EP1074064B1 - Apparatus for tracking moving satellites - Google Patents

Apparatus for tracking moving satellites Download PDF

Info

Publication number
EP1074064B1
EP1074064B1 EP99913414A EP99913414A EP1074064B1 EP 1074064 B1 EP1074064 B1 EP 1074064B1 EP 99913414 A EP99913414 A EP 99913414A EP 99913414 A EP99913414 A EP 99913414A EP 1074064 B1 EP1074064 B1 EP 1074064B1
Authority
EP
European Patent Office
Prior art keywords
layer
radiating elements
satellite
transmission
satellites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99913414A
Other languages
German (de)
French (fr)
Other versions
EP1074064A1 (en
Inventor
Ali Louzir
Henri Fourdeux
Patrice Hirtzlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technicolor SA
Original Assignee
Thomson Multimedia SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Multimedia SA filed Critical Thomson Multimedia SA
Publication of EP1074064A1 publication Critical patent/EP1074064A1/en
Application granted granted Critical
Publication of EP1074064B1 publication Critical patent/EP1074064B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the present invention relates to an apparatus for transmitting and / or reception of signals in a satellite communication system at scrolling.
  • the geostationary satellite has major disadvantages such as significant attenuations of transmitted signals related to distance separating the antennas used from the geostationary satellite (of the order of 36000 kilometers, the corresponding losses then rising to around 205 dB in the Ku band) and transmission delays (typically of the order of 250 ms to 280 ms) becoming clearly perceptible and annoying especially for real-time applications such as telephony, videoconferencing, etc ...
  • the geostationary orbit located in the plane equatorial, poses a problem of visibility for regions at high latitudes, the elevation angles becoming very low for regions close to the poles.
  • the service can not be provided permanently by a single satellite, the continuity of service imposing the scrolling above the service area of several satellites succeeding each other.
  • the object of the invention is therefore to provide an antenna apparatus for tracking of satellites running according to predefined trajectories, to capture at least two satellites succeeding one another in the area of visibility of the device.
  • active will be attributed to any element exchanging with a satellite also says “active” a major part of the useful data, so that the term “liabilities” will mean any other element trading with a other satellite says “passive” signaling data and little data helpful.
  • the apparatus according to the invention makes it possible to transmit and / or receive at least two focused beams in different places and not suffer a switching delay when switching a first satellite to another.
  • the switching means include switching units comprising first switches at an input connected to the signal processing circuit and N ⁇ M outputs related to N ⁇ M radiating elements and / or second switches at N ⁇ M inputs connected to N ⁇ M elements radiators and at an output connected to the signal processing circuit of reception signals, the sequence of radiating elements presenting as a matrix of elements with N rows and M columns.
  • the integer N is predetermined from so that the aircraft presents, when tracking satellites, a radiation pattern that can tilt from 10 ° to 90 ° in elevation.
  • the integer N is predetermined so as to allow visibility in azimuth around a pre-adjusted azimuth value.
  • the elevation will be understood in this application as the angle between the plan horizontal and the radius R passing through the center of the device and the satellite in the instantaneous plane of the trajectory.
  • We also define the azimuth as the angle between said radius R and the vertical in the plane transverse to the plane snapshot of the trajectory.
  • the whole M is chosen in order to ensure the continuation of these by an adjustment in Beam azimuth around a pre-adjusted azimuth value.
  • the series of radiating elements, the switching means and transmission signal processing circuits and / or receiving are arranged on the same layer of a substrate.
  • the sequence of radiating elements is engraved on a first layer of a substrate, under which is disposed a second layer comprising said switches and the signal processing circuitry transmission and / or reception.
  • the sequence of radiating elements is engraved on a first layer under which are arranged a second and third layers respectively comprising said switching means and the circuits for processing transmission and / or reception signals.
  • First lines of excitement to excite the elements are engraved on the second layer for the transmission and / or reception of a first beam and second excitation lines are etched on the third layer for transmitting and / or receiving a second beam.
  • slots are etched on the surface bottom of the first layer -forming a ground plane, so as to allow the exchange of energy with the lower layers.
  • the apparatus comprises first and second means of independent support and adjacent to the focusing surface on which are arranged the continuous sequence of radiating elements. So, this last solution is advantageous especially in the case where the satellites can have significant azimuth variations. It allows in particular reduce the value of the integer M to 1, which corresponds to a continuation in elevation, while ensuring your azimuth tracking of mechanical way.
  • said first and second means of support are coupled to actuating means comprising means rotation of the first and second support means for the orientation of the latter so as to allow satellite azimuth tracking.
  • these rotation means comprise an axis rotation through the center of the Luneberg lens, around which said first and second support means are rotatable.
  • the apparatus comprises means for control for the control of the motors of elements and means actuating.
  • the focusing element of the apparatus is a spherical moonberg lens.
  • the apparatus is intended for the pursuit of scrolling satellites.
  • the apparatus further includes means of transmission and / or reception located in the vicinity of a point of the focusing surface of the device and able to communicate constantly with at least one geostationary satellite.
  • this third element is fixed.
  • the tracking apparatus comprises a spherical Luneberg lens 2 full of a dielectric material of characteristics known per se. It has on both ends of a diameter 4 two adjustment buttons 3.
  • the plane transverse to the section of Figure 1.a passing through the diameter 4 delimits said lens 2 in two half-spheres 2 1 and 2 2 , the half-sphere 2 1 facing the space of radiation where the satellites 1 1 and 1 2 are located while the half-sphere 2 2 faces on its focusing surface 5 to a set of radiating elements 6.
  • This set 6 is supported by a cap 61 electrically transparent (made of polystyrene foam) in the shape of the half-sphere 2 2 , thus acting as an interface between the latter and the assembly 6.
  • the assembly 6 and the cap 61 have the shape of a half-arch of rectangular section.
  • the radiating elements 6 consist of pellets 7 ("patch" in English) whose layout will be explained further.
  • the satellite 1 1 is in vis- ibility of the active pellet 6 a whereas the satellite 1 2 is in visibility of the pellet 6 p waiting for active tracking.
  • the pellet 6 has a target satellite 1 1 .
  • the adjustment knobs 3 allow, for their part, the aiming adjustment of the apparatus in azimuth during installation, as illustrated by the double arrow 60.
  • the apparatus is connected to an indoor unit at the dwelling on which the apparatus rests, this unit being a not shown television decoder.
  • Figure 2.a shows a double layer of primary sources 8 and 9 respectively on supports 10 and 11 independent. Since the mechanical adjustment in azimuth of the two supports 10 and 11 is independent, the primary source 8 a active can continue to target the satellite 1 1 while the source 9 p is waiting to continue the satellite 1 2 actively. This does not exclude the fact that the source 9 p continues the satellite 1 2 but the frequency band allocated to it for the exchange of information with the satellite 1 2 is then reduced compared to the frequency band which is allocated to the exchange of information between the satellite 1 1 and the active primary source 8a. This will be explained more clearly below.
  • 6 to active sources, 8a is a beam 12 called active then passive sources than 6 percent, 9 percent is a bundle called passive 12 percent.
  • the control of the supports 10, 11 is carried out respectively by motors 100, 110 whose actuation is itself controlled by control means 36, 46 detailed below.
  • Figure 3.a is a detailed view of area D illustrated on the Figure 1.a and represents a vertical section of a first layer 13 of pastilles 16 next to the radiation space, a second layer 14 of supply circuits of said pellets 16 able to transmit / receive a first beam, and a third layer 15 of power circuits said pellets 16 adapted to transmit / receive a second beam.
  • the FIG. 3b represents the circuit for feeding pellets 16, arranged on the second layer of Figure 3.a and able to excite the first beam then that Figure 3.c illustrates characteristics identical to Figure 3.b for the excitation of the second beam.
  • the term "beam" is used in the present request to designate any exchange both in reception between a chip 16 and a satellite.
  • the surface bottom of the layer 13 has a metallized surface 18 forming a common ground plane to the three layers of circuits. of the slots 19 detailed in Figure 5 are etched in the ground plane 18, allowing the radiation of the waves between the pellets 16 and the second and third layers 14, 15.
  • the lower surface of the second layer 14 presents the supply circuit 17 of the chip 16 (active or passive ) able to emit / pick up the first beam (active or passive) while the third layer 15 comprises the feed circuit 20 of the pellet 16 ( respectively passive or active) capable of transmitting / sensing the second beam (respectively passive or active).
  • feed lines excite pellets 16 on orthogonal sides.
  • First lines 17 carry the signals received by the pellets 16 and attack ports 21 of a switch 21, an output 21 2 of which drives a frequency conversion circuit 22 to transmit the signals thus transposed into the intermediate satellite band (or BIS). ) to an indoor unit of a dwelling not shown.
  • BIS intermediate satellite band
  • this BIS band is standardized in the context of a direct-to-home satellite communication device. In the present framework, one is not obliged to take this same band for transposition into intermediate frequency.
  • Second lines 17 2 come from a second switch 23 and carry the signals to be transmitted to the satellite.
  • the second switch 23 selects the pad 16 for the aim of the satellite.
  • the input of the switch 23 is connected to a frequency conversion circuit 24 whose input is connected to the indoor unit of the dwelling.
  • Each frequency conversion circuit 22, 24 as well as those mentioned in the following include, in a manner known per se, a mixer 25 and a local oscillator 26 for frequency transposition.
  • the frequency conversion circuits further include a low noise amplifier 27 while in a uplink, the frequency conversion circuits include a power amplifier 28.
  • feed lines excite pellets 16 on orthogonal sides.
  • Third lines 29 carry the signals received by the pellets 16 and attack ports 30 of a third switch 30, an output of which 2 drives a frequency conversion circuit 31 for transmitting the signals thus transposed into the satellite intermediate band.
  • Fourth lines 29 2 come from a fourth switch 32 and carry the signals to be transmitted to the satellite.
  • the fourth switch 32 selects the pad 16 for the aim of the satellite.
  • the input of the switch 32 is connected to a frequency conversion circuit 33 whose input is connected to the indoor unit.
  • the switches 21, 23 are controlled by first means of controlling 34 allowing select the pellet 16 adapted to target the first satellite while the switches 30, 32 are controlled by second means of control 35 to select the pellet 16 adapted to target the second satellite.
  • the first and second control means are included in the microcontroller 36 having stored in a memory 37 information such as the trajectory history of the satellites, ... and also a gain value playing the role of threshold for the detection of a satellite below which the microcontroller 36 must switch either to the adjacent chip 16 to continue the satellite either to the pellet 16 aiming with the second beam the second satellite.
  • the switches 21, 23, 30 and 32 are for example electronic chips with k control pins connected to the microcontroller 36 and N ⁇ M legs connected to the various pellets 16 and a pattte entry or exit.
  • Figure 4.a is a detailed view of a variant of zone D of FIG. 1.a, and represents the first layer 13 of pellets 16 oriented to the radiation space, a second layer 37 for processing the signals to be transmitted and a third layer 38 of signal processing received.
  • Figure 4.b shows the second layer 37 of treatment of signals to be emitted from Figure 4.a, while Figure 4.c represents the third layer 38 for processing the signals received from FIG.
  • the lower surface of the second layer 37 has a supply circuit 38 of the pellet 16 capable of emitting the first and second bundle while the third layer 38 includes the circuit supply 39 of the pellet 16 adapted to receive the first and second beams.
  • the pellet 16 is excited by two opposite sides for transmit separately the first beam and the second beam on layer 37, and to separately capture the first beam and the second beam on the layer 38.
  • feed lines 38 energize pellets 16 on opposite sides.
  • First lines 38 convey the signals to be transmitted on a first beam in a polarization and second lines 38 2 convey signals to be transmitted on a second beam according to the same polarization.
  • These lines 38 1 , 38 2 are respectively connected to first and second switches 40, 41.
  • An input of each of the switches 40, 41 is connected to a frequency converter circuit of the type of that explained above.
  • feed lines 39 exciting the pellets 16 on opposite sides First lines 39 1 convey signals received on a first beam in a polarization and second lines 39 2 convey signals received on a second beam of the same polarization. These lines 39 1 , 39 2 are respectively connected to first and second switches 42, 43. An output of each of the switches 42, 43 is connected to a frequency converter circuit of the type of that explained above.
  • the switch 40 is controlled by third means of control 44 included in a microcontroller 46 for selecting the patch 16 capable of obtaining the optimum beam for the emission towards the first satellite while the switch 41 is controlled by fourth control means 45 able to obtain the optimum beam for the transmission to the second satellite.
  • the switch 42 is controlled by the third control means 44 making it possible to select the patch 16 able to obtain the optimal beam for the receiving signals from the first satellite while the switch 43 is controlled by the fourth control means 45 capable of obtaining the optimal beam for receiving signals from the second satellite.
  • FIG. 5 shows the slots 19 on the face opposite to the face comprising the pellets 16 of the first layer 13.
  • PolII and Pol lines 21 exciting the chip 16 by orthogonal sides correspond to the excitation lines supplying the slots 19 3 in FIG. the case of the embodiment of Figures 3.a to 3.c.
  • a same chip 16 conveys the data transmitted and received by a beam.
  • the excitation by the two orthogonal sides allows the separation of the reception channel and the emission channel on two orthogonal polarizations.
  • the notation Polij corresponds to the line of the beam j conveyed according to a polarization i.
  • the lines Pol11 and Pol12 correspond to the variant of the figures 4.a to 4.c.
  • Pol11 and pol 12 lines excite the chip 16 by sides opposites and convey the data of the reception path of the first beam on one line and the second beam on a second line (or data from the channel of emission of the first beam on a line and the second beam on a second line).
  • the apparatus operates as follows: In the field of visibility of the device is first the first satellite.
  • the active beam associated with the active pellet follows the latter on its path. Before the first satellite disappears from the visibility of the device, a second satellite appears.
  • the device continues to communicate in transmission / reception of the useful data of the first satellite while pursuing the second satellite and communicating only the signaling data thereof to the control means.
  • the lens of Luneberg for example has a diameter of 35 cm, and the device operates at frequencies in the order of 12 GHz.
  • the passage from one pellet to another occurs when the transmit / receive gain variations exceed ⁇ 0.5 dB, or 1 dB relative to the radiation equivalent to the maximum level.
  • the integer N will be determined according to the necessary azimuth coverage, taking into account the rule, as an example, of an incrementation of N one unit for an additional azimuth coverage of 3 °, for the example above.
  • the choices of M and N obviously depend on other beam width, gain fluctuations as the device can tolerate and 16 pellets dimensions that limit the gaps minimum between them.
  • the control means measure the level of the signal received / transmitted to the satellite (active or passive). Since this one is below a predetermined threshold, these actuate the appropriate switches in order to to switch to another pellet and determine the pellet that allows the best satellite tracking.
  • the invention is not limited to the modes of realization as described. So, the Luneberg lens can be cylindrical.
  • the management of the switching from the satellite 1 1 to the satellite 1 2 can be made in any other way than that imagined to explain the operation of the present invention. It can comprise any known methods of multiple access to said at least two satellites 1 1 , 1 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)
  • Aerials With Secondary Devices (AREA)

Description

La présente invention concerne un appareil d'émission et/ou de réception de signaux dans un système de communication par satellites à défilement.The present invention relates to an apparatus for transmitting and / or reception of signals in a satellite communication system at scrolling.

Jusqu'à présent, les télécommunications commerciales par satellite ont été réalisées en quasi-totalité par les satellites géostationnaires, particulièrement intéressants en raison de leurs positions relatives immuables dans le ciel. Or, le satellite géostationnaire présente des inconvénients majeurs tels que des atténuations importantes des signaux transmis liées à la distance séparant les antennes usagers du satellite géostationnaire ( de l'ordre de 36000 kilomètres, les pertes correspondantes s'élevant alors à environ 205 dB dans la bande Ku ) et des délais de transmission ( typiquement de l'ordre de 250 ms à 280 ms ) devenant ainsi nettement perceptibles et gênants notamment pour des applications en temps réel telles que la téléphonie, la vidéoconférence, etc... Par ailleurs, l'orbite géostationnaire, située dans le plan équatorial, pose un problème de visibilité pour les régions à latitudes élevées, les angles d'élévation devenant très faibles pour les régions proches des pôles.So far, commercial satellite telecommunications almost entirely by geostationary satellites, particularly interesting because of their immutable relative positions in the sky. However, the geostationary satellite has major disadvantages such as significant attenuations of transmitted signals related to distance separating the antennas used from the geostationary satellite (of the order of 36000 kilometers, the corresponding losses then rising to around 205 dB in the Ku band) and transmission delays (typically of the order of 250 ms to 280 ms) becoming clearly perceptible and annoying especially for real-time applications such as telephony, videoconferencing, etc ... Moreover, the geostationary orbit, located in the plane equatorial, poses a problem of visibility for regions at high latitudes, the elevation angles becoming very low for regions close to the poles.

Les alternatives à l'emploi du satellite géostationnaire sont :

  • l'utilisation de satellites sur des orbites elliptiques inclinées, le satellite étant alors quasi stationnaire au-dessus de la région située à la latitude de son apogée pendant une durée pouvant atteindre plusieurs heures,
  • la mise en oeuvre de constellations de satellites en orbites circulaires, notamment en orbite basse ("Low Earth Orbit" ou LEO en langue anglaise) ou en orbite moyenne ("Mid Earth Orbit" ou MEO en langue anglaise), les satellites de la constellation défilant à tour de rôle en visibilité du terminal usager pendant une durée allant d'une dizaine de minutes à environ une heure.
Alternatives to using the geostationary satellite are:
  • the use of satellites in inclined elliptical orbits, the satellite then being quasi stationary above the region situated at the latitude of its apogee for a duration of up to several hours,
  • the implementation of constellations of satellites in circular orbits, in particular in low orbit ("Low Earth Orbit" or LEO in English language) or in medium orbit ("Mid Earth Orbit" or MEO in English language), the satellites of the constellation scrolling in turn in visibility of the user terminal for a period of about ten minutes to about an hour.

Dans les deux cas, le service ne peut être assuré en permanence par un seul satellite, la continuité du service imposant le défilement au-dessus de la zone de service de plusieurs satellites se succédant les uns aux autres.In both cases, the service can not be provided permanently by a single satellite, the continuity of service imposing the scrolling above the service area of several satellites succeeding each other.

L'invention a donc pour but de réaliser un appareil d'antennes de poursuite de satellites à défilement suivant des trajectoires prédéfinies, permettant de capter au moins deux satellites se succédant dans la zone de visibilité de l'appareil. The object of the invention is therefore to provide an antenna apparatus for tracking of satellites running according to predefined trajectories, to capture at least two satellites succeeding one another in the area of visibility of the device.

A cet effet, l'invention a pour objet un appareil d'émission et/ou réception de signaux dans un système de communication par satellites à défilement, comprenant des moyens de focalisation pluridirectionnels du type lentille symétrique possédant une surface de focalisation comprenant une pluralité de points focaux, caractérisé en ce qu'il comporte :

  • une suite continue d'éléments rayonnants ou groupe d'éléments rayonnants émetteurs et/ou récepteurs indépendants, lesdits éléments rayonnants étant agencés au voisinage de points focaux de ladite surface de focalisation,
  • des moyens de commutation électroniques couplés aux éléments rayonnants, pour commuter en fonctionnement au moins un premier élément associé à un premier point focal et un second élément associé à un second point focal à des circuits de traitement des signaux émis et/ou reçus, lesdits points focaux correspondant aux positions respectives d'un premier et d'un second satellites à un instant donné,
  • des moyens de contrôle des moyens de commutation pour la détermination desdits au moins premier et second éléments correspondant aux positions respectives des premier et second satellites audit instant donné.
To this end, the subject of the invention is an apparatus for transmitting and / or receiving signals in a scrolling satellite communication system, comprising symmetrical lens-type multidirectional focusing means having a focusing surface comprising a plurality of focal points, characterized in that it comprises:
  • a continuous sequence of radiating elements or group of radiating elements emitters and / or independent receivers, said radiating elements being arranged in the vicinity of focal points of said focusing surface,
  • electronic switching means coupled to the radiating elements, for switching in operation at least a first element associated with a first focal point and a second element associated with a second focal point to the transmitted and / or received signal processing circuits, said points focal points corresponding to the respective positions of a first and a second satellite at a given instant,
  • means for controlling the switching means for determining said at least first and second elements corresponding to the respective positions of the first and second satellites at said given instant.

Le terme "actif" sera attribué à tout élément échangeant avec un satellite dit également "actif" une majeure partie des données utiles, alors que le terme "passif" désignera tout autre élément échangeant avec un autre satellite dit "passif" des données de signalisation et peu de données utiles.The term "active" will be attributed to any element exchanging with a satellite also says "active" a major part of the useful data, so that the term "liabilities" will mean any other element trading with a other satellite says "passive" signaling data and little data helpful.

De cette sorte, l'appareil selon l'invention permet d'émettre et/ou recevoir au moins deux faisceaux focalisés en des lieux différents et de ne pas souffrir d'un délai de commutation lors de la commutation d'un premier satellite vers un autre.In this way, the apparatus according to the invention makes it possible to transmit and / or receive at least two focused beams in different places and not suffer a switching delay when switching a first satellite to another.

Selon un mode de réalisation, les moyens de commutation comprennent des unités de commutation comprenant des premiers commutateurs à une entrée reliée au circuit de traitement des signaux d'émission et à N×M sorties reliées aux N×M éléments rayonnants et/ou des seconds commutateurs à N×M entrées reliées aux N×M éléments rayonnants et à une sortie reliée au circuit de traitement des signaux de réception pour les signaux de réception, la suite d'éléments rayonnants se présentant comme une matrice d'éléments à N lignes et à M colonnes.According to one embodiment, the switching means include switching units comprising first switches at an input connected to the signal processing circuit and N × M outputs related to N × M radiating elements and / or second switches at N × M inputs connected to N × M elements radiators and at an output connected to the signal processing circuit of reception signals, the sequence of radiating elements presenting as a matrix of elements with N rows and M columns.

Selon un mode de réalisation, l'entier N est prédéterminé de manière à ce que l'appareil présente, lors de la poursuite de satellites, un diagramme de rayonnement pouvant s'incliner de 10° à 90° en élévation.According to one embodiment, the integer N is predetermined from so that the aircraft presents, when tracking satellites, a radiation pattern that can tilt from 10 ° to 90 ° in elevation.

L'entier N est prédéterminé de manière à permettre une visibilité en azimut autour d'une valeur d'azimut préajustée. L'élévation sera entendue dans la présente demande comme l'angle existant entre le plan horizontal et le rayon R passant par le centre de l'appareil et le satellite dans le plan instantané de la trajectoire. On définit également l'azimut comme l'angle entre ledit rayon R et la verticale dans le plan transversal au plan instantané de la trajectoire.The integer N is predetermined so as to allow visibility in azimuth around a pre-adjusted azimuth value. The elevation will be understood in this application as the angle between the plan horizontal and the radius R passing through the center of the device and the satellite in the instantaneous plane of the trajectory. We also define the azimuth as the angle between said radius R and the vertical in the plane transverse to the plane snapshot of the trajectory.

Dans le cas particulier où les trajectoires des satellites défilants sont stationnaires ou demeurent proches les unes des autres, l'entier M est choisi de manière à assurer la poursuite de ceux-ci par un ajustement en azimut du faisceau autour d'une valeur d'azimut préajustée.In the particular case where the trajectories of the moving satellites are stationary or remain close to each other, the whole M is chosen in order to ensure the continuation of these by an adjustment in Beam azimuth around a pre-adjusted azimuth value.

On aura avantage à incrémenter M respectivement N d'une unité pour une variation de gain de ± 0.5 dB en azimut respectivement en élévation autour d'une direction de rayonnement donnée correspondant au niveau maximum.It will be advantageous to increment M respectively N by one unit for a gain variation of ± 0.5 dB in azimuth respectively in elevation around a given radiation direction corresponding to the maximum level.

Selon un mode de réalisation, la suite d'éléments rayonnants, les moyens de commutation et les circuits de traitement des signaux d'émission et/ou de réception sont agencés sur une même couche d'un substrat.According to one embodiment, the series of radiating elements, the switching means and transmission signal processing circuits and / or receiving are arranged on the same layer of a substrate.

La suite d'éléments rayonnants est gravée sur une première couche d'un substrat, sous laquelle est disposée une deuxième couche comportant lesdits commutateurs et les circuits de traitement des signaux d'émission et/ou de réception.The sequence of radiating elements is engraved on a first layer of a substrate, under which is disposed a second layer comprising said switches and the signal processing circuitry transmission and / or reception.

La suite d'éléments rayonnants est gravée sur une première couche sous laquelle se trouvent agencées une deuxième et troisième couches comportant respectivement lesdits moyens de commutation et les circuits de traitement des signaux d'émission et/ou de réception.The sequence of radiating elements is engraved on a first layer under which are arranged a second and third layers respectively comprising said switching means and the circuits for processing transmission and / or reception signals.

Des premières lignes d'excitation pour exciter les éléments sont gravées sur la deuxième couche pour l'émission et/ou la réception d'un premier faisceau et des secondes lignes d'excitation sont gravées sur la troisième couche pour l'émission et/ou la réception d'un deuxième faisceau. First lines of excitement to excite the elements are engraved on the second layer for the transmission and / or reception of a first beam and second excitation lines are etched on the third layer for transmitting and / or receiving a second beam.

Avantageusement, des fentes sont gravées sur la surface inférieure de la première couche -formant un plan de masse, de manière à permettre l'échange d'énergie avec les couches inférieures.Advantageously, slots are etched on the surface bottom of the first layer -forming a ground plane, so as to allow the exchange of energy with the lower layers.

Pour permettre une poursuite du premier satellite lors de dérives de sa trajectoire en azimut alors que le deuxième satellite est attendu sur sa trajectoire nominale, l'appareil comporte des premiers et seconds moyens de support indépendants et adjacents à la surface de focalisation sur lesquels sont agencés la suite continue d'éléments rayonnants. Ainsi, cette dernière solution est avantageuse surtout dans le cas où les satellites défilants peuvent avoir des variations en azimut importantes. Elle permet notamment de réduire la valeur de l'entier M à 1, ce qui correspond à une poursuite électronique en élévation, tout en assurant ta poursuite en azimut de manière mécanique.To allow a continuation of the first satellite during drifting of its trajectory in azimuth while the second satellite is expected on its nominal trajectory, the apparatus comprises first and second means of independent support and adjacent to the focusing surface on which are arranged the continuous sequence of radiating elements. So, this last solution is advantageous especially in the case where the satellites can have significant azimuth variations. It allows in particular reduce the value of the integer M to 1, which corresponds to a continuation in elevation, while ensuring your azimuth tracking of mechanical way.

Avantageusement, lesdits premiers et seconds moyens de support sont couplés à des moyens d'actionnement comportant des moyens de rotation des premiers et seconds moyens de support pour l'orientation de ces derniers de façon à permettre une poursuite en azimut de satellites.Advantageously, said first and second means of support are coupled to actuating means comprising means rotation of the first and second support means for the orientation of the latter so as to allow satellite azimuth tracking.

Préférentiellement, ces moyens de rotation comprennent un axe de rotation passant par le centre de la lentille de Luneberg, autour duquel lesdits premiers et seconds moyens de support sont aptes à tourner.Preferably, these rotation means comprise an axis rotation through the center of the Luneberg lens, around which said first and second support means are rotatable.

Selon un mode de réalisation, l'appareil comporte des moyens de contrôle pour la commande des moteurs des éléments et des moyens d'actionnement.According to one embodiment, the apparatus comprises means for control for the control of the motors of elements and means actuating.

Selon un mode de réalisation, l'élément focalisateur de l'appareil est une lentille de luneberg sphérique.According to one embodiment, the focusing element of the apparatus is a spherical moonberg lens.

Préférentiellement, l'appareil est destiné à la poursuite de satellites à défilement.Preferably, the apparatus is intended for the pursuit of scrolling satellites.

On peut avoir avantage à ce que l'appareil comporte en outre des moyens d'émission et/ou réception se trouvant au voisinage d'un point de la surface de focalisation du appareil et aptes à communiquer en permanence avec au moins un satellite géostationnaire. Préférentiellement, ce troisième élément est fixe. It may be advantageous if the apparatus further includes means of transmission and / or reception located in the vicinity of a point of the focusing surface of the device and able to communicate constantly with at least one geostationary satellite. Preferably, this third element is fixed.

D'autres caractéristiques et avantages de la présente invention ressortiront de la description de l'exemple de réalisation qui va suivre, pris à titre d'exemple non limitatif, en référence aux figures annexées dans lesquelles :

  • la figure 1.a représente un schéma d'une coupe verticale d'un mode de réalisation de l'appareil de poursuite selon l'invention,
  • la figure 1.b représente une vue schématique de l'appareil selon l'invention représenté sur la figure 1.a, suivant la coupe A-A,
  • la figure 2.a représente un schéma d'une variante de l'appareil de poursuite des figures 1.a et 1.b,
  • la figure 2.b représente une vue de l'appareil selon l'invention représenté sur la figure 2.a suivant la coupe B-B,
  • la figure 3.a est une vue détaillée de la zone D illustrée sur la figure 1.b, et représente une coupe verticale d'une première couche de pastilles en regard de l'espace de rayonnement, une deuxième couche de circuits d'alimentation desdites pastilles aptes à émettre un premier faisceau, et une troisième couche de circuits d'alimentation desdites pastilles 16 aptes à émettre un deuxième faisceau,
  • la figure 3.b représente les différents circuits que comprend la deuxième couche de la figure 3.a,
  • la figure 3.c représente les différents circuits que comprend la troisième couche de la figure 3.a,
  • la figure 4.a est une vue détaillée d'une variante de la zone D de la figure 1.a, et représente la première couche d'éléments rayonnants orientés vers l'espace de rayonnement, une deuxième couche de traitement des signaux à émettre et une troisième couche de traitement des signaux reçus,
  • la figure 4.b représente la deuxième couche de traitement des signaux à émettre de la figure 4.a,
  • la figure 4.c représente la troisième couche de traitement des signaux recus de la figure 4.a.
  • la figure 5 représente les fentes sur la face opposée à la face comportant les éléments rayonnants de la première couche.
Other features and advantages of the present invention will emerge from the description of the embodiment which follows, taken by way of non-limiting example, with reference to the appended figures in which:
  • FIG. 1.a represents a diagram of a vertical section of an embodiment of the tracking apparatus according to the invention,
  • FIG. 1.b represents a schematic view of the apparatus according to the invention shown in FIG. 1.a, according to section AA,
  • Figure 2.a shows a diagram of a variant of the tracking apparatus of Figures 1.a and 1.b,
  • FIG. 2.b represents a view of the apparatus according to the invention shown in FIG. 2.a according to section BB,
  • FIG. 3.a is a detailed view of zone D illustrated in FIG. 1.b, and represents a vertical section of a first layer of pellets facing the radiation space, a second layer of supply circuits. said pellets adapted to emit a first beam, and a third layer of supply circuits for said pellets 16 capable of emitting a second beam,
  • Figure 3.b shows the different circuits that comprise the second layer of Figure 3.a,
  • FIG. 3.c represents the different circuits that comprise the third layer of FIG.
  • FIG. 4.a is a detailed view of a variant of zone D in FIG. 1.a, and represents the first layer of radiating elements oriented towards the radiation space, a second signal processing layer to be emitted. and a third processing layer of the received signals,
  • FIG. 4.b represents the second signal processing layer to be transmitted of FIG.
  • FIG. 4.c represents the third processing layer of the received signals of FIG. 4.a.
  • Figure 5 shows the slots on the face opposite the face having the radiating elements of the first layer.

Pour simplifier la description, les mêmes références seront utilisées dans ces dernières figures pour désigner les éléments remplissant des fonctions identiques. To simplify the description, the same references will be used in these last figures to designate the filling elements identical functions.

Selon le mode de réalisation décrit sur les figures 1.a et 1.b., l'appareil de poursuite comporte une lentille de Luneberg 2 sphérique pleine d'un matériau diélectrique de caractéristiques connues en soi. Elle possède sur les deux extrémités d'un diamètre 4 deux boutons de réglage 3. Le plan transversal à la coupe de la figure 1.a passant par le diamètre 4 délimite ladite lentille 2 en deux demi-sphères 21 et 22, la demi-sphère 21 faisant face à l'espace de rayonnement où se trouve les satellites 11 et 12 alors que la demi-sphère 22 fait face sur sa surface de focalisation 5 à un ensemble d'éléments rayonnants 6. Cet ensemble 6 est supporté par une calotte 61 électriquement transparente ( faite de mousse polystyrène ) épousant la forme de la demi-sphère 22, jouant ainsi le rôle d'interface entre cette dernière et l'ensemble 6. L'ensemble 6 et la calotte 61 ont la forme d'un demi-arceau de section rectangulaire. Les éléments rayonnants 6 sont constitués de pastilles 7 ("patch" en langue anglaise) dont la disposition sera explicitée plus en avant. Le satellite 11 est en visbitité de la pastille active 6a alors que le satellite 12 est en visibilité de la pastille 6p en attente de poursuite active. Sur la coupe de la figure 1.b, il est à remarquer que la pastille 6a permet de viser le satellite 11. Les boutons de réglage 3 permettent, quant à eux, l'ajustement de visée de l'appareil en azimut lors de l'installation, comme l'illustre la double flèche 60. L'appareil est relié à une unité intérieure à l'habitation sur lequel l'appareil repose, cette unité étant un décodeur de télévision non représenté.According to the embodiment described in Figures 1.a and 1.b., the tracking apparatus comprises a spherical Luneberg lens 2 full of a dielectric material of characteristics known per se. It has on both ends of a diameter 4 two adjustment buttons 3. The plane transverse to the section of Figure 1.a passing through the diameter 4 delimits said lens 2 in two half-spheres 2 1 and 2 2 , the half-sphere 2 1 facing the space of radiation where the satellites 1 1 and 1 2 are located while the half-sphere 2 2 faces on its focusing surface 5 to a set of radiating elements 6. This set 6 is supported by a cap 61 electrically transparent (made of polystyrene foam) in the shape of the half-sphere 2 2 , thus acting as an interface between the latter and the assembly 6. The assembly 6 and the cap 61 have the shape of a half-arch of rectangular section. The radiating elements 6 consist of pellets 7 ("patch" in English) whose layout will be explained further. The satellite 1 1 is in vis- ibility of the active pellet 6 a whereas the satellite 1 2 is in visibility of the pellet 6 p waiting for active tracking. On the section of Figure 1.b, it should be noted that the pellet 6 has a target satellite 1 1 . The adjustment knobs 3 allow, for their part, the aiming adjustment of the apparatus in azimuth during installation, as illustrated by the double arrow 60. The apparatus is connected to an indoor unit at the dwelling on which the apparatus rests, this unit being a not shown television decoder.

La figure 2.a représente une double couche de sources primaires 8 et 9 sur respectivement des supports 10 et 11 indépendants. L'ajustement mécanique en azimut des deux supports 10 et 11 étant indépendant, la source primaire 8a active peut continuer à viser le satellite 11 alors que la source 9p est en attente de poursuivre le satellite 12 activement. Ceci n'exclut pas le fait que la source 9p poursuive le satellite 12 mais la bande de fréquence qui lui est allouée pour l'échange d'informations avec le satellite 12 est alors réduite par rapport à la bande de fréquence qui est allouée à l'échange d'informations entre le satellite 11 et la source primaire active 8a. Ceci sera explicité plus clairement ci-après. Figure 2.a shows a double layer of primary sources 8 and 9 respectively on supports 10 and 11 independent. Since the mechanical adjustment in azimuth of the two supports 10 and 11 is independent, the primary source 8 a active can continue to target the satellite 1 1 while the source 9 p is waiting to continue the satellite 1 2 actively. This does not exclude the fact that the source 9 p continues the satellite 1 2 but the frequency band allocated to it for the exchange of information with the satellite 1 2 is then reduced compared to the frequency band which is allocated to the exchange of information between the satellite 1 1 and the active primary source 8a. This will be explained more clearly below.

Aux sources actives 6a, 8a correspond un faisceau dit actif 12a alors qu'aux sources passives 6p, 9p correspond un faisceau dit passif 12p. La commande des supports 10, 11 s'effectue respectivement par des moteurs 100, 110 dont l'actionnement est lui-même commandé par des moyens de contrôle 36, 46 détaillés dans la suite.6 to active sources, 8a is a beam 12 called active then passive sources than 6 percent, 9 percent is a bundle called passive 12 percent. The control of the supports 10, 11 is carried out respectively by motors 100, 110 whose actuation is itself controlled by control means 36, 46 detailed below.

La figure 3.a est une vue détaillée de la zone D illustrée sur la figure 1.a et représente une coupe verticale d'une première couche 13 de pastilles 16 en regard de l'espace de rayonnement, une deuxième couche 14 de circuits d'alimentation desdites pastilles 16 aptes à émettre/recevoir un premier faisceau, et une troisième couche 15 de circuits d'alimentation desdites pastilles 16 aptes à émettre/recevoir un deuxième faisceau. La figure 3.b représente le circuit d'alimentation des pastilles 16, disposé sur la deuxième couche de la figure 3.a et apte à exciter le premier faisceau alors que la figure 3.c illustre des caractéristiques identiques à la figure 3.b pour l'excitation du deuxième faisceau. Le terme "faisceau" est utilisé dans la présente demande pour désigner tout échange aussi bien en émission qu'en réception entre une pastille 16 et un satellite.Figure 3.a is a detailed view of area D illustrated on the Figure 1.a and represents a vertical section of a first layer 13 of pastilles 16 next to the radiation space, a second layer 14 of supply circuits of said pellets 16 able to transmit / receive a first beam, and a third layer 15 of power circuits said pellets 16 adapted to transmit / receive a second beam. The FIG. 3b represents the circuit for feeding pellets 16, arranged on the second layer of Figure 3.a and able to excite the first beam then that Figure 3.c illustrates characteristics identical to Figure 3.b for the excitation of the second beam. The term "beam" is used in the present request to designate any exchange both in reception between a chip 16 and a satellite.

La surface supérieure de la première couche 13 présente les pastilles 16 disposées de façon à former un tableau de N lignes et M colonnes, ici N étant égal à 4 et M = 3 pour simplifier la description. On notera que ces valeurs ont été prises à titre d'exemple et que N peut être de l'ordre de 50 pour une couverture en élévation de 10° à 90°. La surface inférieure de la couche 13 présente quant à elle une surface métallisée 18 formant un plan de masse commun aux trois couches de circuits. Des fentes 19 détaillées sur la figure 5 sont gravées dans le plan de masse 18, permettant le rayonnement des ondes entre les pastilles 16 et les deuxième et troisième couches 14, 15. La surface inférieure de la deuxième couche 14 présente le circuit d'alimentation 17 de la pastille 16 ( active ou passive ) apte à émettre/capter le premier faisceau ( actif ou passif ) alors que la troisième couche 15 comprend le circuit d'alimentation 20 de la pastille 16 ( respectivement passive ou active ) apte à émettre/capter le deuxième faisceau ( respectivement passif ou actif ).The upper surface of the first layer 13 presents the pellets 16 arranged to form an array of N lines and M columns, here N being equal to 4 and M = 3 to simplify the description. We note that these values were taken as an example and that N can be of the order of 50 for an elevation coverage of 10 ° to 90 °. The surface bottom of the layer 13 has a metallized surface 18 forming a common ground plane to the three layers of circuits. of the slots 19 detailed in Figure 5 are etched in the ground plane 18, allowing the radiation of the waves between the pellets 16 and the second and third layers 14, 15. The lower surface of the second layer 14 presents the supply circuit 17 of the chip 16 (active or passive ) able to emit / pick up the first beam (active or passive) while the third layer 15 comprises the feed circuit 20 of the pellet 16 ( respectively passive or active) capable of transmitting / sensing the second beam (respectively passive or active).

Sur la figure 3.b, des lignes d'alimentation excitent les pastilles 16 sur des côtés orthogonaux. Des premières lignes 17, véhiculent les signaux reçus par les pastilles 16 et attaquent des ports 21, d'un commutateur 21 dont une sortie 212 attaque un circuit 22 de conversion de fréquence pour transmettre les signaux ainsi transposés en Bande Intermédiaire Satellite ( ou BIS ) vers une unité intérieure d'une habitation non représentée. Il est à noter que cette bande BIS est normalisée dans le cadre d'un appareil de communication par satellite de télévision directe. Dans le présent cadre, on n'est pas obligé de prendre cette même bande pour la transposition en fréquence intermédiaire.In Fig. 3.b, feed lines excite pellets 16 on orthogonal sides. First lines 17 carry the signals received by the pellets 16 and attack ports 21 of a switch 21, an output 21 2 of which drives a frequency conversion circuit 22 to transmit the signals thus transposed into the intermediate satellite band (or BIS). ) to an indoor unit of a dwelling not shown. It should be noted that this BIS band is standardized in the context of a direct-to-home satellite communication device. In the present framework, one is not obliged to take this same band for transposition into intermediate frequency.

Des deuxièmes lignes 172 proviennent d'un deuxième commutateur 23 et véhiculent les signaux à émettre vers le satellite. Le deuxième commutateur 23 sélectionne la pastille 16 pour la visée du satellite. L'entrée du commutateur 23 est reliée à un circuit 24 de conversion de fréquence dont l'entrée est reliée à l'unité intérieure de l'habitation.Second lines 17 2 come from a second switch 23 and carry the signals to be transmitted to the satellite. The second switch 23 selects the pad 16 for the aim of the satellite. The input of the switch 23 is connected to a frequency conversion circuit 24 whose input is connected to the indoor unit of the dwelling.

Chaque circuit 22, 24 de conversion de fréquence ainsi que ceux mentionnés dans la suite comprennent de façon connue en soi un mélangeur 25 et un oscillateur local 26 pour la transposition de fréquence. Dans une voie descendante, lés circuits de conversion de fréquence comprennent en outre un amplificateur à faible bruit 27 alors que dans une voie montante, les circuits de conversion de fréquence comprennent un amplificateur de puissance 28.Each frequency conversion circuit 22, 24 as well as those mentioned in the following include, in a manner known per se, a mixer 25 and a local oscillator 26 for frequency transposition. In a downlink, the frequency conversion circuits further include a low noise amplifier 27 while in a uplink, the frequency conversion circuits include a power amplifier 28.

Sur la figure 3.c, des lignes d'alimentation excitent les pastilles 16 sur des côtés orthogonaux. Des troisièmes lignes 29, véhiculent les signaux reçus par les pastilles 16 et attaquent des ports 30, d'un troisième commutateur 30 dont une sortie 302 attaque un circuit 31 de conversion de fréquence pour transmettre les signaux ainsi transposés en Bande Intermédiaire Satellite vers l'unité intérieure. Des quatrièmes lignes 292 proviennent d'un quatrième commutateur 32 et véhiculent les signaux à émettre vers le satellite. Le quatrième commutateur 32 sélectionne la pastille 16 pour la visée du satellite. L'entrée du commutateur 32 est reliée à un circuit 33 de conversion de fréquence dont l'entrée est reliée à l'unité intérieure.In Figure 3.c, feed lines excite pellets 16 on orthogonal sides. Third lines 29 carry the signals received by the pellets 16 and attack ports 30 of a third switch 30, an output of which 2 drives a frequency conversion circuit 31 for transmitting the signals thus transposed into the satellite intermediate band. indoor unit. Fourth lines 29 2 come from a fourth switch 32 and carry the signals to be transmitted to the satellite. The fourth switch 32 selects the pad 16 for the aim of the satellite. The input of the switch 32 is connected to a frequency conversion circuit 33 whose input is connected to the indoor unit.

Il est à souligner en outre que les commutateurs 21, 23 sont commandés par des premiers moyens de contrôler 34 permettant de sélectionner la pastille 16 apte à viser le premier satellite alors que les commutateurs 30, 32 sont commandés par des seconds moyens de contrôle 35 permettant de sélectionner la pastille 16 apte à viser le second satellite. Par exemple, dans le présent mode de réalisation, les premiers et seconds moyens de commande sont compris dans le microcontrôleur 36 comportant stockées dans une mémoire 37 des informations telles que l'historique de la trajectoire des satellites,... et également une valeur de gain jouant le rôle de seuil pour la détection d'un satellite en dessous duquel le microcontrôleur 36 doit commuter soit à la pastille 16 adjacente pour poursuivre le satellite soit à la pastille 16 visant avec le deuxième faisceau le deuxième satellite. Les commutateurs 21, 23, 30 et 32 sont par exemple des puces électroniques à k pattes de commande reliées au microcontrôleur 36 et à N×M pattes reliées aux différentes pastilles 16 et une pattte d'entrée ou de sortie.It should be emphasized further that the switches 21, 23 are controlled by first means of controlling 34 allowing select the pellet 16 adapted to target the first satellite while the switches 30, 32 are controlled by second means of control 35 to select the pellet 16 adapted to target the second satellite. For example, in the present embodiment, the first and second control means are included in the microcontroller 36 having stored in a memory 37 information such as the trajectory history of the satellites, ... and also a gain value playing the role of threshold for the detection of a satellite below which the microcontroller 36 must switch either to the adjacent chip 16 to continue the satellite either to the pellet 16 aiming with the second beam the second satellite. The switches 21, 23, 30 and 32 are for example electronic chips with k control pins connected to the microcontroller 36 and N × M legs connected to the various pellets 16 and a pattte entry or exit.

La figure 4.a est une vue détaillée d'une variante de la zone D de la figure 1.a, et représente la première couche 13 de pastilles 16 orientées vers l'espace de rayonnement, une deuxième couche 37 de traitement des signaux à émettre et une troisième couche 38 de traitement des signaux reçus. La figure 4.b représente la deuxième couche 37 de traitement des signaux à émettre de la figure 4.a, alors que la figure 4.c représente la troisième couche 38 de traitement des signaux reçus de la figure 4.a.Figure 4.a is a detailed view of a variant of zone D of FIG. 1.a, and represents the first layer 13 of pellets 16 oriented to the radiation space, a second layer 37 for processing the signals to be transmitted and a third layer 38 of signal processing received. Figure 4.b shows the second layer 37 of treatment of signals to be emitted from Figure 4.a, while Figure 4.c represents the third layer 38 for processing the signals received from FIG.

La surface inférieure de la deuxième couche 37 présente un circuit d'alimentation 38 de la pastille 16 apte à émettre les premier et deuxième faisceaux alors que la troisième couche 38 comprend le circuit d'alimentation 39 de la pastille 16 apte à recevoir les premier et deuxième faisceaux.The lower surface of the second layer 37 has a supply circuit 38 of the pellet 16 capable of emitting the first and second bundle while the third layer 38 includes the circuit supply 39 of the pellet 16 adapted to receive the first and second beams.

Il faut remarquer ici qu'on réalise sur les figures 3.a à 3.c la voie de réception et d'émission selon deux polarisations orthogonales. Ceci n'est évidemment pas obligatoire mais permet une meilleure isolation entre les voies d'émission et de réception. L'émission/réception du premier faisceau est réalisée suivant deux polarisations orthogonales sur la couche 14 et l'émission/réception du second faisceau est réalisée suivant deux polarisations orthogonales sur la couche 15.It should be noted here that we realize in Figures 3.a to 3.c the way receiving and transmitting according to two orthogonal polarizations. This is not obviously not mandatory but allows for better isolation between transmission and reception channels. Transmission / reception of the first beam is carried out according to two orthogonal polarizations on layer 14 and the emission / reception of the second beam is carried out according to two Orthogonal polarizations on the layer 15.

Par contre, on excite la pastille 16 par deux côtés opposés pour transmettre de façon séparée le premier faisceau et le second faisceau sur la couche 37, et pour capter de façon séparée le premier faisceau et le second faisceau sur la couche 38.On the other hand, the pellet 16 is excited by two opposite sides for transmit separately the first beam and the second beam on layer 37, and to separately capture the first beam and the second beam on the layer 38.

De surcroít, on peut remplacer la structure comportant une seule pastille 16 sur la première couche de substrat 13 par une structure comportant deux pastilles séparées d'une couche de substrat, en regard l'une de l'autre et résonant à des fréquences sensiblement décalées de façon à élargir la bande passante de fréquence. Moreover, we can replace the structure with a single pellet 16 on the first substrate layer 13 by a structure having two pellets separated by a substrate layer, facing from each other and resonating at frequencies substantially offset by way to expand the frequency bandwidth.

Sur la figure 4.b, des lignes d'alimentation 38 excitent les pastilles 16 sur des côtés opposés . Des premières lignes 38, véhiculent les signaux à émettre sur un premier faisceau selon une polarisation et des secondes lignes 382 véhiculent des signaux à émettre sur un second faisceau selon la même polarisation. Ces lignes 381, 382 sont reliées respectivement à des premier et second commutateurs 40, 41. Une entrée de chacun des commutateurs 40, 41 est reliée à un circuit convertisseur de fréquence du type de celui explicité précédemment.In Fig. 4.b, feed lines 38 energize pellets 16 on opposite sides. First lines 38 convey the signals to be transmitted on a first beam in a polarization and second lines 38 2 convey signals to be transmitted on a second beam according to the same polarization. These lines 38 1 , 38 2 are respectively connected to first and second switches 40, 41. An input of each of the switches 40, 41 is connected to a frequency converter circuit of the type of that explained above.

De la même manière, sur la figure 4.c est représenté des lignes d'alimentation 39 excitant les pastilles 16 sur des côtés opposés. Des premières lignes 391 véhiculent les signaux recus sur un premier faisceau selon une polarisation et des secondes lignes 392 véhiculent des signaux recus sur un second faisceau selon la même polarisation. Ces lignes 391, 392 sont reliées respectivement à des premier et second commutateurs 42, 43. Une sortie de chacun des commutateurs 42, 43 est reliée à un circuit convertisseur de fréquence du type de celui explicité précédemment.In the same way, in Figure 4.c is shown feed lines 39 exciting the pellets 16 on opposite sides. First lines 39 1 convey signals received on a first beam in a polarization and second lines 39 2 convey signals received on a second beam of the same polarization. These lines 39 1 , 39 2 are respectively connected to first and second switches 42, 43. An output of each of the switches 42, 43 is connected to a frequency converter circuit of the type of that explained above.

Le commutateur 40 est commandé par des troisièmes moyens de contrôle 44 compris dans un microcontrôleur 46 permettant de sélectionner la pastille 16 apte à obtenir le faisceau optimal pour l'émission vers le premier satellite alors que le commutateur 41 est commandé par des quatrièmes moyens de contrôle 45 apte à obtenir le faisceau optimal pour l'émission vers le second satellite. De même, le commutateur 42 est commandé par les troisièmes moyens de contrôle 44 permettant de sélectionner la pastille 16 apte à obtenir le faisceau optimal pour la réception des signaux du premier satellite alors que le commutateur 43 est commandé par les quatrièmes moyens de contrôle 45 apte à obtenir le faisceau optimal pour la réception des signaux du second satellite.The switch 40 is controlled by third means of control 44 included in a microcontroller 46 for selecting the patch 16 capable of obtaining the optimum beam for the emission towards the first satellite while the switch 41 is controlled by fourth control means 45 able to obtain the optimum beam for the transmission to the second satellite. Similarly, the switch 42 is controlled by the third control means 44 making it possible to select the patch 16 able to obtain the optimal beam for the receiving signals from the first satellite while the switch 43 is controlled by the fourth control means 45 capable of obtaining the optimal beam for receiving signals from the second satellite.

La figure 5 représente les fentes 19 sur la face opposée à la face comportant les pastilles 16 de la première couche 13. Des lignes Pol11 et Pol 21 excitant la pastille 16 par des côtés orthogonaux correspondent aux lignes d'excitation alimentant les fentes 193 dans le cas du mode de réalisation des figures 3.a à 3.c. Dans ce cas, une même pastille 16 véhicule les données émises et reçues par un faisceau. L'excitation par les deux côtés orthogonaux permet la séparation de la voie de réception et de la voie d'émission sur deux polarisations orthogonales. La notation Polij correspond à la ligne du faisceau j véhiculée selon une polarisation i. FIG. 5 shows the slots 19 on the face opposite to the face comprising the pellets 16 of the first layer 13. PolII and Pol lines 21 exciting the chip 16 by orthogonal sides correspond to the excitation lines supplying the slots 19 3 in FIG. the case of the embodiment of Figures 3.a to 3.c. In this case, a same chip 16 conveys the data transmitted and received by a beam. The excitation by the two orthogonal sides allows the separation of the reception channel and the emission channel on two orthogonal polarizations. The notation Polij corresponds to the line of the beam j conveyed according to a polarization i.

Les lignes Pol11 et Pol12 correspondent à la variante des figures 4.a à 4.c. Des lignes pol11 et pol 12 excitent la pastille 16 par des côtés opposés et véhiculent les données de la voie de réception du premier faisceau sur une ligne et du second faisceau sur une seconde ligne ( ou les données de la voie d'émission du premier faisceau sur une ligne et du second faisceau sur une seconde ligne).The lines Pol11 and Pol12 correspond to the variant of the figures 4.a to 4.c. Pol11 and pol 12 lines excite the chip 16 by sides opposites and convey the data of the reception path of the first beam on one line and the second beam on a second line (or data from the channel of emission of the first beam on a line and the second beam on a second line).

L'appareil selon l'invention fonctionne de la manière suivante : Dans le champ de visibilité de l'appareil se trouve d'abord le premier satellite. Le faisceau actif associé à la pastille active suit ce dernier sur sa trajectoire. Avant que le premier satellite ne disparaisse du champ de visibilité de l'appareil, un deuxième satellite apparaít. L'appareil continue de communiquer en émission/réception des données utiles du premier satellite tout en poursuivant le second satellite et en communiquant uniquement les données de signalisation de celui-ci aux moyens de contrôle. La lentille de Luneberg a par exemple un diamètre de 35 cm, et l'appareil fonctionne à des fréquences de l'ordre de 12 GHz. Le passage d'une pastille à une autre se fait lorsque les variations de gain d'émission/réception dépassent ± 0.5 dB, ou 1 dB par rapport au rayonnement équivalent au niveau maximal. L'entier N sera déterminé en fonction de la couverture en azimut nécessaire, en tenant compte de la règle, à titre d'exemple, d'une incrémentation de N d'une unité pour un supplément de couverture en azimut de 3°, pour l'exemple ci-dessus. Les choix de M et N dépendent évidemment entre autres de la largeur des faisceaux, des fluctuations de gain que le appareil peut tolérer et des dimensions des pastilles 16 qui limitent les écarts minimum entre celles-ci.The apparatus according to the invention operates as follows: In the field of visibility of the device is first the first satellite. The active beam associated with the active pellet follows the latter on its path. Before the first satellite disappears from the visibility of the device, a second satellite appears. The device continues to communicate in transmission / reception of the useful data of the first satellite while pursuing the second satellite and communicating only the signaling data thereof to the control means. The lens of Luneberg for example has a diameter of 35 cm, and the device operates at frequencies in the order of 12 GHz. The passage from one pellet to another occurs when the transmit / receive gain variations exceed ± 0.5 dB, or 1 dB relative to the radiation equivalent to the maximum level. The integer N will be determined according to the necessary azimuth coverage, taking into account the rule, as an example, of an incrementation of N one unit for an additional azimuth coverage of 3 °, for the example above. The choices of M and N obviously depend on other beam width, gain fluctuations as the device can tolerate and 16 pellets dimensions that limit the gaps minimum between them.

Les moyens de contrôle mesurent le niveau du signal reçu/émis vers le satellite (actif ou passif). Dès lors que celui-ci est en dessous d'un seuil prédéterminé, ceux-ci actionnent les commutateurs adéquats en vue de commuter vers une autre pastille et de déterminer la pastille qui permet la meilleure poursuite du satellite.The control means measure the level of the signal received / transmitted to the satellite (active or passive). Since this one is below a predetermined threshold, these actuate the appropriate switches in order to to switch to another pellet and determine the pellet that allows the best satellite tracking.

Bien entendu, l'invention n'est pas limitée aux modes de réalisation tels que décrits. Ainsi, la lentille de Luneberg peut être cylindrique.Of course, the invention is not limited to the modes of realization as described. So, the Luneberg lens can be cylindrical.

Enfin, la gestion de la commutation du satellite 11 au satellite 12 peut être faite de toute autre manière que celle imaginée pour expliquer le fonctionnement de la présente invention. Elle peut comporter toutes méthodes connues d'accès multiples auxdits au moins deux satellites 11, 12.Finally, the management of the switching from the satellite 1 1 to the satellite 1 2 can be made in any other way than that imagined to explain the operation of the present invention. It can comprise any known methods of multiple access to said at least two satellites 1 1 , 1 2 .

Claims (13)

  1. Apparatus for transmitting and/or receiving signals in a communication system employing nonsynchronous satellites, comprising pluridirectional focusing means (2) of the symmetrical lens type possessing a focusing surface (5) comprising a plurality of focal points, characterized in that it includes:
    a continuous string of independent transmitter and/or receiver radiating elements or group of radiating elements (6), the said radiating elements (6) being arranged in the vicinity of focal points of the said focusing surface (5),
    electronic switching means (21, 23, 30, 32, 40, 41, 42, 43) coupled to the radiating elements (6), for operationally switching at least one first element (6a) associated with a first focal point and a second element (6p) associated with a second focal point to circuits for processing the signals transmitted and/or received (22, 24, 31, 33), the said focal points corresponding to the respective positions of a first (11) and a second (12) satellite at a given instant,
    means of monitoring (36, 46) the switching means (21, 23, 30, 32, 40, 41, 42, 43) for determining the said at least first (6a) and second (6p) elements corresponding to the respective positions of the first (11) and second (12) satellites at the said given instant.
  2. Apparatus according to Claim 1, characterized in that the monitoring means (36, 46) comprise first and second (34, 35), or third and fourth (44, 45) monitoring means for the determination of the radiating element (6a) with which the exchanges of useful data are to be performed.
  3. Apparatus according to either of Claims 1 and 2, characterized in that the lens is a spherical Luneberg lens (2).
  4. Apparatus according to one of Claims 1 to 3, characterized in that the apparatus includes first (10) and second (11) independent means of support adjacent to the focusing surface (5) and on which are arranged the string of radiating elements (6).
  5. Apparatus according to Claim 4, characterized in that the said first (10) and second (11) support means are coupled to actuation means (3) including means of rotation (100, 110) of the first (10) and second (11) means of support for orienting the latter in such a way as to allow azimuthal tracking of satellites (11, 12).
  6. Apparatus according to Claim 5, characterized in that these means of rotation (100, 110) have an axis of rotation (4) passing through the centre of the Luneberg lens (2) about which the said first and second support means (10, 11) are able to revolve.
  7. Apparatus according to one of Claims 1 to 6, characterized in that the switching means comprise switching units comprising first switches (23, 32, 40, 41) with one input linked to the circuit for processing the transmission signals and with NXM outputs linked to the NXM radiating elements and/or second switches (21, 30, 42, 43) with NXM inputs linked to the NXM radiating elements and with an output linked to the circuit for processing the reception signals in respect of the reception signals, the string of radiating elements exhibiting the form of a matrix of elements with N rows and M columns.
  8. Apparatus according to Claim 7, characterized in that the integer N is predetermined in such a way that the apparatus exhibits, when tracking satellites, a radiation pattern which can be inclined from 10° to 90° in elevation.
  9. Apparatus according to one of Claims 1 to 8, characterized in that the string of radiating elements (6), the switching means (21, 23, 30, 32, 40, 41, 42, 43) and the circuits (25, 26, 28) for processing the transmission and/or reception signals are arranged on one and the same layer (13) of a substrate.
  10. Apparatus according to one of Claims 1 to 8, characterized in that the string of radiating elements (6) is etched on a first layer (13) of a substrate, under which layer is disposed a second layer including the said switches and the circuits for processing the transmission and/or reception signals.
  11. Apparatus according to one of Claims 1 to 8, characterized in that the string of radiating elements (6) is etched on a first layer (13) under which are arranged a second (14, 37) and third (15, 38) layer respectively including the said switching means (21, 23, 30, 32, 40, 41, 42, 43) and the circuits (25, 26, 28) for processing the transmission and/or reception signals.
  12. Apparatus according to Claim 10 or 11, characterized in that first excitation lines for exciting the elements (6) are etched on the second layer (14) for the transmission and/or the reception of a first beam and second excitation lines are etched on the third layer (15) for the transmission and/or the reception of a second beam.
  13. Apparatus according to one of Claims 1 to 12, characterized in that the apparatus furthermore includes transmission and/or reception means (49) located in the vicinity of a point on the focusing surface (5) of the apparatus for communication with at least one geostationary satellite (13).
EP99913414A 1998-04-23 1999-04-15 Apparatus for tracking moving satellites Expired - Lifetime EP1074064B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9805112 1998-04-23
FR9805112A FR2778043A1 (en) 1998-04-23 1998-04-23 Orbitting satellite transmitter/receiver tracker
PCT/FR1999/000881 WO1999056347A1 (en) 1998-04-23 1999-04-15 Apparatus for tracking moving satellites

Publications (2)

Publication Number Publication Date
EP1074064A1 EP1074064A1 (en) 2001-02-07
EP1074064B1 true EP1074064B1 (en) 2005-06-15

Family

ID=9525604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913414A Expired - Lifetime EP1074064B1 (en) 1998-04-23 1999-04-15 Apparatus for tracking moving satellites

Country Status (13)

Country Link
US (1) US20030020652A1 (en)
EP (1) EP1074064B1 (en)
JP (1) JP4219556B2 (en)
KR (1) KR100584892B1 (en)
CN (1) CN1122330C (en)
AU (1) AU3154499A (en)
BR (1) BR9910135A (en)
DE (1) DE69925827T2 (en)
ES (1) ES2244185T3 (en)
FR (1) FR2778043A1 (en)
HU (1) HUP0101576A3 (en)
ID (1) ID27828A (en)
WO (1) WO1999056347A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2241378T3 (en) 1999-09-20 2005-10-16 Fractus, S.A. MULTI LEVEL ANTENNAS.
DE60215686T2 (en) 2001-09-28 2007-05-10 Sumitomo Electric Industries, Ltd. RADIO WAVES LENS ANTENNA DEVICE
EP1563570A1 (en) 2002-11-07 2005-08-17 Fractus, S.A. Integrated circuit package including miniature antenna
DE60322116D1 (en) * 2003-01-30 2008-08-21 Toshiba Carrier Corp LENS ANTENNA SYSTEM
EP1524791A3 (en) * 2003-10-15 2008-02-13 Samsung Electronics Co., Ltd. Method for controlling packet rate in a mobile communication system
JP4119352B2 (en) 2003-11-28 2008-07-16 株式会社東芝 Lens antenna device
WO2008015757A1 (en) * 2006-08-04 2008-02-07 Sei Hybrid Products, Inc. Wind speed radar
US9673888B2 (en) * 2015-09-23 2017-06-06 Qualcomm Incorporated Acquiring LEO satellites without compass
ES2805344T3 (en) 2016-05-06 2021-02-11 Amphenol Antenna Solutions Inc High Gain Multibeam Antenna for 5G Wireless Communications
CN111009728A (en) * 2018-10-08 2020-04-14 合肥若森智能科技有限公司 Luneberg lens, low-profile array antenna based on Luneberg lens array and satellite antenna
CN112566204A (en) * 2020-12-02 2021-03-26 上海擎昆信息科技有限公司 Beam switching method and device based on Luneberg lens
CN113206390A (en) * 2021-05-13 2021-08-03 广州通则康威智能科技有限公司 5G-CPE high-gain double-Dragon-B lens antenna device and working method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531129A (en) * 1983-03-01 1985-07-23 Cubic Corporation Multiple-feed luneberg lens scanning antenna system
US5453753A (en) * 1993-09-08 1995-09-26 Dorne & Margolin, Inc. Mechanically steerable modular planar patch array antenna
US5703603A (en) * 1994-04-28 1997-12-30 Tovarischestvo S Ogranichennoi Otvetstvennostju "Konkur" Multi-beam lens antenna
FR2719948B1 (en) * 1994-05-10 1996-07-19 Dassault Electronique Multi-beam antenna for receiving microwaves from several satellites.
FR2762936B1 (en) * 1997-04-30 1999-06-11 Alsthom Cge Alcatel TERMINAL-ANTENNA DEVICE FOR CONSTELLATION OF RUNNING SATELLITES
FR2770343B1 (en) * 1997-10-29 1999-12-31 Dassault Electronique CONTINUOUS MULTI-SATELLITE TRACKING

Also Published As

Publication number Publication date
DE69925827D1 (en) 2005-07-21
FR2778043A1 (en) 1999-10-29
CN1297594A (en) 2001-05-30
JP2002513230A (en) 2002-05-08
KR100584892B1 (en) 2006-05-30
DE69925827T2 (en) 2006-05-04
WO1999056347A1 (en) 1999-11-04
ID27828A (en) 2001-04-26
BR9910135A (en) 2001-01-30
KR20010042874A (en) 2001-05-25
AU3154499A (en) 1999-11-16
US20030020652A1 (en) 2003-01-30
JP4219556B2 (en) 2009-02-04
HUP0101576A3 (en) 2003-05-28
CN1122330C (en) 2003-09-24
HUP0101576A2 (en) 2001-09-28
EP1074064A1 (en) 2001-02-07
ES2244185T3 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
EP1074065B1 (en) Antenna system for tracking moving satellites
EP1074064B1 (en) Apparatus for tracking moving satellites
CA2037841C (en) High efficiency active printed antenna system for an agile space radar
EP0771085A2 (en) Method and system for transmitting radio electrical signals via a satellite network between a fixed earth station and mobile user terminals
FR2772226A1 (en) Satellite communication antenna steering mechanism/satellite system
EP0979539A1 (en) Terminal-antenna device for moving satellite constellation
FR2760919A1 (en) Satellite mobile radio Communication system
FR2778802A1 (en) CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE
EP1142063B1 (en) Telecommunication device with shaped electronic scanning arrays and associated telecommunication terminal
EP0512487A1 (en) Antenna with shaped lobe and high gain
FR2751494A1 (en) GEOSYNCHRONOUS TELECOMMUNICATIONS SATELLITE SYSTEM WHOSE SERVICE AREA CAN BE RECONFIGURED
EP1291962A1 (en) Array beamformer for spacecraft
EP0949710A1 (en) Spherical multilayer focalising lens
EP3639409B1 (en) Satellite payload comprising a dual reflective surface reflector
EP0131512A1 (en) Dual reflector antenna with quasitoroidal coverage
EP0638956B1 (en) Active antenna with electronic scanning in azimuth and elevation, particularly for microwave imaging by satellite
EP1058125B1 (en) Antenna arrangement for reception of signals emitted by a geostationary satellite
EP3952138A1 (en) Procedure for input in a satellite network with beam-hopping
FR2947388A1 (en) ANTENNA POINT ASSISTING METHOD, ASSISTED POINT ANTENNA USING THE SAME, AND NOMAD TERMINAL HAVING SUCH ANTENNA
EP0957590A1 (en) Circuit and method for transmitting or receiving microwaves
FR2762935A1 (en) Two Independent Antenna direction pointing Technique for Moving Satellites
EP0992080B1 (en) Antenna with high scanning capacity
FR2719162A1 (en) Microwave antenna with at least two directions of reflection
FR2535120A1 (en) Antenna, in particular for telecommunications satellite.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20020805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69925827

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050912

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2244185

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110428

Year of fee payment: 13

Ref country code: DE

Payment date: 20110419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110426

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69925827

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101