EP1106371B1 - Printer with simplified manufacturing and manufacturing method - Google Patents

Printer with simplified manufacturing and manufacturing method Download PDF

Info

Publication number
EP1106371B1
EP1106371B1 EP00403351A EP00403351A EP1106371B1 EP 1106371 B1 EP1106371 B1 EP 1106371B1 EP 00403351 A EP00403351 A EP 00403351A EP 00403351 A EP00403351 A EP 00403351A EP 1106371 B1 EP1106371 B1 EP 1106371B1
Authority
EP
European Patent Office
Prior art keywords
substrate
drops
nominal
print
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00403351A
Other languages
German (de)
French (fr)
Other versions
EP1106371A1 (en
Inventor
Alain Dunand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9915270A external-priority patent/FR2801834B1/en
Priority claimed from FR9915271A external-priority patent/FR2801835B1/en
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1106371A1 publication Critical patent/EP1106371A1/en
Application granted granted Critical
Publication of EP1106371B1 publication Critical patent/EP1106371B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/085Charge means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/12Ink jet characterised by jet control testing or correcting charge or deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns

Definitions

  • the invention is in the field of ink jet printers in which ink drops are formed and electrically charged and then deflected to strike a printing substrate. It relates to a method for simplifying the mechanical assembly of the printheads and the printer applying such a method.
  • a jet of pressurized ink ejected by a printing nozzle can be broken into a succession of individual drops each drop being individually loaded in a controlled manner. In the path of these drops thus individually charged, electrodes of constant potential deviate more or less drops according to the charge they have. If a drop is not to reach the printing substrate, its charge is controlled so that it is diverted to an ink recuperator.
  • the operating principle of such inkjet printers is well known and is described for example in US-A-4 160 982. As described in this patent and shown in FIG. 1, such a printer comprises a reservoir 11 containing the electrically conductive ink 10 which is distributed by a distribution channel 13 to a drop generator 16.
  • the role of the drop generator 16 is to form from the ink under pressure contained in the distribution channel 13 a set of individual drops. These individual drops are electrically charged by means of a charging electrode 20 supplied by a voltage generator 21. The charged drops pass through a space between two deflection electrodes 23, 24 and depending on their charge are more or less diverted. The least or no deviated drops are directed towards an ink recuperator 22 while the deviated drops are directed towards a substrate 27. The successive drops of a burst reaching the substrate 27 can thus be diverted towards an extreme low position, a extreme high position and successive intermediate positions, the set of drops of the salvo forming a line of height ⁇ X substantially perpendicular to a direction of relative advance of the print head 25 and the substrate.
  • the print head is formed by the drop generator 16, the charging electrode 20, the deflection electrodes 23, 24 and in general the recuperator 22.
  • This head 25 is generally enclosed in a not shown casing.
  • the deflection movement printed to the drops charged by the deflection electrodes 23, 24 is completed by a movement along a Y axis perpendicular to the X axis, between the print head 25 and the substrate.
  • the time elapsed between the first and the last drop of a salvo is very short. As a result, despite a continuous movement between the print head 25 and the substrate, it can be considered that the substrate has not moved relative to the head during the time of a salvo.
  • the bursts are fired at regular space intervals.
  • the printing is done strip by strip, the substrate having an intermittent feed movement in the direction X after each scan.
  • the relative movement of the print head and the substrate is called scanning movement.
  • the scanning movement thus consists of a back and forth motion between a first edge of the substrate and a second edge of the substrate.
  • the movement between one edge and the other edge of the substrate makes it possible to print on the fly a strip of height L or quite often a portion of the height band ⁇ X b , ⁇ X b being most often a submultiple of L.
  • the set of successively printed strips thus constitutes the pattern to be printed on the substrate.
  • the substrate is advanced from the space between two webs or part of web for printing the next tape or web portion. Printing can be done just one way or the other way around the movement of the print head relative to the substrate.
  • the multiple shades of colors are the result of the superimposition and juxtaposition of ink strikes coming from nozzles fed by inks of different colors.
  • the system of relative displacement of the substrate relative to the printing heads is such that a given point of the substrate is presented successively under the ink jets of each of the colors.
  • the printing system generally has several jets of the same ink operating simultaneously, either by the juxtaposition of multiple heads, or by the use of multijet heads, or finally by the combination of these two types of heads to achieve at high print speeds. In this case, each inkjet prints a limited portion of the substrate.
  • the print pattern is defined by a digital file.
  • This file can be formed using a scanner, a computer-assisted graphic design (CAD) palette, transmitted by means of a computer network for data exchange, or simply read from a digital data storage device read device (optical disk, CD-ROM).
  • the digital file representing the colored pattern to be printed is first split into several bit patterns (or bitmap) for each of the inks.
  • bit patterns or bitmap
  • the case of the binary pattern is a non-limiting example; in some printers, the pattern to print is of type "contone", that is to say that each position can be printed by a number of drops variable from 1 to M for each ink.
  • a part of the bit pattern is extracted from the file for each of the jets corresponding to the width of the band that will be printed.
  • a storage memory of the strip-cut digital pattern is represented at 1, this storage memory containing the indications relating to a color.
  • an intermediate memory 2 receives the data necessary for the printing of the band by said color.
  • the descriptive data of the band to be printed are then introduced into a computer 3 of the voltages charge different drops that will form the band relative to this color. These data are introduced into the computer in the form of a succession of descriptions of the frames which together will constitute the band.
  • the computer 3 drops charge voltages is often in the form of a dedicated integrated circuit.
  • This calculator 3 calculates in real time the sequence of voltages to be applied to the charging electrodes 20 to print a given frame defined by its frame description, as loaded from the intermediate memory 2.
  • a downstream electronic circuit 4, called a sequencer of drop charge ensures the synchronization of the charging voltages with, on the one hand, the moments of drop formation and, on the other hand, the relative advance of the print head and the substrate.
  • the advance of the substrate with respect to the head is embodied by a frame clock whose signal is derived from the signal of an incremental encoder of position of the printing unit relative to the substrate.
  • the sequencer 4 for charging the drops also receives a signal from a drop clock 6. This drop clock is synchronous with the control signal of the drop generator 16. It makes it possible to define the instants of transitions of the different applied charge voltages. to the drops to differentiate their trajectories.
  • the digital data from the drop charge sequencer 4 are converted into analog value by a digital analog converter 8.
  • This converter delivering a low voltage level generally requires the presence of a high voltage amplifier 21 which will supply the electrodes of the 20.
  • the illustrations of the prior art given with reference to Figures 1 and 2, are intended to make clear the scope and contribution of the invention, but it is obvious that the prior art is not limited to the descriptions made in reference to these figures.
  • Other arrangements of the electrodes and unused ink droplet collection collectors are described in extensive literature.
  • An electromechanical arrangement of the charge electrode printing nozzles and the deflection electrodes as described in the patent No. FR 2 198 410 issued to International Business Machine Corporation (IBM) with reference to FIGS. of this patent could well be used in the present invention.
  • the electronic control circuit of the charging electrodes could be illustrated by the circuit described in connection with Figure 4 of this same patent.
  • the data to be printed may not be in the form of binary files, but in the form of files containing words of several bits, to reflect the fact that each position of the substrate can receive several drops of ink of the same color.
  • the main printing defects that are generated by all known printing systems are the defects relating to lineations in the direction of the relative movement of the print head relative to the substrate. This defect results in the appearance of light or dark lines when printing by successive sweeps. These defects can be in the space between two bands which should in principle be equal to the interval between adjacent drops of a frame, or within the same band, in the space delimiting the printed areas by different jets, or even inside the frame printed by a jet at the space between two adjacent drops of the frame.
  • Another type of common solution is to use a very high overlap rate between drops nearby, so as to avoid white lineages. These white lineages correspond to the lack of substrate coverage. Dark lineages are less visible and it is preferred to have a dark lineage defect rather than a white lineage defect.
  • the solution of increasing the rate of overlap between adjacent drops is effective to compensate for defects within the same band and to some extent the lineage defects between bands but it has the disadvantage of requiring an amount of very high ink per unit area of the substrate and generates difficulties of drying or deformation of the substrate.
  • a third type of solution for clearing lineage defects on scanning printers is to partially print the substrate during each scan. By multiplying the number of substrate scans, the total coverage of the substrate is obtained.
  • This multi-pass printing exploits various strategies of interleaving the positions of the drops from the different jets.
  • An example of interleaving of even and odd lines is given in US Pat. No. 4,604,631 issued to RICOH.
  • An advantage of this solution often related to a high overlap ratio is that it allows a drying time of the substrate, but it results in the reduction of the printing rate by a factor ranging from 2 to 16.
  • test pattern makes it possible to recognize the different types of errors, that is to say ink drop speed errors, phase errors due to incorrect sequencing of the ink drop. application of load voltage, offset errors in an X direction, offset errors in a Y direction, and angular offset errors.
  • Speed or offset errors in the X direction are corrected by changing the charging voltage of the drops.
  • Phase errors due to incorrect sequencing of the application of the charging voltage are corrected by changing the sequencing of the drop charge pulse.
  • Errors of offset in Y that is to say in the direction of the sweep are compensated by a restructuring of the data sequencing. The same is true for angular errors. For reasons that will be explained later, such a use of a pattern may lead to a good position of the drops on the substrate, but it causes other defects that are essentially color defects, and permanent adjustment difficulties of the printer.
  • No. 5,481,288 discloses a printer having servocontrols for adjusting the viscosity of the ink, the jet speed, the breaking distance of the jet, as well as the control of the means for charging the drops.
  • the present invention has the main object of reducing the difficulties of mounting the printheads on a printer, while ensuring a good quality of printing.
  • Good print quality requires good color reproducibility, size of drop impacts resulting from their impacts and their spread on the constant substrate, and a relative position of the drops on the well-defined substrate. It also aims to ensure good reliability and good availability of the printer. It also aims to limit the substrate losses printed during defects. It aims to simplify maintenance operations. Finally, it also aims to ensure good stability of the print quality, that is to say to avoid a drift of this quality.
  • the colorimetric characteristic of the ink depends mainly on its composition, namely for the main elements: the concentration of coloring matter, the concentration of solvent, and that of resin.
  • the viscosity and the temperature T are determined at the same point of the ink, and the more concentrated solvent or ink additions are made as a function of the difference in viscosity ⁇ with respect to a target viscosity which depends on the measured temperature.
  • the concentration of dye in the ink is precisely maintained. If the temperature of the ink at the print head is also controlled, for example by controlling the ambient temperature, the viscosity of the ink in the nozzle is automatically controlled. Mastering the viscosity and the concentration of dye are necessary conditions to maintain a good colorimetry, and also to maintain a law of variation of the speed of a droplet at the outlet of a printing nozzle according to the pressure which is applied constant.
  • the impact size of the drops on the substrate depends on the geometry of the nozzles, which are manufactured within tight tolerances and controlled during manufacture, their ejection speed and therefore impact, and the local conditions of the spreading drops on the substrate, namely the evaporation rate of the ink and its surface tension on said substrate, both of which depend on the temperature.
  • the spreading depends on the physicochemical characteristics of the ink and the drop impact velocity.
  • the relative position of the drops on the substrate depends on the trajectory of the drops of each jet of the print head, the arrangement of the jets in the print head, as well as the relative position between the print head and the substrate. It has been seen that the drops are electrically charged, and then deflected more or less depending on their charge by deflection electrodes. As a result, the trajectory of the drops depends on their speed and their load. A good load of drops assumes that the drop is separated from the jet at a specific place and at the moment of this separation, the electric pulse defining the charge of the drops has been given. It has been seen above, that for a given viscosity, the speed depends on a pressure applied to the fluid.
  • the distance between the nozzle and the droplet formation site of a jet is a function of the amplitude of the oscillations applied for example to a piezoelectric crystal maintaining vibrations in the ink.
  • a good charge of the drops therefore assumes a good control of the phase between the formation of the drops and the moment of charge of the drops, the phase being itself variable with the speed of the drops.
  • Means for individually controlling parameters such as the viscosity of the ink as a function of its temperature, the speed of the drops by action on the pressure in the ink tank, the loading phase of the drops and the length of the jet before breaking it into drops by controlling the voltage of a piezoelectric crystal are individually known from the prior art.
  • the printers of the prior art generally do not include control of each of these parameters.
  • the characteristics of the ink such as the viscosity can be controlled without simultaneously controlling the jet speed, maintaining the viscosity of the ink and a pressure being considered sufficient to ensure a constant speed. drops.
  • This approach is faulted particularly when the nozzle orifice or Ink supply circuit filters are clogged. If the physico-chemical characteristics of the ink are enslaved, it is also important to ensure an ink drop speed and impact on the substrate within a predetermined tolerance. Often, also in the systems of the prior art, the drop positioning accuracy is considered the only factor influencing the print quality.
  • the position of the drops is measured on a test pattern and the defects are corrected in several ways.
  • the defects of trajectory resulting from drop speed out of tolerance are corrected by an action on their electric charge. It has been seen that the speed of the drops influences the trajectory and size of the drop on impact. Print quality is therefore not guaranteed.
  • a charge correction of the drops may eventually put these drops in their nominal trajectory, but their impact diameter has not been corrected, and the dye will be spread over a too large or too small surface thus changing the colorimetry.
  • the present invention aims at ensuring good print quality and simplifying the mounting of the printer.
  • the phase of the drops, the length of the jet before breaking it into drops, the speed of the ink jet, the temperature, the viscosity and the composition of the ink are continuously controlled by loops. independent. All these parameters being controlled, then an error on the position of the drops results only from mechanical defects or tolerance margins of the electronic devices. Under these conditions, the printing of a test pattern and its comparison with a reference pattern will allow, by an appropriate modification of the charge of the drops, to modify this trajectory so as to restore its nominal value. The other parameters being controlled, this modification of the droplet load will not compensate for values outside the tolerance of the jet velocity or the composition of the ink, or the size of the drop on impact, and consequently the print quality will be preserved.
  • the method according to the invention aims to eliminate lineage problems without any impact on the printing speed.
  • the value of the static translation difference is corrected on the one hand and the value of the expansion gap on the other hand.
  • an algebraic electric charge to compensate for this translation error.
  • the expansion error is due to a large or small difference in the load distributed between the most deviated drops and the least deviated drops forming the frame corresponding to a burst.
  • the frame is too wide, when the gap between the high point of the frame and the low point of the frame is too large. This means that the drop corresponding to the highest point is not deviated enough while the drop corresponding to the lowest point is too deviated.
  • Equalization applied to the intermediate drops of the burst will correct the load applied to the intermediate drops as a function of the corrections made to the loads of the extreme drops of the weft. If on the other hand the frame is too narrow, which means that the gap between the highest point and the lowest point of a salvo is too narrow then we will reduce the load of the drop corresponding to the highest point of so that this drop is less deviated and we will increase the load of the drop corresponding to the lowest point so that this drop is further deviated. Equalization of the charge correction values applied to the intermediate drops between the last and the first drop will, as in the case of the wide frame, make it possible to refine the setting of the frame.
  • the integer number a of real positions observed is equal to 2, these positions being the first and the last position.
  • the printer has several nozzles distributed over one or more heads, the same operation will be applied for each of the nozzles. This does not mean that it will print a test pattern per nozzle, a single pattern that may be suitable for the operation of the jets of each of the nozzles.
  • the different nozzles correspond to jets of different colors, it is understood that it will be easy to constitute a single pattern for adjusting all the jets of all the nozzles.
  • a lineage defect may remain, in particular a white lineage defect appearing regularly. This defect is very perceptible to the eye when it is regular.
  • a voltage of noise will be applied in superposition to the voltage applied to the charge electrodes of the drops. The average amplitude of this noise voltage will be a function of the rank j of the drop in the burst.
  • the maximum amplitude of the additional noise voltage will be equal to a fraction less than 1 of the difference between the nominal voltage to be applied to the drop of rank j and the nominal voltage to be applied to the drop of rank j + 1 or to the drop of rank j-1, that is to say to one of the two spatially adjacent drops of the drop of rank j.
  • the minimum amplitude of the additional noise voltage will be equal to the value of the voltage difference that can be obtained by varying the value of the least significant bit of an analog-digital converter whose output feeds a high voltage amplifier coupled to the charging electrodes of the drops.
  • the position errors of the frames in a direction Y perpendicular to the printing direction of the frames may also be corrected.
  • Most current printers are equipped with a detection detector of the left edge or the right edge of the substrate.
  • the beginning of the printing is triggered according to a difference between the instantaneous digital value present on a counter of position of the head relative to the substrate and the value of this same counter at the time of the detection of an edge of the substrate and also according to the data D relating to the printing of the substrate contained in the print data memory.
  • the difference in number of positions is such that when this number of positions has been counted after detecting an edge of the substrate, the print head is at the location programmed by the data D to print the beginning of the tape. . It is possible that an offset in the Y direction is observed between the nominal position of a band and its actual position.
  • this defect can be corrected as follows.
  • a comparison of the position of the first frame with respect to the nominal position of this first frame will define an algebraic deviation of the first frame from its nominal position.
  • a dynamic offset correction ⁇ will be defined as the number of positions representing this deviation.
  • a corresponding correction will be memorized and then used during successive frame prints to shift by this number of positions the printing of each frame of the band, the positions being counted with origin of the substrate edge detected at each scan.
  • the printing of the frames is shifted, if the head goes from left to right relative to the substrate, to change the number of positions between the detection of the left edge and the beginning of the band.
  • the print is shifted if the head goes from right to left relative to the substrate, to change the value of a counter representing the value of the position at which each frame of the strip is printed.
  • the position of the last frame is in particular shifted by the same number of positions as the first frame and this should be taken into account when returning the print head.
  • the correction thus takes into account the fact that the band is printed by a movement of the head from left to right and / or a return movement of the head from right to left.
  • the lineage corrections which have been applied up to now according to first aspects of the invention are not effective. only to the extent that the substrate is properly placed. This is not always the case. The absorption of the ink by the substrate, friction and other factors can lead to deviations in the actual advance of the substrate compared to the nominal advance and therefore lineages.
  • one goes for each band print on the substrate by means of one of the printing heads a mark. This mark may be a simple line oriented in the Y direction. After advancing the substrate but before printing the next strip, the first mark will be positioned next to a substrate advance sensor.
  • the optical sensor measures a distance between the first printed mark and a nominal position that should have this mark, if the substrate advanced its nominal advance.
  • the actual distance used to define a real advance of the actual substrate .DELTA.X that we will be able to compare the nominal value .DELTA.X name.
  • a difference between the actual feedrate and the nominal feedrate will be automatically corrected by a variation of the load voltage applied to the droplet loading means. This correction will be applied for all heads involved in writing the current tape.
  • the various corrections according to the invention which have just been defined, can be applied independently of each other in isolation. In particular if one of the corrections is not necessary given the quality of the printer, it will not be applied. They can be applied also in combination with each other different combination modes that result from their number.
  • Figure 3 is intended to explain what are the differences in translation and expansion. For this, we have shown in different configurations on the plane of the substrate materialized by XY axes, 9 different positions and shapes of a frame drawn by a salvo of drops. In the example shown and to simplify the explanation, nine drops were taken, which has been represented in an excessively spaced manner.
  • the frame of nine drops is represented in accordance with its nominal position defined by a line of symmetry axis MM '.
  • This axis line passes perpendicular to the middle of the frame represented in A, so in nominal position.
  • the frame has been represented as printed. It is seen on this frame that on the one hand, it is shifted which is materialized by the position of its central axis NN 'offset with respect to the position of the axis MM' and that, on the other hand, it is dilated , that is to say that the distance between the drop 1 and the drop 9 as shown in B is greater than the distance between the drop 1 and the drop 9 as shown in A.
  • the N drops 1 to 9 of Part B are shown as equidistant. Obviously in the In reality, it may be otherwise, and the drops may have variable distances to each other. It follows that the position of the central drop materialized by the axis NN 'will not always be representative of the translation gap.
  • the best estimate that we can have of the offset in translation will be represented by the distance between the centroid of the drops in nominal positions as represented at A and the centroid of the drops in real positions as represented in FIG. B.
  • the calculation of the position of these centers of gravity will be made by giving the drops the same coefficient, for example the coefficient 1.
  • This static translation correction will be obtained by a modification of the load applied to each of the drops 1 to 9.
  • the calculation of the magnitude of this change in the load applied to the drops 1 to 9 will be performed taking into account data acquired on machines of the same type. This data may include tables representing the displacement of the drop of rank j according to the correction made to the nominal load of this drop.
  • the frame composed of the nine drops is, as shown in C, in a correct position relative to the axis MM 'but its height in the case shown in Figure 3 in C, is too large by compared to the nominal height as shown in Figure 3 A. This frame could also be too small.
  • the expansion correction will consist in calculating the load modification to be made to the already corrected nominal load of the static translation error to return these drops to their nominal position.
  • Figure 4 is intended to explain what is the dynamic shift error and its correction.
  • part A of Figure 4 there is shown in solid lines, the nominal position of a strip.
  • This band is represented in the form of a rectangle whose height, the height of a frame made by a salvo comprising the N drops and its width is equal to the distance between the first and the last frame of the band.
  • the print position of a field is determined by registering the position of the print head, for example, with respect to a position determination rule.
  • This rule has graduations, for example, magnetic or optical co-operating with means of the print head or a support of this head so that the position of the print head is permanently known to the control unit. of the printer. Knowing the position of an edge of the printing substrate and the head with respect to this rule, it is therefore possible to determine the position of the head relative to the substrate.
  • the nominal position of the first frame is obtained by comparing the position of the head relative to the substrate to the predetermined position of this first frame relative to the edge of the substrate, depending on the data defining the pattern. This data will determine for example that the first frame must be at 2000 positions marked on the ruler, the edge of the substrate. When a position counter has been incremented by 2000 the printing of the first frame will be triggered.
  • the difference ⁇ Y between the actual position of the dotted band and its nominal position, is shifted to the right as shown in A, for example twenty positions.
  • the printing of each frame of the number ⁇ of positions necessary to change the frames from their actual positions to their nominal positions will be modified.
  • the first frame which materializes the beginning of the band will be brought back from its real position to its nominal position.
  • the printing of the first frame will start when the position counter has counted (2000 - 20) or 1980 positions after the detection of the left edge. All the frames of the band will be shifted by the same number of positions.
  • the printing of the last frame must start for example according to the digital data at the position 100,000, the value 100,000 will be replaced by the value 99,980 to account for the offset offset of twenty positions of the actual band.
  • This correction will lead to a tape position as shown in FIG. 4, part B. It can be seen that the Dynamic offset correction applied to each of the frames will bring the position of the actual band back to the position of the nominal band.
  • This addition of the invention relates to a positional deviation of a band due to a gap in the advance of the substrate.
  • This correction concerns printers in which the substrate is advanced step by step after the printing of each strip.
  • a first mark represented at A in FIG. 5 will be printed when printing a current band. This mark may consist of a single line printed by means of one or more drops of consecutive rank.
  • this mark After advancing the substrate but before printing the next strip, this mark will appear in position B in FIG. 5.
  • the position is also shown. in C of a fictitious mark representing the nominal position that should have had the mark present in B in the absence of difference between the nominal position and the actual position.
  • the C mark is not present on the substrate in a real way.
  • the difference between the imaginary mark C and the mark B makes it possible to determine the difference ⁇ x between the nominal position marked in C and the actual position marked in B.
  • This difference in the advance of the substrate will be compensated according to this aspect of the invention. invention by a modification of the charge of the drops printed during this band.
  • Detection of the difference ⁇ x between the mark B and the nominal position C of the band that will be printed will be carried out by means of a sensor 12, for example a CCD sensor making it possible to measure this distance, for example by counting the the difference in number between a sensor element 12a which receives the mark when it is in the nominal position and a sensor element 12b which actually receives it.
  • This sensor will preferably be placed facing the substrate and arranged so that its measurement field makes it possible to detect the mark with fairly wide tolerances.
  • This sensor will preferably be a sensor of a determined light wavelength and will be completed by an emitter in the direction of the substrate of this determined wavelength.
  • FIGS. 6 and 7 are schematic diagrams of ink jet color pattern printers showing some of the features necessary to incorporate the invention.
  • the system shown in FIGS. 6 and 7 corresponds to an architecture for printing large formats chosen solely as non-limiting examples.
  • the printing is carried out by successive scans in the Y direction.
  • the system uses, in a known manner, a substrate 27 from a reel 28, the unwinding of which is carried out upstream of a printing unit 29 by a pair 36 of rolls 37, 38 for driving in contact.
  • a first cylinder 37 is motorized, a second cylinder 38 provides against pressure at the point of contact.
  • the two cylinders 37, 38 pinch the substrate and drag it without slipping.
  • the advance of the substrate 27 is controlled by an encoder, not shown because in itself known, of angular positions mounted on the axis of one of the cylinders. After each intermittent advance of the substrate, the printing zone thereof is kept flat on a printing table 30, located under the scanning path of the printing unit 29. This flat hold is ensured by means of a second drive system 39 located downstream of the printing unit.
  • This second drive system 39 maintains a constant voltage of the substrate 27. Intermittent depression of the printing table is sometimes performed to improve the flatness of the substrate 27 in the printing area.
  • the inkjet printing unit 29 is composed of several printing heads 25, such as those shown for example in FIG. 1, each head being fed by one of the primary color inks, from tanks 11 by means of an umbilicus or distribution channel 13.
  • the different print heads 25 simultaneously print the substrate while it is stationary.
  • the printing of a band is ensured by a scan in the Y direction of the printing unit.
  • the scanning movement of the printing unit relative to the substrate is ensured by a belt 40 integral with the printing unit and driven by a motorized pulley 41.
  • the guiding of the printing unit is ensured by known by a mechanical axis not shown.
  • Each printhead prints a band of constant width L.
  • the printheads can be shifted in the X direction of advance of the substrate so that a head does not necessarily print the same tape at the same time as another print head corresponding to a different ink color.
  • the substrate is advanced by a spatial increment ⁇ X at most equal to the bandwidth L but which is more generally a submultiple of L for printing in several passes.
  • the synchronization between the jet of the ink drops and the scanning position of the printing heads 25 with respect to the substrate 27 is obtained by means of an optical detector (not represented by the width edge).
  • the web edge detector is mounted on the print head or on a holder of this head to detect each of the two edges. This detector emits a detection signal from each edge of the width.
  • the detection signal of a reference width edge for example the left edge, is then used to trigger a position counter for synchronizing the position of each print head with the print data for that position, contained in the print memory.
  • the position encoder may be in known manner an optical or magnetic rule mounted on the mechanical axis of the scanning guide.
  • the invention may have the particularity of being equipped with one or more detectors 12 (FIG. 8) for detecting the actual advance of the substrate.
  • detectors 12 FIG. 8
  • a single advance detector of the substrate can be mounted on the print head or on a support of this head to detect the advance of the substrate when printing is carried out from left to right or right to the left.
  • FIG. 8 represents control means 31 according to the invention.
  • the elements having the same function as those shown in FIG. 2 bear the same reference number.
  • the device according to the invention may comprise one or more of the following means.
  • the device according to the invention may comprise the detector 12 of difference between the actual advance of the substrate and its nominal advance, a calculator 34 of positional deviation of the substrate and a dynamic translational corrector 35 for correcting the charge of the drops so as to compensate for the difference found by the computer 34.
  • the elements, detectors 12, calculator 34 position deviation and dynamic translation corrector 35 are connected in series with each other and the dynamic translation corrections ⁇ calculated by the corrector 35 are applied to the computer 3 'drops of the charging voltages.
  • the means for controlling the position and the deflection of the jets may also comprise a detector 14 deviating from the actual position of dots printed by a jet with respect to the nominal position of dots printed by said jet.
  • the differences in the position of the dots printed by the jet are introduced firstly into a static translation corrector 17, into a dilation corrector 18 and finally into a dynamic shift corrector 19.
  • the ink drop charge control means may comprise a random noise generator 32 whose output is applied to the computer 3 'of the drop charge voltages so as to randomly modify the charge of each drop.
  • the operation is as follows.
  • the detector 12 detects the difference between a mark relating to the current band that will be printed and the nominal position of this band. This difference is introduced into the difference calculator 34. This calculator calculates as a function of the signal transmitted by the sensor 12, the distance value ⁇ x in advance of the substrate 27. This difference is introduced into the corrector 35 of dynamic translation which will calculate corrections to be applied to the computer 3 'drops of charging voltages to correct this dynamic translation ⁇ .
  • the difference calculator 14 on the position of the dots printed by each jet compares the position of the dots printed on a test pattern with respect to the position of the corresponding dots on a reference pattern. This calculation of the deviations can be performed automatically, for example by scanning the printed pattern and using the stored reference pattern. Using the calculated deviations, the static translation corrector 17 will calculate in one of the ways indicated above the displacement of the center of gravity of the points for which the position deviation has been measured. Likewise, the dilation corrector 18 will calculate the difference between a printed point and the corresponding nominal point.
  • a charge correction value applied to each of the ink drops will be calculated.
  • the corrections ⁇ j calculated by the static translation correction calculator 17 and ⁇ ij by the dilation corrector 18 are both applied to the computer 3 'of the drop charge voltages.
  • the computer 3 'of the drop charge voltage will calculate the algebraic sum of the voltages to be applied to the drop charge electrode as a function, on the one hand, of the nominal voltage resulting from the description of the frame coming from the memory 2, and on the other hand, of the correction ⁇ j static translation from the static translation corrector 17, the expansion correction ⁇ ij from the dilation correction corrector 18, the dynamic translation correction ⁇ calculated by the computer 35 and finally, as a function of the value outputted by the random noise generator 32.
  • the dynamic shift correction ⁇ calculated by the dynamic shift corrector 19 will it be applied to the sequencer 4 drops loading.
  • the charge of the drops as provided by the computer of the charge voltages of the drops 3 ' will be applied in coincidence with a position number of the position counter smaller or larger than the nominal number according to the algebraic value ⁇ of the dynamic shift, the positions being counted from the substrate edge.
  • Figure 9 is intended to very succinctly represent a print head 25 and the various servocontrols associated with it.
  • Each of the servos that will be briefly discussed below is in itself known. However, the inventors do not know of printers that simultaneously present all of these servocontrols on the same printer. The inventors believe that this absence is due to a poor appreciation of the interference of the various parameters to be controlled to arrive at a good print quality as described above.
  • the printer according to the invention has a control of the viscosity 61 as a function of the temperature, represented as the other servocontrols by a feedback loop in output of the head 25 returning to the input an error value.
  • the viscosity correction that may be necessary is carried out by addition of solvent or by the addition of more concentrated dye ink so as to maintain a constant level of dyestuff.
  • a jet speed servo 62 is obtained by acting on a value of the supply pressure of the ink.
  • the breaking distance of the jet is maintained by a servocontrol 63 which acts on an adjustable parameter making it possible to maintain a predetermined breaking distance. It may be for example the supply voltage of a piezoelectric crystal causing vibrations in the ink.
  • the printer according to the invention is equipped with a circuit 64 for controlling the phase between the instants of application of electric impulses for charging the drops and the instants for applying drop formation pulses. This phase can be set by action on a delay circuit.
  • the viscosity being kept constant for a reference temperature
  • the action on the pressure to modify the speed leads to truly known results so that this speed can be kept constant at a predetermined value.
  • the size of the drop impacts is very constant.
  • the dye concentration is also kept constant, the color of each drop is a constant.
  • the breaking distance of the jets and the phase being controlled it is sure that each of the drops receives an electric charge which is function a supply voltage of the charging electrodes.
  • the errors in positioning of the ink drops with respect to their nominal position only come from mechanical tolerances on the positioning of the printing heads and possibly on the diameter of nozzles for ejecting the ink. This is the reason why on such a printer it is possible to correct the positioning by action on the control electronics of the printer as described above.
  • the ink ejection speed should be kept within limits around a set value.
  • Obtaining this setpoint may correspond to an ink supply pressure that is variable depending on the print head, because of the tolerances on the ink outlet nozzles or the ink nozzle. environment of the printing machine.
  • a print head of a printer according to the invention will preferably comprise a memory in which the value of the speed setpoint for each jet, corresponding to a standard supply pressure, will be stored to obtain the speed of rotation. setpoint.
  • This memory has been represented symbolically at 65 in FIG. 9.
  • the speed control program will therefore provide a reading of this setpoint jet speed in the memory of the print head. In this way, during operation of the printer, the pressure being regulated in a value range close to the standard pressure, significant jet velocity defects, ie out of mechanical tolerance of the nozzles and specific to a single jet can be detected.
  • the reference values of the control signal of the piezoelectric transducer are predetermined during manufacture and stored in the memory. Malfunctions specific to a single transducer may be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Description

Domaine de l'inventionField of the invention

L'invention se situe dans le domaine des imprimantes à jet d'encre dans lesquelles des gouttes d'encre sont formées et électriquement chargées puis déviées pour aller frapper un substrat d'impression. Elle concerne un procédé destiné à simplifier le montage mécanique des têtes d'impression et l'imprimante appliquant un tel procédé.The invention is in the field of ink jet printers in which ink drops are formed and electrically charged and then deflected to strike a printing substrate. It relates to a method for simplifying the mechanical assembly of the printheads and the printer applying such a method.

Arrière plan technologiqueTechnological background

Il est connu qu'un jet d'encre sous pression éjecté par une buse d'impression peut être brisé en une succession de gouttes individuelles chaque goutte étant chargée de façon individuelle, de façon contrôlée. Sur le trajet de ces gouttes ainsi individuellement chargées, des électrodes de potentiel constant dévient plus ou moins les gouttes selon la charge qu'elles possèdent. Si une goutte ne doit pas atteindre le substrat d'impression, sa charge est contrôlée de telle sorte qu'elle est déviée vers un récupérateur d'encre. Le principe de fonctionnement de telles imprimantes à jet d'encre est bien connu et est décrit par exemple dans le brevet US-A-4 160 982. Comme décrit dans ce brevet et représenté figure 1, une telle imprimante comporte un réservoir 11 contenant de l'encre électriquement conductrice 10 qui est distribuée par un canal de distribution 13 vers un générateur de gouttes 16. Le rôle du générateur de gouttes 16 est de former à partir de l'encre sous pression contenue dans le canal de distribution 13 un ensemble de gouttes individuelles. Ces gouttes individuelles sont électriquement chargées au moyen d'une électrode de charge 20 alimentée par un générateur de tension 21. Les gouttes chargées passent au travers d'un espace compris entre deux électrodes de déviation 23, 24 et selon leur charge sont plus ou moins déviées. Les gouttes les moins ou non déviées sont dirigées vers un récupérateur 22 d'encre tandis que les gouttes déviées sont dirigées vers un substrat 27. Les gouttes successives d'une salve atteignant le substrat 27 peuvent ainsi être déviées vers une position extrême basse, une position extrême haute et des positions intermédiaires successives, l'ensemble des gouttes de la salve formant un trait de hauteur ΔX sensiblement perpendiculaire à une direction d'avancée relative de la tête d'impression 25 et du substrat. La tête d'impression est formée par le générateur de gouttes 16, l'électrode de charge 20, les électrodes de déviation 23, 24 et en général le récupérateur 22. Cette tête 25 est en général enfermée dans un capotage non représenté. Le mouvement de déviation imprimé aux gouttes chargées par les électrodes de déviation 23, 24 est complété par un mouvement selon un axe Y perpendiculaire à l'axe X, entre la tête d'impression 25 et le substrat. Le temps écoulé entre la première et la dernière goutte d'une salve est très court. Il en résulte que malgré un mouvement continu entre la tête d'impression 25 et le substrat, on peut considérer que le substrat n'a pas bougé par rapport à la tête d'impression pendant le temps d'une salve. Les salves sont tirées à intervalles spatiaux réguliers. Si toutes les gouttes de chaque salve étaient dirigées vers le substrat on imprimerait une succession de traits de hauteur ΔX. En général seules certaines gouttes d'une salve sont dirigées vers le substrat. Dans ces conditions, la combinaison du mouvement relatif de la tête et du substrat, et de la sélection des gouttes de chaque salve qui sont dirigées vers le substrat permet d'imprimer un motif quelconque tel que celui représenté en 28 sur la figure 1. Si le trait que l'on trace avec les gouttes d'une salve est dans une direction X, le mouvement relatif de la tête et du substrat est, dans le plan du substrat dans une direction Y perpendiculaire à X. Les gouttes non déviées sont dirigées vers le récupérateur selon une trajectoire Z perpendiculaire au plan x, y du substrat. Les gouttes imprimées arrivent sur le substrat en suivant des trajectoires légèrement déviées par rapport à la direction Z.It is known that a jet of pressurized ink ejected by a printing nozzle can be broken into a succession of individual drops each drop being individually loaded in a controlled manner. In the path of these drops thus individually charged, electrodes of constant potential deviate more or less drops according to the charge they have. If a drop is not to reach the printing substrate, its charge is controlled so that it is diverted to an ink recuperator. The operating principle of such inkjet printers is well known and is described for example in US-A-4 160 982. As described in this patent and shown in FIG. 1, such a printer comprises a reservoir 11 containing the electrically conductive ink 10 which is distributed by a distribution channel 13 to a drop generator 16. The role of the drop generator 16 is to form from the ink under pressure contained in the distribution channel 13 a set of individual drops. These individual drops are electrically charged by means of a charging electrode 20 supplied by a voltage generator 21. The charged drops pass through a space between two deflection electrodes 23, 24 and depending on their charge are more or less diverted. The least or no deviated drops are directed towards an ink recuperator 22 while the deviated drops are directed towards a substrate 27. The successive drops of a burst reaching the substrate 27 can thus be diverted towards an extreme low position, a extreme high position and successive intermediate positions, the set of drops of the salvo forming a line of height ΔX substantially perpendicular to a direction of relative advance of the print head 25 and the substrate. The print head is formed by the drop generator 16, the charging electrode 20, the deflection electrodes 23, 24 and in general the recuperator 22. This head 25 is generally enclosed in a not shown casing. The deflection movement printed to the drops charged by the deflection electrodes 23, 24 is completed by a movement along a Y axis perpendicular to the X axis, between the print head 25 and the substrate. The time elapsed between the first and the last drop of a salvo is very short. As a result, despite a continuous movement between the print head 25 and the substrate, it can be considered that the substrate has not moved relative to the head during the time of a salvo. The bursts are fired at regular space intervals. If all the drops of each burst were directed towards the substrate, a succession of lines of height ΔX would be printed. In general only certain drops of a burst are directed towards the substrate. Under these conditions, the combination of the relative movement of the head and the substrate, and the selection of the drops of each burst which are directed towards the substrate makes it possible to print any pattern such as that represented at 28 in FIG. the line drawn with the drops of a burst is in a direction X, the relative movement of the head and the substrate is, in the plane of the substrate in a direction Y perpendicular to X. The non-deflected drops are directed to the recuperator along a path Z perpendicular to the x, y plane of the substrate. The printed drops arrive on the substrate along paths slightly deviated from the Z direction.

Si le mouvement relatif de la tête 25 et du substrat s'effectue en continu selon la dimension la plus grande du substrat, il y aura en général plusieurs têtes d'impression imprimant des bandes parallèles les unes aux autres. Un exemple d'une telle utilisation est représenté sur les figures 1 et 2 du brevet délivré à IBM sous le numéro FR 2 198 410.If the relative movement of the head 25 and the substrate is continuous over the largest dimension of the substrate, there will generally be several print heads printing strips parallel to each other. An example of such use is shown in Figures 1 and 2 of the patent issued to IBM under the number FR 2 198 410.

Si le mouvement relatif de la tête d'impression et du substrat dans la direction Y s'effectue selon la dimension la plus petite du substrat, l'impression est réalisée bande par bande, le substrat ayant un mouvement d'avance intermittent dans la direction X après chaque balayage. Le mouvement relatif de la tête d'impression et du substrat est appelé mouvement de balayage. Le mouvement de balayage se compose ainsi d'un mouvement d'aller et de retour entre un premier bord du substrat et un second bord du substrat. Le mouvement entre un bord et l'autre bord du substrat permet d'imprimer à la volée une bande de hauteur L ou assez souvent une partie de la bande de hauteur ΔXb, ΔXb étant le plus souvent un sous-multiple de L. L'ensemble des bandes successivement imprimées constitue ainsi le motif à imprimer sur le substrat. Après chaque impression d'une bande ou de partie de bande, le substrat est avancé de l'espace compris entre deux bandes ou partie de bande pour impression de la bande ou partie de bande suivante. L'impression peut se faire à l'aller simplement ou à l'aller et au retour du mouvement de la tête d'impression par rapport au substrat.If the relative movement of the print head and the substrate in the Y direction is at the smallest dimension of the substrate, the printing is done strip by strip, the substrate having an intermittent feed movement in the direction X after each scan. The relative movement of the print head and the substrate is called scanning movement. The scanning movement thus consists of a back and forth motion between a first edge of the substrate and a second edge of the substrate. The movement between one edge and the other edge of the substrate makes it possible to print on the fly a strip of height L or quite often a portion of the height band ΔX b , ΔX b being most often a submultiple of L. The set of successively printed strips thus constitutes the pattern to be printed on the substrate. After each printing of a web or web portion, the substrate is advanced from the space between two webs or part of web for printing the next tape or web portion. Printing can be done just one way or the other way around the movement of the print head relative to the substrate.

Lorsque le graphisme à imprimer est coloré, les nuances multiples de couleurs sont le résultat de la superposition et de la juxtaposition des impacts d'encre provenant de buses alimentées par des encres de différentes couleurs. Le système de déplacement relatif du substrat par rapport aux têtes d'impression est réalisé de façon telle qu'un point donné du substrat est présenté successivement sous les jets d'encre de chacune des couleurs.
Le système d'impression présente généralement plusieurs jets de la même encre fonctionnant simultanément, soit par la juxtaposition de têtes multiples, soit par l'utilisation de têtes multijets, soit enfin par la combinaison de ces deux types de têtes afin de parvenir à des cadences d'impressions élevées. Dans ce cas, chaque jet d'encre imprime une partie limitée du substrat. Les moyens connus de commande des différents jets seront maintenant décrits en référence à la figure 2.
When the graphic to be printed is colored, the multiple shades of colors are the result of the superimposition and juxtaposition of ink strikes coming from nozzles fed by inks of different colors. The system of relative displacement of the substrate relative to the printing heads is such that a given point of the substrate is presented successively under the ink jets of each of the colors.
The printing system generally has several jets of the same ink operating simultaneously, either by the juxtaposition of multiple heads, or by the use of multijet heads, or finally by the combination of these two types of heads to achieve at high print speeds. In this case, each inkjet prints a limited portion of the substrate. The known means for controlling the different jets will now be described with reference to FIG.

Le motif à imprimer est défini par un fichier numérique. Ce fichier peut être formé à l'aide d'un scanner, d'une palette graphique de création assistée par ordinateur (CAO), transmis au moyen d'un réseau informatique d'échanges de données, ou, tout simplement, lu à partir d'un périphérique de lecture de support de stockage de données numériques (disque optique, CD-ROM). Le fichier numérique représentant le motif coloré à imprimer est tout d'abord scindé en plusieurs motifs binaires (ou bitmap) pour chacune des encres. Il convient de noter que le cas du motif binaire est un exemple non limitatif ; dans certaines imprimantes, le motif à imprimer est de type "contone", c'est-à-dire que chaque position peut être imprimée par un nombre de gouttes variable de 1 à M pour chaque encre. Une partie du motif binaire est extraite du fichier pour chacun des jets correspondants à la largeur de la bande qui va être imprimée. Sur la figure 2 où l'on s'intéresse à l'électronique de commande d'un jet, on a représenté en 1 une mémoire de stockage du motif numérique découpée en bande, cette mémoire de stockage contenant les indications relatives à une couleur. Pour l'impression de chaque bande, une mémoire intermédiaire 2 reçoit les données nécessaires pour l'impression de la bande par ladite couleur. Les données descriptives de la bande à imprimer sont ensuite introduites dans un calculateur 3 des tensions de charge des différentes gouttes qui vont former la bande relativement à cette couleur. Ces données sont introduites dans le calculateur sous forme d'une succession de descriptifs des trames qui ensemble vont constituer la bande. Le calculateur 3 des tensions de charge des gouttes se présente souvent sous la forme d'un circuit intégré dédié. Ce calculateur 3 calcule en temps réel la séquence de tensions à appliquer aux électrodes de charge 20 pour imprimer une trame donnée définie par son descriptif de trame, tel que chargé à partir de la mémoire intermédiaire 2. Un circuit électronique aval 4, appelé séquenceur de charge de gouttes, assure la synchronisation des tensions de charge avec d'une part, les instants de formation de gouttes et, d'autre part, l'avance relative de la tête d'impression et du substrat. L'avance du substrat par rapport à la tête est matérialisée par une horloge de trame 5 dont le signal est dérivé du signal d'un codeur incrémental de position de l'unité d'impression relativement au substrat. Le séquenceur 4 de charge des gouttes reçoit également un signal d'une horloge de gouttes 6. Cette horloge de gouttes est synchrone avec le signal de commande du générateur de gouttes 16. Elle permet de définir les instants de transitions des différentes tensions de charges appliquées aux gouttes pour différencier leurs trajectoires. Les données numériques en provenance du séquenceur 4 de charge des gouttes sont converties en valeur analogique par un convertisseur numérique analogique 8. Ce convertisseur délivrant un niveau de tension bas nécessite en général la présence d'un amplificateur haute tension 21 qui va alimenter les électrodes de charge 20. Les illustrations de l'art antérieur données en référence aux figures 1 et 2, sont destinées à bien faire comprendre le domaine et l'apport de l'invention, mais il est évident que l'art antérieur n'est pas limité aux descriptions faites en référence à ces figures. D'autres arrangements des électrodes et des collecteurs de récupération des gouttes d'encre non utilisées sont décrits dans une littérature abondante. Un arrangement électromécanique des buses d'impression de l'électrode de charge et des électrodes de déviation tel que décrit dans le brevet d'invention n° FR 2 198 410 délivré à International Business Machine Corporation (IBM) en référence aux figures 1 à 3 de ce brevet pourrait parfaitement être utilisé dans la présente invention. De même, le circuit électronique de commande des électrodes de charge pourrait être illustré par le circuit décrit en relation avec la figure 4 de ce même brevet. Egalement, les données à imprimées pourraient ne pas se présenter sous forme de fichiers binaires, mais sous formes de fichiers contenant des mots de plusieurs bits, pour traduire le fait que chaque position du substrat peut recevoir plusieurs gouttes d'encre de la même couleur.The print pattern is defined by a digital file. This file can be formed using a scanner, a computer-assisted graphic design (CAD) palette, transmitted by means of a computer network for data exchange, or simply read from a digital data storage device read device (optical disk, CD-ROM). The digital file representing the colored pattern to be printed is first split into several bit patterns (or bitmap) for each of the inks. It should be noted that the case of the binary pattern is a non-limiting example; in some printers, the pattern to print is of type "contone", that is to say that each position can be printed by a number of drops variable from 1 to M for each ink. A part of the bit pattern is extracted from the file for each of the jets corresponding to the width of the band that will be printed. In FIG. 2, where the control electronics of a jet is concerned, a storage memory of the strip-cut digital pattern is represented at 1, this storage memory containing the indications relating to a color. For the printing of each band, an intermediate memory 2 receives the data necessary for the printing of the band by said color. The descriptive data of the band to be printed are then introduced into a computer 3 of the voltages charge different drops that will form the band relative to this color. These data are introduced into the computer in the form of a succession of descriptions of the frames which together will constitute the band. The computer 3 drops charge voltages is often in the form of a dedicated integrated circuit. This calculator 3 calculates in real time the sequence of voltages to be applied to the charging electrodes 20 to print a given frame defined by its frame description, as loaded from the intermediate memory 2. A downstream electronic circuit 4, called a sequencer of drop charge, ensures the synchronization of the charging voltages with, on the one hand, the moments of drop formation and, on the other hand, the relative advance of the print head and the substrate. The advance of the substrate with respect to the head is embodied by a frame clock whose signal is derived from the signal of an incremental encoder of position of the printing unit relative to the substrate. The sequencer 4 for charging the drops also receives a signal from a drop clock 6. This drop clock is synchronous with the control signal of the drop generator 16. It makes it possible to define the instants of transitions of the different applied charge voltages. to the drops to differentiate their trajectories. The digital data from the drop charge sequencer 4 are converted into analog value by a digital analog converter 8. This converter delivering a low voltage level generally requires the presence of a high voltage amplifier 21 which will supply the electrodes of the 20. The illustrations of the prior art given with reference to Figures 1 and 2, are intended to make clear the scope and contribution of the invention, but it is obvious that the prior art is not limited to the descriptions made in reference to these figures. Other arrangements of the electrodes and unused ink droplet collection collectors are described in extensive literature. An electromechanical arrangement of the charge electrode printing nozzles and the deflection electrodes as described in the patent No. FR 2 198 410 issued to International Business Machine Corporation (IBM) with reference to FIGS. of this patent could well be used in the present invention. Similarly, the electronic control circuit of the charging electrodes could be illustrated by the circuit described in connection with Figure 4 of this same patent. Also, the data to be printed may not be in the form of binary files, but in the form of files containing words of several bits, to reflect the fact that each position of the substrate can receive several drops of ink of the same color.

On comprend que pour une impression, en particulier en couleur, la nécessaire superposition des gouttes provenant des différentes buses délivrant les différentes couleurs d'encre doit être très précise. Les défauts principaux d'impression qui sont générés par tous les systèmes d'impression connus, sont les défauts relatifs aux lignages dans le sens du mouvement relatif de la tête d'impression par rapport au substrat. Ce défaut se traduit par l'apparition de lignes claires ou foncées lors de l'impression par balayages successifs. Ces défauts peuvent se trouver dans l'espace compris entre deux bandes qui doit en principe être égal à l'intervalle entre gouttes adjacentes d'une trame, ou à l'intérieur d'une même bande, dans l'espace délimitant les zones imprimées par différents jets, voire à l'intérieur de la trame imprimée par un jet au niveau de l'espace entre deux gouttes adjacentes de la trame. Ces défauts de lignage peuvent provenir soit de défauts propres à certains jets de la tête d'impression, ce sont alors des défauts d'origine mécanique ou électrique, soit d'erreurs de positionnement du substrat, ou bien d'erreur de positionnement entre têtes d'impression, ou encore entre jets d'une même tête d'impression. Diverses solutions ont été proposées pour limiter ou éliminer les problèmes de lignage, mais toutes se traduisent soit par une limitation de la cadence d'impression, dans un rapport parfois très élevé vis-à-vis de la cadence nominale d'impression, soit par une redondance de têtes d'impression et donc un coût important. Des exemples de solutions connues couramment mises en oeuvre pour limiter le lignage vont être exposés succinctement ci-après : un premier type de solution repose sur des réglages mécaniques fins des jets par des vis excentriques ou de la position des têtes d'impression grâce à des tables micrométriques. Cette solution est à la fois onéreuse, par le nombre d'éléments mécaniques qui sont nécessaires, et souvent fastidieuse, par les tâtonnements qu'elle nécessite.It is understood that for printing, especially in color, the necessary superposition of the drops from the different nozzles delivering the different ink colors must be very precise. The main printing defects that are generated by all known printing systems are the defects relating to lineations in the direction of the relative movement of the print head relative to the substrate. This defect results in the appearance of light or dark lines when printing by successive sweeps. These defects can be in the space between two bands which should in principle be equal to the interval between adjacent drops of a frame, or within the same band, in the space delimiting the printed areas by different jets, or even inside the frame printed by a jet at the space between two adjacent drops of the frame. These lineage defects can come either from defects specific to certain jets of the print head, it is then defects of mechanical or electrical origin, either of errors of positioning of the substrate, or of error of positioning between heads. of printing, or between jets of the same print head. Various solutions have been proposed to limit or eliminate lineage problems, but all of them result either in a limitation of the print rate, sometimes in a very high ratio with respect to the nominal print rate, or a redundancy of printheads and therefore a significant cost. Examples of known solutions commonly used to limit the lineage will be briefly described below: a first type of solution is based on fine mechanical adjustments of the jets by eccentric screws or the position of the printing heads by means of micrometric tables. This solution is both expensive, by the number of mechanical elements that are necessary, and often tedious, by trial and error it requires.

Un autre type de solutions courantes consiste à utiliser un taux de chevauchements très élevé entre gouttes voisines, de manière à éviter les lignages blancs. Ces lignages blancs correspondent à l'absence de couverture du substrat. Les lignages foncés sont moins visibles et on préfère avoir un défaut de lignage de lignes foncées plutôt qu'un défaut de lignage blanc. La solution consistant à augmenter le taux de chevauchements entre gouttes voisines est efficace pour compenser les défauts à l'intérieur d'une même bande et dans une certaine mesure les défauts de lignage entre bandes mais elle présente l'inconvénient de nécessiter une quantité d'encre très élevée par unité de surface du substrat et génère des difficultés de séchage ou de déformation du substrat.Another type of common solution is to use a very high overlap rate between drops nearby, so as to avoid white lineages. These white lineages correspond to the lack of substrate coverage. Dark lineages are less visible and it is preferred to have a dark lineage defect rather than a white lineage defect. The solution of increasing the rate of overlap between adjacent drops is effective to compensate for defects within the same band and to some extent the lineage defects between bands but it has the disadvantage of requiring an amount of very high ink per unit area of the substrate and generates difficulties of drying or deformation of the substrate.

Un troisième type de solution pour effacer les défauts de lignage sur les imprimantes fonctionnant en balayage consiste à imprimer partiellement le substrat lors de chaque balayage. En multipliant le nombre de balayages de substrat on obtient la couverture totale du substrat. Cette impression en plusieurs passages exploite diverses stratégies d'entrelacement des positions des gouttes provenant des différents jets. Un exemple d'entrelacement de lignes paires et impaires est donné dans le brevet n° US-A-4 604 631 délivré à la Société RICOH. Un avantage de cette solution souvent liée à un taux de chevauchements élevé est qu'elle autorise un temps de séchage du substrat, mais elle aboutit à la réduction de la cadence d'impression d'un facteur pouvant aller de 2 à 16.A third type of solution for clearing lineage defects on scanning printers is to partially print the substrate during each scan. By multiplying the number of substrate scans, the total coverage of the substrate is obtained. This multi-pass printing exploits various strategies of interleaving the positions of the drops from the different jets. An example of interleaving of even and odd lines is given in US Pat. No. 4,604,631 issued to RICOH. An advantage of this solution often related to a high overlap ratio is that it allows a drying time of the substrate, but it results in the reduction of the printing rate by a factor ranging from 2 to 16.

En ce qui concerne les défauts de lignage et d'autres défauts éventuels de l'impression, il a été envisagé d'utiliser des mires et de comparer une mire réelle imprimée à une mire de référence pour en déduire des choix de buses ou des modifications à introduire dans certains paramètres de réglage de l'imprimante. La demande de brevet EP 0 589 718 A1 attribuée à HEWLETT PACKARD prévoit l'utilisation de mires composées d'une succession de traits décalés les uns par rapport aux autres. L'utilisateur de l'imprimante examine les différents modèles imprimés et choisit un alignement qui lui convient au moyen d'un panneau de commande. Les choix sont ensuite stockés pour utilisation ultérieure.With regard to lineage defects and other possible defects in printing, it was envisaged to use test patterns and to compare a real printed pattern with a reference pattern to deduce from it. Nozzle choices or changes to be made to certain printer setting parameters. The patent application EP 0 589 718 A1 assigned to HEWLETT PACKARD provides for the use of patterns consisting of a succession of lines offset with respect to each other. The user of the printer examines the various printed models and selects a suitable alignment by means of a control panel. The choices are then stored for later use.

Un modèle de mire pour corriger d'éventuels défauts de l'imprimante est décrit dans la demande de brevet n° EP 0 863 012 A1 attribué à HEWLETT PACKARD. Ce modèle de mire permet une lecture aisée par exemple par une caméra de façon à pouvoir faire des corrections en automatique par comparaison de la mire imprimée à une mire de référence. Enfin, dans la demande de brevet WO 98/43817 attribué à JEMTEX INK JET PRINTING LTD., il est prévu d'utiliser une mire pour effectuer diverses corrections de paramètres. D'après la description de cette demande, la mire permet de reconnaître les différents types d'erreurs, c'est-à-dire des erreurs de vitesse de la goutte d'encre, des erreurs de phases dues à des séquencements incorrects de l'application de la tension de charge, des erreurs de décalage dans une direction X, des erreurs de décalage dans une direction Y et des erreurs de décalage angulaires. Les erreurs de vitesse ou de décalage dans la direction X sont corrigées par modification de la tension de charge des gouttes. Les erreurs de phases dues à des séquencements incorrects de l'application de la tension de charge sont corrigées par modification du séquencement de l'impulsion de charge des gouttes. Les erreurs de décalage en Y c'est-à-dire dans le sens du balayage sont compensées par une restructuration du séquencement des données. Il en est de mêmes pour les erreurs angulaires. Pour des raisons qui seront expliquées par la suite, une telle utilisation d'une mire peut conduire à une bonne position des gouttes sur le substrat, mais elle entraîne d'autres défauts qui sont essentiellement des défauts de colorimétrie, et des difficultés de réglage permanent de l'imprimante.A pattern of sight for correcting possible defects of the printer is described in the patent application No. EP 0 863 012 A1 assigned to HEWLETT PACKARD. This pattern of sight allows easy reading for example by a camera so that it can make corrections automatically by comparing the printed pattern to a reference pattern. Finally, in patent application WO 98/43817 issued to JEMTEX INK JET PRINTING LTD., It is intended to use a pattern to perform various parameter corrections. According to the description of this application, the test pattern makes it possible to recognize the different types of errors, that is to say ink drop speed errors, phase errors due to incorrect sequencing of the ink drop. application of load voltage, offset errors in an X direction, offset errors in a Y direction, and angular offset errors. Speed or offset errors in the X direction are corrected by changing the charging voltage of the drops. Phase errors due to incorrect sequencing of the application of the charging voltage are corrected by changing the sequencing of the drop charge pulse. Errors of offset in Y that is to say in the direction of the sweep are compensated by a restructuring of the data sequencing. The same is true for angular errors. For reasons that will be explained later, such a use of a pattern may lead to a good position of the drops on the substrate, but it causes other defects that are essentially color defects, and permanent adjustment difficulties of the printer.

Le brevet US 5,481,288 décrit une imprimante comportant des asservissements pour régler la viscosité de l'encre, la vitesse de jet, la distance de brisure du jet, ainsi que la commande des moyens de charge des gouttes.No. 5,481,288 discloses a printer having servocontrols for adjusting the viscosity of the ink, the jet speed, the breaking distance of the jet, as well as the control of the means for charging the drops.

Brève description de l'inventionBrief description of the invention

La présente invention a pour objet principal de réduire les difficultés de montage des têtes d'impression sur une imprimante, tout en assurant une bonne qualité de l'impression. Une bonne qualité de l'impression suppose une bonne reproductibilité de couleur, une taille des impacts de goutte résultant de leurs impacts et de leur étalement sur le substrat constante et une position relative des gouttes sur le substrat bien déterminée. Elle vise également à assurer une bonne fiabilité et une bonne disponibilité de l'imprimante. Elle vise également à limiter les pertes de substrat imprimées lors de défauts. Elle vise à simplifier les opérations de maintenance. Enfin, elle vise aussi à assurer une bonne stabilité de la qualité d'impression, c'est-à-dire à éviter une dérive de cette qualité.The present invention has the main object of reducing the difficulties of mounting the printheads on a printer, while ensuring a good quality of printing. Good print quality requires good color reproducibility, size of drop impacts resulting from their impacts and their spread on the constant substrate, and a relative position of the drops on the well-defined substrate. It also aims to ensure good reliability and good availability of the printer. It also aims to limit the substrate losses printed during defects. It aims to simplify maintenance operations. Finally, it also aims to ensure good stability of the print quality, that is to say to avoid a drift of this quality.

La qualité d'impression d'une imprimante à jet d'encre couleur dépend d'un grand nombre de paramètres dont certains sont interdépendants : on peut définir comme expliqué plus haut, trois principaux phénomènes qui conditionnent la qualité d'impression :

  • la caractéristique colorimétrique des encres,
  • la taille des impacts de gouttes résultant de leur impact et étalement sur le substrat,
  • et enfin, la position relative des gouttes sur le substrat.
The print quality of a color inkjet printer depends on a large number of parameters, some of which are interdependent: it is possible to define as explained above, three main phenomena that condition the print quality:
  • the colorimetric characteristic of the inks,
  • the size of the impacts of drops resulting from their impact and spreading on the substrate,
  • and finally, the relative position of the drops on the substrate.

La caractéristique colorimétrique de l'encre dépend principalement de sa composition, à savoir pour les principaux éléments : la concentration de matière colorante, la concentration de solvant, et celle de résine. Dans le brevet n° FR 2 636 884 attribué à la demanderesse, on décrit un système de mesure et maintien de la viscosité de l'encre afin de maintenir les conditions de vitesse de jet, la pression étant fixée. Les corrections de viscosité sont effectuées par addition de solvant ou d'une encre de concentration plus élevée que la concentration nominale. Une variation de température peut induire une variation de viscosité alors que la composition de l'encre est inchangée. C'est pourquoi dans un mode préféré de réalisation de l'invention décrite dans ce brevet attribuée à la demanderesse on prévoit un réglage et asservissement de la viscosité η de l'encre en prenant en compte la température de l'encre. La viscosité et la température T sont déterminées en un même point de l'encre, et les ajouts de solvant ou d'encre plus concentrée sont effectués en fonction de l'écart de viscosité Δη par rapport à une viscosité de consigne qui dépend de la température mesurée. Avec le procédé décrit dans ce brevet, on maintient précisément la concentration en colorant dans l'encre. Si la température de l'encre à la tête d'impression est également maîtrisée, par exemple grâce à un contrôle de la température ambiante, la viscosité de l'encre dans la buse se trouve automatiquement contrôlée. Maîtriser la viscosité et la concentration en colorant sont des conditions nécessaires pour maintenir une bonne colorimétrie, et aussi pour conserver une loi de variation de la vitesse d'une goutte en sortie d'une buse d'impression en fonction de la pression qui lui est appliquée constante.The colorimetric characteristic of the ink depends mainly on its composition, namely for the main elements: the concentration of coloring matter, the concentration of solvent, and that of resin. In patent No. FR 2,636,884 assigned to the applicant, there is described a system for measuring and maintaining the viscosity of the ink in order to maintain the jet speed conditions, the pressure being fixed. Viscosity corrections are made by addition of solvent or an ink of higher concentration than the nominal concentration. A variation in temperature can induce a change in viscosity while the composition of the ink is unchanged. Therefore, in a preferred embodiment of the invention described in this patent assigned to the applicant is provided a control and control of the viscosity η of the ink taking into account the temperature of the ink. The viscosity and the temperature T are determined at the same point of the ink, and the more concentrated solvent or ink additions are made as a function of the difference in viscosity Δη with respect to a target viscosity which depends on the measured temperature. With the process described in this patent, the concentration of dye in the ink is precisely maintained. If the temperature of the ink at the print head is also controlled, for example by controlling the ambient temperature, the viscosity of the ink in the nozzle is automatically controlled. Mastering the viscosity and the concentration of dye are necessary conditions to maintain a good colorimetry, and also to maintain a law of variation of the speed of a droplet at the outlet of a printing nozzle according to the pressure which is applied constant.

La taille d'impact des gouttes sur le substrat dépend de la géométrie des buses, qui sont fabriquées dans des tolérances serrées et contrôlées lors de la fabrication, de leur vitesse d'éjection et donc d'impact, et des conditions locales de l'étalement des gouttes sur le substrat, à savoir la vitesse d'évaporation de l'encre et sa tension de surface sur ledit substrat, qui dépendent toutes deux de la température. Pour un substrat donné et une température ambiante donnée, l'étalement dépend des caractéristiques physico-chimiques de l'encre et de la vitesse d'impact des gouttes.The impact size of the drops on the substrate depends on the geometry of the nozzles, which are manufactured within tight tolerances and controlled during manufacture, their ejection speed and therefore impact, and the local conditions of the spreading drops on the substrate, namely the evaporation rate of the ink and its surface tension on said substrate, both of which depend on the temperature. For a given substrate and a given ambient temperature, the spreading depends on the physicochemical characteristics of the ink and the drop impact velocity.

La position relative des gouttes sur le substrat dépend de la trajectoire des gouttes de chaque jet de la tête d'impression, de l'agencement des jets dans la tête d'impression, ainsi que de la position relative entre la tête d'impression et le substrat. Il a été vu que les gouttes sont chargées électriquement, puis déviées plus ou moins en fonction de leur charge par des électrodes de déviation. Il en résulte que la trajectoire des gouttes dépend de leur vitesse et de leur charge. Une bonne charge des gouttes suppose que la goutte se sépare du jet à un endroit bien déterminé et qu'au moment de cette séparation, l'impulsion électrique définissant la charge des gouttes a été donnée. Il a été vu plus haut, que pour une viscosité donnée, la vitesse dépend d'une pression appliquée au fluide. Il est connu également que la distance entre la buse et le lieu de formation des gouttes d'un jet est une fonction de l'amplitude des oscillations appliquées par exemple à un cristal piézoélectrique entretenant des vibrations dans l'encre. Une bonne charge des gouttes suppose donc un bon contrôle de la phase entre la formation des gouttes et l'instant de charge des gouttes, la phase étant elle-même variable avec la vitesse des gouttes. Des moyens pour contrôler de façon individuelle des paramètres tels que la viscosité de l'encre en fonction de sa température, la vitesse des gouttes par action sur la pression dans le réservoir d'encre, la phase de charge des gouttes et la longueur du jet avant sa brisure en gouttes par contrôle de la tension d'un cristal piézoélectrique sont individuellement connues de l'art antérieur. Cependant, peut être par méconnaissance de la dépendance des différents paramètres les uns par rapport aux autres pour la qualité d'impression, les imprimantes de l'art antérieur ne comportent en général pas de contrôle de chacun de ces paramètres. Ainsi, par exemple, les caractéristiques de l'encre telles que la viscosité peuvent être contrôlées sans que simultanément on asservisse la vitesse de jet, le maintien de la viscosité de l'encre et d'une pression étant jugés suffisant pour assurer une vitesse constante des gouttes. Cette approche est mise en défaut particulièrement lorsque l'orifice de buse ou les filtres du circuit d'amenée d'encre sont colmatés. Si les caractéristiques physico-chimiques de l'encre sont asservies, il est également important d'assurer une vitesse de goutte d'encre et d'impact sur le substrat dans une tolérance prédéterminée. Souvent, également dans les systèmes de l'art antérieur, la précision de positionnement des gouttes est considérée comme le seul facteur influant sur la qualité d'impression. Ainsi, dans la demande de brevet WO 98/43817 déjà citée, la position des gouttes est mesurée sur une mire et les défauts sont corrigés de plusieurs manières. Notamment, les défauts de trajectoire résultant de vitesse de goutte hors tolérance sont corrigés par une action sur leur charge électrique. Il a été vu que la vitesse des gouttes influe sur la trajectoire et sur la taille de la goutte à l'impact. La qualité d'impression ne se trouve donc pas garantie. Une correction de charge des gouttes pourra éventuellement remettre ces gouttes dans leur trajectoire nominale, mais leur diamètre d'impact n'aura pas été corrigé, et le colorant se trouvera étalé sur une surface trop grande ou trop petite modifiant ainsi la colorimétrie.The relative position of the drops on the substrate depends on the trajectory of the drops of each jet of the print head, the arrangement of the jets in the print head, as well as the relative position between the print head and the substrate. It has been seen that the drops are electrically charged, and then deflected more or less depending on their charge by deflection electrodes. As a result, the trajectory of the drops depends on their speed and their load. A good load of drops assumes that the drop is separated from the jet at a specific place and at the moment of this separation, the electric pulse defining the charge of the drops has been given. It has been seen above, that for a given viscosity, the speed depends on a pressure applied to the fluid. It is also known that the distance between the nozzle and the droplet formation site of a jet is a function of the amplitude of the oscillations applied for example to a piezoelectric crystal maintaining vibrations in the ink. A good charge of the drops therefore assumes a good control of the phase between the formation of the drops and the moment of charge of the drops, the phase being itself variable with the speed of the drops. Means for individually controlling parameters such as the viscosity of the ink as a function of its temperature, the speed of the drops by action on the pressure in the ink tank, the loading phase of the drops and the length of the jet before breaking it into drops by controlling the voltage of a piezoelectric crystal are individually known from the prior art. However, by lack of knowledge of the dependence of the various parameters with respect to each other for print quality, the printers of the prior art generally do not include control of each of these parameters. Thus, for example, the characteristics of the ink such as the viscosity can be controlled without simultaneously controlling the jet speed, maintaining the viscosity of the ink and a pressure being considered sufficient to ensure a constant speed. drops. This approach is faulted particularly when the nozzle orifice or Ink supply circuit filters are clogged. If the physico-chemical characteristics of the ink are enslaved, it is also important to ensure an ink drop speed and impact on the substrate within a predetermined tolerance. Often, also in the systems of the prior art, the drop positioning accuracy is considered the only factor influencing the print quality. Thus, in the patent application WO 98/43817 already mentioned, the position of the drops is measured on a test pattern and the defects are corrected in several ways. In particular, the defects of trajectory resulting from drop speed out of tolerance are corrected by an action on their electric charge. It has been seen that the speed of the drops influences the trajectory and size of the drop on impact. Print quality is therefore not guaranteed. A charge correction of the drops may eventually put these drops in their nominal trajectory, but their impact diameter has not been corrected, and the dye will be spread over a too large or too small surface thus changing the colorimetry.

La présente invention vise à assurer une bonne qualité d'impression et à simplifier le montage de l'imprimante. Dans une imprimante selon l'invention, la phase des gouttes, la longueur du jet avant sa brisure en gouttes, la vitesse du jet d'encre, la température, la viscosité et la composition de l'encre sont contrôlées en permanence par des boucles indépendantes. Tous ces paramètres étant contrôlés, alors une erreur sur la position des gouttes ne résulte plus que de défauts mécaniques ou de marges de tolérance des dispositifs électroniques. Dans ces conditions, l'impression d'une mire et sa comparaison à une mire de référence permettra par une modification adaptée de la charge des gouttes de modifier cette trajectoire de façon à lui rendre sa valeur nominale. Les autres paramètres étant contrôlés, cette modification de la charge des gouttes ne compensera pas des valeurs hors tolérance de la vitesse de jet ou de la composition de l'encre, ou de la taille de la goutte à l'impact, et en conséquence la qualité de l'impression sera conservée.The present invention aims at ensuring good print quality and simplifying the mounting of the printer. In a printer according to the invention, the phase of the drops, the length of the jet before breaking it into drops, the speed of the ink jet, the temperature, the viscosity and the composition of the ink are continuously controlled by loops. independent. All these parameters being controlled, then an error on the position of the drops results only from mechanical defects or tolerance margins of the electronic devices. Under these conditions, the printing of a test pattern and its comparison with a reference pattern will allow, by an appropriate modification of the charge of the drops, to modify this trajectory so as to restore its nominal value. The other parameters being controlled, this modification of the droplet load will not compensate for values outside the tolerance of the jet velocity or the composition of the ink, or the size of the drop on impact, and consequently the print quality will be preserved.

Le procédé selon l'invention vise à supprimer les problèmes de lignage sans conséquence sur la vitesse d'impression.The method according to the invention aims to eliminate lineage problems without any impact on the printing speed.

La présente invention ne nécessite pas de taux élevé de chevauchement de gouttes. Elle permet d'atteindre des cadences d'impression élevées avec un nombre de têtes d'impression relativement réduit. Elle permet aussi de diminuer le nombre de dispositifs de réglage mécanique. Selon l'invention, avant la mise en route initiale de l'imprimante on procède à une étape de réglages électriques de la machine. Ce réglage initial est effectué lorsque les boucles d'asservissements des paramètres sont actives, et va permettre de régler par exemple la position de la trame en corrigeant ce qu'on va appeler un écart de translation statique et va permettre également de régler la hauteur de la trame en modifiant ce qu'on va appeler un écart de dilatation. Pour cela, on va imprimer avec la machine une mire représentant un motif connu. On va la comparer à une mire de référence représentant ce même motif de façon à en tirer des valeurs d'écart entre la position réelle de points de la mire imprimée et la position nominale des points correspondants sur la mire de référence. Les écarts entre points correspondants sont mémorisés. Ensuite, lors des phases d'impression successives de motifs définis par un ensemble D de données numériques, on calcule à partir des écarts mémorisés des corrections à appliquer :

  • à des tensions nominales applicables aux électrodes de charge des gouttes en fonction du rang j de la position nominale du point imprimé par la goutte, ou encore
  • au nombre de positions suivant le signal de détection de bord,
on applique les corrections déterminées aux valeurs nominales correspondantes.The present invention does not require a high rate of overlapping drops. It achieves high print speeds with a relatively small number of print heads. It also reduces the number of mechanical adjustment devices. According to the invention, before the initial start of the printer is carried out a step of electrical adjustments of the machine. This initial setting is made when the servo loops of the parameters are active, and will allow to adjust for example the position of the frame by correcting what will be called a translation deviation static and will also allow to adjust the height of the weft by modifying what we will call a dilation gap. For this, we will print with the machine a pattern representing a known pattern. We will compare it to a reference pattern representing this same pattern so as to derive values from the difference between the actual position of points of the printed pattern and the nominal position of the corresponding points on the reference pattern. The differences between corresponding points are memorized. Then, during the successive printing phases of patterns defined by a set D of digital data, the corrections to be applied are calculated from the stored differences:
  • at nominal voltages applicable to the charging electrodes of the drops as a function of the rank j of the nominal position of the dot printed by the drop, or
  • at the number of positions according to the edge detection signal,
the determined corrections are applied to the corresponding nominal values.

Dans un mode de réalisation, on corrige d'une part, la valeur de l'écart de translation statique et, d'autre part, la valeur de l'écart de dilatation. Pour corriger la valeur de l'écart de translation statique on va ajouter à chacune des gouttes sortant des buses de l'imprimante, une charge électrique algébrique permettant de compenser cette erreur de translation. L'erreur de dilatation provient d'un écart trop grand ou trop petit de la charge distribuée entre les gouttes les plus déviées et les gouttes les moins déviées formant la trame correspondant à une salve. La trame est trop large, lorsque l'écart entre le point haut de la trame et le point bas de la trame est trop grand. Cela signifie que la goutte correspondant au point le plus haut n'est pas assez déviée alors que la goutte correspondant au point le plus bas est trop déviée. Pour corriger, il faudra donc augmenter la charge de la goutte correspondant au point le plus haut et diminuer la charge de la goutte correspondant au point le plus bas. Une péréquation appliquée aux gouttes intermédiaires de la salve permettra de corriger la charge appliquée aux gouttes intermédiaires en fonction des corrections apportées aux charges des gouttes extrêmes de la trame. Si au contraire la trame est trop étroite ce qui signifie que l'écart entre le point le plus haut et le point le plus bas d'une salve est trop étroit alors on va diminuer la charge de la goutte correspondant au point le plus haut de façon à ce que cette goutte soit moins déviée et on va augmenter la charge de la goutte correspondant au point le plus bas de façon à ce que cette goutte soit davantage déviée. Une péréquation des valeurs de correction de charges appliquées aux gouttes intermédiaires entre la dernière et la première goutte permettra comme dans le cas de la trame large d'affiner le réglage de la trame.In one embodiment, the value of the static translation difference is corrected on the one hand and the value of the expansion gap on the other hand. To correct the value of the translation deviation static will be added to each of the drops out of the printer nozzles, an algebraic electric charge to compensate for this translation error. The expansion error is due to a large or small difference in the load distributed between the most deviated drops and the least deviated drops forming the frame corresponding to a burst. The frame is too wide, when the gap between the high point of the frame and the low point of the frame is too large. This means that the drop corresponding to the highest point is not deviated enough while the drop corresponding to the lowest point is too deviated. To correct, it will therefore increase the load of the drop corresponding to the highest point and reduce the load of the drop corresponding to the lowest point. Equalization applied to the intermediate drops of the burst will correct the load applied to the intermediate drops as a function of the corrections made to the loads of the extreme drops of the weft. If on the other hand the frame is too narrow, which means that the gap between the highest point and the lowest point of a salvo is too narrow then we will reduce the load of the drop corresponding to the highest point of so that this drop is less deviated and we will increase the load of the drop corresponding to the lowest point so that this drop is further deviated. Equalization of the charge correction values applied to the intermediate drops between the last and the first drop will, as in the case of the wide frame, make it possible to refine the setting of the frame.

Il est également possible de tenir compte de l'écart réel de chaque goutte par rapport à sa position nominale pour calculer la correction de position appliquée à chaque goutte.It is also possible to take into account the actual deviation of each drop from its nominal position to calculate the position correction applied to each drop.

En résumé, l'invention est relative à un procédé de compensation de défauts mécaniques d'une imprimante à jet d'encre par réglage de la position d'arrivée sur un substrat, de gouttes d'encre électriquement chargées de façon réglable par des électrodes de charge, les gouttes provenant d'une tête d'impression, les trajectoires des gouttes étant modifiables, par des électrodes de déviation, entre N positions une première position X1, une dernière position XN et N-2 positions intermédiaires, les N positions définissant une trame sous forme d'un segment de droite sensiblement parallèle à une direction X du substrat, procédé caractérisé en ce qu'en permanence au cours du fonctionnement de l'imprimante on asservit :

  • une viscosité de l'encre en fonction de sa température pour qu'elle garde une valeur dans une tolérance prédéterminée par addition de solvant ou d'encre plus concentrée en matières colorantes,
  • une vitesse de jet par action sur une valeur de pression d'alimentation de l'encre,
  • une distance de brisure du jet en gouttes par action sur un paramètre ajustable permettant de conserver une distance de brisure prédéterminée,
  • une différence de phase entre des instants d'application d'impulsions électriques de charges des gouttes et le signal périodique appliqué au générateur de gouttes qui détermine la formation des gouttes par action sur un circuit de temporisation,
    et en ce que dans une phase préalable à des phases d'impression :
    • a) on imprime une mire,
    • b) on compare ladite mire imprimée à une mire de référence pour en déduire pour ladite tête d'impression et pour un nombre entier a de positions, a étant supérieur ou égal à 2 et inférieur ou égal à N, un écart algébrique ΔXi entre une position réelle observée et une position nominale correspondante, ceci pour chacune des a positions choisies, avec i allant de 1 à a,
    • c) on détermine un écart de translation statique θ comme étant l'écart entre le barycentre des a positions réelles observées et le barycentre des a positions nominales correspondantes,
    • d) on détermine pour chacune des a positions de gouttes observées, un écart de position δi entre la position réelle de chaque goutte, corrigée de l'écart de translation, et la position nominale de ladite goutte,
    • e) on mémorise la valeur θ de l'écart de translation statique et les valeurs δi des écarts de position de goutte par rapport à leurs positions nominales respectives,
    • ensuite dans chaque phase d'impression d'un motif défini par un ensemble D de données numériques
    • on détermine pour chaque goutte, une valeur de correction de tension nominale conduisant à une valeur corrigée à appliquer aux moyens de charge des gouttes dirigées vers le substrat, ce calcul prenant en compte les valeurs mémorisées d'écart de translation et de position, des données extraites de l'ensemble D des données numériques définissant le motif à imprimer, et le rang j, j compris entre 1 et N de la position nominale d'impression visée.
In summary, the invention relates to a method for compensating for mechanical defects of an ink jet printer by adjusting the position of arrival on a substrate, of ink drops electrically electrically adjustable by electrodes. of charge, the drops from a print head, the trajectories of the drops being modifiable, by deflection electrodes, between N positions a first position X 1 , a last position X N and N-2 intermediate positions, the N positions defining a frame in the form of a line segment substantially parallel to a direction X of the substrate, characterized in that permanently during the operation of the printer on enslaved:
  • a viscosity of the ink as a function of its temperature so that it keeps a value within a predetermined tolerance by addition of solvent or ink more concentrated in coloring matter,
  • a jet speed per action on an ink supply pressure value,
  • a breaking distance of the jet into drops by action on an adjustable parameter making it possible to maintain a predetermined breaking distance,
  • a phase difference between instants of application of electric pulses of drops charges and the periodic signal applied to the drop generator which determines the formation of the drops by action on a delay circuit,
    and in that in a phase prior to printing phases:
    • (a) print a pattern,
    • b) comparing said printed pattern with a reference pattern to deduce for said print head and for an integer a of positions, a being greater than or equal to 2 and less than or equal to N, an algebraic deviation ΔX i between an observed actual position and a corresponding nominal position, this for each of a selected positions, with i ranging from 1 to a,
    • c) determining a static translation error θ as the difference between the centroid of the a actual observed positions and the center of gravity of a corresponding nominal positions,
    • d) determining for each of the a observed droplet positions, a position deviation δ i between the real position of each droplet corrected by the translation error, and the nominal position of said drop,
    • e) storing the value θ of the static translation deviation and the values δ i of the drop position deviations with respect to their respective nominal positions,
    • then in each print phase a pattern defined by a set D of digital data
    • for each drop, a nominal voltage correction value leading to a corrected value to be applied to the charge means of the drops directed towards the substrate is determined, this calculation taking into account the stored values of translation and position deviation, of the data. taken from the set D of the digital data defining the pattern to be printed, and the rank j, j between 1 and N of the target print position.

De préférence, et comme décrit plus haut le nombre entier a de positions réelles observées est égal à 2, ces positions étant la première et la dernière position. On peut aussi si l'on veut obtenir une correction plus fine mesurer l'écart de chacune des N positions réelles de gouttes par rapport à leur position nominale. Naturellement, si l'imprimante comporte plusieurs buses réparties sur une ou plusieurs têtes, la même opération sera appliquée pour chacune des buses. Cela ne signifie pas qu'il faudra imprimer une mire par buse, une seule mire pouvant convenir pour l'exploitation des jets de chacune des buses. En particulier, si les différentes buses correspondent à des jets de différentes couleurs, on conçoit bien qu'il sera facile de constituer une mire unique permettant de régler l'ensemble des jets de toutes les buses.Preferably, and as described above, the integer number a of real positions observed is equal to 2, these positions being the first and the last position. One can also if one wants to get a finer correction measure the deviation of each of the N actual positions of drops from their nominal position. Naturally, if the printer has several nozzles distributed over one or more heads, the same operation will be applied for each of the nozzles. This does not mean that it will print a test pattern per nozzle, a single pattern that may be suitable for the operation of the jets of each of the nozzles. In particular, if the different nozzles correspond to jets of different colors, it is understood that it will be easy to constitute a single pattern for adjusting all the jets of all the nozzles.

Du fait que selon l'invention, on minimise le chevauchement entre gouttes consécutives il peut subsister un défaut de lignage, en particulier un défaut de lignage blanc apparaissant de façon régulière. Ce défaut est très perceptible par l'oeil lorsqu'il est régulier. De façon à diminuer la perceptibilité de cet éventuel défaut, on appliquera en superposition à la tension appliquée aux électrodes de charge des gouttes, une tension de bruit. L'amplitude moyenne de cette tension de bruit sera fonction du rang j de la goutte dans la salve. De préférence l'amplitude maximum de la tension additionnelle de bruit sera égale à une fraction inférieure à 1 de la différence entre la tension nominale à appliquer à la goutte de rang j et la tension nominale à appliquer à la goutte de rang j + 1 ou à la goutte de rang j - 1, c'est-à-dire à l'une des deux gouttes spatialement adjacentes de la goutte de rang j. De préférence l'amplitude minimum de la tension additionnelle de bruit sera égale à la valeur de l'écart de tension que l'on peut obtenir en faisant varier la valeur du bit de moindre poids d'un convertisseur analogique numérique dont la sortie alimente un amplificateur haute tension couplé aux électrodes de charge des gouttes.Since, according to the invention, the overlap between consecutive drops is minimized, a lineage defect may remain, in particular a white lineage defect appearing regularly. This defect is very perceptible to the eye when it is regular. In order to reduce the perceptibility of this possible defect, a voltage of noise will be applied in superposition to the voltage applied to the charge electrodes of the drops. The average amplitude of this noise voltage will be a function of the rank j of the drop in the burst. Preferably, the maximum amplitude of the additional noise voltage will be equal to a fraction less than 1 of the difference between the nominal voltage to be applied to the drop of rank j and the nominal voltage to be applied to the drop of rank j + 1 or to the drop of rank j-1, that is to say to one of the two spatially adjacent drops of the drop of rank j. Preferably, the minimum amplitude of the additional noise voltage will be equal to the value of the voltage difference that can be obtained by varying the value of the least significant bit of an analog-digital converter whose output feeds a high voltage amplifier coupled to the charging electrodes of the drops.

De cette façon, la position des gouttes sera légèrement bruitée et le défaut régulier de lignage foncé ou blanc n'apparaîtra plus ou apparaîtra moins.In this way, the position of the drops will be slightly noisy and the regular defect of dark or white lineage will not appear or will appear less.

Les aspects de l'invention qui ont été décrits jusqu'à présent permettent de corriger les erreurs de lignage c'est-à-dire les erreurs de positions des différentes trames dans des bandes successives ou de jets adjacents et les erreurs de largeur des différentes trames.The aspects of the invention which have been described so far make it possible to correct the lineage errors, ie the position errors of the different frames in successive bands or of adjacent jets and the errors of width of the different frames.

Selon un autre aspect de l'invention qui va être maintenant abordé les erreurs de position des trames dans une direction Y perpendiculaire à la direction d'impression des trames peuvent aussi être corrigées.According to another aspect of the invention which will now be discussed, the position errors of the frames in a direction Y perpendicular to the printing direction of the frames may also be corrected.

La plupart des imprimantes actuelles sont équipées d'un détecteur de détection du bord gauche ou du bord droit du substrat. Le début de l'impression est déclenché en fonction d'une différence entre la valeur numérique instantanée présente sur un compteur de position de la tête par rapport au substrat et la valeur de ce même compteur au moment de la détection d'un bord du substrat et aussi en fonction des données D relatives à l'impression du substrat contenues dans la mémoire de données d'impression. La différence de nombre de positions est telle que lorsque ce nombre de position a été compté après la détection d'un bord du substrat, la tête d'impression se trouve à l'endroit programmé par les données D pour imprimer le début de la bande. Il est possible qu'un décalage dans la direction Y soit observé entre la position nominale d'une bande et sa position réelle. Selon un aspect de l'invention, ce défaut, appelé écart de décalage dynamique, peut être corrigé de la façon suivante. Une comparaison de la position de la première trame par rapport à la position nominale de cette première trame permettra de définir un écart algébrique de la première trame par rapport à sa position nominale. Une correction de décalage dynamique α sera définie comme le nombre de positions représentant cet écart. Une correction correspondante sera mémorisée et ensuite utilisée lors des impressions de trames successives pour décaler de ce nombre de positions l'impression de chaque trame de la bande, les positions étant comptées avec pour origine le bord de substrat détecté à chaque balayage. L'impression des trames est décalée, si la tête va de gauche à droite par rapport au substrat, pour modifier le nombre de positions entre la détection du bord gauche et le début de la bande. L'impression est décalée si la tête va de droite à gauche par rapport au substrat, pour modifier la valeur d'un compteur représentant la valeur de la position à laquelle est imprimée chaque trame de la bande. La position de la dernière trame est en particulier décalée du même nombre de positions que la première trame et il convient d'en tenir compte lors du retour de la tête d'impression. La correction prend ainsi en compte le fait que la bande est imprimée par un mouvement aller de la tête de gauche à droite et/ou un mouvement de retour de la tête de droite à gauche.Most current printers are equipped with a detection detector of the left edge or the right edge of the substrate. The beginning of the printing is triggered according to a difference between the instantaneous digital value present on a counter of position of the head relative to the substrate and the value of this same counter at the time of the detection of an edge of the substrate and also according to the data D relating to the printing of the substrate contained in the print data memory. The difference in number of positions is such that when this number of positions has been counted after detecting an edge of the substrate, the print head is at the location programmed by the data D to print the beginning of the tape. . It is possible that an offset in the Y direction is observed between the nominal position of a band and its actual position. According to one aspect of the invention, this defect, called the dynamic shift difference, can be corrected as follows. A comparison of the position of the first frame with respect to the nominal position of this first frame will define an algebraic deviation of the first frame from its nominal position. A dynamic offset correction α will be defined as the number of positions representing this deviation. A corresponding correction will be memorized and then used during successive frame prints to shift by this number of positions the printing of each frame of the band, the positions being counted with origin of the substrate edge detected at each scan. The printing of the frames is shifted, if the head goes from left to right relative to the substrate, to change the number of positions between the detection of the left edge and the beginning of the band. The print is shifted if the head goes from right to left relative to the substrate, to change the value of a counter representing the value of the position at which each frame of the strip is printed. The position of the last frame is in particular shifted by the same number of positions as the first frame and this should be taken into account when returning the print head. The correction thus takes into account the fact that the band is printed by a movement of the head from left to right and / or a return movement of the head from right to left.

On peut remarquer que les corrections de lignage qui ont été appliquées jusqu'à présent selon des premiers aspects de l'invention ne sont effectives que dans la mesure où le substrat est correctement placé. Ceci n'est pas toujours le cas. L'absorption de l'encre par le substrat, des frottements et d'autres facteurs peuvent conduire à des écarts dans l'avance réelle du substrat par rapport à l'avance nominale et donc à des lignages. Selon une variante du procédé de l'invention, on va pour chaque bande, imprimer sur le substrat au moyen de l'une des têtes d'impression une marque. Cette marque peut être une simple ligne orientée selon la direction Y. Après avance du substrat mais avant impression de la bande suivante, la première marque se trouvera positionnée en regard d'un capteur d'avance de substrat. Le capteur optique permet de mesurer une distance entre la première marque imprimée et une position nominale que devrait avoir cette marque, si le substrat avançait de son avance nominale. Cette distance réelle permet de définir une avance réelle du substrat ΔXréel que l'on va pouvoir comparer à la valeur nominale ΔXnom. Un écart entre l'avance réelle et l'avance nominale sera automatiquement corrigé par une variation de la tension de charge appliquée au moyen de charge des gouttes. Cette correction sera appliquée pour toutes les têtes participant à l'écriture de la bande en cours. Comme il a été vu, les différentes corrections selon l'invention, qui viennent d'être définies, peuvent être appliquées indépendamment les unes des autres de façon isolée. En particulier si l'une des corrections n'est pas nécessaire compte tenu de la qualité constatée de l'imprimante, elle ne sera pas appliquée. Elles peuvent être appliquées aussi en combinaison les unes avec les autres selon les différents modes de combinaison qui résultent de leur nombre.It may be noted that the lineage corrections which have been applied up to now according to first aspects of the invention are not effective. only to the extent that the substrate is properly placed. This is not always the case. The absorption of the ink by the substrate, friction and other factors can lead to deviations in the actual advance of the substrate compared to the nominal advance and therefore lineages. According to a variant of the method of the invention, one goes for each band, print on the substrate by means of one of the printing heads a mark. This mark may be a simple line oriented in the Y direction. After advancing the substrate but before printing the next strip, the first mark will be positioned next to a substrate advance sensor. The optical sensor measures a distance between the first printed mark and a nominal position that should have this mark, if the substrate advanced its nominal advance. The actual distance used to define a real advance of the actual substrate .DELTA.X that we will be able to compare the nominal value .DELTA.X name. A difference between the actual feedrate and the nominal feedrate will be automatically corrected by a variation of the load voltage applied to the droplet loading means. This correction will be applied for all heads involved in writing the current tape. As has been seen, the various corrections according to the invention, which have just been defined, can be applied independently of each other in isolation. In particular if one of the corrections is not necessary given the quality of the printer, it will not be applied. They can be applied also in combination with each other different combination modes that result from their number.

L'invention est également relative à une imprimante à jet continu dévié projetant en salve des gouttes de rang 1 à N dans la salve, les gouttes d'une salve étant dirigées ou non vers un substrat d'impression en fonction de données définissant un motif à imprimer, l'imprimante ayant au moins :

  • une tête d'impression, cette tête comportant des moyens de fractionnement en gouttes d'au moins un jet d'encre et une électrode associée de charge des gouttes, des moyens de déviation d'une partie des gouttes vers le substrat d'impression,
  • des moyens d'asservissement de la viscosité de l'encre en fonction de sa température,
  • des moyens d'asservissement de la vitesse des jets d'encre issus de la tête d'impression,
  • des moyens d'asservissement de la distance de brisure du jet en goutte,
  • des moyens d'asservissement de la phase entre des instants d'application d'impulsions de charge des gouttes et des instants d'application d'impulsions de formation des gouttes,
  • des moyens de contrôle de l'impression disposant d'un moyen de fixation de la charge des gouttes à diriger vers le substrat en fonction de leurs rangs dans la salve, couplés à l'électrode de charge des gouttes,

caractérisée en ce que les moyens de contrôle de l'impression comportent :
  • des moyens de mémorisation d'écarts entre une position nominale de points imprimés par la tête d'impression et une position réelle de ces points,
  • des moyens de correction de translation statique θ,
  • des moyens de correction de dilatation, les moyens de correction recevant des données en provenance des moyens de mémorisation d'écart et étant couplés aux moyens de calcul des tensions de charge des gouttes.
The invention also relates to a deviated continuous jet printer bursting drops of rank 1 to N in the burst, the drops of a burst being directed or not to a printing substrate according to data defining a pattern to be printed, the printer having at least:
  • a print head, this head comprising means for splitting into drops of at least one ink jet and an associated electrode for charging the drops, means for deflecting a portion of the drops to the printing substrate,
  • means for controlling the viscosity of the ink as a function of its temperature,
  • means for controlling the speed of the ink jets issuing from the print head,
  • means for controlling the breaking distance of the jet in drop,
  • means for controlling the phase between instants of application of drop charge pulses and instants of application of drop formation pulses,
  • printing control means having a means for fixing the charge of the drops to be directed towards the substrate according to their ranks in the burst, coupled to the charge electrode of the drops,

characterized in that the print control means comprises:
  • means for storing deviations between a nominal position of dots printed by the print head and a real position of these points,
  • static translation correction means θ,
  • expansion correction means, the correction means receiving data from the gap storage means and being coupled to the means for calculating the charge voltages of the drops.

Brève description des dessinsBrief description of the drawings

Une imprimante comprenant des moyens pour réaliser le procédé selon l'invention et d'autres détails du procédé selon l'invention seront maintenant décrits en regard des dessins annexés dans lesquels :

  • la figure 1 déjà décrite est une représentation schématique des moyens nécessaires à la création de gouttes d'encre et à leur déviation vers un substrat ;
  • la figure 2 déjà décrite comme la figure 1 dans le cadre de la description de l'art antérieur représente l'ensemble des moyens de calcul nécessaire au fonctionnement des moyens représentés sur la figure 1 ;
  • la figure 3 est un schéma destiné à expliquer ce que sont les erreurs de translation, de dilatation et leurs corrections ;
  • la figure 4 est un schéma destiné à expliquer ce que sont les erreurs de décalage dynamique dans la direction du balayage et leurs corrections ;
  • la figure 5 est un schéma destiné à expliquer le mode de correction des écarts d'avance du substrat ;
  • les figures 6 et 7 sont des schémas illustrant les éléments matériels d'une imprimante ;
  • la figure 8 est un schéma représentant les moyens de calcul d'une imprimante fonctionnant selon le procédé de l'invention.
  • la figure 9 représente très schématiquement des asservissements d'une tête d'impression.
A printer comprising means for carrying out the method according to the invention and other details of the method according to the invention will now be described with reference to the appended drawings in which:
  • Figure 1 already described is a schematic representation of the means necessary for the creation of ink drops and their deviation to a substrate;
  • FIG. 2 already described as FIG. 1 in the context of the description of the prior art represents all of the calculation means necessary for the operation of the means represented in FIG. 1;
  • Fig. 3 is a diagram for explaining translation, expansion and correction errors;
  • Fig. 4 is a diagram for explaining dynamic offset errors in the scanning direction and their corrections;
  • FIG. 5 is a diagram intended to explain the mode of correction of the advance gaps of the substrate;
  • Figures 6 and 7 are diagrams illustrating the hardware elements of a printer;
  • Figure 8 is a diagram showing the calculation means of a printer operating according to the method of the invention.
  • FIG. 9 very schematically shows servocontrols of a print head.

La figure 3 est destinée à expliquer ce que sont les écarts de translation et de dilatation. Pour cela, on a représenté dans différentes configurations sur le plan du substrat matérialisé par des axes XY, 9 différentes positions et formes d'une trame tracée par une salve de gouttes. Dans l'exemple représenté et pour simplifier l'explication, on a pris neuf gouttes, que l'on a représenté de façon exagérément espacée.Figure 3 is intended to explain what are the differences in translation and expansion. For this, we have shown in different configurations on the plane of the substrate materialized by XY axes, 9 different positions and shapes of a frame drawn by a salvo of drops. In the example shown and to simplify the explanation, nine drops were taken, which has been represented in an excessively spaced manner.

En partie A de la figure 3, la trame de neuf gouttes est représenté conformément à sa position nominale définie par un trait d'axe de symétrie MM'. Ce trait d'axe passe perpendiculairement au milieu de la trame représentée en A, donc en position nominale. En partie B, la trame a été représentée tel qu'imprimée. On voit sur cette trame que d'une part, elle est décalée ce qui se matérialise par la position de son axe milieu NN' décalée par rapport à la position de l'axe MM' et que, d'autre part, elle est dilatée, c'est-à-dire que la distance entre la goutte 1 et la goutte 9 telle que représentée en B est plus grande que la distance entre la goutte 1 et la goutte 9 telle que représentée en A.In part A of Figure 3, the frame of nine drops is represented in accordance with its nominal position defined by a line of symmetry axis MM '. This axis line passes perpendicular to the middle of the frame represented in A, so in nominal position. In part B, the frame has been represented as printed. It is seen on this frame that on the one hand, it is shifted which is materialized by the position of its central axis NN 'offset with respect to the position of the axis MM' and that, on the other hand, it is dilated , that is to say that the distance between the drop 1 and the drop 9 as shown in B is greater than the distance between the drop 1 and the drop 9 as shown in A.

Sur la figure 3 et dans un but de simplification, on a représenté les N gouttes 1 à 9 de la partie B comme équidistantes. Evidemment dans la réalité, il pourra en être autrement et les gouttes pourront avoir les unes par rapport aux autres des distances variables. Il s'ensuit que la position de la goutte centrale matérialisée par l'axe NN' ne sera pas toujours représentative de l'écart de translation.In Figure 3 and for purposes of simplification, the N drops 1 to 9 of Part B are shown as equidistant. Obviously in the In reality, it may be otherwise, and the drops may have variable distances to each other. It follows that the position of the central drop materialized by the axis NN 'will not always be representative of the translation gap.

Dans le cas le plus général, la meilleure appréciation que l'on pourra avoir du décalage en translation sera représentée par la distance entre le barycentre des gouttes en positions nominales telles que représentées en A et le barycentre des gouttes en positions réelles telles que représentées en B. Le calcul de la position de ces barycentres sera effectué en donnant aux gouttes un même coefficient par exemple le coefficient 1.In the most general case, the best estimate that we can have of the offset in translation will be represented by the distance between the centroid of the drops in nominal positions as represented at A and the centroid of the drops in real positions as represented in FIG. B. The calculation of the position of these centers of gravity will be made by giving the drops the same coefficient, for example the coefficient 1.

On pourra aussi dans un but de simplification se contenter de comparer les barycentres d'un nombre entier a de gouttes d'une part, de la trame représentée en A et d'autre part, de la trame représentée en B, ces gouttes étant dans des positions nominales correspondantes. Par exemple, si l'on prend en A les gouttes 4, 5 et 7, on prendra pour le calcul du barycentre en B les mêmes gouttes 4, 5 et 7.It will also be possible for simplification purposes to simply compare the barycentres of an integer with drops on the one hand, of the frame represented on A and on the other hand, of the frame represented in B, these drops being in corresponding nominal positions. For example, if we take in drops 4, 5 and 7, we will take for the calculation of the center of gravity in B the same drops 4, 5 and 7.

L'expérience a montré qu'en règle générale, on peut se contenter de prendre les positions des premières et dernières gouttes, dans les cas de la figure 3, les gouttes 1 et 9. Le décalage en translation sera alors égal au décalage entre les points à égale distance des gouttes 1 et 9 telles que représentées en A et des gouttes 1 et 9 telles que représentées en B. La correction de translation statique a pour effet de ramener l'axe NN' de la trame tel qu'imprimée à la position MM'. Dans cette position, les axes MM' et NN' sont confondus.Experience has shown that, as a general rule, it is sufficient to take the positions of the first and last drops, in the cases of FIG. 3, the drops 1 and 9. The offset in translation will then be equal to the difference between the points equidistant from the drops 1 and 9 as represented at A and drops 1 and 9 as shown in B. The static translation correction has the effect of reducing the axis NN 'of the frame as printed at position MM '. In this position, the axes MM 'and NN' are merged.

Cette correction de translation statique sera obtenue par une modification de la charge appliquée à chacune des gouttes 1 à 9. Le calcul de la grandeur de cette modification de la charge appliqué aux gouttes 1 à 9 sera effectué en prenant en compte des données acquises sur des machines du même type. Ces données pourront comprendre des tables représentant le déplacement de la goutte de rang j en fonction de la correction apportée à la charge nominale de cette goutte.This static translation correction will be obtained by a modification of the load applied to each of the drops 1 to 9. The calculation of the magnitude of this change in the load applied to the drops 1 to 9 will be performed taking into account data acquired on machines of the same type. This data may include tables representing the displacement of the drop of rank j according to the correction made to the nominal load of this drop.

Après la correction de translation statique, la trame composée des neuf gouttes est, comme représenté en C, dans une position correcte par rapport à l'axe MM' mais sa hauteur dans le cas représenté à la figure 3 en C, est trop grande par rapport à la hauteur nominale telle que représentée à la figure 3 en A. Cette trame pourrait également être trop petite. La correction de dilatation va consister à calculer la modification de charge à apporter à la charge nominale déjà corrigée de l'erreur de translation statique pour ramener ces gouttes à leur position nominale.After the static translation correction, the frame composed of the nine drops is, as shown in C, in a correct position relative to the axis MM 'but its height in the case shown in Figure 3 in C, is too large by compared to the nominal height as shown in Figure 3 A. This frame could also be too small. The expansion correction will consist in calculating the load modification to be made to the already corrected nominal load of the static translation error to return these drops to their nominal position.

Dans le cas représenté figure 3, où l'on a représenté une dilatation uniforme de l'ensemble des gouttes composant la trame, on conçoit que la correction de la position de la goutte extrême 9 nécessitera une modification de charge plus grande que, par exemple, la correction de la goutte 6. Dans le cas représenté figure 3, la position de la goutte centrale 5 n'aura pas à subir de corrections de dilatation. Dans le cas le plus général, il conviendra de faire un calcul de la modification de la charge à apporter à chacune des gouttes pour la ramener de sa position déjà corrigée par application de la correction de translation statique, à sa position nominale.In the case shown in FIG. 3, in which a uniform expansion of all the drops constituting the weft has been shown, it is conceivable that the correction of the position of the extreme drop 9 will require a larger change in charge than, for example, In the case shown in FIG. 3, the position of the central droplet 5 will not have to undergo any expansion corrections. In the most general case, it will be necessary to make a calculating the modification of the load to be applied to each of the drops to bring it back from its already corrected position by applying the static translation correction to its nominal position.

Comme dans le cas de la correction d'erreur de translation statique, ce calcul de la correction d'écart de dilatation sera effectué en prenant en compte des données acquises sur les machines précédentes.As in the case of the static translation error correction, this calculation of the expansion gap correction will be performed taking into account data acquired on the previous machines.

La figure 4 est destinée à expliquer ce qu'est l'erreur de décalage dynamique et sa correction. En partie A de la figure 4, on a représenté en traits pleins, la position nominale d'une bande. Cette bande est représentée sous forme d'un rectangle ayant pour hauteur, la hauteur d'une trame faite par une salve comprenant les N gouttes et sa largeur est égale à la distance entre la première et la dernière trame de la bande. Dans le sens du balayage, la position d'impression d'une trame est déterminée par le repérage de la position de la tête d'impression, par exemple, par rapport à une règle de détermination de position.Figure 4 is intended to explain what is the dynamic shift error and its correction. In part A of Figure 4, there is shown in solid lines, the nominal position of a strip. This band is represented in the form of a rectangle whose height, the height of a frame made by a salvo comprising the N drops and its width is equal to the distance between the first and the last frame of the band. In the scanning direction, the print position of a field is determined by registering the position of the print head, for example, with respect to a position determination rule.

Cette règle a des graduations, par exemple, magnétiques ou optiques coopérant avec des moyens de la tête d'impression ou d'un support de cette tête pour que la position de la tête d'impression soit en permanence connue de l'unité de contrôle de l'imprimante. Connaissant la position d'un bord du substrat d'impression et de la tête par rapport à cette règle, il est donc possible de déterminer la position de la tête par rapport au substrat. La position nominale de la première trame est obtenue en comparant la position de la tête par rapport au substrat à la position prédéterminée de cette première trame par rapport au bord du substrat, en fonction des données définissant le motif. Ces données détermineront par exemple que la première trame doit se trouver à 2000 positions repérées sur la règle, du bord du substrat. Lorsqu'un compteur de position aura été incrémenté de 2000 l'impression de la première trame sera déclenchée. Supposons que l'écart ΔY, entre la position réelle de la bande en pointillés et sa position nominale, soit décalé vers la droite comme représenté en A, par exemple de vingt positions.This rule has graduations, for example, magnetic or optical co-operating with means of the print head or a support of this head so that the position of the print head is permanently known to the control unit. of the printer. Knowing the position of an edge of the printing substrate and the head with respect to this rule, it is therefore possible to determine the position of the head relative to the substrate. The nominal position of the first frame is obtained by comparing the position of the head relative to the substrate to the predetermined position of this first frame relative to the edge of the substrate, depending on the data defining the pattern. This data will determine for example that the first frame must be at 2000 positions marked on the ruler, the edge of the substrate. When a position counter has been incremented by 2000 the printing of the first frame will be triggered. Suppose that the difference ΔY, between the actual position of the dotted band and its nominal position, is shifted to the right as shown in A, for example twenty positions.

Selon l'invention, on va modifier l'impression de chaque trame du nombre α de positions nécessaire pour ramener les trames de leur positions réelles à leurs positions nominales. En particulier la première trame qui matérialise le début de la bande sera ramenée de sa position réelle à sa position nominale. Dans l'exemple numérique choisit plus haut, l'impression de la première trame commencera lorsque le compteur de position aura compté (2000 - 20) soit 1980 positions après la détection du bord gauche. Toutes les trames de la bande seront décalées de ce même nombre de positions. Au cas où l'impression se ferait également pendant le mouvement de retour de la tête d'impression, l'impression de la dernière trame doit commencer par exemple en fonction des données numériques à la position 100 000, la valeur 100 000 sera remplacée par la valeur 99 980 pour tenir compte de l'écart de décalage de vingt positions de la bande réelle. Cette correction va amener à une position de bande telle que représentée sur la figure 4, partie B. On voit que la correction de décalage dynamique appliquée à chacune des trames va ramener la position de la bande réelle à la position de la bande nominale.According to the invention, the printing of each frame of the number α of positions necessary to change the frames from their actual positions to their nominal positions will be modified. In particular the first frame which materializes the beginning of the band will be brought back from its real position to its nominal position. In the numerical example chosen above, the printing of the first frame will start when the position counter has counted (2000 - 20) or 1980 positions after the detection of the left edge. All the frames of the band will be shifted by the same number of positions. In the case where the printing would also be done during the return movement of the print head, the printing of the last frame must start for example according to the digital data at the position 100,000, the value 100,000 will be replaced by the value 99,980 to account for the offset offset of twenty positions of the actual band. This correction will lead to a tape position as shown in FIG. 4, part B. It can be seen that the Dynamic offset correction applied to each of the frames will bring the position of the actual band back to the position of the nominal band.

Un autre aspect possible de la présente invention sera maintenant expliqué en référence à la figure 5.Another possible aspect of the present invention will now be explained with reference to FIG.

Ce complément de l'invention est relatif à un écart de position d'une bande dû à un écart dans l'avance du substrat. Cette correction concerne les imprimantes dans lesquelles le substrat est avancé pas à pas après l'impression de chaque bande. Selon cet aspect de l'invention, on va imprimer lors de l'impression d'une bande courante une première marque représentée en A sur la figure 5. Cette marque pourra être constituée d'un simple trait imprimé au moyen d'une ou plusieurs gouttes de rang consécutif.This addition of the invention relates to a positional deviation of a band due to a gap in the advance of the substrate. This correction concerns printers in which the substrate is advanced step by step after the printing of each strip. According to this aspect of the invention, a first mark represented at A in FIG. 5 will be printed when printing a current band. This mark may consist of a single line printed by means of one or more drops of consecutive rank.

Après avance du substrat mais avant l'impression de la bande suivante, cette marque va se présenter en position B sur la figure 5. Afin de matérialiser l'erreur d'écart εx d'avance du substrat, on a représenté également la position en C d'une marque fictive représentant la position nominale qu'aurait dû avoir la marque présente en B en l'absence d'écart entre la position nominale et la position réelle. La marque C n'est pas présente sur le substrat de façon réelle. L'écart entre la marque fictive C et la marque B permet de déterminer l'écart εx entre la position nominale marquée en C et la position réelle marquée en B. Cet écart dans l'avance du substrat sera compensé selon cet aspect de l'invention par une modification de la charge des gouttes imprimées au cours de cette bande.After advancing the substrate but before printing the next strip, this mark will appear in position B in FIG. 5. In order to materialize the error of spacing ε x in advance of the substrate, the position is also shown. in C of a fictitious mark representing the nominal position that should have had the mark present in B in the absence of difference between the nominal position and the actual position. The C mark is not present on the substrate in a real way. The difference between the imaginary mark C and the mark B makes it possible to determine the difference ε x between the nominal position marked in C and the actual position marked in B. This difference in the advance of the substrate will be compensated according to this aspect of the invention. invention by a modification of the charge of the drops printed during this band.

La détection de l'écart εx entre la marque B et la position nominale C de la bande qui va être imprimée sera effectuée au moyen d'un capteur 12, par exemple un capteur CCD permettant de mesurer cette distance, par exemple en comptant l'écart de numéro entre un élément capteur 12a qui reçoit la marque lorsqu'elle est en position nominale et un élément capteur 12b qui la reçoit réellement. Ce capteur sera placé de préférence face au substrat et disposé de telle sorte que son champ de mesure permette de détecter la marque avec des tolérances assez larges. Ce capteur sera de préférence capteur d'une longueur d'onde lumineuse déterminée et sera complété par un émetteur en direction du substrat de cette longueur d'onde déterminée.Detection of the difference ε x between the mark B and the nominal position C of the band that will be printed will be carried out by means of a sensor 12, for example a CCD sensor making it possible to measure this distance, for example by counting the the difference in number between a sensor element 12a which receives the mark when it is in the nominal position and a sensor element 12b which actually receives it. This sensor will preferably be placed facing the substrate and arranged so that its measurement field makes it possible to detect the mark with fairly wide tolerances. This sensor will preferably be a sensor of a determined light wavelength and will be completed by an emitter in the direction of the substrate of this determined wavelength.

Les figures 6 et 7 sont des schémas de principe d'imprimantes de motifs colorés, par jet d'encre faisant apparaître quelques particularités nécessaires à l'incorporation de l'invention.FIGS. 6 and 7 are schematic diagrams of ink jet color pattern printers showing some of the features necessary to incorporate the invention.

Le système représenté sur les figures 6 et 7 correspond à une architecture pour impression de formats larges choisis uniquement à titre d'exemples non limitatifs. L'impression est réalisée par balayages successifs dans la direction Y. Le système met en oeuvre de façon connue un substrat 27 à partir d'une bobine 28 dont le déroulement est assuré en amont d'une unité d'impression 29 par une paire 36 de cylindres 37, 38 d'entraînement en contact.The system shown in FIGS. 6 and 7 corresponds to an architecture for printing large formats chosen solely as non-limiting examples. The printing is carried out by successive scans in the Y direction. The system uses, in a known manner, a substrate 27 from a reel 28, the unwinding of which is carried out upstream of a printing unit 29 by a pair 36 of rolls 37, 38 for driving in contact.

Un premier cylindre 37 est motorisé, un deuxième cylindre 38 assure une contre pression au point de contact. Les deux cylindres 37, 38 pincent le substrat et l'entraînent sans glissement. L'avance du substrat 27 est contrôlée par un codeur, non représenté car en lui-même connu, de positions angulaires montées sur l'axe d'un des cylindres. Après chaque avance intermittente du substrat, la zone à imprimer de celui-ci est maintenue à plat sur une table d'impression 30, située sous le chemin de balayage de l'unité d'impression 29. Ce maintien à plat est assuré grâce à un deuxième système d'entraînement 39 situé en aval de l'unité d'impression.A first cylinder 37 is motorized, a second cylinder 38 provides against pressure at the point of contact. The two cylinders 37, 38 pinch the substrate and drag it without slipping. The advance of the substrate 27 is controlled by an encoder, not shown because in itself known, of angular positions mounted on the axis of one of the cylinders. After each intermittent advance of the substrate, the printing zone thereof is kept flat on a printing table 30, located under the scanning path of the printing unit 29. This flat hold is ensured by means of a second drive system 39 located downstream of the printing unit.

Ce deuxième système d'entraînement 39 maintient une tension constante du substrat 27. Une mise en dépression intermittente de la table d'impression est parfois réalisée pour améliorer la planéité du substrat 27 dans la zone d'impression.This second drive system 39 maintains a constant voltage of the substrate 27. Intermittent depression of the printing table is sometimes performed to improve the flatness of the substrate 27 in the printing area.

L'unité d'impression 29 par jet d'encre est composée de plusieurs têtes d'impression 25 comme celles représentées par exemple figure 1, chaque tête étant alimentée par une des encres de couleurs primaires, à partir de réservoirs 11 grâce à un ombilic ou canal de distribution 13.The inkjet printing unit 29 is composed of several printing heads 25, such as those shown for example in FIG. 1, each head being fed by one of the primary color inks, from tanks 11 by means of an umbilicus or distribution channel 13.

Les différentes têtes d'impression 25 impriment simultanément le substrat alors qu'il est immobile. L'impression d'une bande est assurée par un balayage dans la direction Y de l'unité d'impression. Le mouvement de balayage de l'unité d'impression par rapport au substrat est assuré par une courroie 40 solidaire de l'unité d'impression et entraînée par une poulie motorisée 41. Le guidage de l'unité d'impression est assuré de façon connue par un axe mécanique non représenté.The different print heads 25 simultaneously print the substrate while it is stationary. The printing of a band is ensured by a scan in the Y direction of the printing unit. The scanning movement of the printing unit relative to the substrate is ensured by a belt 40 integral with the printing unit and driven by a motorized pulley 41. The guiding of the printing unit is ensured by known by a mechanical axis not shown.

Chaque tête d'impression imprime une bande de largeur constante L. Les têtes d'impression peuvent être décalées dans la direction X d'avance du substrat en sorte qu'une tête n'imprime pas nécessairement la même bande au même moment qu'une autre tête d'impression correspondant à une couleur d'encre différente. Après chaque balayage, le substrat est avancé d'un incrément spatial δX au plus égal à la largeur de bande L mais qui est plus généralement un sous-multiple de L pour une impression en plusieurs passes.Each printhead prints a band of constant width L. The printheads can be shifted in the X direction of advance of the substrate so that a head does not necessarily print the same tape at the same time as another print head corresponding to a different ink color. After each scan, the substrate is advanced by a spatial increment δX at most equal to the bandwidth L but which is more generally a submultiple of L for printing in several passes.

L'écart des têtes d'impression selon la direction Y et éventuellement selon la direction X permet d'une part, un temps de séchage suffisant entre le dépôt des différentes couleurs d'encre et permet d'autre part, d'assurer un ordre de superposition identique des couleurs mêmes lorsque l'impression est réalisée lors de l'aller et du retour de la tête d'impression.The difference of the print heads in the Y direction and possibly in the X direction on the one hand, a sufficient drying time between the deposition of the different ink colors and allows on the other hand, to ensure an order the same superimposition of the colors themselves when the printing is carried out during the going and the return of the print head.

La synchronisation entre le jet des gouttes d'encre et la position de balayage des têtes d'impression 25 par rapport au substrat 27 est obtenue grâce à un détecteur optique non représenté de bord de laize. Le détecteur de bord de laize est monté sur la tête d'impression ou sur un support de cette tête pour détecter chacun des deux bords. Ce détecteur émet un signal de détection de chaque bord de laize. Le signal de détection d'un bord de laize de référence, par exemple le bord gauche, est ensuite utilisé pour déclencher un compteur de position permettant de synchroniser la position de chaque tête d'impression avec les données d'impression pour cette position, contenues dans la mémoire d'impression. Le codeur de position peut être de façon connue une règle optique ou magnétique montée sur l'axe mécanique de guidage du balayage.The synchronization between the jet of the ink drops and the scanning position of the printing heads 25 with respect to the substrate 27 is obtained by means of an optical detector (not represented by the width edge). The web edge detector is mounted on the print head or on a holder of this head to detect each of the two edges. This detector emits a detection signal from each edge of the width. The detection signal of a reference width edge, for example the left edge, is then used to trigger a position counter for synchronizing the position of each print head with the print data for that position, contained in the print memory. The position encoder may be in known manner an optical or magnetic rule mounted on the mechanical axis of the scanning guide.

Par rapport au système d'impression connu tel que représenté sur les figures 6 et 7, l'invention peut présenter la particularité d'être équipée d'un ou plusieurs détecteurs 12 (figure 8) de détection de l'avance réelle du substrat. Il y a un détecteur gauche d'avance du substrat si l'impression est effectuée de gauche à droite et un second détecteur droit d'avance du substrat si l'impression est également effectuée de droite à gauche. Egalement et de façon connue, un seul détecteur d'avance du substrat peut être monté sur la tête d'impression ou sur un support de cette tête pour détecter l'avance du substrat lorsque l'impression est effectuée de gauche à droite ou de droite à gauche.Compared with the known printing system as represented in FIGS. 6 and 7, the invention may have the particularity of being equipped with one or more detectors 12 (FIG. 8) for detecting the actual advance of the substrate. There is a left substrate advance detector if printing is performed from left to right and a second right substrate advance sensor if printing is also performed from right to left. Also and in a known manner, a single advance detector of the substrate can be mounted on the print head or on a support of this head to detect the advance of the substrate when printing is carried out from left to right or right to the left.

Une autre différence importante d'une imprimante selon l'invention par rapport à une imprimante connue provient des moyens de commande de la tension de l'électrode de charge des gouttes. Un dispositif selon l'art antérieur a été décrit précédemment en relation avec la figure 2.Another important difference of a printer according to the invention with respect to a known printer comes from the means for controlling the voltage of the charging electrode of the drops. A device according to the prior art has been previously described in connection with FIG. 2.

La figure 8 représente des moyens de commande 31 selon l'invention. Dans ces moyens de commande 31, les éléments ayant même fonction que ceux représentés sur la figure 2 portent le même numéro de référence. Par rapport aux moyens de commande 26 représentés sur la figure 2, le dispositif selon l'invention peut comporter l'un ou plusieurs des moyens ci-après.FIG. 8 represents control means 31 according to the invention. In these control means 31, the elements having the same function as those shown in FIG. 2 bear the same reference number. With respect to the control means 26 shown in FIG. 2, the device according to the invention may comprise one or more of the following means.

Le dispositif selon l'invention peut comporter le détecteur 12 d'écart entre l'avance réelle du substrat et son avance nominale, un calculateur 34 d'écart de position du substrat et un correcteur 35 de translation dynamique pour corriger la charge des gouttes de façon à compenser l'écart constaté par le calculateur 34. Les éléments, détecteurs 12, calculateur 34 d'écart de position et correcteur 35 de translation dynamique sont connectés en série les uns aux autres et les corrections de translation dynamique ϕ calculée par le correcteur 35 sont appliquées au calculateur 3' des tensions de charge des gouttes.The device according to the invention may comprise the detector 12 of difference between the actual advance of the substrate and its nominal advance, a calculator 34 of positional deviation of the substrate and a dynamic translational corrector 35 for correcting the charge of the drops so as to compensate for the difference found by the computer 34. The elements, detectors 12, calculator 34 position deviation and dynamic translation corrector 35 are connected in series with each other and the dynamic translation corrections φ calculated by the corrector 35 are applied to the computer 3 'drops of the charging voltages.

Les moyens de commande de la position et de la déviation des jets peuvent également comprendre un détecteur 14 d'écart de la position réelle de points imprimés par un jet par rapport à la position nominale de points imprimés par ledit jet. Les écarts sur la position des points imprimés par le jet sont introduits d'une part dans un correcteur 17 de translation statique, dans un correcteur 18 de dilatation et enfin dans un correcteur 19 de décalage dynamique.The means for controlling the position and the deflection of the jets may also comprise a detector 14 deviating from the actual position of dots printed by a jet with respect to the nominal position of dots printed by said jet. The differences in the position of the dots printed by the jet are introduced firstly into a static translation corrector 17, into a dilation corrector 18 and finally into a dynamic shift corrector 19.

Enfin, les moyens de commande de la charge des gouttes d'encre peuvent comporter un générateur 32 de bruit aléatoire dont la sortie est appliquée au calculateur 3' des tensions de charge des gouttes de façon à modifier de façon aléatoire la charge de chaque goutte. Le fonctionnement est le suivant.Finally, the ink drop charge control means may comprise a random noise generator 32 whose output is applied to the computer 3 'of the drop charge voltages so as to randomly modify the charge of each drop. The operation is as follows.

Le détecteur 12 détecte l'écart entre une marque relative à la bande courante qui va être imprimée et la position nominale de cette bande. Cet écart est introduit dans le calculateur 34 de calcul d'écart. Ce calculateur calcule en fonction du signal transmis par le capteur 12, la valeur εx d'écart d'avance du substrat 27. Cet écart est introduit dans le correcteur 35 de translation dynamique qui va calculer des corrections à appliquer au calculateur 3' des tensions de charge des gouttes pour corriger cette translation dynamique ϕ.The detector 12 detects the difference between a mark relating to the current band that will be printed and the nominal position of this band. This difference is introduced into the difference calculator 34. This calculator calculates as a function of the signal transmitted by the sensor 12, the distance value ε x in advance of the substrate 27. This difference is introduced into the corrector 35 of dynamic translation which will calculate corrections to be applied to the computer 3 'drops of charging voltages to correct this dynamic translation φ.

Le calculateur 14 d'écart sur la position des points imprimés par chaque jet compare la position des points imprimés sur une mire par rapport à la position des points correspondants sur une mire de référence. Ce calcul des écarts peut être effectué de façon automatique par exemple en scannant la mire imprimée et à l'aide de la mire de référence mémorisée. A l'aide des écarts calculés, le correcteur de translation statique 17 va calculer de l'une des façons indiquées plus haut le déplacement du barycentre des a points pour lesquels l'écart de position a été mesuré. De même le correcteur de dilatation 18 va calculer l'écart entre un point imprimé et le point nominal correspondant.The difference calculator 14 on the position of the dots printed by each jet compares the position of the dots printed on a test pattern with respect to the position of the corresponding dots on a reference pattern. This calculation of the deviations can be performed automatically, for example by scanning the printed pattern and using the stored reference pattern. Using the calculated deviations, the static translation corrector 17 will calculate in one of the ways indicated above the displacement of the center of gravity of the points for which the position deviation has been measured. Likewise, the dilation corrector 18 will calculate the difference between a printed point and the corresponding nominal point.

En fonction de cet écart, une valeur de correction de la charge appliquée à chacune des gouttes d'encre sera calculée. Les corrections θj calculées par le calculateur 17 de correction de translation statique et δij par le correcteur 18 de dilatation sont appliquées toutes les deux au calculateur 3' des tensions de charge des gouttes. Le calculateur 3' de la tension de charge des gouttes va calculer la somme algébrique des tensions à appliquer à l'électrode de charge des gouttes en fonction d'une part de la tension nominale résultant du descriptif de la trame provenant de la mémoire 2, et d'autre part, de la correction θj de translation statique provenant du correcteur 17 de translation statique, de la correction δij de dilatation en provenance du correcteur 18 de correction de dilatation, de la correction de translation dynamique ϕ calculée par le calculateur 35 et enfin, en fonction de la valeur sortie par le générateur de bruit aléatoire 32. La correction α de décalage dynamique calculée par le correcteur de décalage dynamique 19 sera elle appliquée au séquenceur 4 de charge des gouttes. De cette façon, la charge des gouttes telle que prévue par le calculateur des tensions de charge des gouttes 3' sera appliquée en coïncidence avec un numéro de position du compteur de position plus petit ou plus grand que le numéro nominal en fonction de la valeur algébrique α du décalage dynamique, les positions étant comptées à partir du bord de substrat.Depending on this difference, a charge correction value applied to each of the ink drops will be calculated. The corrections θ j calculated by the static translation correction calculator 17 and δ ij by the dilation corrector 18 are both applied to the computer 3 'of the drop charge voltages. The computer 3 'of the drop charge voltage will calculate the algebraic sum of the voltages to be applied to the drop charge electrode as a function, on the one hand, of the nominal voltage resulting from the description of the frame coming from the memory 2, and on the other hand, of the correction θ j static translation from the static translation corrector 17, the expansion correction δ ij from the dilation correction corrector 18, the dynamic translation correction φ calculated by the computer 35 and finally, as a function of the value outputted by the random noise generator 32. The dynamic shift correction α calculated by the dynamic shift corrector 19 will it be applied to the sequencer 4 drops loading. In this way, the charge of the drops as provided by the computer of the charge voltages of the drops 3 'will be applied in coincidence with a position number of the position counter smaller or larger than the nominal number according to the algebraic value α of the dynamic shift, the positions being counted from the substrate edge.

La figure 9 est destinée à représenter très succinctement une tête d'impression 25 et les différents asservissements qui lui sont associés. Chacun des asservissements qui seront commentés succinctement ci-après est en lui-même connu. Cependant les inventeurs ne connaissent pas d'imprimantes qui présentent simultanément l'ensemble de ces asservissements sur une même imprimante. Les inventeurs pensent que cette absence est due à une mauvaise appréciation de l'interférence des différents paramètres à contrôler pour arriver à une bonne qualité d'impression comme décrit plus haut. L'imprimante selon l'invention présente un asservissement de la viscosité 61 en fonction de la température, représenté comme les autres asservissements par une boucle de retour en sortie de la tête 25 ramenant à l'entrée une valeur d'erreur. La correction de viscosité éventuellement nécessaire est réalisée par addition de solvant ou par addition d'encre plus concentrée en matière colorante de façon à conserver un taux de matière colorante constant. Un asservissement de vitesse de jet 62 est obtenu par action sur une valeur de pression d'alimentation de l'encre. La distance de brisure du jet est maintenue par un asservissement 63 qui agit sur un paramètre ajustable permettant de conserver une distance de brisure prédéterminée. Il pourra s'agir par exemple de la tension d'alimentation d'un cristal piézoélectrique provoquant des vibrations dans l'encre. Enfin, l'imprimante selon l'invention est équipée d'un circuit 64 d'asservissement de la phase entre les instants d'application d'impulsions électriques de charge des gouttes et des instants d'application d'impulsions de formation des gouttes. Cette phase pourra être réglée par action sur un circuit de temporisation.Figure 9 is intended to very succinctly represent a print head 25 and the various servocontrols associated with it. Each of the servos that will be briefly discussed below is in itself known. However, the inventors do not know of printers that simultaneously present all of these servocontrols on the same printer. The inventors believe that this absence is due to a poor appreciation of the interference of the various parameters to be controlled to arrive at a good print quality as described above. The printer according to the invention has a control of the viscosity 61 as a function of the temperature, represented as the other servocontrols by a feedback loop in output of the head 25 returning to the input an error value. The viscosity correction that may be necessary is carried out by addition of solvent or by the addition of more concentrated dye ink so as to maintain a constant level of dyestuff. A jet speed servo 62 is obtained by acting on a value of the supply pressure of the ink. The breaking distance of the jet is maintained by a servocontrol 63 which acts on an adjustable parameter making it possible to maintain a predetermined breaking distance. It may be for example the supply voltage of a piezoelectric crystal causing vibrations in the ink. Finally, the printer according to the invention is equipped with a circuit 64 for controlling the phase between the instants of application of electric impulses for charging the drops and the instants for applying drop formation pulses. This phase can be set by action on a delay circuit.

Ainsi, dans une imprimante selon l'invention, la viscosité étant maintenue constante pour une température de référence, l'action sur la pression pour modifier la vitesse conduit à des résultats réellement connus en sorte que cette vitesse peut être maintenue constante à une valeur prédéterminée. Ainsi, la taille des impacts de gouttes est bien constante. La concentration en colorant étant également maintenue constante, la couleur de chaque goutte est bien une constante. Enfin, la distance de brisure des jets et la phase étant contrôlées, on est sûr que chacune des gouttes reçoit une charge électrique qui est fonction d'une tension d'alimentation des électrodes 20 de charge. Dans une imprimante où l'on contrôle comme décrit ci-dessus tous les paramètres d'impression les erreurs de positionnement des gouttes d'encre par rapport à leur position nominale ne proviennent plus que des tolérances mécaniques sur le positionnement des têtes d'impression et éventuellement sur le diamètre de buses d'éjection de l'encre. C'est la raison pour laquelle sur une telle imprimante on peut corriger le positionnement par action sur l'électronique de contrôle de l'imprimante comme il a été décrit ci-dessus.Thus, in a printer according to the invention, the viscosity being kept constant for a reference temperature, the action on the pressure to modify the speed leads to truly known results so that this speed can be kept constant at a predetermined value. . Thus, the size of the drop impacts is very constant. The dye concentration is also kept constant, the color of each drop is a constant. Finally, the breaking distance of the jets and the phase being controlled, it is sure that each of the drops receives an electric charge which is function a supply voltage of the charging electrodes. In a printer in which all the print parameters are controlled as described above, the errors in positioning of the ink drops with respect to their nominal position only come from mechanical tolerances on the positioning of the printing heads and possibly on the diameter of nozzles for ejecting the ink. This is the reason why on such a printer it is possible to correct the positioning by action on the control electronics of the printer as described above.

Pour avoir une bonne reproduction de la qualité d'impression, il convient que la vitesse d'éjection de l'encre soit maintenue dans des limites autour d'une valeur de consigne. L'obtention de cette valeur de consigne pourra correspondre à une pression d'alimentation de l'encre qui est variable en fonction de la tête d'impression, ceci en raison des tolérances sur les buses de sortie de l'encre ou de l'environnement de la machine d'impression. C'est pourquoi une tête d'impression d'une imprimante selon l'invention comportera de préférence une mémoire dans laquelle sera stockée la valeur de la consigne de vitesse pour chaque jet, correspondant à une pression d'alimentation standard pour obtenir la vitesse de consigne. Cette mémoire a été représentée symboliquement en 65 sur la figure 9. Le programme d'asservissement de la vitesse prévoira donc une lecture de cette vitesse de jet de consigne dans la mémoire de la tête d'impression. De la sorte, lors du fonctionnement de l'imprimante, la pression étant régulée dans un intervalle de valeur proche de la pression standard, les défauts de vitesse de jet significatifs, c'est à dire hors tolérance mécanique des buses et propre à un seul jet pourront être détectés.In order to have good reproduction of the print quality, the ink ejection speed should be kept within limits around a set value. Obtaining this setpoint may correspond to an ink supply pressure that is variable depending on the print head, because of the tolerances on the ink outlet nozzles or the ink nozzle. environment of the printing machine. This is why a print head of a printer according to the invention will preferably comprise a memory in which the value of the speed setpoint for each jet, corresponding to a standard supply pressure, will be stored to obtain the speed of rotation. setpoint. This memory has been represented symbolically at 65 in FIG. 9. The speed control program will therefore provide a reading of this setpoint jet speed in the memory of the print head. In this way, during operation of the printer, the pressure being regulated in a value range close to the standard pressure, significant jet velocity defects, ie out of mechanical tolerance of the nozzles and specific to a single jet can be detected.

De la même manière, les valeurs de consigne du signal de commande du transducteur piézo-électrique sont prédéterminées en fabrication et stockés dans la mémoire. Les défauts de fonctionnement propres à un seul transducteur pourront être détectés.In the same way, the reference values of the control signal of the piezoelectric transducer are predetermined during manufacture and stored in the memory. Malfunctions specific to a single transducer may be detected.

Egalement, lors du remplacement d'une tête d'impression par une autre tête d'impression, tous les paramètres nominaux de fonctionnement. étant stockés en mémoire, le programme n'aura généralement pas besoin d'être changé.Also, when replacing a printhead with another printhead, all the nominal operating parameters. being stored in memory, the program will not usually need to be changed.

Claims (9)

  1. Process for compensation of mechanical defects in an ink jet printer by adjusting the arrival position on a substrate of electrically charged ink droplets in an adjustable manner using charge electrodes, the droplets originating from a print head and the trajectories of the droplets being modifiable by deviation electrodes between N positions, between a first position X1 and a last position XN and with N-2 intermediate positions, the N positions defining a frame in the form of a straight line segment approximately parallel to an X direction of the substrate, the process being
    characterized in that the following parameters are servocontrolled at all times during operation of the printer:
    - an ink viscosity value that remains within a predetermined tolerance as a function of its temperature, by adding solvent or ink with a higher concentration of colouring agents,
    - a jet velocity by acting on the ink supply pressure,
    - a distance at which the jet is broken into droplets by acting on an adjustable parameter to maintain a predetermined breaking distance,
    - a phase difference between instants at which electrical droplet charge pulses are applied and instants at which droplet formation pulses are applied by action on a timer circuit,
    and in that the following steps take place during a phase prior to the print phases:
    a) a pattern is printed,
    b) the said printed pattern is compared with a reference pattern to deduce an algebraic difference ΔXi between a real observed position and a corresponding nominal position, for the said print head and for an integer number a of positions, where a is greater than or equal to 2 and less than or equal to N, for each of the chosen a position, where i varies from 1 to a,
    c) a static translation error θ is determined as being the difference between centre of gravity of the a actual observed positions and the centre of gravity of the corresponding a nominal positions,
    d) for each of the a observed droplet positions, a position error δr is observed between the real position of each droplet corrected by the translation error, and the nominal position of each droplet,
    e) the value θ of the static translation error and the values δI of the droplet position errors from their initial nominal positions, are memorized,
    - then, in each phase in which a pattern is printed defined by a set D of numeric data,
    - a correction value to the nominal voltage is determined for each droplet of row j to give a corrected value to be applied to the means of charging droplets directed towards the substrate, this calculation taking account of memorized values of static translation and position errors, the data extracted from the set D of numeric data defining the pattern to be printed, and row j, where j is between 1 and N, of the nominal target print position.
  2. Process according to claim 1, in which the integer number a of observed real positions is equal to 2, these positions being the first and last positions.
  3. Process according to claim 1, in which the integer number a is equal to N.
  4. Process according to one of the claims 1 to 3, applicable to a printer provided with means of detecting the position of the print head along the direction of movement of this head with respect to the substrate and means of detecting the edge of the substrate, characterized in that a dynamic offset ΔY between the nominal position of a printed band and its real position is measured during the phase prior to the print phases, this offset is memorized, and the print positions of the print head are offset during the print phases to compensate for the measured dynamic offset.
  5. Process according to one of the claims 1 to 4, applicable to a printer in which the substrate is advanced step by step and printed by band,
    characterized in that:
    - a current band and a first mark are printed on the substrate,
    - the substrate is advanced so that the next band can be printed,
    - an algebraic difference between a nominal theoretical position of the mark and the real position is determined,
    - for each droplet in a burst, a substrate advance correction is determined as being a dynamic translation correction voltage ψ to be applied to the value of the charge voltage to be applied to each of the droplets output from the head (25) to correct the deviation of the droplets and to compensate for the algebraic difference between the position of the substrate and its nominal position,
    - the calculated dynamic translation correction voltage ψ to correct the substrate position is applied to each of the droplets in the burst directed towards the substrate.
  6. Process according to one of the claims 1 to 5, characterized in that a random additional algebraic voltage is superposed on the nominal voltage to be applied to the means of charging each droplet to be directed towards the substrate, the maximum amplitude of this additional voltage being a fraction less than one of the difference between the nominal voltage to be applied to the charge electrodes for the said droplet, and the nominal voltage to be applied to the charge electrodes (20) for one of the two immediately adjacent droplets in the frame.
  7. Continuous deviated jet printer projecting droplets in rows 1 to N in bursts, the droplets in a burst possibly but not necessarily being directed towards a print substrate (27) depending on data defining a pattern to be printed, the printer being equipped with at least:
    - a print head (25), this head comprising means of separating at least one ink jet into droplets, and an associated droplet charge electrode (20), means (23, 24) of deviating a proportion of the droplets to the print substrate,
    - means (61) of servocontrolling the ink viscosity,
    - means (62) of servocontrolling the velocity of ink jets output from the print head,
    - means (63) of servocontrolling the distance at which the jet is broken into droplets,
    - means (64) of servocontrolling the phase difference between the times at which droplet charge pulses are applied and times at which droplet formation pulses are applied,
    - means of controlling the printout consisting of means of injecting the charge of droplets to be aimed at the substrate (27) as a function of their rows in the burst, coupled to the droplet charge electrode,

    characterized in that the print control means (31) comprise:
    - means (14) of memorizing errors between a nominal position of dots printed by the print head and a real position of these dots,
    - means (17) of correcting the static translation θ,
    - dynamic expansion correction means (18), the correction means (17, 18) receiving data originating from error storage means (14) and being coupled to means (3') of calculating droplet charge voltages.
  8. Printer according to claim 7, characterized in that the print control means (31) also comprise means (19) of correcting the dynamic offset, these means receiving data from difference storage means (14) and being coupled to droplet charge calculation means (3').
  9. Printer according to either of claims 7 and 8, characterized in that the print head (25) comprises a memory (65).
EP00403351A 1999-12-03 2000-11-30 Printer with simplified manufacturing and manufacturing method Expired - Lifetime EP1106371B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR9915270A FR2801834B1 (en) 1999-12-03 1999-12-03 PROCESS AND PRINTER WITH FAULT MASKING
FR9915271 1999-12-03
FR9915270 1999-12-03
FR9915271A FR2801835B1 (en) 1999-12-03 1999-12-03 PROCESS AND PRINTER WITH SUBSTRATE ADVANCE CONTROL
FR0002900A FR2801836B1 (en) 1999-12-03 2000-03-07 SIMPLIFIED MANUFACTURING PRINTER AND METHOD OF MAKING
FR0002900 2000-03-07

Publications (2)

Publication Number Publication Date
EP1106371A1 EP1106371A1 (en) 2001-06-13
EP1106371B1 true EP1106371B1 (en) 2006-01-18

Family

ID=27248628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00403351A Expired - Lifetime EP1106371B1 (en) 1999-12-03 2000-11-30 Printer with simplified manufacturing and manufacturing method

Country Status (8)

Country Link
US (1) US6464322B2 (en)
EP (1) EP1106371B1 (en)
JP (1) JP2001191538A (en)
CN (1) CN1137818C (en)
DE (1) DE60025582T2 (en)
ES (1) ES2257277T3 (en)
FR (1) FR2801836B1 (en)
IL (1) IL139887A (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127744B2 (en) * 2000-03-10 2006-10-24 Digimarc Corporation Method and apparatus to protect media existing in an insecure format
SE523800C2 (en) 2002-09-30 2004-05-18 Delaval Holding Ab Method for calibrating milk meters in a milking system
KR100556503B1 (en) * 2002-11-26 2006-03-03 엘지전자 주식회사 Control Method of Drying Time for Dryer
JP2004337701A (en) * 2003-05-14 2004-12-02 Seiko Epson Corp Method and apparatus for discharging liquid drop
US9296214B2 (en) 2004-07-02 2016-03-29 Zih Corp. Thermal print head usage monitor and method for using the monitor
TWI258304B (en) * 2004-08-19 2006-07-11 Aetas System Inc Method of encoder signal compensation and apparatus thereof
US7673976B2 (en) * 2005-09-16 2010-03-09 Eastman Kodak Company Continuous ink jet apparatus and method using a plurality of break-off times
US8721203B2 (en) 2005-10-06 2014-05-13 Zih Corp. Memory system and method for consumables of a printer
TWI320361B (en) * 2007-06-27 2010-02-11 Benq Corp Inkjet printer and method for printing adjustment thereof
FR2934809A1 (en) * 2008-08-11 2010-02-12 Imaje Sa INJECTOR INJECTOR INK JET PRINTING DEVICE, AIR INJECTOR, AND LARGE-WIDE PRINT HEAD
FR2934810A1 (en) * 2008-08-11 2010-02-12 Imaje Sa INKJET PRINTING DEVICE COMPRISING JET SPEED COMPENSATION
JP2010137489A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Recording position correcting device, method for controlling recording position correction device, and recording apparatus
US8670154B2 (en) * 2011-04-28 2014-03-11 Xerox Corporation Data architecture for mixed resolution interleaved cross-channel data flow and format
JP6029311B2 (en) * 2011-05-10 2016-11-24 キヤノン株式会社 Image processing apparatus and image processing method
US9643403B2 (en) 2012-03-05 2017-05-09 Landa Corporation Ltd. Printing system
EP4019596A1 (en) 2012-03-05 2022-06-29 Landa Corporation Ltd. Method for manufacturing an ink film construction
JP6437312B2 (en) 2012-03-05 2018-12-12 ランダ コーポレイション リミテッド Digital printing process
US9498946B2 (en) 2012-03-05 2016-11-22 Landa Corporation Ltd. Apparatus and method for control or monitoring of a printing system
US11104123B2 (en) 2012-03-05 2021-08-31 Landa Corporation Ltd. Digital printing system
US9186884B2 (en) * 2012-03-05 2015-11-17 Landa Corporation Ltd. Control apparatus and method for a digital printing system
US11809100B2 (en) 2012-03-05 2023-11-07 Landa Corporation Ltd. Intermediate transfer members for use with indirect printing systems and protonatable intermediate transfer members for use with indirect printing systems
US9016816B2 (en) 2013-06-10 2015-04-28 Xerox Corporation System and method for per drop electrical signal waveform modulation for ink drop placement in inkjet printing
GB201401173D0 (en) 2013-09-11 2014-03-12 Landa Corp Ltd Ink formulations and film constructions thereof
CN106457828B (en) 2014-06-05 2018-12-25 录象射流技术公司 Ink accumulation sensor arrangement structure
WO2015187839A1 (en) 2014-06-05 2015-12-10 Videojet Technologies Inc. A self-sealing filter module for inkjet printing
US9975326B2 (en) 2014-06-05 2018-05-22 Videojet Technologies Inc. Continuous ink jet print head with zero adjustment embedded charging electrode
GB2536489B (en) 2015-03-20 2018-08-29 Landa Corporation Ltd Indirect printing system
US11806997B2 (en) 2015-04-14 2023-11-07 Landa Corporation Ltd. Indirect printing system and related apparatus
US9646191B2 (en) * 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
CN114148099A (en) 2016-05-30 2022-03-08 兰达公司 Digital printing method
CN112428691B (en) 2016-05-30 2022-09-27 兰达公司 Digital printing method and system
GB201609463D0 (en) 2016-05-30 2016-07-13 Landa Labs 2012 Ltd Method of manufacturing a multi-layer article
JP7225230B2 (en) 2017-11-19 2023-02-20 ランダ コーポレイション リミテッド digital printing system
WO2019102297A1 (en) 2017-11-27 2019-05-31 Landa Corporation Ltd. Digital printing system
US11707943B2 (en) 2017-12-06 2023-07-25 Landa Corporation Ltd. Method and apparatus for digital printing
US11679615B2 (en) 2017-12-07 2023-06-20 Landa Corporation Ltd. Digital printing process and method
CN107933090B (en) * 2017-12-20 2023-05-26 北京赛腾标识系统股份公司 Device and method for setting nozzle drive and ink jet system
JP7279085B2 (en) 2018-06-26 2023-05-22 ランダ コーポレイション リミテッド Intermediate transfer member for digital printing systems
US10994528B1 (en) 2018-08-02 2021-05-04 Landa Corporation Ltd. Digital printing system with flexible intermediate transfer member
JP7246496B2 (en) 2018-10-08 2023-03-27 ランダ コーポレイション リミテッド Friction reduction means for printing systems and methods
US11787170B2 (en) 2018-12-24 2023-10-17 Landa Corporation Ltd. Digital printing system
EP3705295B1 (en) * 2019-03-06 2023-04-19 Paul Leibinger GmbH & Co. KG Nummerier- und Markierungssysteme Method for operating a cij printer with optical monitoring of printing quality, cij printer with optical monitoring of printing quality and method for teaching a cij printer with optical monitoring of printing quality
EP3741571A1 (en) * 2019-05-24 2020-11-25 Paul Leibinger GmbH & Co. KG Nummerier- und Markierungssysteme Method for monitoring and adjusting viscosity of the ink during operation of a continuous inkjet printer and continuous inkjet printer for carrying out such a method
EP4066064A4 (en) 2019-11-25 2024-01-10 Landa Corp Ltd Drying ink in digital printing using infrared radiation absorbed by particles embedded inside itm
US11321028B2 (en) 2019-12-11 2022-05-03 Landa Corporation Ltd. Correcting registration errors in digital printing
CN110802943B (en) * 2019-12-16 2021-01-29 方正株式(武汉)科技开发有限公司 Two-dimensional code printing retreat method and system, server and medium
US11283936B1 (en) 2020-12-18 2022-03-22 Ricoh Company, Ltd. Ink usage estimation for each drop size based on histogram and calibrated drop fraction
CN113211997B (en) * 2021-04-21 2022-04-08 四川天邑康和通信股份有限公司 Intelligent jet printing production process control method for double parallel butterfly-shaped lead-in optical cable
US11755865B1 (en) 2022-03-01 2023-09-12 Ricoh Company, Ltd. Drop size monitoring mechanism
US11731420B1 (en) 2022-03-14 2023-08-22 Ricoh Company, Ltd. Drop size monitoring mechanism

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786517A (en) 1972-09-05 1974-01-15 Ibm Ink jet printer with ink system filter means
US3898671A (en) * 1973-12-12 1975-08-05 Teletype Corp Ink jet recording
US4160982A (en) 1978-03-24 1979-07-10 A. B. Dick Company Anti-dispersion accumulator for ink jet printing system
EP0036789A1 (en) * 1980-03-26 1981-09-30 Cambridge Consultants Limited Liquid jet printing apparatus
DE3170925D1 (en) * 1980-03-26 1985-07-18 Cambridge Consultants Liquid jet printing apparatus
US4321607A (en) * 1980-06-17 1982-03-23 International Business Machines Corporation Scaling aerodynamic compensation in an ink jet printer
JPS5968254A (en) * 1982-10-13 1984-04-18 Ricoh Co Ltd Deflection controlled ink jet recording apparatus
JPS60122162A (en) 1983-12-07 1985-06-29 Ricoh Co Ltd Charge control type ink jet printer
US4800396A (en) * 1987-07-08 1989-01-24 Hertz Carl H Compensation method and device for ink droplet deviation of an ink jet
GB8725465D0 (en) * 1987-10-30 1987-12-02 Linx Printing Tech Ink jet printers
DE68926203T2 (en) * 1988-09-17 1996-08-14 Canon Kk Recorder
FR2636884B1 (en) 1988-09-29 1990-11-02 Imaje Sa DEVICE FOR MONITORING AND REGULATING AN INK AND ITS TREATMENT IN A CONTINUOUS INK JET PRINTER
US5049898A (en) * 1989-03-20 1991-09-17 Hewlett-Packard Company Printhead having memory element
DE69214508T2 (en) * 1991-05-14 1997-03-13 Canon Kk Pressure estimation method and apparatus
US5517216A (en) * 1992-07-28 1996-05-14 Videojet Systems International, Inc. Ink jet printer employing time of flight control system for ink jet printers
DE69307237T2 (en) 1992-09-25 1997-04-24 Hewlett Packard Co Procedure for aligning pens
US5397192A (en) * 1993-11-01 1995-03-14 Hewlett-Packard Company Shuttle-type printers and methods for operating same
WO1997006009A1 (en) * 1995-08-04 1997-02-20 Domino Printing Sciences Plc Continuous ink-jet printer and method of operation
US6352331B1 (en) 1997-03-04 2002-03-05 Hewlett-Packard Company Detection of non-firing printhead nozzles by optical scanning of a test pattern
US6003980A (en) * 1997-03-28 1999-12-21 Jemtex Ink Jet Printing Ltd. Continuous ink jet printing apparatus and method including self-testing for printing errors

Also Published As

Publication number Publication date
EP1106371A1 (en) 2001-06-13
IL139887A (en) 2004-06-20
US6464322B2 (en) 2002-10-15
DE60025582T2 (en) 2006-11-23
FR2801836B1 (en) 2002-02-01
JP2001191538A (en) 2001-07-17
US20010040599A1 (en) 2001-11-15
DE60025582D1 (en) 2006-04-06
CN1137818C (en) 2004-02-11
ES2257277T3 (en) 2006-08-01
CN1305895A (en) 2001-08-01
IL139887A0 (en) 2002-02-10
FR2801836A1 (en) 2001-06-08

Similar Documents

Publication Publication Date Title
EP1106371B1 (en) Printer with simplified manufacturing and manufacturing method
EP1106370B1 (en) Method and printer with substrate advance control
JP4273126B2 (en) Recording apparatus and correction method
US6709085B2 (en) Scanning printing apparatus and printing method used therein
EP0013296B1 (en) Multiple speed ink jet printer
JP4859236B2 (en) Recording apparatus and recording method
JP4895978B2 (en) Method for normalizing ink jet for ejecting ink onto image forming drum and ink jet image forming apparatus
US20110199417A1 (en) Recording apparatus and method for controlling the recording apparatus
JP2000238259A (en) Method for correcting liquid droparrangement error in ink jet printer
EP2204286B1 (en) Device for inkjet printing of a varnish composition for a printed substrate
FR2934810A1 (en) INKJET PRINTING DEVICE COMPRISING JET SPEED COMPENSATION
EP1106357B1 (en) Method and printer with fault masking
KR20080097134A (en) Method for normalizing a printhead assembly
JP2011218565A (en) Image recorder
EP0012887B1 (en) Ink jet printer for vertical and horizontal printing
US8240807B2 (en) Calibration process for multi-die print cartridge
EP0997852B1 (en) Device for printing postal indicia that are more readable
JP5022977B2 (en) Recording apparatus and recording control method
EP0397810A1 (en) Printing assembly for franking, obliterating machine or the like.
JP2008132707A (en) Inkjet printer
WO2017047446A1 (en) Inkjet recording device and inkjet recording method
EP0702334A1 (en) System for controlling and ink jet head in a franking machine by vernier control
EP0702335B1 (en) System for controlling an ink jet print head in a franking machine by printing a stepped sequence of images
JP2011051207A (en) Inkjet recorder and recording position adjusting method
WO2011121209A1 (en) Ink-jet printing deposition method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010831

AKX Designation fees paid

Free format text: BE DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060118

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60025582

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2257277

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

26N No opposition filed

Effective date: 20061019

BERE Be: lapsed

Owner name: IMAJE S.A.

Effective date: 20061130

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101123

Year of fee payment: 11

Ref country code: GB

Payment date: 20101118

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111115

Year of fee payment: 12

Ref country code: FR

Payment date: 20111130

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60025582

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201