using this control signal, for example Fuel injection or an air supply to the Internal combustion engine to be regulated.

Bekannt sind sogenannte Zweipunkt-Lambdasonden, die eine stark nicht lineare Kennlinie mit einem sehr steilen Übergang bei λ = 1 aufweisen. Mittels derartiger Lambdasonden lassen sich nur zwei Zustände erfassen, nämlich Kraftstoff liegt im stöchiometrischen Überschuss oder Luft liegt im stöchiometrischen Überschuss des Kraftstoff-Luftgemisches vor.So-called two-point lambda probes are known, which are highly non-linear Have a characteristic curve with a very steep transition at λ = 1. By means of such Lambda sensors can only detect two states, namely there is fuel in the stoichiometric excess or air is in the stoichiometric excess of Air-fuel mixture before.

Um eine verbesserte Lambdaregelung der Verbrennungskraftmaschine zu erreichen, insbesondere auch um für unterschiedliche Betriebsmodi der Verbrennungskraftmaschine, wie beispielsweise Kaltstart oder Volllast, beziehungsweise für unterschiedliche Typen von Verbrennungskraftmaschinen, wie beispielsweise Schichtlademotoren oder Magermotoren, ist der Einsatz sogenannter Breitband-Lambdasonden bekannt. Diese Breitband-Lambdasonden zeichnen sich durch eine lineare Kennlinie aus, die über einen großen Bereich, beispielsweise λ = 0,7 bis 5, verläuft. Mittels derartiger linearer Breitband-Lambdasonden kann eine kontinuierliche Lambdaregelung ausgeführt werden, deren Sollwert im gesamten Messbereich der linearen Breitband-Lambdasonde liegen kann. Derartige lineare Breitband-Lambdasonden zeichnen sich darüber hinaus durch ein schnelleres Ansprechen und eine genauere Regelung aus.In order to achieve improved lambda control of the internal combustion engine, in particular for different operating modes Internal combustion engine, such as cold start or full load, respectively for different types of internal combustion engines, such as Stratified charge engines or lean-burn engines is the use of so-called broadband lambda sensors known. These broadband lambda sensors are characterized by a linear characteristic curve, which over a large range, for example λ = 0.7 to 5, runs. With such linear broadband lambda probes, a continuous Lambda control are carried out, the setpoint of which in the entire measuring range linear broadband lambda probe. Such linear broadband lambda probes are also characterized by a faster response and a more precise regulation.

Beim Einsatz derartiger linearer Breitband-Lambdasonden ist jedoch nachteilig, dass diese, bedingt durch Herstellungstoleranzen, Alterungseinflüsse, Vergiftungseinflüsse oder dergleichen, einen Offset oder eine Steigungsabweichung in der Kennlinie haben können, die eine genaue Regelung beeinträchtigen. Insbesondere bei relativ weit von λ = 1 liegenden Regelwerten für Lambda weitet sich ein Fehlerband (Toleranzband) der linearen Kennlinie auf. Der Verlauf der linearen Kennlinie ist insbesondere bei mageren Kraftstoff-Luft-Gemischen mit λ > 1 relativ flach, so dass dort Abweichungen in der Kennlinie zu relativ großen Fehlern führen. Derartige Fehler führen dazu, dass gegenüber dem gewünschten Lambda ein falsches Lambda eingeregelt wird. Hieraus resultiert eine Beeinträchtigung der Verbrennungsqualität, eine höhere Schadstoffemission sowie ein erhöhter Kraftstoffverbrauch.When using such linear broadband lambda probes, however, it is disadvantageous that these, due to manufacturing tolerances, aging influences, poisoning influences or the like, have an offset or a slope deviation in the characteristic can affect the precise regulation. Especially at a relatively far from λ = 1 lying control values for lambda an error band (tolerance band) widens linear characteristic. The course of the linear characteristic curve is particularly lean Fuel-air mixtures with λ> 1 relatively flat, so that there are deviations in the Characteristic curve lead to relatively large errors. Such errors lead to the fact that an incorrect lambda is adjusted in relation to the desired lambda. Out of this results in an impairment of the combustion quality, a higher one Pollutant emissions and increased fuel consumption.

Aus der DE 196 29 552 C1 ist eine Vorrichtung zum Kompensieren der Temperaturdrift einer linearen Breitband-Lambdasonde bekannt. Hier wird vorgeschlagen, in einem Steuergerät ein Kennfeld abzulegen, das abhängig von der Arbeitstemperatur der Lambdasonde zugehörige Werte für das Ausgangssignal beinhaltet. Hierdurch wird möglich, abhängig von der Ist-Temperatur, eine Temperaturdrift der Lambdasonde auszugleichen.DE 196 29 552 C1 describes a device for compensating for the temperature drift a linear broadband lambda probe known. Here it is suggested in one Control unit to store a map that depends on the working temperature of the Lambda probe contains associated values for the output signal. This will possible, depending on the actual temperature, a temperature drift of the lambda sensor compensate.

Aus der DE 195 45 706 A1 ist ein Verfahren zur Kalibrierung einer Zweipunkt-Lambdasonde in einer Verbrennungskraftmaschine bekannt, bei dem ein Katalysator während eines bestimmten Zeitraums mit einem überfetteten Kraftstoff-Luft-Gemisch versorgt wird und während dieses Zeitraums die Signalwerte der Lambdasonde unabhängig von anderen Regelsignalen gemessen werden. Hierdurch soll ein Korrekturwert gebildet werden, der bei Normalbetrieb der Verbrennungskraftmaschine dem Sondensignal zugeführt wird. DE 195 45 706 A1 describes a method for calibrating a two-point lambda probe known in an internal combustion engine in which a catalyst for a certain period of time with an over-rich fuel-air mixture is supplied and the signal values of the lambda probe during this period can be measured independently of other control signals. This is supposed to Correction value are formed during normal operation of the internal combustion engine is fed to the probe signal.

Aus der EP 0 686 232 B1 ist bekannt, eine lineare Breitband-Lambdasonde mit einer Zweipunkt-Lambdasonde zu kombinieren, um die lineare Breitband-Lambdasonde bei einem Wert λ = 1 mittels der Zweipunkt-Lambdasonde zu kalibrieren.EP 0 686 232 B1 discloses a linear broadband lambda probe with a Combine two-point lambda probe to create the linear broadband lambda probe to calibrate a value λ = 1 using the two-point lambda probe.

Die US-PS 5,473,889 beschreibt eine Anordnung, bei der einerseits eine lineare Breitband-Lambdasonde und andererseits eine weitere Gasmess-Sonde vorgesehen sind. Anhand der von den beiden Sonden gelieferten Messergebnisse soll das von der linearen Breitband-Lambdasonde gelieferte Signal verifiziert werden.US Pat. No. 5,473,889 describes an arrangement in which, on the one hand, a linear Broadband lambda probe and, on the other hand, a further gas measuring probe are provided are. Based on the measurement results provided by the two probes, the linear broadband lambda probe signal can be verified.

Schließlich ist aus der EP 0 894 187 B1 ein Verfahren zur modellgestützten Instationärsteuerung einer Verbrennungskraftmaschine bekannt, bei der Kraftstoffablagerungen im Saugrohr mittels eines sogenannten Wandfilmmodells berücksichtigt werden, wobei die Parameter des Wandfilmmodells unter anderem aus einem Ausgangssignal einer im Abgastrakt der Verbrennungskraftmaschine angeordneten linearen Breitband-Lambdasonde adaptiert werden.Finally, EP 0 894 187 B1 describes a method for model-based Transient control of an internal combustion engine is known in which Fuel deposits in the intake manifold using a so-called wall film model are taken into account, whereby the parameters of the wall film model include an output signal of one in the exhaust tract of the internal combustion engine arranged linear broadband lambda probe can be adapted.

Aus der allgemeinen Messtechnik sind sogenannte Regressionsrechnungen bekannt, mittels denen eine Näherungskurve aus einer gegebenen Anzahl von Messpunkten bestimmt werden kann. Im Ergebnis der Regressionsrechnung sind Parameter der Näherungskurve, beispielsweise eine Steigung einer Geraden beziehungsweise ein Offset, darstellbar.So-called regression calculations are known from general measurement technology, by means of which an approximation curve from a given number of measuring points can be determined. In the result of the regression calculation, parameters are the Approximation curve, for example a slope of a straight line or a Offset, representable.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der gattungsgemäßen Art anzugeben, mittels denen in einfacher Weise eine genaue Lambdaregelung von Verbrennungskraftmaschinen in einem großen Regelbereich durchführbar ist.The invention has for its object a method and an apparatus Specify generic type, by means of which an accurate Lambda control of internal combustion engines in a wide control range is feasible.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den im Anspruch 1 genannten Merkmalen und eine Vorrichtung mit den im Anspruch 8 genannten Merkmalen gelöst. Dadurch, dass eine Steigung der Ist-Kennlinie der linearen Breitband-Lambdasonde - während des bestimmungsgemäßen Einsatzes der linearen Breitband-Lambdasonde bei der Regelung einer Verbrennungskraftmaschine - ermittelt wird, eine Abweichung der Steigung von einer Soll-Kennlinie ermittelt wird und aus der Abweichung ein Korrekturwert ermittelt wird, mit dem das Stellsignal für die Beeinflussung der Zusammensetzung des Kraftstoff-Luft-Gemisches zum Betrieb der Verbrennungskraftmaschine korrigiert wird, ist vorteilhaft möglich, selbsttätig fortlaufend die Ist-Kennlinie der linearen Breitband-Lambdasonde anzupassen. Somit können insbesondere ohne zusätzlichen Bauelementeaufwand, beispielsweise durch zusätzliche Sonden oder dergleichen, zum Kalibrieren der linearen Breitband-Lambdasonde exakte Lambdawerte vorgegeben werden. Ferner wird hierdurch vorteilhaft möglich, bei der Herstellung der linearen Breitband-Lambdasonden größere Fertigungstoleranzen zuzulassen, da während des bestimmungsgemäßen Einsatzes der Lambdasonden eine automatische Kompensation der vorhandenen Ist-Fehler erfolgt. Hierdurch kommt es zu einer Reduzierung der Produktionskosten, da Anforderungen an Qualitätsüberwachung usw. verringert werden können und andererseits die Ausbeute des Herstellungsprozesses erhöht ist.According to the invention, this object is achieved by a method with the method described in claim 1 Features mentioned and a device with those mentioned in claim 8 Features resolved. Because an increase in the actual characteristic curve of the linear broadband lambda probe - During the intended use of the linear broadband lambda sensor in the control of an internal combustion engine - is determined Deviation of the slope from a target characteristic curve is determined and from the deviation a correction value is determined with which the control signal for influencing the Composition of the fuel-air mixture for operating the Correcting the internal combustion engine is advantageously possible, automatically continuously adapt the actual characteristic of the linear broadband lambda probe. So you can in particular without additional component expenditure, for example by additional Probes or the like, for calibrating the linear broadband lambda probe exact Lambda values can be specified. This also advantageously makes it possible for Manufacture of linear broadband lambda probes greater manufacturing tolerances allow, because during the intended use of the lambda sensors a the existing errors are automatically compensated. This is what happens a reduction in production costs due to quality monitoring requirements etc. can be reduced and on the other hand the yield of Manufacturing process is increased.

Ferner ist vorteilhaft möglich, durch das erfindungsgemäße Verfahren alterungsbedingte beziehungsweise vergiftungsbedingte Änderungen der Kennlinien zu kompensieren, so dass die Standzeit der linearen Breitband-Lambdasonden erhöht werden kann.Furthermore, it is advantageously possible for the method according to the invention to be age-related or to compensate for changes in the characteristic curves caused by poisoning that the service life of the linear broadband lambda sensors can be increased.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass die Steigung der Ist-Kennlinie durch eine Regressionsrechnung ermittelt wird, bei der vorzugsweise die Regressionsrechnung die Ausgangssignale der linearen Breitband-Lambdasonde und ein Lambdasoll-Signal zum Betrieb der Verbrennungskraftmaschine auswertet. Durch eine derartige Verknüpfung der Signale lässt sich ein Regressionsfaktor ermitteln, der die mittlere Steigung der Ist-Kennlinie im Punkt des Lambda-Soll-Mittelwertes darstellt. Dieser Regressionsfaktor kann bevorzugt mit der Soll-Kennlinie der eingesetzten linearen Breitband-Lambdasonde sowie dem Lambda-Soll-Wert verknüpft werden, so dass ein Korrekturfaktor zur Verfügung steht, mittels dem das von der linearen Breitband-Lambdasonde gelieferte Signal korrigiert werden kann. Hierdurch wird eine exakte Lambdaregelung der Verbrennungskraftmaschine, insbesondere auch über einen weiten Lambdaregelbereich, in fetten und mageren Betriebsmodi die Verbrennungskraftmaschine möglich.In a preferred embodiment of the invention it is provided that the slope of the actual characteristic curve is determined by a regression calculation, in which preferably the Regression calculation the output signals of the linear broadband lambda probe and evaluates a lambda target signal for operating the internal combustion engine. By Such a linkage of the signals can be used to determine a regression factor, which is the represents the average slope of the actual characteristic curve at the point of the lambda target mean value. This regression factor can preferably be used with the desired characteristic curve linear broadband lambda probe and the desired lambda value are linked, so that a correction factor is available by means of which the linear Broadband lambda sensor supplied signal can be corrected. This will create a exact lambda control of the internal combustion engine, in particular also via a wide lambda control range, in rich and lean operating modes Internal combustion engine possible.

Ferner wird durch das erfindungsgemäße Verfahren in einfacher Weise eine Onboard-Diagnose möglich, da durch die Regression die Abweichung der tatsächlichen Kennlinie der linearen Breitband-Lambdasonde von der idealen Kennlinie ermittelbar ist. Diese Abweichung der tatsächlichen von der idealen Kennlinie kann in einfacher Weise mit einer maximal zulässigen Abweichung verglichen werden, so dass bei Überschreiten der maximal zulässigen Abweichungen auf einen Fehlerfall erkannt wird, der beispielsweise einen Austausch der linearen Breitband-Lambdasonde erfordert. Furthermore, the method according to the invention makes onboard diagnosis simple possible because the regression means the deviation of the actual characteristic the linear broadband lambda probe can be determined from the ideal characteristic curve. This Deviation of the actual from the ideal characteristic can be done in a simple manner a maximum allowable deviation are compared so that when the maximum permissible deviations to an error case is detected, for example an exchange of the linear broadband lambda probe requires.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred refinements of the invention result from the others in the Characteristics mentioned subclaims.

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
schematisch eine mit einer Lambdaregelung ausgestattete Verbrennungskraftmaschine;
Figur 2
zwei Kennlinien von linearen Breitband-Lambdasonden;
Figur 3
ein Blockschaltbild der erfindungsgemäßen Lambdasondenkorrektur und
Figur 4
den Verlauf einzelner Kennlinien der erfindungsgemäßen Lambdasondenkorrektur.
The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
Figure 1
schematically an internal combustion engine equipped with a lambda control;
Figure 2
two characteristics of linear broadband lambda probes;
Figure 3
a block diagram of the lambda sensor correction and
Figure 4
the course of individual characteristic curves of the lambda sensor correction according to the invention.

Figur 1 zeigt schematisch eine Verbrennungskraftmaschine 10, deren Abgasleitung 12 mit einem Katalysator, insbesondere einem 3-Wege-Katalysator 14, verbunden ist. In der Abgasleitung 12 ist eine lineare Breitband-Lambdasonde 16 (nachfolgend Lambdasonde 16) angeordnet. Eine Signalleitung 18 der Lambdasonde 16 ist mit einem Motorsteuergerät 20 verbunden.FIG. 1 schematically shows an internal combustion engine 10, the exhaust pipe 12 of which is connected to a catalyst, in particular a 3-way catalyst 14. In the Exhaust line 12 is a linear broadband lambda probe 16 (hereinafter lambda probe 16) arranged. A signal line 18 of the lambda probe 16 is connected to a Engine control unit 20 connected.

Die Verbrennungskraftmaschine 10 umfasst ferner eine Ansaugleitung 22, in der ein Mittel 24 zum Einstellen einer Ansaugluftmenge angeordnet ist. Ferner ist ein Mittel 26 zum Einbringen, beispielsweise Einspritzen, eines Kraftstoffes in die Verbrennungskraftmaschine 10, insbesondere in die Ansaugluft, vorgesehen. Die Mittel 24 und 26 sind jeweils über Steuerleitungen 28 beziehungsweise 30 ebenfalls mit dem Motorsteuergerät 20 verbunden. Das Motorsteuergerät 20 besitzt weitere, hier lediglich angedeutete Anschlüsse, mit denen eine Vielzahl von Überwachungen, Steuerungen, Regelungen oder dergleichen der Verbrennungskraftmaschine 10 übernommen werden können. Auf diese wird jedoch im Rahmen der vorliegenden Beschreibung nicht näher eingegangen.The internal combustion engine 10 further comprises an intake line 22 in which a Means 24 for adjusting an amount of intake air is arranged. There is also a means 26 for introducing, for example injecting, a fuel into the Internal combustion engine 10, in particular in the intake air, is provided. The means 24 and 26 are also connected to the control lines 28 and 30, respectively Engine control unit 20 connected. The engine control unit 20 has more, only here indicated connections with which a variety of monitoring, control, Regulations or the like of the internal combustion engine 10 are adopted can. However, this will not be further discussed in the present description received.

Die allgemeine Funktionsweise der in Figur 1 gezeigten schematischen Anordnung ist folgende: The general mode of operation of the schematic arrangement shown in FIG. 1 is the following:

In der Verbrennungskraftmaschine 10 wird ein Kraftstoff-Luft-Gemisch verbrannt, um eine Antriebsenergie, beispielsweise für ein Kraftfahrzeug, zu erzeugen. Das Abgas des Verbrennungsprozesses wird über die Abgasleitung 12 einem Katalysator 14, mittels dem beispielsweise Stickoxide NOx, Kohlenwasserstoffe HC oder Kohlenmonoxid CO absorbiert werden, zugeführt. Das Abgas wird hierbei an der Lambdasonde 16 vorbeigeführt, mittels der ein Restsauerstoffgehalt des Abgases 12 in bekannter Weise messbar ist. Ein dem Restsauerstoffgehalt entsprechendes Signal wird von der Lambdasonde 16 dem Motorsteuergerät 20 übermittelt. Das Motorsteuergerät 20 stellt Steuersignale für die Mittel 24 und 26 bereit, mittels denen einen Luftmenge und/oder eine Kraftstoffmenge für das in der Verbrennungskraftmaschine 10 zu verbrennende Kraftstoff-Luft-Gemisch dosiert wird. Entsprechend einem vorgegebenen Lambdawert wird hierbei das von der Lambdasonde 16 bereitgestellte Signal berücksichtigt.A fuel-air mixture is burned in the internal combustion engine 10 in order to generate drive energy, for example for a motor vehicle. The exhaust gas from the combustion process is fed via the exhaust gas line 12 to a catalytic converter 14, by means of which nitrogen oxides NO x , hydrocarbons HC or carbon monoxide CO are absorbed, for example. The exhaust gas is guided past the lambda probe 16, by means of which a residual oxygen content of the exhaust gas 12 can be measured in a known manner. A signal corresponding to the residual oxygen content is transmitted from the lambda probe 16 to the engine control unit 20. The engine control unit 20 provides control signals for the means 24 and 26, by means of which an air quantity and / or a fuel quantity for the fuel-air mixture to be burned in the internal combustion engine 10 is metered. The signal provided by the lambda probe 16 is taken into account here in accordance with a predetermined lambda value.

In Figur 2 ist eine Kennlinie der linearen Breitband-Lambdasonde 16 mit 32 bezeichnet. Hierbei ist die Ausgangsspannung ULSU der Lambdasonde 16 über dem Wert Lambda aufgetragen. Übliche Lambdasonden 16 besitzen bei einem Lambdawert = 1 eine Ausgangsspannung U von 2,5 V. Zum Vergleich ist eine zweite Kennlinie 34 eingetragen, die fehlerbehaftet ist. Diese weist eine insgesamt geringere Steigung um den Wert λ = 1 auf. Dies bedeutet, diese fehlerhafte Kennlinie 34 besitzt im mageren Bereich (λ > 1) eine zu niedrige Ausgangsspannung ULSU und im fetten Bereich (λ < 1) eine zu hohe Ausgangsspannung ULSU. Dies führt dazu, dass um den Wert λ = 1 ein Gradient Δ ULSU 34 kleiner ist als ein Gradient Δ ULSU 32, da die Kennlinie 34 um den Wert λ = 1 eine geringere Steigung aufweist.A characteristic curve of the linear broadband lambda probe 16 is denoted by 32 in FIG. The output voltage U LSU of the lambda probe 16 is plotted against the lambda value. Conventional lambda probes 16 have an output voltage U of 2.5 V when the lambda value = 1. For comparison, a second characteristic curve 34 is entered, which has errors. This has an overall lower gradient around the value λ = 1. That is, this faulty characteristic curve 34 has in the lean region (λ> 1) to a low output voltage U LSU and in the rich region too high an output voltage (λ <1) U LSU. This leads to a gradient .DELTA.U LSU 34 being smaller than a gradient .DELTA.U LSU 32 by the value λ = 1, since the characteristic curve 34 has a smaller gradient by the value λ = 1.

Derartige fehlerhafte Kennlinienverläufe 34 können beispielsweise durch Fertigungstoleranzen, Alterungserscheinungen oder Vergiftungserscheinungen auftreten. In jedem Fall führt dies zu einer Abweichung der Steigung der Ist-Kennlinie 34 von der Soll-Kennlinie 32.Such faulty characteristic curves 34 can be caused, for example, by Manufacturing tolerances, signs of aging or poisoning appear. In any case, this leads to a deviation of the slope of the actual characteristic curve 34 from the Target characteristic curve 32.

Figur 3 zeigt in einem Blockschaltbild die erfindungsgemäße Lambdasondenkorrektur, mittels der beim bestimmungsgemäßen Einsatz der Lambdasonde 16 (Figur 1) der beispielsweise anhand von Figur 2 erläuterte Offset der Kennlinie 34 von der Soll-Kennlinie 32 ausgeglichen werden kann. FIG. 3 shows the lambda probe correction according to the invention in a block diagram, by means of the when the lambda probe 16 (FIG. 1) is used as intended for example, the offset of the characteristic curve 34 from the target characteristic curve explained with reference to FIG. 2 32 can be compensated.

Die einzelnen Bauelemente der Lambdasondenkorrektur sind in das Motorsteuergerät 20 integriert.The individual components of the lambda sensor correction are in the engine control unit 20 integrated.

Das Spannungssignal ULSU der Lambdasonde 16 wird einerseits einer Regressionsrechnung 36 und andererseits einem Subtrahierglied 38 zugeführt. Der Regressionsrechnung 36 wird ferner ein Signal λSoll zugeführt. Das Signal λSoll wird ferner einem Speichermittel 40 zugeführt, in dem die Soll-Kennlinie 32 abgespeichert ist. Anhand der im Speichermittel 40 abgelegten Kennlinie 32 wird aus dem Signal λSoll ein Signal ULSU-modell ermittelt, das einem Differenzierglied 42 zugeführt wird. Das Differenzierglied 42 wird gleichzeitig mit dem Signal λSoll beaufschlagt. Am Ausgang des Differenziergliedes 42 liegt ein Signal d ULSU-modell / d λSoll an, das der Sollsteigung der Kennlinie 32 entspricht.The voltage signal U LSU of the lambda probe 16 is supplied on the one hand to a regression calculation 36 and on the other hand to a subtractor 38. The regression calculation 36 is also supplied with a signal λ target . The signal λ target is also fed to a storage means 40 in which the target characteristic curve 32 is stored. On the basis of the characteristic curve 32 stored in the storage means 40, a signal U LSU model is determined from the signal λ target and is supplied to a differentiator 42. The differentiator 42 is simultaneously subjected to the signal λ target . At the output of the differentiator 42 there is a signal d U LSU model / d λ target which corresponds to the target slope of the characteristic curve 32.

Am Ausgang der Regressionsrechnung 36 liegt ein Signal d ULSU /dλ Soll an, das der Ist-Steigung der Kennlinie 34 entspricht. Dieses Signal entspricht dem Regressionsfaktor RLSU der Lambdasonde 16. Dieser stellt die mittlere Steigung der Ist-Kennlinie 34 im Punkt des Lambdasoll-Mittelwertes dar. Über ein Verhältnisglied 44 wird der Regressionsfaktor RLSU mit der Sollsteigung der Kennlinie 32 verknüpft und einem Adaptionsglied 46 zugeführt. Das Adaptionsglied 46 ermittelt aus dem Eingangssignal einen Korrekturfaktor KLSU für die Lambdasonde 16.At the output of the regression calculation 36 there is a signal d U LSU / dλ Soll which corresponds to the actual slope of the characteristic curve 34. This signal corresponds to the regression factor R LSU of the lambda probe 16. This represents the average slope of the actual characteristic curve 34 at the point of the lambda target mean value. The regression factor R LSU is linked to the nominal slope of the characteristic curve 32 via a ratio element 44 and fed to an adaptation element 46 . The adaptation element 46 determines a correction factor K LSU for the lambda probe 16 from the input signal.

Das Ist-Signal ULSU der Lambdasonde 16 wird über das Subtrahierglied 38 mit einer Spannung von 2,5 V, die der Sollspannung bei λ = 1 entspricht, verknüpft. Die sich hieraus ergebende Differenz wird über ein Multiplizierglied 48 mit dem Korrekturfaktor LSU verknüpft. Das Multiplizierglied 48 ist mit einem Summierglied 50 verbunden, über das der zuvor im Subtrahierglied 38 abgezogene Spannungswert 2,5 V dem Signal wieder aufaddiert wird, so dass als Ausgangssignal ein korrigiertes Spannungssignal ULSU-korrigiert der Lambdasonde 16 zur Verfügung steht und durch das Motorsteuergerät 20 (Figur 1) für die Regelung der Verbrennungskraftmaschine 10 eingesetzt werden kann.The actual signal U LSU of the lambda probe 16 is linked via the subtractor 38 with a voltage of 2.5 V, which corresponds to the target voltage at λ = 1. The resulting difference is linked to the correction factor LSU via a multiplier 48. The multiplier 48 is connected to a summing element 50, via which the voltage value 2.5 V previously subtracted in the subtractor 38 is added to the signal again, so that a corrected voltage signal U LSU-corrected is available to the lambda probe 16 and by the engine control unit as the output signal 20 (Figure 1) can be used for the control of the internal combustion engine 10.

Es wird deutlich, dass durch die Signalverarbeitung erreicht wird, dass eine Abweichung der Steigung der Ist-Kennlinie 34 von der Steigung der Soll-Kennlinie 32 in einfacher Weise korrigiert werden kann.It is clear that signal processing achieves that deviation the slope of the actual characteristic curve 34 from the slope of the target characteristic curve 32 in a simpler manner Way can be corrected.

In Figur 4 werden typische Signalverläufe der anhand von Figur 3 erläuterten Lambdasondenkorrektur gezeigt. Hierbei sind die einzelnen Signalverläufe über der Zeit t aufgetragen. Mit 60 ist ein Sollwert für die Steigung der Soll-Kennlinie 32, also d U LSU--modell / d λSoll dargestellt. Ferner ist mit 62 ein Verlauf des Regressionsfaktors RLSU dargestellt. Mit 64 ist eine Kennlinie aufgetragen, die ein Rauschen des Spannungssignals ULSU darstellt. Die Kennlinie 64 oszilliert hierbei um einen Rauschfaktor RF von 1.FIG. 4 shows typical signal profiles of the lambda sensor correction explained with reference to FIG. 3. The individual signal curves are plotted against time t. A setpoint for the slope of the setpoint characteristic curve 32, ie d U LSU - model / d λ setpoint, is shown at 60 . A curve of the regression factor R LSU is also shown at 62. A characteristic curve is plotted at 64, which represents noise of the voltage signal U LSU . The characteristic curve 64 oscillates here by a noise factor RF of 1.

Mit 66 ist die Kennlinie des Spannungssignals ULSU entsprechend der Soll-Kennlinie 32 (Figur 2) für eine Lambdaregelung von ± 3 % aufgetragen. Dies bedeutet, der Wert λSoll schwankt (toggelt) um einen Wert von 0,97 bis 1,03. Die durch die Rauschsignale 64 tatsächlich vorhandenen Signalstörungen führen zu einem Kennlinienverlauf 68, der aus einer Überlagerung des Kennlinienverlaufs 66 mit der Kennlinie 64 resultiert. Die Kennlinie 66 entspricht somit dem Sollsignal, während die Kennlinie 68 dem Ist-Signal entspricht. Anhand der Kennlinie 62 wird deutlich, dass der Regressionsfaktor RLSU schon nach kurzer Zeit sich dem Verlauf der Kennlinie 60, die der Sollsteigung der Kennlinie 32 entspricht, annähert. Der Regressionsfaktor 62 wird bei jedem neu hinzukommenden Messwertpaar, dies ist die tatsächliche Mess-Spannung ULSU der Lambdasonde 16 und des Wertes λSoll zu einem beliebigen Zeitpunkt, neu über alle Messwerte des Messzyklus berechnet. Der Messzyklus beginnt beispielsweise bei jedem Neustart der Verbrennungskraftmaschine 10. Hierdurch nimmt die Anzahl der in die Regression einbezogenen Messwerte mit jedem neuen Messwertpaar zu. Es wird deutlich, dass bereits nach kurzer Zeit, insbesondere innerhalb weniger Sekunden, der Verlauf 62 des Regressionsfaktors den Verlauf der Kennlinie 60 sich annähert.The characteristic curve of the voltage signal U LSU corresponding to the desired characteristic curve 32 (FIG. 2) is plotted at 66 for a lambda control of ± 3%. This means that the value λ target fluctuates (toggles) by a value of 0.97 to 1.03. The signal disturbances actually present by the noise signals 64 lead to a characteristic curve 68, which results from a superimposition of the characteristic curve 66 with the characteristic curve 64. The characteristic curve 66 thus corresponds to the desired signal, while the characteristic curve 68 corresponds to the actual signal. On the basis of the characteristic curve 62, it becomes clear that the regression factor R LSU approaches the characteristic curve 60, which corresponds to the nominal slope of the characteristic curve 32, after a short time. The regression factor 62 is recalculated for all newly added measured value pairs, this is the actual measured voltage U LSU of the lambda probe 16 and the value λ target at any time, over all measured values of the measurement cycle. The measuring cycle begins, for example, each time the internal combustion engine 10 is restarted. As a result, the number of measured values included in the regression increases with each new pair of measured values. It becomes clear that after a short time, in particular within a few seconds, the course 62 of the regression factor approaches the course of the characteristic curve 60.

Anhand dieser modellhaften Darstellung der Kennlinien wird deutlich, dass trotz Überlagerung des Lambdasollsignals (Kennlinie 66) durch das Rauschsignal 64 das Ausgangssignal ULSU korrigiert (Figur 3) durch die fortlaufende Ermittlung des Regressionsfaktors RLSU bei der Lambdaregelung der Verbrennungskraftmaschine 10 die Abweichung der Steigung der Ist-Kennlinie 34 von der Soll-Kennlinie 32 kompensiert.On the basis of this model representation of the characteristic curves, it is clear that, despite the superposition of the lambda target signal (characteristic curve 66) by the noise signal 64, the output signal U LSU is corrected (FIG. 3) by continuously determining the regression factor R LSU in the lambda control of the internal combustion engine 10, the deviation of the slope of the Actual characteristic curve 34 is compensated for by the desired characteristic curve 32.

Anhand der Erläuterung wird ferner deutlich, dass durch die Lambdasondenkorrektur, wie sie in Figur 3 gezeigt ist, eine Abweichung der Steigung der Ist-Kennlinie 34 von der Soll-Kennlinie 32 für jede lineare Breitband-Lambdasonde 16 erfolgen kann. Diese Abweichung kann durch Herstellungstoleranzen, durch Alterung oder durch Vergiftungserscheinungen hervorgerufen sein. Dies stellt für die Korrektur des Lambdasonden-Spannungssignals ULSU kein Kriterium dar. Based on the explanation, it is also clear that the lambda probe correction, as shown in FIG. 3, can cause the gradient of the actual characteristic curve 34 to deviate from the target characteristic curve 32 for each linear broadband lambda probe 16. This deviation can be caused by manufacturing tolerances, aging or signs of poisoning. This is not a criterion for the correction of the lambda probe voltage signal U LSU .

Durch die Lambdasondenkorrektur kann gleichzeitig eine Onboard-Diagnose des die Verbrennungskraftmaschine 10 aufweisenden Kraftfahrzeuges durchgeführt werden. Ist der Regressionsfaktor RLSU und/oder der Korrekturfaktor KLSU so groß, dass die Abweichung der Ist-Kennlinie 34 von der Soll-Kennlinie 32 eine vorgebbare maximale Abweichung übersteigt, kann hieraus auf einen Fehler der Lambdasonde 16, der nicht mehr durch die erfindungsgemäße Korrektur kompensiert werden kann, geschlossen werden. Durch Bereitstellen eines entsprechenden Signals kann der Austausch der entsprechenden Lambdasonde 16 angezeigt werden. The on-board diagnosis of the motor vehicle having the internal combustion engine 10 can be carried out simultaneously by the lambda sensor correction. If the regression factor R LSU and / or the correction factor K LSU is so large that the deviation of the actual characteristic curve 34 from the target characteristic curve 32 exceeds a predeterminable maximum deviation, an error of the lambda probe 16 which can no longer be caused by the inventive method can be derived from this Correction can be compensated, be closed. The exchange of the corresponding lambda probe 16 can be displayed by providing a corresponding signal.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

1010th
VerbrennungskraftmaschineInternal combustion engine
1212th
AbgasleitungExhaust pipe
1414
3-Wege-Katalysator3-way catalytic converter
1616
Breitband-LambdasondeBroadband lambda sensor
1818th
SignalleitungSignal line
2020th
MotorsteuergerätEngine control unit
2222
AnsaugleitungSuction pipe
2424th
Mittelmedium
2626
Mittelmedium
2828
SteuerleitungenControl lines
3030th
SteuerleitungenControl lines
3232
Soll-KennlinieTarget characteristic
3434
Ist-KennlinieActual characteristic
3636
RegressionsrechnungRegression calculation
3838
SubtrahiergliedSubtractor
4040
SpeichermittelStorage means
4242
DifferenziergliedDifferentiator
4444
VerhältnisgliedRelationship
4646
AdaptionsgliedAdapter
4848
MultipliziergliedMultiplier
5050
SummiergliedSummer
6060
Sollwert für die Steigung der Soll-Kennlinie 32Setpoint for the slope of the set characteristic curve 32
6262
Verlauf des Regressionsfaktors RLSU Course of the regression factor R LSU
6464
RauschsignaleNoise signals
6666
KennlinienverlaufCharacteristic curve
6868
KennlinienverlaufCharacteristic curve
ULSU U LSU
Lambdasonden-SpannungssignalLambda probe voltage signal
RLSU R LSU
RegressionsfaktorRegression factor
KLSU K LSU
KorrekturfaktorCorrection factor
RFRF
RauschfaktorNoise factor

Claims (8)

Verfahren zur Regelung einer Verbrennungskraftmaschine, wobei der Restsauerstoffgehalt eines Abgases der Verbrennungskraftmaschine mittels einer linearen Breitband-Lambdasonde gemessen wird und ein von dem Restsauerstoffgehalt des Abgases abhängiges Signal einem Steuergerät übermittelt wird und das Steuergerät hieraus ein die Zusammensetzung der Verbrennungskraftmaschine zugeführten Kraftstoff-Luft-Gemisch beeinflussendes Stellsignal generiert, dadurch gekennzeichnet, dass eine Steigung der Ist-Kennlinie der linearen Breitband-Lambdasonde - während des bestimmungsgemäßen Einsatzes der linearen Breitband-Lambdasonde bei der Regelung einer Verbrennungskraftmaschine - ermittelt wird, eine Abweichung der Steigung von einer Soll-Kennlinie ermittelt wird und aus der Abweichung ein Korrekturwert ermittelt wird, mit dem das Signal der linearen Breitband-Lambdasonde korrigiert wird.Method for regulating an internal combustion engine, wherein the residual oxygen content of an exhaust gas of the internal combustion engine is measured by means of a linear broadband lambda probe and a signal dependent on the residual oxygen content of the exhaust gas is transmitted to a control unit and the control unit uses this to influence the fuel-air mixture supplied to the internal combustion engine Control signal generated, characterized in that a slope of the actual characteristic curve of the linear broadband lambda probe - during the intended use of the linear broadband lambda probe in the control of an internal combustion engine - is determined, a deviation of the slope from a target characteristic curve is determined and from the deviation, a correction value is determined with which the signal of the linear broadband lambda probe is corrected. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Steigung der Ist-Kennlinie durch eine Regressionsrechnung ermittelt wird.A method according to claim 1, characterized in that an increase in the actual characteristic curve is determined by a regression calculation. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Regressionsrechnung das Ist-Signal (ULSU) der linearen Breitband-Lambdasonde und ein Sollwert (λSoll) der Lambdaregelung zugeführt wird.Method according to one of the preceding claims, characterized in that the regression calculation is supplied with the actual signal (U LSU ) of the linear broadband lambda probe and a setpoint (λ setpoint ) with the lambda control. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steigung der Soll-Kennlinie aus einer bekannten Soll-Kennlinie und dem Sollwert (λSoll) ermittelt wird.Method according to one of the preceding claims, characterized in that the slope of the target characteristic is determined from a known target characteristic and the target value (λ target ). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Regressionsfaktor (RLSU) der Regressionsrechnung mit der Steigung der Soll-Kennlinie verknüpft wird und hieraus ein Korrekturfaktor (KLSU) für das Ist-Signal (ULSU) ermittelt wird. Method according to one of the preceding claims, characterized in that a regression factor (R LSU ) of the regression calculation is linked to the slope of the target characteristic curve and a correction factor (K LSU ) for the actual signal (U LSU ) is determined from this. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Regressionsfaktor (RLSU) in vorgebbaren Zeitschritten mit jedem neu hinzukommenden Messwertpaar des Ist-Signals (ULSU) und des Sollwertes (λSoll) neu über alle Messwerte des Messzyklus ermittelt wird.Method according to one of the preceding claims, characterized in that the regression factor (R LSU ) is determined in predetermined time steps with each newly added pair of measured values of the actual signal (U LSU ) and the setpoint (λ set ) over all measured values of the measurement cycle. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Regressionsfaktor (RLSU) und/oder der Korrekturfaktor (KLSU) für eine Onboard-Diagnose eines die Verbrennungskraftmaschine aufweisenden Kraftfahrzeuges eingesetzt wird.Method according to one of the preceding claims, characterized in that the regression factor (R LSU ) and / or the correction factor (K LSU ) is used for on-board diagnosis of a motor vehicle having the internal combustion engine. Vorrichtung zur Lambdaregelung einer Verbrennungskraftmaschine, die wenigstens eine in einer Abgasleitung angeordnete lineare Breitband-Lambdasonde umfasst, sowie ein Steuergerät besitzt, mittels dem ein von der Lambdasonde geliefertes Signal erfassbar ist und das Mittel zum Erstellen eines Kraftstoff-Luft-Gemisches für die Verbrennungskraftmaschine ansteuert, gekennzeichnet durch Mittel (36), mittels denen eine Steigung einer Ist-Kennlinie (34) der Lambdasonde (16) ermittelbar ist und Mittel (40, 42), mittels denen eine Steigung einer Soll-Kennlinie (32) ermittelbar ist und Mittel (44, 46) zum Ermitteln eines Korrekturwertes (KLSU) des Signals (ULSU) der Lambdasonde (16).Device for lambda control of an internal combustion engine, which comprises at least one linear broadband lambda probe arranged in an exhaust gas line, and has a control unit, by means of which a signal supplied by the lambda probe can be detected and controls the means for creating a fuel-air mixture for the internal combustion engine, characterized by means (36) by means of which an incline of an actual characteristic curve (34) of the lambda probe (16) can be determined and means (40, 42) by means of which an incline of a target characteristic curve (32) can be ascertained and means (44 , 46) for determining a correction value (K LSU ) of the signal (U LSU ) of the lambda probe (16).
EP01106488A 2000-04-05 2001-03-26 Method and device for controlling an internal combustion engine Expired - Lifetime EP1143132B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10016886 2000-04-05
DE10016886A DE10016886A1 (en) 2000-04-05 2000-04-05 Method and device for regulating an internal combustion engine

Publications (3)

Publication Number Publication Date
EP1143132A2 true EP1143132A2 (en) 2001-10-10
EP1143132A3 EP1143132A3 (en) 2002-08-07
EP1143132B1 EP1143132B1 (en) 2006-06-14

Family

ID=7637646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01106488A Expired - Lifetime EP1143132B1 (en) 2000-04-05 2001-03-26 Method and device for controlling an internal combustion engine

Country Status (3)

Country Link
EP (1) EP1143132B1 (en)
AT (1) ATE330117T1 (en)
DE (2) DE10016886A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081887A2 (en) * 2001-04-05 2002-10-17 Siemens Aktiengesellschaft Method for purifying exhaust gas of an internal combustion engine
WO2008122369A3 (en) * 2007-04-04 2008-11-27 Volkswagen Ag Lambda control with adaptation of characteristic curves
FR2981697A1 (en) * 2011-10-24 2013-04-26 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A LAMBDA REGULATION
WO2013171015A1 (en) * 2012-05-15 2013-11-21 Robert Bosch Gmbh Method and control unit for compensating a voltage offset in a two-point lambda probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190520B1 (en) 2017-10-12 2019-01-29 Harley-Davidson Motor Company Group, LLC Signal conditioning module for a wide-band oxygen sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473889A (en) 1993-09-24 1995-12-12 Honda Giken Kogyo K.K. (Honda Motor Co., Ltd. In English) Air-fuel ratio control system for internal combustion engines
DE19545706A1 (en) 1995-12-07 1997-06-12 Vdo Schindling Calibration method for lambda probe in IC engine
EP0686232B1 (en) 1993-02-26 1997-09-10 ROTH-Technik GmbH &amp; Co. Forschung für Automobil- und Umwelttechnik Combination of lambda sensors
DE19629552C1 (en) 1996-07-22 1997-12-18 Siemens Ag IC engine exhaust gas probe temp. drift compensation device
EP0894187B1 (en) 1996-04-16 1999-09-01 Siemens Aktiengesellschaft Process for model-based nonstationary control of an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195349A (en) * 1985-02-25 1986-08-29 Ngk Spark Plug Co Ltd Device for detecting air fuel ratio for internal-combustion engine
DE3928860A1 (en) * 1989-08-31 1991-03-07 Vdo Schindling METHOD AND DEVICE FOR IMPROVING THE EXHAUST GAS BEHAVIOR OF MIXTURE COMPRESSING INTERNAL COMBUSTION ENGINES
DE4440639B4 (en) * 1993-11-19 2007-08-23 Aft Atlas Fahrzeugtechnik Gmbh Method for stationary control of internal combustion engines
DE19819461B4 (en) * 1998-04-30 2004-07-01 Siemens Ag Process for exhaust gas purification with trim control
DE19842425C2 (en) * 1998-09-16 2003-10-02 Siemens Ag Method for correcting the characteristic of a linear lambda probe
DE19852244C1 (en) * 1998-11-12 1999-12-30 Siemens Ag Controlling NOx emission in exhaust gases passing through three-way catalyst followed by lambda sensor
DE19919427C2 (en) * 1999-04-28 2001-09-20 Siemens Ag Method for correcting the characteristic of a broadband lambda probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686232B1 (en) 1993-02-26 1997-09-10 ROTH-Technik GmbH &amp; Co. Forschung für Automobil- und Umwelttechnik Combination of lambda sensors
US5473889A (en) 1993-09-24 1995-12-12 Honda Giken Kogyo K.K. (Honda Motor Co., Ltd. In English) Air-fuel ratio control system for internal combustion engines
DE19545706A1 (en) 1995-12-07 1997-06-12 Vdo Schindling Calibration method for lambda probe in IC engine
EP0894187B1 (en) 1996-04-16 1999-09-01 Siemens Aktiengesellschaft Process for model-based nonstationary control of an internal combustion engine
DE19629552C1 (en) 1996-07-22 1997-12-18 Siemens Ag IC engine exhaust gas probe temp. drift compensation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081887A2 (en) * 2001-04-05 2002-10-17 Siemens Aktiengesellschaft Method for purifying exhaust gas of an internal combustion engine
WO2002081887A3 (en) * 2001-04-05 2002-12-12 Siemens Ag Method for purifying exhaust gas of an internal combustion engine
WO2008122369A3 (en) * 2007-04-04 2008-11-27 Volkswagen Ag Lambda control with adaptation of characteristic curves
FR2981697A1 (en) * 2011-10-24 2013-04-26 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A LAMBDA REGULATION
US9091226B2 (en) 2011-10-24 2015-07-28 Robert Bosch Gmbh Method and device for adapting a lambda control
WO2013171015A1 (en) * 2012-05-15 2013-11-21 Robert Bosch Gmbh Method and control unit for compensating a voltage offset in a two-point lambda probe
US9696289B2 (en) 2012-05-15 2017-07-04 Robert Bosch Gmbh Method and control unit for compensating for a voltage offset of a two-point lambda sensor

Also Published As

Publication number Publication date
EP1143132B1 (en) 2006-06-14
ATE330117T1 (en) 2006-07-15
DE50110097D1 (en) 2006-07-27
DE10016886A1 (en) 2001-10-18
EP1143132A3 (en) 2002-08-07

Similar Documents

Publication Publication Date Title
DE3500594C2 (en) Metering system for an internal combustion engine to influence the operating mixture
DE3823277C2 (en)
EP1327138B1 (en) Method and device for the on-board diagnosis of an nox sensor
DE102008001569B4 (en) Method and device for adapting a dynamic model of an exhaust gas probe
DE102010043238B4 (en) Motor control system with an actuator control algorithm
EP0442873B1 (en) A process and device for lambda control
DE69635917T2 (en) Detection device of catalyst deterioration of an internal combustion engine
DE19612212B4 (en) Diagnostic device for an air / fuel ratio sensor
DE69918914T2 (en) Method and device for controlling the air-fuel ratio in an internal combustion engine
WO1995031636A1 (en) Process and device for controlling an internal combustion engine
DE4192104C1 (en) Controlling air-fuel ratio in internal combustion engine
DE4122828A1 (en) AIR FUEL RATIO CONTROL SYSTEM
WO2003078816A1 (en) Method and device for monitoring and regulating the operation of an internal combustion engine with reduced nox emissions
DE102012221549A1 (en) Method for determining gaseous mixture composition in exhaust gas passage of internal combustion engine i.e. Otto engine, involves correcting output signal of exhaust-gas sensor with quantity dependant on composition of gaseous mixture
DE10256241A1 (en) Method and device for controlling an internal combustion engine having exhaust gas recirculation
DE10309422A1 (en) Calibrating nitrogen oxide sensor in engine exhaust system, shuts off engine for interval during which decay of nitrogen oxide signal is observed and evaluated
EP0187649B1 (en) Mixture regulation apparatus for a combustion engine
EP1143132B1 (en) Method and device for controlling an internal combustion engine
DE19522659C2 (en) Fuel delivery system and method for an internal combustion engine
EP0757168A2 (en) Method and apparatus for controlling an internal combustion engine
EP1227234B1 (en) Method and apparatus for operating a NOx-sensor located in the exhaust line of an internal combustion engine
WO2007065855A1 (en) Method for the diagnosis of a catalytic converter which is arranged in an exhaust area of an internal combustion engine and device for carrying out said method
WO1999056012A1 (en) Method for purifying waste gas with trim adjustment
EP1365234A2 (en) Method for correcting the NOx signal of a NOx sensor
DE10161901A1 (en) Compensating engine exhaust gas sensor linear characteristic offset involves allowing offset compensation value determination only if reference sensor signal in tolerance field for defined time

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030207

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110097

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060614

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060915

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50110097

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523