EP1023593A1 - Device for transporting very small quantities of liquid and method for producing same - Google Patents

Device for transporting very small quantities of liquid and method for producing same

Info

Publication number
EP1023593A1
EP1023593A1 EP99944428A EP99944428A EP1023593A1 EP 1023593 A1 EP1023593 A1 EP 1023593A1 EP 99944428 A EP99944428 A EP 99944428A EP 99944428 A EP99944428 A EP 99944428A EP 1023593 A1 EP1023593 A1 EP 1023593A1
Authority
EP
European Patent Office
Prior art keywords
carrier
layer
microstructured
plate
transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99944428A
Other languages
German (de)
French (fr)
Inventor
Wolfram Dietz
Hartmut Blum
Holger Becker
Lutz MÜLLER
Peter Dannberg
Harald Kiessling
Andreas BRÄUER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Jenoptik AG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Jenoptik Jena GmbH
Jenoptik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19846958A external-priority patent/DE19846958C2/en
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Jenoptik Jena GmbH, Jenoptik AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1023593A1 publication Critical patent/EP1023593A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/521Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive by spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Definitions

  • the invention relates to a device for transporting the smallest amounts of liquid and a method for their production, in which a carrier contains a system of microstructured cavities.
  • Such cavities are necessary, for example, for microfluidic applications in biotechnology, where precise knowledge of an enclosed liquid volume in the picoliter range is essential. If the cavities are designed as microchannels, liquids can be transported continuously electrokinetically or by pressure. Closed cavities are used to enclose precisely defined sample volumes and prevent the very small sample quantities from evaporating. Comparable structures are also necessary in the field of microfluidic displays, in which colored liquids have to be brought to precisely defined positions through microchannels.
  • the device which is essentially composed of two parts, contains microstructures in the form of microchannels in a base plate, for the sealing of which a cover plate is used.
  • the microchannels contain an enrichment channel and an electrophoretic main flow path which are arranged so that waste does not enter the main flow path but can exit the device through a separate outlet opening.
  • it is proposed to manufacture all components from plastic. Changes in the shape and cross-section of the channels can be expected in the manufacturing technology described there if width and depth dimensions of a size of 10 ⁇ m and smaller are required and if in particular the fluctuation range of these dimensions should be less than 5%.
  • Contrast-distinguishing liquids in a meandering micro-channel structure can be conveyed by micropumps. After the pumps have been switched off, a stationary pattern consisting of liquid segments is formed, which shows the display content.
  • the decisive advantage for the user is that
  • the object of the invention is to meet the increased accuracy requirements with regard to the shape and cross section of the microstructures, even in the case of cost-effective production in large numbers. Improved conditions for optical analysis techniques are also to be guaranteed.
  • the object is achieved by a device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier, in that the carrier has essentially a structure of a monolithic body except for the microstructured cavities.
  • the material of the carrier should not interact with the sample substances, it consists of a thermoplastic material.
  • the uniform structure of the carrier corresponding to a monolithic body, is produced in that the carrier is made from plate-shaped carrier parts with a connecting layer, the material composition of which in one
  • Solvent is similar to that of the plate-shaped carrier parts. Of special
  • the thickness of the layer is significantly smaller than the width and depth dimensions of the microstructured cavities. As a result, the microstructured cavities keep their, by hot stamping z. More colorful
  • the invention also relates to a method for producing a device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier.
  • a connecting layer is introduced in a dissolved state between plate-shaped parts, the material composition of which is similar to that of the plate-shaped carrier parts and the layer thickness of which is significantly less than the width and depth dimensions of the microstructured cavities.
  • the figure shows in the direction of the arrow the sequence in the manufacture of a device for sample analysis in three steps, the method of illustration being intended to emphasize the principle and therefore in no way corresponds to the actual proportions.
  • the manufacture of the device according to the invention begins with the fact that in a first step a first polymeric, plate-shaped carrier part 1 with an impression tool 2 by hot stamping z.
  • microstructures 3 can be introduced under vacuum conditions.
  • the carrier part 1 consists of polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • other materials in particular thermoplastics such as.
  • PC polycarbonate
  • PE polyethylene
  • a structural negative of the desired micro structure 3 is made of a very hard material, typically metal or silicon manufactured.
  • a step from a method which is known under the name UGA technology (LIGA process, Microelectron. Eng. 4 (1986) 35-56) is suitable for the production of metallic tools.
  • a resist layer is exposed to synchrotron radiation using a mask in an X-ray lithographic process.
  • a device can be used, for example, which is described in German patents DE 44 18 779 C1 and DE 44 24 274 C1.
  • the shape resulting after the development of the resist is galvanically filled with the intended material, so that after the resist is removed, the structural negative of the microstructure 3 is present as an impression tool 2.
  • the known methods of wet chemical etching of silicon or surface processing with reactive ion etching are suitable for producing structure negatives from silicon.
  • the molding tool 2 is heated together with the polymeric carrier part 1 to a temperature above the glass transition temperature of the polymer material.
  • the structures contained in the molding tool 2 are preferably transferred to the carrier part 1 under vacuum conditions in that the two parts are pressed against one another under high pressure.
  • the structures in the carrier part 1 solidify.
  • the microstructures 3 are retained after removal of the molding tool.
  • replication techniques such as. B. casting, UV reaction molding, injection molding or other embossing processes applicable.
  • a second carrier part 4 which consists of the same polymeric material as the carrier part 1, serves to cover the microstructures 3.
  • Microstructured cavities 5 are formed. At least some of the cavities 5 are connected to the environment via channels 6, so that filling and emptying is ensured.
  • the channels 6 can be incorporated according to the figure in the carrier part 4 or in another way, for. B. be guided laterally to the environment.
  • a layer 7 is introduced to connect them in accordance with step 2, which is in a solvent such as. B. methylacetoacrylate, contains only the material of the two support parts 1 and 4. Under certain circumstances it is also possible to use a polymer whose molecular structure is only very strong compared to that of the two carrier parts 1 and 4 resembles.
  • the thickness of the layer 7 is of particular importance, since this has a decisive influence on the functionality of the microstructured cavities 5. It is therefore important to prevent layer material from entering the microstructures 3 or from their edge regions in particular being attacked by the solvent. With channel cross sections from 10 x 10 mm to 40 x 40 mm, a layer thickness of less than 0.6 mm is required. In addition, a negative effect of capillary effects when joining the two carrier parts 1 and 4 is to be avoided. Finally, it is important that the layer 7 have a uniform distribution over the entire connecting surface. If the layer material were to accumulate in the area of the channels 6, this would otherwise penetrate into the microstructures 3.
  • the channels 6 contained in the carrier part 4, which is preferably to be coated are temporarily closed by suitably worked pins, as a result of which a sufficiently closed surface is created.
  • the layer 7 is applied after a cleaning process, in which the carrier part 1 is also included. Particles adhering to the surfaces, which destroy the homogeneity of the layer 7 and thus would prevent a complete connection of the workpieces involved, can thereby be removed to a sufficient extent.
  • the surface of the carrier part 4 is first provided centrally with a small amount of the dissolved polymer material in the order of a few microliters, for example by pipetting.
  • the required layer thickness is then set by rapid rotation of the carrier part 4 fastened on a turntable, for which the viscosity of the dissolved polymer material and the speed of rotation are mainly decisive.
  • the microstructured cavities 5 in a PMMA carrier are to have width and height dimensions in the range of 10 Om, the number of revolutions is several thousand revolutions per minute (4000-6000 rpm) with a solvent ratio of 1: 7 - 1: 1 1 PMMA required for the solvent methylacetoacrylate.
  • the thickness of the layer 7 achieved under these conditions reaches the above-mentioned range and thus significantly falls below the width and height dimensions of the microstructured cavities 5.
  • the two carrier parts 1 and 4 are connected to one another by mechanical contact, so that the microstructures 3 are delimited in a sealed manner by the carrier part 4. Tilting errors should be excluded, lateral misalignment prevented and even pressure conditions guaranteed. This can be done, for example, in a suitable device in which the two carrier parts 1 and 4 are placed on one another with an exact fit and without lateral play can be subjected to a uniform force by means of a stamp. Alternatively, the connection can also be made by a rolling step.
  • the final structure of a monolithic body 8 is formed in a third step in that the compounds broken up by the solvent in the surfaces are formed again when the solvent evaporates, the molecules in the region of a boundary layer on each surface with the molecules of the layer 7 commitments.
  • a uniform carrier is formed, which consists of only one material and has no discontinuities in the material properties at the initially existing boundary layer of the surfaces involved.
  • the introduction of the connecting layer is not limited to the method described here, although particularly good results can be achieved with it. In particular, rolling is also a very suitable method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention relates to a device for transporting very small quantities of liquid and a method for producing same, where said device comprises a support which contains a system of microstructured hollow spaces. The aim of the invention is to meet increased accuracy requirements as regards the shape and cross-section of said microstructures even when these are produced economically and in large numbers. The invention also aims to ensure improved conditions for optical analysis measurement techniques. The support, which apart from the microstructured hollow spaces has a monolithic structure, is produced by introducing a dissolved connecting layer between the plate-like support elements. The material composition of said layer is similar to that of the support elements and its thickness is significantly smaller than the width and depth of the microstructured hollow spaces. Said device is used as analytical instrument, primarily in medicine, biotechnology and pharmacology.

Description

Einrichtung zum Transport von kleinsten Flüssigkeitsmengen und Verfahren zu deren HerstellungDevice for transporting the smallest quantities of liquid and process for their production
Die Erfindung betrifft eine Einrichtung zum Transport von kleinsten Flüssigkeitsmengen und ein Verfahren zu deren Herstellung, bei denen ein Träger ein System von mikrostrukturierten Hohlräumen enthält.The invention relates to a device for transporting the smallest amounts of liquid and a method for their production, in which a carrier contains a system of microstructured cavities.
Derartige Hohlräume sind beispielsweise für mikrofluidische Anwendungen in der Biotechnologie notwendig, wo es auf die genaue Kenntnis eines umschlossenen Flüssigkeitsvolumens im Mengenbereich von Pikolitern ankommt. Sind die Hohlräume als Mikrokanäle ausgebildet, können Flüssigkeiten kontinuierlich elektrokinetisch oder durch Druck hindurch transportiert werden. Geschlossene Hohlräume werden zum Einschluß genau definierter Probenvolumina benutzt und verhindern das Verdunsten der sehr kleinen Probenmengen. Vergleichbare Strukturen sind auch im Bereich der mikrofluidischen Anzeigen notwendig, bei denen gefärbte Flüssigkeiten durch Mikrokanäle an genau definierte Positionen gebracht werden müssen.Such cavities are necessary, for example, for microfluidic applications in biotechnology, where precise knowledge of an enclosed liquid volume in the picoliter range is essential. If the cavities are designed as microchannels, liquids can be transported continuously electrokinetically or by pressure. Closed cavities are used to enclose precisely defined sample volumes and prevent the very small sample quantities from evaporating. Comparable structures are also necessary in the field of microfluidic displays, in which colored liquids have to be brought to precisely defined positions through microchannels.
Eine Vielzahl bekannt gewordener technischer Lösungen unterstreicht, daß die Mikrostrukturierung analytischer Instrumente zum vorwiegenden Einsatz in der Medizin, der Biotechnologie und Pharmakologie in den letzten Jahren in erheblichem Maße an Bedeutung gewonnen hat.A large number of technical solutions that have become known underlines that the microstructuring of analytical instruments for predominantly use in medicine, biotechnology and pharmacology has gained considerable importance in recent years.
Für die ursprünglich in Glaskapillaren durchgeführten Analysen haben sich in zunehmendem Maße plattenförmige mikrofluidische Bauelemente mit sich verzweigenden Kanalstrukturen durchgesetzt. Wurden die Kanalstrukturen zunächst durch Ätzen in Siliziumwafer eingebracht, wie es aus der Halbleitertechnik zur Herstellung integrierter Schaltkreise bekannt ist, will man nunmehr dazu übergehen, Kunststoffe einzusetzen. Die Motivation für deren Verwendung ist nicht nur durch die preiswerte Fabrikation bestimmt, sondern auch die vorteilhaften Materialeigenschaften wie optische Transparenz, Biokompatibilität und niedrige Fluoreszenz in bestimmten Wellenlängenbereichen.For the analyzes originally carried out in glass capillaries, plate-shaped microfluidic components with branching channel structures have become increasingly popular. If the channel structures were first introduced into the silicon wafer by etching, as is known from semiconductor technology for the production of integrated circuits, the aim now is to use plastics. The motivation for their use is not only determined by the inexpensive fabrication, but also the advantageous material properties such as optical transparency, biocompatibility and low fluorescence in certain wavelength ranges.
Die als Flüssigkeiten in die Kanäle eingebrachten und an Kanalverzweigungen miteinander reagierenden Substanzen sollen in einem fortlaufenden Kanalbereich mit optischen Mitteln analysiert werden. Da zu diesem Zweck definierte Querschnittsabmessungen für die Kanäle im Bereich von bisher 10 Om bis 100 Om erforderlich sind, werden hohe Anforderungen an die Herstellung derartiger Produkte gestellt. So ist es nach dem US-Patent 5 376 252 für ein mikrofluidisches Bauelement bekannt, zwischen zwei ebene formstabile Grundschichten eine elastische Zwischenschicht zu legen, die ein durch Formung hergestelltes mikrostrukturiertes Kanalsystem enthält. Ein solcher Aufbau besitzt den Nachteil, daß sich Verformungen der elastischen Zwischenschicht auf das gesamte Bauelement auswirken. Dosier- und Dichtheitsprobleme sind Folgeerscheinungen, die die Verwendbarkeit negativ beeinflussen. Eine weitere bekannte Lösung in Form einer integrierten Einrichtung zu elektrophoretischen Zwecken wird in der US 5 770 029 beschrieben. Die im wesentlichen aus zwei Teilen zusammengesetzte Einrichtung enthält in einer Grundplatte MikroStrukturen in Form von Mikrokanälen, zu deren Abdichtung eine Deckplatte verwendet wird. Die Mikrokanäle enthalten einen Anreicherungskanal und einen elektrophoretischen Hauptflußweg, die so angeordnet sind, daß Abfallstoffe nicht in den Hauptflußweg gelangen, sondern die Einrichtung durch eine separate Auslaßöffnung verlassen können. Als kostengünstige Variante für den einmaligen Gebrauch wird vorgeschlagen, alle Bestandteile aus Plastik zu fertigen. Veränderungen der Form und des Querschnitts der Kanäle sind bei der dort beschriebenen Herstellungstechnik dann zu erwarten, wenn Breiten- und Tiefenabmessungen in einer Größe von 10 Om und kleiner gefordert sind und wenn insbesondere die Schwankungsbreite dieser Abmessungen weniger als 5 % betragen soll.The substances introduced into the channels as liquids and reacting with one another at channel branches are to be analyzed in a continuous channel area using optical means. Since defined cross-sectional dimensions for the channels in the range from previously 10 Om to 100 Om are required for this purpose, high demands are placed on the production of such products. For example, according to US Pat. No. 5,376,252 for a microfluidic component, it is known to place an elastic intermediate layer between two planar, dimensionally stable base layers, which layer contains a microstructured channel system produced by molding. Such a construction has the disadvantage that deformations of the elastic intermediate layer affect the entire component. Dosing and tightness problems are sequelae that negatively affect usability. Another known solution in the form of an integrated device for electrophoretic purposes is described in US Pat. No. 5,770,029. The device, which is essentially composed of two parts, contains microstructures in the form of microchannels in a base plate, for the sealing of which a cover plate is used. The microchannels contain an enrichment channel and an electrophoretic main flow path which are arranged so that waste does not enter the main flow path but can exit the device through a separate outlet opening. As an inexpensive variant for single use, it is proposed to manufacture all components from plastic. Changes in the shape and cross-section of the channels can be expected in the manufacturing technology described there if width and depth dimensions of a size of 10 μm and smaller are required and if in particular the fluctuation range of these dimensions should be less than 5%.
Auch im Anwendungsbereich mikrofluidischer Anzeigen werden hohe Anforderungen an die Herstellungstechnik für die graphische Anzeigeeinrichtung gestellt, in der übereinstimmend mit dem Bildinhalt mindestens zwei, sich imIn the field of microfluidic displays, too, high demands are placed on the production technology for the graphic display device, in which, in accordance with the image content, at least two are located in the
Kontrast unterscheidende Flüssigkeiten in einer mäanderförmigen Mikrokanalstruktur durch Mikropumpen gefördert werden. Nach dem Abschalten der Pumpen bildet sich ein aus Flüssigkeitssegmenten bestehendes stationäres Muster, das den Anzeigeninhalt wiedergibt. Entscheidender Vorteil für den Anwender ist dieContrast-distinguishing liquids in a meandering micro-channel structure can be conveyed by micropumps. After the pumps have been switched off, a stationary pattern consisting of liquid segments is formed, which shows the display content. The decisive advantage for the user is that
Verfügbarkeit einer alphanumerischen Anzeige guter Sichtbarkeit mit niedrigerAvailability of an alphanumeric display of good visibility with low
Stromaufnahme im Vergleich zu LCD-Anzeigen, da die Darstellung der Anzeige im stationären Zustand stromlos erfolgt. Ist eine Veränderung des Bildinhaltes erforderlich, wird der alte Bildinhalt durch den neuen Bildinhalt verdrängt und in einen Separator geschoben, an dessen Ausgängen die entmischten Flüssigkeiten den jeweiligen Mikropumpen wieder zur Verfügung stehen. Das Prinzip erfordert die Verwendung von optisch transparenten Kunststoffmaterialien, mit Mikrokanälen in der Größe von wenigen 10 μm. Um eine korrekte Darstellung der Symbole mittels der beiden Flüssigkeiten zu erzielen, werden an diese Mikrokanäle besondere Anforderungen hinsichtlich der Genauigkeit und Reproduzierbarkeit bei der Herstellung gestellt. Dies betrifft insbesondere die Reproduzierbarkeit und Konstanz der Kanalquerschnitte, um die Position eines Flüssigkeitssegments genau zu definieren, sowie eine extrem niedrige Oberflächenrauhigkeit, um den Druckabfall in dem Mikrokanal möglichst klein zu halten.Current consumption compared to LCD displays, since the display is shown without current when stationary. If a change in the image content is necessary, the old image content is displaced by the new image content and pushed into a separator, at the outputs of which the separated liquids are again available to the respective micropumps. The principle requires the use of optically transparent plastic materials with microchannels the size of a few 10 μm. In order to achieve a correct representation of the symbols by means of the two liquids, special demands are placed on these microchannels with regard to the accuracy and reproducibility during production. This applies in particular to the reproducibility and constancy of the channel cross sections in order to precisely define the position of a liquid segment, and to an extremely low surface roughness in order to keep the pressure drop in the microchannel as small as possible.
Aufgabe der Erfindung ist es, den erhöhten Genauigkeitsanforderungen in Bezug auf Form und Querschnitt der MikroStrukturen auch bei einer kostengünstigen Produktion in großen Stückzahlen gerecht zu werden. Außerdem sollen verbesserte Bedingungen für optische Analysetechniken gewährleistet werden.The object of the invention is to meet the increased accuracy requirements with regard to the shape and cross section of the microstructures, even in the case of cost-effective production in large numbers. Improved conditions for optical analysis techniques are also to be guaranteed.
Gemäß der Erfindung wird die Aufgabe durch eine Einrichtung zum Transport von kleinsten Flüssigkeitsmengen, die in einem Träger ein System von mikrostrukturierten Hohlräumen enthält, dadurch gelöst, daß der Träger bis auf die mikrostrukturierten Hohlräume im wesentlichen eine Struktur eines monolithischen Körpers aufweist.According to the invention, the object is achieved by a device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier, in that the carrier has essentially a structure of a monolithic body except for the microstructured cavities.
Da das Material des Trägers nicht in Wechselwirkung mit den Probensubstanzen treten soll, besteht dieser aus einem thermoplastischen Werkstoff.Since the material of the carrier should not interact with the sample substances, it consists of a thermoplastic material.
Die einheitliche, einem monolithischen Körper entsprechende Struktur des Trägers wird dadurch erzeugt, daß der Träger aus plattenförmigen Trägerteilen mit einer verbindenden Schicht hergestellt ist, deren stoffliche Zusammensetzung in einemThe uniform structure of the carrier, corresponding to a monolithic body, is produced in that the carrier is made from plate-shaped carrier parts with a connecting layer, the material composition of which in one
Lösungsmittel denen der plattenförmigen Trägerteile gleicht. Von besondererSolvent is similar to that of the plate-shaped carrier parts. Of special
Bedeutung dabei ist, daß die Dicke der Schicht die Breiten- und Tiefenabmessungen der mikrostrukturierten Hohlräume wesentlich unterschreitet. Dadurch behalten die mikrostrukturierten Hohlräume ihre, durch ein Heißprägen z. B. unterIt is important that the thickness of the layer is significantly smaller than the width and depth dimensions of the microstructured cavities. As a result, the microstructured cavities keep their, by hot stamping z. More colorful
Vakuumbedingungen hochgenau erzeugten Parameter bei. Kantenverrundungen,Vacuum conditions generated with high precision parameters. Edge rounding,
Materialverdichtung, Verbiegungen und ähnliche Veränderungen werden ausgeschlossen und so das Strömungsverhalten der in die Hohlräume eingefülltenMaterial compression, bending and similar changes are excluded and so the flow behavior of the filled in the cavities
Flüssigkeiten positiv beeinflußt. Dadurch, daß die Schicht in gelöstem Zustand zwischen die plattenförmigen Trägerteile eingebracht ist, verbindet sich diese nach der Verflüchtigung des Lösungsmittels reaktiv mit den Oberflächen der beiden plattenförmigen Teile. Selbst elektronenmikroskopisch ist an den Verbindungsflächen keine Kantenstruktur zu erkennen, so daß ein derart hergestellter Träger bis auf die mikrostrukturierten Hohlräume die Struktur eines monolithischen Körpers besitzt. Das wirkt sich besonders positiv auf die Genauigkeit von Messungen an umschlossenen Proben aus, weil der Träger keine Fremdmaterialien und keine Sprünge in den Materialeigenschaften enthält. Beeinflussungen durch eine räumliche Variation von physikalischen Parametern wie z.B. Brechnungsindex, Absorptionskoeffizient und Wärmeleitfähigkeitskoeffizient werden ausgeschlossen.Liquids positively influenced. Characterized in that the layer is introduced in the dissolved state between the plate-shaped carrier parts, this connects reactively after the volatilization of the solvent with the surfaces of the two plate-shaped parts. Even by electron microscopy, no edge structure can be seen on the connecting surfaces, so that a carrier produced in this way has the structure of a monolithic body except for the microstructured cavities. This has a particularly positive effect on the accuracy of measurements on enclosed samples because the carrier contains no foreign materials and no jumps in the material properties. Influences due to a spatial variation of physical parameters such as refractive index, absorption coefficient and thermal conductivity coefficient are excluded.
Gegenstand der Erfindung ist außerdem ein Verfahren zur Herstellung einer Einrichtung zum Transport von kleinsten Flüssigkeitsmengen, die in einem Träger ein System von mikrostrukturierten Hohlräumen enthält. Zur Herausbildung einer, einem monolithischen Körper entsprechenden Struktur des Trägers wird zwischen plattenförmige Teile eine verbindende Schicht in gelöstem Zustand eingebracht, deren stoffliche Zusammensetzung denen der plattenförmigen Trägerteile gleicht und deren Schichtdicke die Breiten- und Tiefenabmessungen der mikrostrukturierten Hohlräume wesentlich unterschreitet.The invention also relates to a method for producing a device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier. To form a structure of the carrier corresponding to a monolithic body, a connecting layer is introduced in a dissolved state between plate-shaped parts, the material composition of which is similar to that of the plate-shaped carrier parts and the layer thickness of which is significantly less than the width and depth dimensions of the microstructured cavities.
Die Erfindung soll nachstehend anhand der schematischen Zeichnung näher erläutert werden.The invention will be explained below with reference to the schematic drawing.
Die Figur zeigt in Pfeilrichtung den Ablauf bei der Herstellung einer Einrichtung zur Probenanalyse in drei Schritten, wobei die Darstellungsweise das Prinzip hervorheben soll und deshalb keineswegs den tatsächlichen Größenverhältnissen entspricht.The figure shows in the direction of the arrow the sequence in the manufacture of a device for sample analysis in three steps, the method of illustration being intended to emphasize the principle and therefore in no way corresponds to the actual proportions.
Entsprechend der Figur beginnt die Herstellung der erfindungsgemäßen Einrichtung damit, daß in einem ersten Schritt ein erstes polymeres, plattenförmiges Trägerteil 1 mit einem Abformwerkzeug 2 durch Heißprägen z. B. unter Vakuumbedingungen MikroStrukturen 3 eingebracht werden. Das Trägerteil 1 besteht hier aus Polymethylmethacrylat (PMMA). Es können aber auch andere Materialien, insbesondere thermoplastische Kunststoffe wie z. B. Polycarbonat (PC) oder Polyethylen (PE) verwendet werden. Zunächst wird mit mikrotechnischen Methoden ein Strukturnegativ der gewünschten MikroStruktur 3 aus einem sehr harten Material, typischerweise Metall oder Silizium hergestellt. Für die Herstellung metallischer Werkzeuge ist beispielsweise ein Schritt aus einer Methode geeignet, die unter dem Namen UGA-Technik (LIGA process, Microelectron. Eng. 4 (1986) 35 - 56) bekannt geworden ist. Eine Resistschicht wird über eine Maske in einem röntgenlithographischen Verfahren mit Synchrotronstrahlung belichtet. Dazu kann beispielsweise eine Einrichtung verwendet werden, die in den deutschen Patentschriften DE 44 18 779 C1 und DE 44 24 274 C1 beschrieben ist. Die nach der Entwicklung des Resists entstehende Form wird galvanisch mit dem vorgesehenen Material aufgefüllt, so daß nach dem Entfernen des Resists das Strukturnegativ der MikroStruktur 3 als Abformwerkzeug 2 vorliegt. Zur Herstellung von Strukturnegativen aus Silizium eignen sich beispielsweise die bekannten Methoden des naßchemischen Ätzens von Silizium oder eine Oberflächenbearbeitung mit reaktivem lonenätzen.According to the figure, the manufacture of the device according to the invention begins with the fact that in a first step a first polymeric, plate-shaped carrier part 1 with an impression tool 2 by hot stamping z. B. microstructures 3 can be introduced under vacuum conditions. The carrier part 1 consists of polymethyl methacrylate (PMMA). However, other materials, in particular thermoplastics such as. As polycarbonate (PC) or polyethylene (PE) can be used. First, using micro-technical methods, a structural negative of the desired micro structure 3 is made of a very hard material, typically metal or silicon manufactured. For example, a step from a method which is known under the name UGA technology (LIGA process, Microelectron. Eng. 4 (1986) 35-56) is suitable for the production of metallic tools. A resist layer is exposed to synchrotron radiation using a mask in an X-ray lithographic process. For this purpose, a device can be used, for example, which is described in German patents DE 44 18 779 C1 and DE 44 24 274 C1. The shape resulting after the development of the resist is galvanically filled with the intended material, so that after the resist is removed, the structural negative of the microstructure 3 is present as an impression tool 2. For example, the known methods of wet chemical etching of silicon or surface processing with reactive ion etching are suitable for producing structure negatives from silicon.
Unter Verwendung einer Abformungseinrichtung für mikrosystemtechnische Strukturen, z. B. nach der DE 196 48 844 C1 , wird das Abformwerkzeug 2 zusammen mit dem polymeren Trägerteil 1 auf eine Temperatur oberhalb der Glasübergangstemperatur des Polymerwerkstoffes erhitzt. Die Übertragung der in dem Abformwerkzeug 2 enthaltenen Strukturen auf das Trägerteil 1 erfolgt vorzugsweise unter Vakuumbedingungen, indem beide Teile unter hohem Druck gegeneinander gepreßt werden. Durch Abkühlung des Trägerteils 1 und des Abformwerkzeuges 2 noch im Zustand ihres engen Kontaktes auf eine Temperatur unterhalb der Glasübergangstemperatur des Polymerwerkstoffes verfestigen sich die Strukturen im Trägerteil 1 . Dadurch bleiben die MikroStrukturen 3 nach Entfernen des Abformwerkzeuges erhalten. Selbstverständlich sind auch Replikationstechniken wie z. B. Gießen, UV-Reaktionsgießen, Spritzgießen oder andere Prägeverfahren anwendbar.Using an impression device for microsystem structures, e.g. B. according to DE 196 48 844 C1, the molding tool 2 is heated together with the polymeric carrier part 1 to a temperature above the glass transition temperature of the polymer material. The structures contained in the molding tool 2 are preferably transferred to the carrier part 1 under vacuum conditions in that the two parts are pressed against one another under high pressure. By cooling the carrier part 1 and the molding tool 2 while they are still in close contact to a temperature below the glass transition temperature of the polymer material, the structures in the carrier part 1 solidify. As a result, the microstructures 3 are retained after removal of the molding tool. Of course, replication techniques such as. B. casting, UV reaction molding, injection molding or other embossing processes applicable.
Eine zweites Trägerteil 4, das aus dem gleichen polymerem Werkstoff wie das Trägerteil 1 besteht, dient dazu, die MikroStrukturen 3 abzudecken. Es entstehen mikrostrukturierte Hohlräume 5. Zumindest ein Teil der Hohlräume 5 ist über Kanäle 6 mit der Umgebung verbunden, so daß ein Befüllen und ein Entleeren gewährleistet ist. Die Kanäle 6 können entsprechend der Figur in das Trägerteil 4 eingearbeitet oder in anderer Weise, z. B. seitlich an die Umgebung geführt sein. Zwischen beide Trägerteile 1 und 4 wird zu deren Verbindung entsprechend dem Schritt 2 eine Schicht 7 eingebracht, die in einem Lösungsmittel, wie z. B. Methylacetoacrylat, ausschließlich das Material der beiden Trägerteile 1 und 4 enthält. Unter Umständen ist es auch möglich, ein Polymer zu verwenden, das in seiner Molekülstruktur derjenigen der beiden Trägerteile 1 und 4 lediglich sehr stark ähnelt. Von besonderer Bedeutung ist die Dicke der Schicht 7, da hierdurch die Funktionalität der mikrostrukturierten Hohlräume 5 entscheidend beeinflußt wird. So gilt es zu verhindern, daß Schichtmaterial in die MikroStrukturen 3 eintritt oder daß insbesondere deren Kantenbereiche durch das Lösungsmittel angegriffen werden. Bei Kanalquerschnitten von 10 x 10 mm bis 40 x 40 mm ist eine Schichtdicke von weniger als 0,6 mm erforderlich. Zusätzlich ist eine negative Auswirkung von Kapillareffekten beim Fügen der beiden Trägerteile 1 und 4 zu vermeiden. Schließlich ist es wichtig, daß die Schicht 7 eine gleichmäßige Verteilung auf der gesamten verbindenden Oberfläche aufweist. Bei einer Ansammlung des Schichtmaterials im Bereich der Kanäle 6 würde dieses sonst in die MikroStrukturen 3 eindringen. Deshalb werden die in dem vorzugsweise zu beschichtenden Trägerteil 4 enthaltenen Kanäle 6 zwischenzeitlich durch passend gearbeitete Stifte verschlossen, wodurch eine ausreichend geschlossene Oberfläche entsteht. Das Aufbringen der Schicht 7 erfolgt nach einem Reinigungsprozeß, in den auch das Trägerteil 1 einbezogen wird. An den Oberflächen anhaftende Partikel, die die Homogenität der Schicht 7 zerstören und somit eine vollständige Verbindung der beteiligten Werkstücke verhindern würden, lassen sich dadurch in ausreichendem Maße entfernen.A second carrier part 4, which consists of the same polymeric material as the carrier part 1, serves to cover the microstructures 3. Microstructured cavities 5 are formed. At least some of the cavities 5 are connected to the environment via channels 6, so that filling and emptying is ensured. The channels 6 can be incorporated according to the figure in the carrier part 4 or in another way, for. B. be guided laterally to the environment. Between the two carrier parts 1 and 4, a layer 7 is introduced to connect them in accordance with step 2, which is in a solvent such as. B. methylacetoacrylate, contains only the material of the two support parts 1 and 4. Under certain circumstances it is also possible to use a polymer whose molecular structure is only very strong compared to that of the two carrier parts 1 and 4 resembles. The thickness of the layer 7 is of particular importance, since this has a decisive influence on the functionality of the microstructured cavities 5. It is therefore important to prevent layer material from entering the microstructures 3 or from their edge regions in particular being attacked by the solvent. With channel cross sections from 10 x 10 mm to 40 x 40 mm, a layer thickness of less than 0.6 mm is required. In addition, a negative effect of capillary effects when joining the two carrier parts 1 and 4 is to be avoided. Finally, it is important that the layer 7 have a uniform distribution over the entire connecting surface. If the layer material were to accumulate in the area of the channels 6, this would otherwise penetrate into the microstructures 3. For this reason, the channels 6 contained in the carrier part 4, which is preferably to be coated, are temporarily closed by suitably worked pins, as a result of which a sufficiently closed surface is created. The layer 7 is applied after a cleaning process, in which the carrier part 1 is also included. Particles adhering to the surfaces, which destroy the homogeneity of the layer 7 and thus would prevent a complete connection of the workpieces involved, can thereby be removed to a sufficient extent.
Die Oberfläche des Trägerteiles 4 wird zunächst zentrisch mit einer kleinen Menge des gelösten Polymerwerkstoffes in einer Größenordnung von einigen Mikrolitem, z.B. durch Pipettieren versehen. Anschließend erfolgt die Einstellung der erforderlichen Schichtdicke durch schnelle Rotation des auf einem Drehtisch befestigten Trägerteiles 4, wofür die Viskosität des gelösten Polymerwerkstoffes und die Rotationsgeschwindigkeit hauptsächlich bestimmend sind. Sollen beispielsweise die mikrostrukturierten Hohlräume 5 in einem PMMA-Träger Breiten- und Höhenabmessungen im Bereich von 10 Om aufweisen, ist eine Umdrehungszahl von mehreren Tausend Umdrehungen pro Minute (4000-6000 U/min) bei einem Lösungsmittelverhältnis von 1 :7 - 1 :1 1 PMMA zum Lösungsmittel Methylacetoacrylat erforderlich. Die unter diesen Bedingungen erzielte Dicke der Schicht 7 erreicht den o. g. Bereich und unterschreitet somit die Breiten- und Höhenabmessungen der mikrostrukturierten Hohlräume 5 wesentlich. Unmittelbar nachdem die Schicht 7 aufgebracht ist, werden beide Trägerteile 1 und 4 miteinander durch mechanischen Kontakt verbunden, so daß die MikroStrukturen 3 durch das Trägerteil 4 abgedichtet begrenzt werden. Dabei sollen Verkippungsfehler ausgeschlossen, lateraler Versatz unterbunden und gleichmäßige Druckverhältnisse garantiert werden. Dies kann beispielsweise in einer geeigneten Vorrichtung geschehen, in der die beiden Trägerteile 1 und 4 paßgenau und ohne laterales Spiel aufeinander gelegt und mittels eines Stempels einer gleichmäßigen Kraft ausgesetzt werden können. Alternativ kann die Verbindung auch durch einen Walzschritt erfolgen. Für die dauerhafte und homogene Verbindung ist insbesondere ein schnelles Zusammenfügen innerhalb von 20 - 60 s von Bedeutung, um ein vorzeitiges Verdunsten des Lösungsmittels zu verhindern. Ansonsten wäre eine definierte und langzeitstabile Verbindung beider Werkstücke mehr oder weniger stark beeinträchtigt. Danach wird das Verdunsten des Lösungsmittels bei Zimmertemperatur abgewartet. Selbstverständlich kann die Bearbeitungszeit durch eine Temperaturerhöhung oder durch den Einsatz eines Trockenofens mit oder ohne Vakuumunterstützung verkürzt werden.The surface of the carrier part 4 is first provided centrally with a small amount of the dissolved polymer material in the order of a few microliters, for example by pipetting. The required layer thickness is then set by rapid rotation of the carrier part 4 fastened on a turntable, for which the viscosity of the dissolved polymer material and the speed of rotation are mainly decisive. For example, if the microstructured cavities 5 in a PMMA carrier are to have width and height dimensions in the range of 10 Om, the number of revolutions is several thousand revolutions per minute (4000-6000 rpm) with a solvent ratio of 1: 7 - 1: 1 1 PMMA required for the solvent methylacetoacrylate. The thickness of the layer 7 achieved under these conditions reaches the above-mentioned range and thus significantly falls below the width and height dimensions of the microstructured cavities 5. Immediately after the layer 7 is applied, the two carrier parts 1 and 4 are connected to one another by mechanical contact, so that the microstructures 3 are delimited in a sealed manner by the carrier part 4. Tilting errors should be excluded, lateral misalignment prevented and even pressure conditions guaranteed. This can be done, for example, in a suitable device in which the two carrier parts 1 and 4 are placed on one another with an exact fit and without lateral play can be subjected to a uniform force by means of a stamp. Alternatively, the connection can also be made by a rolling step. For the permanent and homogeneous connection, quick assembly within 20 - 60 s is particularly important to prevent the solvent from evaporating prematurely. Otherwise a defined and long-term stable connection of both workpieces would be more or less impaired. Then the solvent evaporates at room temperature. Of course, the processing time can be shortened by increasing the temperature or by using a drying oven with or without vacuum support.
Die endgültige Struktur eines monolithischen Körpers 8 bildet sich in einem dritten Schritt dadurch heraus, daß die durch das Lösungsmittel in den Oberflächen aufgebrochenen Verbindungen beim Verdunsten des Lösungsmittels wieder neu gebildet werden, wobei die Moleküle im Bereich einer Grenzschicht auf jeder Oberfläche mit den Molekülen der Schicht 7 Bindungen eingehen.The final structure of a monolithic body 8 is formed in a third step in that the compounds broken up by the solvent in the surfaces are formed again when the solvent evaporates, the molecules in the region of a boundary layer on each surface with the molecules of the layer 7 commitments.
Nach dem Verflüchtigen des Lösungsmittel entsteht ein einheitlicher Träger, der nur aus einem Material besteht und keine Unstetig keiten der Materialeigenschaften an der zunächst vorhandenen Grenzschicht der beteiligten Oberflächen besitzt. Das Einbringen der verbindenden Schicht beschränkt sich nicht auf das hier beschriebene Verfahren, obwohl damit besonders gute Ergebnisse zu erzielen sind. Insbesondere ist alternativ auch das Aufwalzen eine sehr gut geeignete Methode. After the solvent has evaporated, a uniform carrier is formed, which consists of only one material and has no discontinuities in the material properties at the initially existing boundary layer of the surfaces involved. The introduction of the connecting layer is not limited to the method described here, although particularly good results can be achieved with it. In particular, rolling is also a very suitable method.

Claims

Patentansprüche claims
1. Einrichtung zum Transport von kleinsten Flüssigkeitsmengen, die in einem Träger ein System von mikrostrukturierten Hohlräumen enthält, dadurch gekennzeichnet, daß der Träger bis auf die mikrostrukturierten Hohlräume (5) im wesentlichen eine Struktur eines monolithischen Körpers aufweist.1. Device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier, characterized in that the carrier has a structure of a monolithic body except for the microstructured cavities (5).
2. Einrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß der Träger aus einem thermoplastischen Werkstoff besteht.2. Device according to claim 1, characterized in that the carrier consists of a thermoplastic material.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Träger aus plattenförmigen Trägerteilen (1 , 4) mit einer verbindenden Schicht (7) hergestellt ist, deren stoffliche Zusammensetzung in einem Lösungsmittel denen der plattenförmigen Trägerteile (1 , 4) gleicht und deren Schichtdicke die Breiten- und Tiefenabmessungen der mikrostrukturierten Hohlräume (5) wesentlich unterschreitet.3. Device according to claim 2, characterized in that the carrier is made of plate-shaped carrier parts (1, 4) with a connecting layer (7) whose material composition in a solvent is the same as that of the plate-shaped carrier parts (1, 4) and their layer thickness the width and depth dimensions of the microstructured cavities (5) fall significantly below.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die mikrostrukturierten Hohlräume (5) durch Heißprägen unter Vakuumbedingungen zumindest in ein plattenförmiges Trägerteil (1) eingeformt sind.4. Device according to claim 3, characterized in that the microstructured cavities (5) are formed by hot stamping under vacuum conditions at least in a plate-shaped carrier part (1).
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die mikrostrukturierten Hohlräume (5) als Kanäle ausgebildet sind, von denen Teile aus dem Träger herausgeführt sind.5. Device according to claim 4, characterized in that the microstructured cavities (5) are designed as channels, of which parts are led out of the carrier.
6 Verfahren zur Herstellung einer Einrichtung zum Transport von kleinsten Flüssigkeitsmengen, die in einem Träger ein System von mikrostrukturierten Hohlräumen enthält, dadurch gekennzeichnet, daß zur Herausbildung einer, einem monolithischen Körper entsprechenden Struktur des Trägers zwischen plattenförmige Trägerteile (1 , 4) eine verbindende Schicht (7) in gelöstem Zustand eingebracht wird, deren stoffliche Zusammensetzung denen der plattenförmigen Trägerteile (1 , 4) gleicht und deren Schichtdicke die Breiten- und Tiefenabmessungen der mikrostrukturierten Hohlräume (5) wesentlich unterschreitet. 6 A process for producing a device for transporting the smallest amounts of liquid, which contains a system of microstructured cavities in a carrier, characterized in that a connecting layer (1, 4) is formed between plate-shaped carrier parts (1, 4) to form a structure of the carrier corresponding to a monolithic body. 7) is introduced in a dissolved state, the material composition of which is the same as that of the plate-shaped carrier parts (1, 4) and the layer thickness of which is significantly less than the width and depth dimensions of the microstructured cavities (5).
EP99944428A 1998-08-19 1999-08-18 Device for transporting very small quantities of liquid and method for producing same Withdrawn EP1023593A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19837529 1998-08-19
DE19837529 1998-08-19
DE19846958 1998-10-12
DE19846958A DE19846958C2 (en) 1998-08-19 1998-10-12 Method for manufacturing a device for the transport of very small quantities of liquid
PCT/EP1999/006044 WO2000011461A1 (en) 1998-08-19 1999-08-18 Device for transporting very small quantities of liquid and method for producing same

Publications (1)

Publication Number Publication Date
EP1023593A1 true EP1023593A1 (en) 2000-08-02

Family

ID=26048251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99944428A Withdrawn EP1023593A1 (en) 1998-08-19 1999-08-18 Device for transporting very small quantities of liquid and method for producing same

Country Status (4)

Country Link
EP (1) EP1023593A1 (en)
JP (1) JP2002523741A (en)
CN (1) CN1275202A (en)
WO (1) WO2000011461A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021821B3 (en) * 2004-04-30 2005-12-08 Siemens Ag Process for the preparation of a solution, associated arrangement and applications of this arrangement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
SE470347B (en) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Microstructure for fluid flow systems and process for manufacturing such a system
SE9100392D0 (en) * 1991-02-08 1991-02-08 Pharmacia Biosensor Ab A METHOD OF PRODUCING A SEALING MEANS IN A MICROFLUIDIC STRUCTURE AND A MICROFLUIDIC STRUCTURE COMPRISING SUCH SEALING MEANS
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
DE19524795C2 (en) * 1995-07-07 1997-06-12 Danfoss As Chemical analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0011461A1 *

Also Published As

Publication number Publication date
JP2002523741A (en) 2002-07-30
CN1275202A (en) 2000-11-29
WO2000011461A1 (en) 2000-03-02

Similar Documents

Publication Publication Date Title
EP1201304B1 (en) Microstructured platform for examining a liquid
DE60125598T2 (en) METHOD FOR PRODUCING A MICROFLUIDITY STRUCTURE, IN PARTICULAR A "BIOCHIP", AND STRUCTURE PRODUCED THEREFOR
DE10227593B4 (en) Flow circuit microdevices
DE60300980T2 (en) HOLE MICRO MIXER
DE60105979T2 (en) METHOD FOR PRODUCING MICROSTRUCTURES WITH DIFFERENT SURFACE PROPERTIES IN A MULTILAYER BODY BY PLASMA SETS
DE10228767B4 (en) Micro device and method for component separation in a fluid
DE60103924T2 (en) MICROFLUID FLOW RATE DEVICE
EP2576065B1 (en) Flow cell with cavity and diaphragm
DE69930254T2 (en) MICROSTRUCTIVE ENGINEERING AND METHOD FOR THE PRODUCTION THEREOF
DE602004011655T2 (en) Preparation of Microstructured Elements
DE10060433B4 (en) Method for producing a fluid component, fluid component and analysis device
WO2001021384A1 (en) Method for linking two plastic work pieces without using foreign matter
Haraldsson et al. 3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP)
WO2001098759A1 (en) Integrated optical waveguides for microfluidic analysis systems
DE10309583A1 (en) Microplate with an integrated microfluidic system for parallel processing of tiny fluid volumes
DE19948087A1 (en) Structured sample carrier and method for its production
DE102019107090A1 (en) Microstructure with thermoplastic embossing lacquer layer and manufacturing process
EP2199050B1 (en) Method and device for producing a moulded part with microstructures
DE19846958C2 (en) Method for manufacturing a device for the transport of very small quantities of liquid
EP1023593A1 (en) Device for transporting very small quantities of liquid and method for producing same
DE102013113241B4 (en) Method for embossing structures
EP1422192B1 (en) Process to fabricate a Tool Insert for Injection Moulding a two-level microstructured Piece
EP2525225B1 (en) Device and method for examining differentiation of cells
DE102016015587B4 (en) Substrate and its production
DE19917327C2 (en) Metering device and method for metering and transferring small amounts of a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

Owner name: JENOPTIK AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060131