EP0973137B1 - Motion detector - Google Patents

Motion detector Download PDF

Info

Publication number
EP0973137B1
EP0973137B1 EP98112460A EP98112460A EP0973137B1 EP 0973137 B1 EP0973137 B1 EP 0973137B1 EP 98112460 A EP98112460 A EP 98112460A EP 98112460 A EP98112460 A EP 98112460A EP 0973137 B1 EP0973137 B1 EP 0973137B1
Authority
EP
European Patent Office
Prior art keywords
image sensor
motion detector
detector according
evaluation
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98112460A
Other languages
German (de)
French (fr)
Other versions
EP0973137A1 (en
Inventor
Martin Dr. Rechsteiner
Hansjürg Dr. Mahler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to DK98112460T priority Critical patent/DK0973137T3/en
Priority to DE59806868T priority patent/DE59806868D1/en
Priority to ES98112460T priority patent/ES2190558T3/en
Priority to EP98112460A priority patent/EP0973137B1/en
Priority to IL13019199A priority patent/IL130191A/en
Priority to US09/346,515 priority patent/US6246321B1/en
Publication of EP0973137A1 publication Critical patent/EP0973137A1/en
Application granted granted Critical
Publication of EP0973137B1 publication Critical patent/EP0973137B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19602Image analysis to detect motion of the intruder, e.g. by frame subtraction
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19602Image analysis to detect motion of the intruder, e.g. by frame subtraction
    • G08B13/19604Image analysis to detect motion of the intruder, e.g. by frame subtraction involving reference image or background adaptation with time to compensate for changing conditions, e.g. reference image update on detection of light level change
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19639Details of the system layout
    • G08B13/19641Multiple cameras having overlapping views on a single scene
    • G08B13/19643Multiple cameras having overlapping views on a single scene wherein the cameras play different roles, e.g. different resolution, different camera type, master-slave camera
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds

Definitions

  • the present invention relates to a motion detector, with two sensors and with an evaluation electronics connected to this.
  • PIR sensors Passive infrared (PIR) sensors are mainly used in motion detectors today, which are very inexpensive, but do not allow spatial resolution and the objects with a low temperature contrast to their surroundings only with Can detect difficulties. Also Doppler detectors or motion detectors PIR and Doppler principle do not allow spatial resolution. This very property is required today because the motion detector can not only detect whether an object is in the monitored room, but also where in the room the object is in which direction it is moving and by what type or what class of object it is.
  • thermal image sensors these are imaging sensors in the area of thermal radiation, those in the wavelength range work from about 5 to 15 microns, fails because they are still so expensive today are that sufficiently high-resolution sensors are not used for motion detectors can be. There are also high quality lenses for thermal imaging sensors the desired high resolution very expensive.
  • thermal imaging sensors in the range of approximately are used 4 by 4 up to 32 by 32 pixels, then objects cannot be analyzed with sufficient accuracy become. For example, the resolution is too low to distinguish humans from animals to be able to.
  • thermal imaging sensors with low temperature contrast So at an ambient temperature around 30 ° C, only a low detection sensitivity.
  • image sensors are also known, these are imaging sensors in the visible and near infrared, which is in the wavelength range from about 0.4 to 1.8 ⁇ m work. These image sensors are very inexpensive today and therefore also relative widely used, but their use is dependent on the presence of a certain minimum Brightness bound. This means that such sensors see nothing in the dark and used in such conditions only in combination with additional lighting can be. In addition, the signal of the image sensor must always be evaluated the entire image can be edited, which requires a relatively large amount of storage capacity, and computing time and, if the evaluation is not carried out locally, a complex one Transmission required.
  • the invention is now to provide a motion detector of the type mentioned which is fully operational even in the dark and with as little as possible Storage capacity and computing time is sufficient, with which even low-contrast objects can be safely detected, and which one for the detection and analysis of Objects has sufficient spatial resolution.
  • This motion detector should not only meet all known criteria of intrusion detection technology, but it should also allow a classification of the moving objects.
  • the motion detector has one hereinafter referred to as the image sensor imaging sensor in the visible and near Infrared range and an imaging hereinafter referred to as thermal imaging sensor Sensor in the range of heat radiation with a lower resolution than the image sensor and that in the evaluation electronics a combined evaluation of the signals of the two sensors.
  • the thermal image sensor can either be the absolute temperature or, if appropriate differential connection of the individual sensor elements, measure temperature changes.
  • Fresnel lenses made of polyethylene are used, which are much cheaper than the high-quality lenses made of zinc selenide for high-resolution thermal imaging sensors.
  • a first preferred embodiment of the motion detector according to the invention is characterized in that before the combined evaluation of the signals from the sensors a separate pre-evaluation of the signals from both the image sensor and the thermal image sensor he follows.
  • a second preferred embodiment of the motion detector according to the invention is characterized in that by the thermal image sensor a lighting independent Detection and rough localization of moving objects and by the image sensor these are classified.
  • a third preferred embodiment of the motion detector according to the invention is characterized in that the image sensor by a pixel-wise addressable sensor, preferably an active pixel sensor is formed.
  • the pixel-wise addressable The advantage of an image sensor is that you can focus on the interesting information when reading Limit image area and thereby computing time and storage capacity as well as in In case of non-local evaluation, transmission time can also be saved.
  • a fourth preferred embodiment of the motion detector according to the invention is characterized in that means for measuring brightness and for controlling the Exposure time of the image sensor and / or means for temperature measurement are provided and are connected to the evaluation electronics.
  • a fifth preferred embodiment of the motion detector according to the invention is characterized in that the detector in different, to the requirements of each Application-adapted operating modes can be operated, and additionally via different Has signal evaluation modes, and that the setting on the respective Evaluation mode on the basis of the environmental conditions, preferably on the basis of brightness and / or temperature measured by the means mentioned.
  • the use of the means for brightness measurement and / or for temperature measurement has the advantage that the detector determines the most important parameters of its environment and set the appropriate evaluation mode based on this environmental situation can.
  • the intrusion or motion detector 1 shown in Fig. 1 consists essentially from an imaging sensor 2, referred to below as the image sensor, in the visible Wavelength range from about 0.4 to 1.8 ⁇ m, one subsequently as a thermal image sensor designated sensor in the wavelength range of heat radiation of approximately 5 to 15 ⁇ m, each of which is followed by a preprocessing stage 4 or 5, and one Evaluation electronics 6 for processing and evaluating the preprocessed signals of the two sensors 2 and 3.
  • the image sensor 2 and the thermal image sensor 3 both consider same area of the room to be monitored.
  • the detector contains 1 also means 7 for measuring brightness and means 8 for measuring temperature, wherein the brightness measurement is preferably carried out by the image sensor 2.
  • the thermal image sensor 3 is very suitable for a lighting-independent Detection and rough localization of moving objects.
  • the image sensor 2 in turn thanks to its larger resolution, it can classify objects, especially humans differentiate from animals and it compensates for the detection weakness of the thermal image sensor 3 at low temperature contrast.
  • the image sensor 2 is preferably a pixel-addressable sensor, for example a so-called APS (Active Pixel Sensor) is formed, which is characterized by a very low power consumption and the ability to access individual pixels distinguished.
  • APS Active Pixel Sensor
  • additional application-specific analog or digital functions for example simple image processing algorithms such as filters or exposure controls, can be easily integrated.
  • GSP is referred to the article "A 128 x- 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems "by Sunetra K. Mendis, Sabrina E. Kennedy and Eric R.
  • the image sensor 2 is directed towards the room to be monitored and captures it in terms of image technology and digitizes the picture. For example, if the APS forming the image sensor 2 consists of 128 by 128 pixels, then using a suitable wide-angle lens an area of approximately one pixel at a distance of 15 m in front of the image sensor 3 Correspond to 12 by 12 cm. Such a resolution allowed, human and animal Shape to distinguish relatively reliably from each other, with a higher resolution increases reliability, but also requires more computing power.
  • the image sensor 2 makes at intervals of A fraction of a second takes an image of the monitored room and saves it for a short time so that it can be compared with a reference image that is continuously updated can be compared.
  • This image comparison can either be in the image sensor 3 itself or done in preprocessing stage 4.
  • the thermal image sensor 3 which has a relatively low resolution of, for example, 4 by 4 has up to about 32 by 32 pixels and a matrix of a corresponding number consists of heat-sensitive elements, essentially serves to compensate for the potential Weaknesses of the image sensor 2, in particular of its property, below not to provide image information to critical lighting.
  • the robustness and False alarm security of detector 1 in comparison to existing motion detectors increased significantly.
  • the means 7 and 8 contained in the detector 1 continuously measure brightness and temperature and use the measured values to set the appropriate evaluation mode for detector 1 one, which determines how the signals of the two sensors 2 and 3 in the combined Processing evaluated and combined with each other.
  • the means 7 for measuring brightness can be used to control the exposure time at the same time.
  • the detector 1 can also be operated in different operating modes that meet the requirements the respective application and / or to the existing infrastructure (e.g. Level of risk, presence of animals, triggers of lighting) are adjusted.
  • the detector 1 can also be illuminated in the visible area or, if discreet monitoring is desired, in the near infrared turn on, turning on either based on the measured environmental conditions (too low a temperature contrast and too little brightness), or but if one of the two sensors delivers a very weak signal.
  • an existing external lighting for example a room or outdoor lighting or a spotlight is by the detector 1 via radio, infrared, direct wire connection, the network or an existing one Building bus turned on, or one specifically designed for this purpose Lighting that is either built into the detector or available as an additional device switched on by the evaluation electronics 6.
  • Illumination built into the detector could be formed by infrared LEDs, for example.
  • the signals from the image sensor 2 and the thermal image sensor 3 are combined into one Evaluation converted with the signal of the image sensor 2 suitable format and classified according to their strength and it shows the number of time-modified pixels and determined their coordinates.
  • the pre-evaluation can be performed as hardware and / or integrated in the form of a processor core on the APS chip. In the The number of pixels changed compared to the reference image, their clustering and characteristics of the pixel cluster are determined.
  • the image sensor 2 can be designed such that images that lead to an alarm decision have, and those immediately preceding and / or following up to more can be saved. If necessary, this can also be transferred stored images to a spatially separate station.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Security & Cryptography (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Studio Devices (AREA)

Description

Die vorliegende Erfindung betrifft einen Bewegungsmelder, mit zwei Sensoren und mit einer an diese angeschlossenen Auswerteelektronik.The present invention relates to a motion detector, with two sensors and with an evaluation electronics connected to this.

Heute werden in Bewegungsmeldern vorwiegend Passiv-Infrarot (PIR)-Sensoren eingesetzt, die zwar sehr preisgünstig sind, aber keine räumliche Auflösung ermöglichen und die Objekte mit gegenüber ihrer Umgebung geringem Temperaturkontrast nur mit Schwierigkeiten detektieren können. Auch Dopplermelder oder Bewegungsmelder mit PIR- und Dopplerprinzip ermöglichen keine räumliche Auflösung. Gerade diese Eigenschaft wird aber heute gefordert, weil der Bewegungsmelder nicht nur feststellen können soll, ob sich ein Objekt im überwachten Raum befindet, sondern auch, wo im Raum sich das Objekt befindet, in welcher Richtung es sich bewegt, und um welchen Typus oder welche Klasse von Objekt es sich handelt.Passive infrared (PIR) sensors are mainly used in motion detectors today, which are very inexpensive, but do not allow spatial resolution and the objects with a low temperature contrast to their surroundings only with Can detect difficulties. Also Doppler detectors or motion detectors PIR and Doppler principle do not allow spatial resolution. This very property is required today because the motion detector can not only detect whether an object is in the monitored room, but also where in the room the object is in which direction it is moving and by what type or what class of object it is.

Die an sich naheliegende Variante der Verwendung von sogenannten Wärmebildsensoren, das sind bildgebende Sensoren im Bereich von Wärmestrahlung, die im Wellenlängenbereich von etwa 5 bis 15 µm arbeiten, scheitert daran, dass diese heute noch so teuer sind, dass für Bewegungsmelder keine ausreichend hochauflösenden Sensoren verwendet werden können. Ausserdem sind auch qualitativ hochwertige Objektive für Wärmebildsensoren der gewünschten hohen Auflösung sehr teuer.The obvious variant of using so-called thermal image sensors, these are imaging sensors in the area of thermal radiation, those in the wavelength range work from about 5 to 15 microns, fails because they are still so expensive today are that sufficiently high-resolution sensors are not used for motion detectors can be. There are also high quality lenses for thermal imaging sensors the desired high resolution very expensive.

Verwendet man andererseits niedrig auflösende Wärmebildsensoren im Bereich von etwa 4 mal 4 bis zu 32 mal 32 Pixel, dann können Objekte nicht ausreichend genau analysiert werden. So ist beispielsweise die Auflösung zu gering, um Menschen von Tieren unterscheiden zu können. Ausserdem haben Wärmebildsensoren bei kleinem Temperaturkontrast, also bei einer Umgebungstemperatur um 30° C, nur eine geringe Detektionsempfindlichkeit.On the other hand, low-resolution thermal imaging sensors in the range of approximately are used 4 by 4 up to 32 by 32 pixels, then objects cannot be analyzed with sufficient accuracy become. For example, the resolution is too low to distinguish humans from animals to be able to. In addition, thermal imaging sensors with low temperature contrast, So at an ambient temperature around 30 ° C, only a low detection sensitivity.

Es sind auch sogenannte Bildsensoren bekannt, das sind bildgebende Sensoren im sichtbaren und nahen Infrarotbereich, die im Wellenlängenbereich von etwa 0.4 bis 1.8 µm arbeiten. Diese Bildsensoren sind heute sehr preisgünstig und deswegen auch relativ stark verbreitet, ihr Einsatz ist aber an das Vorhandensein einer bestimmten minimalen Helligkeit gebunden. Das bedeutet, dass solche Sensoren bei Dunkelheit nichts sehen und bei solchen Bedingungen nur in Kombination mit einer Zusatzbeleuchtung eingesetzt werden können. Ausserdem muss bei der Auswertung des Signals des Bildsensors immer das gesamte Bild bearbeitet werden, was einen relativ grossen Aufwand an Speicherkapazität, und Rechenzeit und, falls die Auswertung nicht lokal erfolgt, eine aufwendige Übertragung erfordert.So-called image sensors are also known, these are imaging sensors in the visible and near infrared, which is in the wavelength range from about 0.4 to 1.8 µm work. These image sensors are very inexpensive today and therefore also relative widely used, but their use is dependent on the presence of a certain minimum Brightness bound. This means that such sensors see nothing in the dark and used in such conditions only in combination with additional lighting can be. In addition, the signal of the image sensor must always be evaluated the entire image can be edited, which requires a relatively large amount of storage capacity, and computing time and, if the evaluation is not carried out locally, a complex one Transmission required.

Wenn niedrig auflösende Bildsensoren oder solche mit der Möglichkeit der Auslesung von Bildern mit reduzierter Auflösung verwendet werden, besteht die Gefahr, dass insbesondere kontrastarme Objekte verschmiert werden und deshalb nicht mehr detektiert werden können.If low-resolution image sensors or those with the possibility of reading of images with reduced resolution, there is a risk that in particular low-contrast objects are smeared and therefore no longer detected can be.

Durch die Erfindung soll nun ein Bewegungsmelder der eingangs genannten Art angegeben werden, welcher auch bei Dunkelheit voll einsatzfähig ist und mit möglichst wenig Speicherkapazität und Rechenzeit auskommt, mit welchem auch kontrastarme Objekte sicher detektiert werden können, und welcher eine für die Erkennung und Analyse von Objekten ausreichende räumliche Auflösung aufweist. Dieser Bewegungsmelder soll nicht nur alle bekannten Kriterien der Einbruchmeldetechnik erfüllen, sondern er soll zusätzlich auch eine Klassifizierung der sich bewegenden Objekte erlauben.The invention is now to provide a motion detector of the type mentioned which is fully operational even in the dark and with as little as possible Storage capacity and computing time is sufficient, with which even low-contrast objects can be safely detected, and which one for the detection and analysis of Objects has sufficient spatial resolution. This motion detector should not only meet all known criteria of intrusion detection technology, but it should also allow a classification of the moving objects.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Bewegungsmelder einen nachfolgend als Bildsensor bezeichneten bildgebenden Sensor im sichtbaren und nahen Infrarotbereich und einen nachfolgend als Wärmebildsensor bezeichneten bildgebenden Sensor im Bereich von Wärmestrahlung mit einer niedrigeren Auflösung als der Bildsensor aufweist, und dass in der Auswerteelektronik eine kombinierte Auswertung der Signale der beiden Sensoren erfolgt.This object is achieved according to the invention in that the motion detector has one hereinafter referred to as the image sensor imaging sensor in the visible and near Infrared range and an imaging hereinafter referred to as thermal imaging sensor Sensor in the range of heat radiation with a lower resolution than the image sensor and that in the evaluation electronics a combined evaluation of the signals of the two sensors.

Durch die erfindungsgemässe Kombination eines Wärmebildsensors mit niedriger Auflösung mit einem Bildsensor mit höherer Auflösung können einerseits die Schwächen der beiden Sensortypen kompensiert werden, was die Detektierbarkeit kontrastarmer Objekte erhöht und die Fehlalarmrate verkleinert. Andererseits ist eine Objektklassifizierung möglich, ohne einen teuren hochauflösenden Wärmebildsensor einsetzen zu müssen. The combination of a thermal image sensor with low resolution according to the invention with an image sensor with a higher resolution, the weaknesses of the Both types of sensors are compensated for, which makes it possible to detect low-contrast objects increased and the false alarm rate decreased. On the other hand is an object classification possible without having to use an expensive high-resolution thermal imaging sensor.

Der Wärmebildsensor kann entweder die absolute Temperatur oder, bei entsprechender differentieller Verschaltung der einzelnen Sensorelemente, Temperaturänderungen messen. Für niedrig auflösende Wärmebildsensoren können Fresnellinsen aus Polyethylen eingesetzt werden, die wesentlich billiger sind, als die hochwertigen Objektive aus Zinkselenid für hochauflösende Wärmebildsensoren.The thermal image sensor can either be the absolute temperature or, if appropriate differential connection of the individual sensor elements, measure temperature changes. For low-resolution thermal imaging sensors, Fresnel lenses made of polyethylene are used, which are much cheaper than the high-quality lenses made of zinc selenide for high-resolution thermal imaging sensors.

Eine erste bevorzugte Ausführungsform des erfindungsgemässen Bewegungsmelders ist dadurch gekennzeichnet, dass vor der kombinierten Auswertung der Signale der Sensoren eine getrennte Vorauswertung der Signale sowohl des Bildsensors als auch des Wärmebildsensors erfolgt.A first preferred embodiment of the motion detector according to the invention is characterized in that before the combined evaluation of the signals from the sensors a separate pre-evaluation of the signals from both the image sensor and the thermal image sensor he follows.

Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Bewegungsmelders ist dadurch gekennzeichnet, dass durch den Wärmebildsensor eine beleuchtungsunabhängige Erfassung und grobe Lokalisierung von bewegten Objekten und durch den Bildsensor eine Klassifizierung von diesen erfolgt.A second preferred embodiment of the motion detector according to the invention is characterized in that by the thermal image sensor a lighting independent Detection and rough localization of moving objects and by the image sensor these are classified.

Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Bewegungsmelders ist dadurch gekennzeichnet, dass der Bildsensor durch einen pixelweise adressierbaren Sensor, vorzugseise einen Aktiv Pixel Sensor, gebildet ist. Der pixelweise adressierbare Bildsensor hat den Vorteil, dass man sich bei der Auslesung jeweils auf den interessanten Bildbereich beschränken und dadurch Rechenzeit und Speicherkapazität sowie im Fall von nicht-lokaler Auswertung auch Übertragungszeit einsparen kann.A third preferred embodiment of the motion detector according to the invention is characterized in that the image sensor by a pixel-wise addressable sensor, preferably an active pixel sensor is formed. The pixel-wise addressable The advantage of an image sensor is that you can focus on the interesting information when reading Limit image area and thereby computing time and storage capacity as well as in In case of non-local evaluation, transmission time can also be saved.

Eine vierte bevorzugte Ausführungsform des erfindungsgemässen Bewegungsmelders ist dadurch gekennzeichnet, dass Mittel zur Helligkeitsmessung und zur Steuerung der Belichtungszeit des Bildsensors und/ oder Mittel zur Temperaturmessung vorgesehen und mit der Auswerteelektronik verbunden sind.A fourth preferred embodiment of the motion detector according to the invention is characterized in that means for measuring brightness and for controlling the Exposure time of the image sensor and / or means for temperature measurement are provided and are connected to the evaluation electronics.

Eine fünfte bevorzugte Ausführungsform des erfindungsgemässen Bewegungsmelders ist dadurch gekennzeichnet, dass der Melder in verschiedenen, an die Anforderungen der jeweiligen Applikation angepassten Betriebsmodi betreibbar ist, und zusätzlich über verschiedene Signalauswertungsmodi verfügt, und dass die Einstellung auf den jeweiligen Auswertungsmodus anhand der Umgebungsbedingungen, vorzugsweise anhand der von den genannten Mitteln gemessenen Helligkeit und/oder Temperatur, erfolgt. A fifth preferred embodiment of the motion detector according to the invention is characterized in that the detector in different, to the requirements of each Application-adapted operating modes can be operated, and additionally via different Has signal evaluation modes, and that the setting on the respective Evaluation mode on the basis of the environmental conditions, preferably on the basis of brightness and / or temperature measured by the means mentioned.

Die Verwendung der Mittel zur Helligkeitsmessung und/oder zur Temperaturmessung hat den Vorteil, dass der Melder die wichtigsten Parameter seiner Umgebung bestimmen und aufgrund dieser Umgebungssituation den geeigneten Auswertungsmodus einstellen kann.The use of the means for brightness measurement and / or for temperature measurement has the advantage that the detector determines the most important parameters of its environment and set the appropriate evaluation mode based on this environmental situation can.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigt:

Fig. 1
ein Blockschema eines erfindungsgemässen Bewegungsmelders; und
Fig. 2
ein Flussdiagramm zur Erläuterung der Signalverarbeitung.
In the following the invention is explained in more detail using an exemplary embodiment and the drawings; it shows:
Fig. 1
a block diagram of a motion detector according to the invention; and
Fig. 2
a flowchart to explain the signal processing.

Der in Fig. 1 dargestellte Intrusions- oder Bewegungsmelder 1 besteht im wesentlichen aus einem nachfolgend als Bildsensor bezeichneten bildgebenden Sensor 2 im sichtbaren Wellenlängenbereich von etwa 0.4 bis 1.8 µm, einem nachfolgend als Wärmebildsensor bezeichneten Sensor im Wellenlängenbereich der Wärmestrahlung von etwa 5 bis 15 µm, denen beiden je eine Vorverarbeitungsstufe 4 bzw. 5 nachgeschaltet ist, und aus einer Auswerteelektronik 6 zur Verarbeitung und Auswertung der vorverarbeiteten Signale der beiden Sensoren 2 und 3. Der Bildsensor 2 und der Wärmebildsensor 3 betrachten beide denselben Bereich des zu überwachenden Raumes. Darstellungsgemäss enthält der Melder 1 ausserdem Mittel 7 zur Helligkeitsmessung und Mittel 8 zur Temperaturmessung, wobei die Helligkeitsmessung vorzugsweise durch den Bildsensor 2 erfolgt.The intrusion or motion detector 1 shown in Fig. 1 consists essentially from an imaging sensor 2, referred to below as the image sensor, in the visible Wavelength range from about 0.4 to 1.8 µm, one subsequently as a thermal image sensor designated sensor in the wavelength range of heat radiation of approximately 5 to 15 μm, each of which is followed by a preprocessing stage 4 or 5, and one Evaluation electronics 6 for processing and evaluating the preprocessed signals of the two sensors 2 and 3. The image sensor 2 and the thermal image sensor 3 both consider same area of the room to be monitored. As shown, the detector contains 1 also means 7 for measuring brightness and means 8 for measuring temperature, wherein the brightness measurement is preferably carried out by the image sensor 2.

Da Menschen und Tiere in der Regel einen guten Temperaturkontrast zum Hintergrund aufweisen, eignet sich der Wärmebildsensor 3 sehr gut für eine beleuchtungsunabhängige Erfassung und grobe Lokalisierung von bewegten Objekten. Der Bildsensor 2 wiederum kann dank seiner grösseren Auflösung die Objekte klassifizieren und insbesondere Menschen von Tieren unterscheiden und er kompensiert die Detektionsschwäche des Wärmebildsensors 3 bei kleinem Temperaturkontrast.Because humans and animals usually have a good temperature contrast to the background have, the thermal image sensor 3 is very suitable for a lighting-independent Detection and rough localization of moving objects. The image sensor 2 in turn thanks to its larger resolution, it can classify objects, especially humans differentiate from animals and it compensates for the detection weakness of the thermal image sensor 3 at low temperature contrast.

Der Bildsensor 2 ist vorzugsweise durch einen pixelweise adressierbaren Sensor, beispielsweise einen sogenannten APS (Aktiv Pixel Sensor) gebildet, der sich durch einen sehr geringen Stromverbrauch und durch die Zugriffsmöglichkeit auf einzelne Pixel auszeichnet. Ausserdem können in einem solchen APS zusätzliche applikationsspezifische analoge oder digitale Funktionen, zum Beispiel einfache Bildverarbeitungsalgorithmen wie Filter oder Belichtungssteuerung, einfach integriert werden. Bezüglich APS wird auf die Artikel "A 128 x- 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems" von Sunetra K. Mendis, Sabrina E. Kennedy und Eric R. Fossum, IEDM 93-538 und "128X128 CMOS Photodiode-Type Active Pixel Sensor With On-Chip Timing, Control and Signal Chain Electronics" von R. H. Nixon, S. E. Kemeny, C. O. Staller und E. R. Fossum in SPIE Vol. 2415/117, verwiesen.The image sensor 2 is preferably a pixel-addressable sensor, for example a so-called APS (Active Pixel Sensor) is formed, which is characterized by a very low power consumption and the ability to access individual pixels distinguished. In addition, in such APS additional application-specific analog or digital functions, for example simple image processing algorithms such as filters or exposure controls, can be easily integrated. Regarding GSP is referred to the article "A 128 x- 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems "by Sunetra K. Mendis, Sabrina E. Kennedy and Eric R. Fossum, IEDM 93-538 and "128X128 CMOS photodiode-type active pixel sensor With On-Chip Timing, Control and Signal Chain Electronics "by R. H. Nixon, S.E. Kemeny, C. O. Staller and E. R. Fossum in SPIE Vol. 2415/117.

Der Bildsensor 2 ist auf den zu überwachenden Raum gerichtet, erfasst diesen bildtechnisch und digitalsiert das Bild. Wenn der den Bildsensor 2 bildende APS beispielsweise aus 128 mal 128 Pixeln besteht, dann würde bei Verwendung einer geeigneten Weitwinkeloptik im Abstand von 15 m vor dem Bildsensor 3 einem Pixel eine Fläche von ungefähr 12 mal 12 cm entsprechen. Eine solche Auflösung erlaubt, menschliche und tierische Gestalten relativ zuverlässig voneinander zu unterscheiden, wobei eine höhere Auflösung die Zuverlässigkeit erhöht, aber auch eine grössere Rechenleistung benötigt.The image sensor 2 is directed towards the room to be monitored and captures it in terms of image technology and digitizes the picture. For example, if the APS forming the image sensor 2 consists of 128 by 128 pixels, then using a suitable wide-angle lens an area of approximately one pixel at a distance of 15 m in front of the image sensor 3 Correspond to 12 by 12 cm. Such a resolution allowed, human and animal Shape to distinguish relatively reliably from each other, with a higher resolution increases reliability, but also requires more computing power.

Im scharf geschalteten Zustand des Melders 1 macht der Bildsensor 2 in Abständen von Sekundenbruchteilen jeweils ein Bild des überwachten Raumes und speichert dieses für eine kurze Zeit, damit es mit einem Referenzbild, welches kontinuierlich aufdatiert wird, verglichen werden kann. Dieser Bildvergleich kann entweder im Bildsensor 3 selbst oder in der Vorverarbeitungsstufe 4 erfolgen.In the armed state of the detector 1, the image sensor 2 makes at intervals of A fraction of a second takes an image of the monitored room and saves it for a short time so that it can be compared with a reference image that is continuously updated can be compared. This image comparison can either be in the image sensor 3 itself or done in preprocessing stage 4.

Der Wärmebildsensor 3, der eine relativ geringe Auflösung von beispielsweise 4 mal 4 bis zu etwa 32 mal 32 Pixel aufweist und aus einer Matrix einer entsprechenden Anzahl wärmeempfindlicher Elemente besteht, dient im wesentlichen zum Ausgleich der potentiellen Schwächen des Bildsensors 2, insbesondere von dessen Eigenschaft, unterhalb einer kritischen Beleuchtung keine Bildinformationen zu liefern. Generell wird durch kombinierte Verarbeitung der Signale der beiden Sensoren 2 und 3 die Robustheit und Fehlalarmsicherheit des Melders 1 im Vergleich zu bestehenden Bewegungsmeldern ganz wesentlich erhöht.The thermal image sensor 3, which has a relatively low resolution of, for example, 4 by 4 has up to about 32 by 32 pixels and a matrix of a corresponding number consists of heat-sensitive elements, essentially serves to compensate for the potential Weaknesses of the image sensor 2, in particular of its property, below not to provide image information to critical lighting. Generally, through combined processing of the signals from the two sensors 2 and 3 the robustness and False alarm security of detector 1 in comparison to existing motion detectors increased significantly.

Die im Melder 1 enthaltenen Mittel 7 und 8 messen laufend Helligkeit und Temperatur und stellen anhand der gemessenen Werte den geeigneten Auswertemodus des Melders 1 ein, welcher bestimmt, wie die Signale der beiden Sensoren 2 und 3 bei der kombinierten Verarbeitung ausgewertet und miteinander kombiniert werden. Die Mittel 7 zur Helligkeitsmessung können gleichzeitig zur Steuerung der Belichtungszeit verwendet werden. Der Melder 1 ist ausserdem in verschiedenen Betriebsmodi betreibbar, die an die Anforderungen der jeweiligenen Applikation und/oder an die vorhandene Infrastruktur (z.B. Höhe der Risiken, Anwesenheit von Tieren, Trigger von Beleuchtung) angepasst sind.The means 7 and 8 contained in the detector 1 continuously measure brightness and temperature and use the measured values to set the appropriate evaluation mode for detector 1 one, which determines how the signals of the two sensors 2 and 3 in the combined Processing evaluated and combined with each other. The means 7 for measuring brightness can be used to control the exposure time at the same time. The detector 1 can also be operated in different operating modes that meet the requirements the respective application and / or to the existing infrastructure (e.g. Level of risk, presence of animals, triggers of lighting) are adjusted.

Die verschiedenen, auch aus Fig. 2 ersichtlichen, Auswertungssmodi, sind die folgenden:

  • Genügend grosser Temperaturkontrast Mensch/Umgebung: Wenn die Raumtemperatur TR ausreichend stark von der Körpertemperatur TK abweicht, dann löst das Signal des Wärmebildsensor 3 die Auswertung des Signals des Bildsensors 2 aus, wobei die Detektions- oder Ansprechschwelle des Wärmebildsensors 3 von der Helligkeit abhängig ist. Bei genügender Raumhelligkeit wird die Detektionsschwelle sehr tief angesetzt. Wenn der Auswerteteil für den Wärmebildsensor 3 ein Objekt detektiert, dann werden dessen Ausdehnung und Koordinaten bestimmt und der Bildsensorauswertung übermittelt. Diese liest nur den entsprechenden interessanten Bildteil und nicht das ganze Bild aus, wodurch Rechenzeit und Leistung gespart werden. Der ausgelesene Bildteil wird einer Bewegungsdetektion und einer Objektklassifizierung unterzogen. Wenn ein Objekt als Mensch klassifiziert wird, gibt der Melder Alarm. Bei nicht ausreichender Raumhelligkeit arbeitet die Auswertung des Wärmebildsensors mit einer höheren Detektionsschwelle und löst bei deren Überschreitung direkt Alarm aus.
  • Zu geringer Temperaturkontrast, ausreichende Helligkeit: In diesem Fall wird der Wärmebildsensor 3 nicht als Trigger für den Bildsensor verwendet, sondern die Auswertung des Bildsensors 2 wertet immer das gesamte Bild aus und führt eine Bewegungsdetektion und eine Objektklassifizierung durch.
  • Zu geringer Temperaturkontrast, geringe Helligkeit: Beide Auswertungsstufen werten das Bild ihres Sensors aus und die Resultate werden kombiniert verarbeitet. Die Detektierbarkeit kann durch lange Belichtungszeiten oder Mittelung über mehrere Bilder verbessert werden. Dadurch sind zwar sehr rasche Vorgänge schwieriger zu erfassen, allerdings sind solche Vorgänge bei diesen Umgebungsbedingungen auch sehr unwahrscheinlich.
The various evaluation modes, which can also be seen in FIG. 2, are as follows:
  • Sufficiently high temperature contrast between people and the environment: If the room temperature T R deviates sufficiently from the body temperature T K , then the signal from the thermal image sensor 3 triggers the evaluation of the signal from the image sensor 2, the detection or response threshold of the thermal image sensor 3 depending on the brightness is. If the room brightness is sufficient, the detection threshold is set very low. If the evaluation part for the thermal image sensor 3 detects an object, then its extent and coordinates are determined and transmitted to the image sensor evaluation. This only reads the relevant part of the image and not the entire image, which saves computing time and performance. The image part read out is subjected to motion detection and object classification. If an object is classified as human, the detector gives an alarm. If the room brightness is insufficient, the evaluation of the thermal image sensor works with a higher detection threshold and triggers an alarm if it is exceeded.
  • Too low temperature contrast, sufficient brightness: In this case, the thermal image sensor 3 is not used as a trigger for the image sensor, but the evaluation of the image sensor 2 always evaluates the entire image and carries out motion detection and object classification.
  • Insufficient temperature contrast, low brightness: Both evaluation levels evaluate the image of your sensor and the results are processed in combination. The detectability can be improved by long exposure times or averaging over several images. This makes it very difficult to grasp very rapid processes, but such processes are also very unlikely in these environmental conditions.

Alternativ zu dem eben genannten Modus kann der Melder 1 auch eine Beleuchtung im sichtbaren Bereich oder, falls eine diskrete Überwachung er-wünscht ist, im nahen Infarot einschalten, wobei das Einschalten entweder aufgrund der gemessenen Umgebungsbedingungen (zu geringer Temperaturkontrast und zu geringe Helligkeit) erfolgt, oder aber dann, wenn einer der beiden Sensoren ein sehr schwaches Signal liefert.As an alternative to the mode just mentioned, the detector 1 can also be illuminated in the visible area or, if discreet monitoring is desired, in the near infrared turn on, turning on either based on the measured environmental conditions (too low a temperature contrast and too little brightness), or but if one of the two sensors delivers a very weak signal.

Es sind zwei Ausführungsformen möglich: Eine vorhandene externe Beleuchtung, beispielsweise eine Raum- oder Aussenbeleuchtung oder ein Spotscheinwerfer, wird durch den Melder 1 über Funk, Infrarot, direkte Drahtverbindung, das Netz oder über einen bestehenden Gebäude-Bus eingeschaltet, oder eine speziell für diesen Zweck vorgesehene Beleuchtung, die entweder im Melder eingebaut oder als Zusatzgerät erhältlich ist, wird durch die Auswerteelektronik 6 eingeschaltet. Eine im Melder eingebaute Beleuchtung könnte beispielsweise durch Infrarot-LEDs gebildet sein.Two embodiments are possible: an existing external lighting, for example a room or outdoor lighting or a spotlight is by the detector 1 via radio, infrared, direct wire connection, the network or an existing one Building bus turned on, or one specifically designed for this purpose Lighting that is either built into the detector or available as an additional device switched on by the evaluation electronics 6. Illumination built into the detector could be formed by infrared LEDs, for example.

Es hat sich gezeigt, dass es vorteilhaft ist, die Signale des Bildsensors 2 und des Wärmebildsensors 3 vor der kombinierten Auswertung einer getrennten Vorauswertung zu unterziehen, welche in den Vorverarbeitungsstufen 4 bzw. 5 erfolgt, wobei diese Vorverarbeitungsstufen selbstverständlich auch in die Auswerteelektronik 6 integriert sein können. Bei der Vorauswertung werden die Signale des Wärmebildsensors 3 in ein zur kombinierten Auswertung mit dem Signal des Bildsensors 2 geeignetes Format umgewandelt und nach ihrer Stärke klassiert und es werden die Anzahl der zeitlich veränderten Pixel und deren Koordinaten bestimmt. Beim Bildsensor 2 kann die Vorauswertung als Hardware und/oder in Form eines Prozessorkerns auf dem APS-Chip integriert sein. Bei der Vorauswertung werden die Anzahl der gegenüber dem Referenzbild geänderten Pixel, ihre Häufung (clustering) und Merkmale der Pixelhäufung bestimmt.It has been shown that it is advantageous to use the signals from the image sensor 2 and the thermal image sensor 3 to undergo a separate pre-evaluation before the combined evaluation, which takes place in preprocessing stages 4 and 5, these preprocessing stages can of course also be integrated into the evaluation electronics 6. In the pre-evaluation, the signals of the thermal image sensor 3 are combined into one Evaluation converted with the signal of the image sensor 2 suitable format and classified according to their strength and it shows the number of time-modified pixels and determined their coordinates. With image sensor 2, the pre-evaluation can be performed as hardware and / or integrated in the form of a processor core on the APS chip. In the The number of pixels changed compared to the reference image, their clustering and characteristics of the pixel cluster are determined.

Der Bildsensor 2 kann so ausgebildet sein, dass Bilder, die zu einem Alarmentscheid geführt haben, und die diesen unmittelbar vorausgehenden und/oder nachfolgenden bis auf weiteres gespeichert werden. Gegebenenfalls kann zusätzlich eine Übertragung dieser gespeicherten Bilder an eine räumlich getrennte Station erfolgen.The image sensor 2 can be designed such that images that lead to an alarm decision have, and those immediately preceding and / or following up to more can be saved. If necessary, this can also be transferred stored images to a spatially separate station.

Claims (13)

  1. Motion detector, having two sensors (2, 3) and having evaluation electronics (6) connected to the latter, characterized in that the motion detector (1) has an image sensor (2) in the visible and near infrared range and a thermal image sensor (3) in the thermal radiation range having a lower resolution than the image sensor (2), and in that a combined evaluation of the signals from both sensors (2, 3) takes place in the evaluation electronics (6).
  2. Motion detector according to Claim 1, characterized in that, prior to the combined evaluation of the signals from the sensors (2,3), a separate preliminary evaluation takes place of the signals both from the image sensor (2) and from the thermal image sensor (3).
  3. Motion detector according to Claim 1 or 2, characterized in that the thermal image sensor (3) performs an illumination-independent detection and rough localization of moving objects and the image sensor (2) classifies the latter.
  4. Motion detector according to any of Claims 1 to 3, characterized in that the image sensor (2) is formed by a pixel-by-pixel addressable sensor, preferably an active pixel sensor.
  5. Motion detector according to any of Claims 1 to 4, characterized in that means (7) are provided for measuring brightness and for controlling the exposure time of the image sensor (2) and means (8) are provided for measuring temperature and are connected to the evaluation electronics (3).
  6. Motion detector according to Claim 5, characterized in that the detector (1) can be operated in various operating modes and, in addition, has various signal evaluation modes, and in that the setting to the respective evaluation mode takes place on the basis of ambient conditions, preferably on the basis of the brightness and/or temperature measured by the said means (7, 8).
  7. Motion detector according to Claim 6, characterized in that, given sufficiently high temperature contrast between body temperature and room temperature and sufficiently high room brightness, the thermal-image sensor (3) serves as a trigger for the image sensor (2), wherein the detection threshold is set low.
  8. Motion detector according to Claim 7, characterized in that, if an object is detected by the thermal-image sensor (3), its position and size are determined and, on the basis of these data from the signal of the image sensor (2), the corresponding image section is read out of the image sensor (2) and analysed.
  9. Motion detector according to Claim 6, characterized in that, given sufficiently high temperature contrast between body temperature and room temperature and unduly low room brightness, only the signal from the thermal-image sensor (3) is processed, wherein the detection level is set higher than in the case of sufficiently high room brightness.
  10. Motion detector according to Claim 6, characterized in that, given unduly low temperature contrast between body temperature and room temperature and sufficiently high room brightness, the entire image from the image sensor (2) is evaluated.
  11. Motion detector according to Claim 6, characterized in that, given unduly low temperature contrast between body temperature and room temperature and unduly low room brightness, the signals from the two sensors (2,3) are each evaluated over the entire image.
  12. Motion detector according to Claim 5, characterized in that illumination means, preferably controlled by the means (7) for measuring brightness, are provided by the motion detector (1).
  13. Motion detector according to any of Claims 1 to 12, characterized in that a memory is provided for the images recorded by the image sensor (2), and in that said memory is controlled in such a way that those images are stored which have resulted in an alarm decision.
EP98112460A 1998-07-06 1998-07-06 Motion detector Expired - Lifetime EP0973137B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK98112460T DK0973137T3 (en) 1998-07-06 1998-07-06 motion detector
DE59806868T DE59806868D1 (en) 1998-07-06 1998-07-06 motion detector
ES98112460T ES2190558T3 (en) 1998-07-06 1998-07-06 MOVEMENT DETECTOR.
EP98112460A EP0973137B1 (en) 1998-07-06 1998-07-06 Motion detector
IL13019199A IL130191A (en) 1998-07-06 1999-05-28 Movement detector
US09/346,515 US6246321B1 (en) 1998-07-06 1999-07-01 Movement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98112460A EP0973137B1 (en) 1998-07-06 1998-07-06 Motion detector

Publications (2)

Publication Number Publication Date
EP0973137A1 EP0973137A1 (en) 2000-01-19
EP0973137B1 true EP0973137B1 (en) 2003-01-08

Family

ID=8232221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98112460A Expired - Lifetime EP0973137B1 (en) 1998-07-06 1998-07-06 Motion detector

Country Status (6)

Country Link
US (1) US6246321B1 (en)
EP (1) EP0973137B1 (en)
DE (1) DE59806868D1 (en)
DK (1) DK0973137T3 (en)
ES (1) ES2190558T3 (en)
IL (1) IL130191A (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587049B1 (en) 1999-10-28 2003-07-01 Ralph W. Thacker Occupant status monitor
US6359564B1 (en) 1999-10-28 2002-03-19 Ralph W. Thacker Occupancy status indicator
ATE375580T1 (en) * 1999-12-17 2007-10-15 Siemens Schweiz Ag PRESENCE DETECTOR AND THEIR USE
US20020131643A1 (en) * 2001-03-13 2002-09-19 Fels Sol Sidney Local positioning system
DE10210470B4 (en) * 2002-03-11 2016-03-24 Mobotix Ag lighting arrangement
DE60216329T2 (en) * 2002-05-12 2007-06-14 Risco Ltd. INTAKE ALARM WITH TWO SENSORS
GB0210887D0 (en) * 2002-05-13 2002-06-19 Central Research Lab Ltd Verified alarms
FR2851837B1 (en) * 2003-02-27 2006-12-22 Peugeot Citroen Automobiles Sa METHOD AND SYSTEM FOR DETECTING THE PRESENCE OF AT LEAST ONE PEDESTRIAN IN THE ENVIRONMENT OF A MOTOR VEHICLE.
BE1015605A5 (en) * 2003-07-14 2005-06-07 Traficon Nv Detection device for security system used to regulate passage of people and vehicles, assesses reliability of sensor data depending on e.g. weather or light conditions
US7161152B2 (en) * 2003-12-16 2007-01-09 Robert Bosch Gmbh Method and apparatus for reducing false alarms due to white light in a motion detection system
US8531562B2 (en) 2004-12-03 2013-09-10 Fluke Corporation Visible light and IR combined image camera with a laser pointer
US7262697B2 (en) * 2005-01-07 2007-08-28 Robert Bosch Gmbh Dual sensing intrusion detection method and system with state-level fusion
US7841967B1 (en) 2006-04-26 2010-11-30 Dp Technologies, Inc. Method and apparatus for providing fitness coaching using a mobile device
US8902154B1 (en) 2006-07-11 2014-12-02 Dp Technologies, Inc. Method and apparatus for utilizing motion user interface
US7948189B2 (en) * 2006-09-26 2011-05-24 Siemens Industry, Inc. Application of microsystems for lighting control
US8620353B1 (en) 2007-01-26 2013-12-31 Dp Technologies, Inc. Automatic sharing and publication of multimedia from a mobile device
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
JP4758383B2 (en) * 2007-03-30 2011-08-24 トヨタ自動車株式会社 Temperature measuring apparatus and temperature measuring method
US8555282B1 (en) 2007-07-27 2013-10-08 Dp Technologies, Inc. Optimizing preemptive operating system with motion sensing
US7800044B1 (en) * 2007-11-09 2010-09-21 Dp Technologies, Inc. High ambient motion environment detection eliminate accidental activation of a device
US8320578B2 (en) * 2008-04-30 2012-11-27 Dp Technologies, Inc. Headset
US8285344B2 (en) 2008-05-21 2012-10-09 DP Technlogies, Inc. Method and apparatus for adjusting audio for a user environment
US8996332B2 (en) 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
US8187182B2 (en) 2008-08-29 2012-05-29 Dp Technologies, Inc. Sensor fusion for activity identification
DE102008046023B4 (en) * 2008-09-05 2010-06-17 Siemens Aktiengesellschaft Tomography system and method for monitoring persons
DE102008046964A1 (en) 2008-09-12 2010-05-12 Siemens Aktiengesellschaft Image recording unit i.e. thermographic camera, for consolidating thermographic images produced by image sensors, has signal processing unit converting signals from optical unit into signals of another optical unit using formula
DE102008046963A1 (en) 2008-09-12 2010-06-10 Siemens Aktiengesellschaft Image recording unit for fusion of image of e.g. building, has signal processing unit receiving data processing signals from optical units, where signals are converted into signals of heat image based on visible image using preset formula
DE102008046965A1 (en) 2008-09-12 2010-03-25 Siemens Aktiengesellschaft Image recording unit for fusion of images producing different wavelength sensitivity with sensors, has switching unit provided for switching radiation coming on optical unit from image with wavelength
US8872646B2 (en) 2008-10-08 2014-10-28 Dp Technologies, Inc. Method and system for waking up a device due to motion
US8035514B2 (en) * 2008-12-10 2011-10-11 Honeywell International Inc. Method to improve white light immunity of infrared motion detectors
US9277878B2 (en) * 2009-02-26 2016-03-08 Tko Enterprises, Inc. Image processing sensor systems
US8780198B2 (en) * 2009-02-26 2014-07-15 Tko Enterprises, Inc. Image processing sensor systems
US9740921B2 (en) 2009-02-26 2017-08-22 Tko Enterprises, Inc. Image processing sensor systems
US10757308B2 (en) 2009-03-02 2020-08-25 Flir Systems, Inc. Techniques for device attachment with dual band imaging sensor
US9171361B2 (en) 2010-04-23 2015-10-27 Flir Systems Ab Infrared resolution and contrast enhancement with fusion
US8520970B2 (en) 2010-04-23 2013-08-27 Flir Systems Ab Infrared resolution and contrast enhancement with fusion
US9529437B2 (en) 2009-05-26 2016-12-27 Dp Technologies, Inc. Method and apparatus for a motion state aware device
US9843743B2 (en) 2009-06-03 2017-12-12 Flir Systems, Inc. Infant monitoring systems and methods using thermal imaging
US10044946B2 (en) 2009-06-03 2018-08-07 Flir Systems Ab Facilitating analysis and interpretation of associated visible light and infrared (IR) image information
US9716843B2 (en) 2009-06-03 2017-07-25 Flir Systems, Inc. Measurement device for electrical installations and related methods
KR100970119B1 (en) * 2009-11-23 2010-07-15 (주)올라웍스 Method, system, and computer-readable recording medium for tracking object adaptively
US9068844B2 (en) 2010-01-08 2015-06-30 Dp Technologies, Inc. Method and apparatus for an integrated personal navigation system
DE102010010370A1 (en) * 2010-03-05 2011-11-17 Siemens Aktiengesellschaft Hybrid infrared camera
US9706138B2 (en) 2010-04-23 2017-07-11 Flir Systems, Inc. Hybrid infrared sensor array having heterogeneous infrared sensors
US9848134B2 (en) 2010-04-23 2017-12-19 Flir Systems, Inc. Infrared imager with integrated metal layers
US9948878B2 (en) 2010-04-23 2018-04-17 Flir Systems, Inc. Abnormal clock rate detection in imaging sensor arrays
KR101773887B1 (en) * 2010-04-23 2017-09-12 플리르 시스템스 에이비 Infrared resolution and contrast enhancement with fusion
US9143703B2 (en) * 2011-06-10 2015-09-22 Flir Systems, Inc. Infrared camera calibration techniques
US20120327218A1 (en) * 2011-06-21 2012-12-27 Microsoft Corporation Resource conservation based on a region of interest
US9374659B1 (en) 2011-09-13 2016-06-21 Dp Technologies, Inc. Method and apparatus to utilize location data to enhance safety
WO2014152746A1 (en) * 2013-03-14 2014-09-25 Scott Technologies, Inc. Thermal imaging camera system and method of use
ITMI20130832A1 (en) * 2013-05-22 2014-11-23 Delma Immobiliare S R L SYSTEM FOR DETECTING THE PRESENCE OF A PART OF A LIVING BODY
DE102013212925A1 (en) * 2013-07-03 2015-01-08 Zf Friedrichshafen Ag Control device and method for monitoring a function of a semiconductor device during its operation and electrical assembly with a control device
US9973692B2 (en) 2013-10-03 2018-05-15 Flir Systems, Inc. Situational awareness by compressed display of panoramic views
US11297264B2 (en) 2014-01-05 2022-04-05 Teledyne Fur, Llc Device attachment with dual band imaging sensor
KR101837893B1 (en) * 2017-02-24 2018-04-26 영남대학교 산학협력단 Sensor-based mobile Localization System and Method
US11070763B2 (en) * 2018-06-27 2021-07-20 Snap-On Incorporated Method and system for displaying images captured by a computing device including a visible light camera and a thermal camera

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905292A (en) * 1987-09-14 1990-02-27 The United States Of America As Represented By The Secretary Of The Army High probability of detection, low false alarm multisensor ATR
JPH03182185A (en) * 1989-12-11 1991-08-08 Fujitsu Ltd Infrared monitoring system
US5077548A (en) * 1990-06-29 1991-12-31 Detection Systems, Inc. Dual technology intruder detection system with sensitivity adjustment after "default"
US5331308A (en) * 1992-07-30 1994-07-19 Napco Security Systems, Inc. Automatically adjustable and self-testing dual technology intrusion detection system for minimizing false alarms
US5657076A (en) * 1993-01-12 1997-08-12 Tapp; Hollis M. Security and surveillance system
DE69633524T2 (en) * 1995-04-12 2005-03-03 Matsushita Electric Industrial Co., Ltd., Kadoma Method and device for object detection
US6069696A (en) * 1995-06-08 2000-05-30 Psc Scanning, Inc. Object recognition system and method
US5701117A (en) * 1996-01-18 1997-12-23 Brian Page Platner Occupancy detector
US5966074A (en) * 1996-12-17 1999-10-12 Baxter; Keith M. Intruder alarm with trajectory display
US6101333A (en) * 1997-08-14 2000-08-08 Polaroid Corporation Method and apparatus for acquiring electronic and/or photographic images
US5870022A (en) * 1997-09-30 1999-02-09 Interactive Technologies, Inc. Passive infrared detection system and method with adaptive threshold and adaptive sampling

Also Published As

Publication number Publication date
IL130191A (en) 2002-03-10
US6246321B1 (en) 2001-06-12
ES2190558T3 (en) 2003-08-01
DK0973137T3 (en) 2003-05-05
DE59806868D1 (en) 2003-02-13
EP0973137A1 (en) 2000-01-19
IL130191A0 (en) 2000-06-01

Similar Documents

Publication Publication Date Title
EP0973137B1 (en) Motion detector
EP0939387B1 (en) Room supervision device
EP1109141A1 (en) Presence detector and use thereof
DE102008001391B4 (en) Fire detection device and method for fire detection
DE3634628C2 (en)
DE69921237T2 (en) Automatic video surveillance system
EP0853299B1 (en) Method and device for actuating a door assembly in response to the presence of persons
DE60034555T2 (en) SYSTEM FOR OBJECT DETECTION AND TRACKING
DE60118189T2 (en) NEAR-INFRARED FAIRING DETECTION
DE60023545T2 (en) AUTOMATIC DOOR ARRANGEMENT WITH VIDEO GENERATION SYSTEM
EP1628260B1 (en) Method and system for automatic forest fire recognition
DE69815977T2 (en) AGAINST GLOBAL CHANGES IN NON-SENSITIVE VIDEO MOTION DETECTOR
DE60311423T2 (en) HEAD POSITION SENSOR
DE102010033818A1 (en) sensor
DE102008039130A1 (en) Automatic tracing and identification system for movable object e.g. human, in building, has safety monitoring sensor connected with safety monitoring system such that tracing camera receives desired data when sensor is operated
EP2751792A1 (en) Image-capturing device, in particular person-counting device having a housing which is transparent in the infrared range and nontransparent in the optically visible range
DE102017218917A1 (en) Monitoring device, industrial plant, monitoring method and computer program
EP3501018B1 (en) Presence detector for still objects
EP2272054A1 (en) Detection device and method for detecting fires and/or signs of fire
EP2235948B1 (en) Monitoring module for a video monitoring system, method for monitoring the state of a monitored area and computer program
DE102019003049A1 (en) Device and method for detecting objects
EP1308914B1 (en) Passive Infrared detector
EP3847575A1 (en) Monitoring device and method for monitoring a man overboard situation
EP1407248A1 (en) Video smoke detection system and method for examining the same
EP0817145A1 (en) Infrared sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000712

AKX Designation fees paid

Free format text: BE CH DE DK ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59806868

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030220

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2190558

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, INTELLECTUAL PROPERTY

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 12

Ref country code: ES

Payment date: 20090810

Year of fee payment: 12

Ref country code: DK

Payment date: 20090709

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090709

Year of fee payment: 12

Ref country code: NL

Payment date: 20090722

Year of fee payment: 12

Ref country code: GB

Payment date: 20090713

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 12

Ref country code: CH

Payment date: 20091015

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090731

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090728

Year of fee payment: 12

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20100731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100706

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806868

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100707