EP0946820B1 - Method and device for conducting a process in the production of paper - Google Patents

Method and device for conducting a process in the production of paper Download PDF

Info

Publication number
EP0946820B1
EP0946820B1 EP97953656A EP97953656A EP0946820B1 EP 0946820 B1 EP0946820 B1 EP 0946820B1 EP 97953656 A EP97953656 A EP 97953656A EP 97953656 A EP97953656 A EP 97953656A EP 0946820 B1 EP0946820 B1 EP 0946820B1
Authority
EP
European Patent Office
Prior art keywords
paper
model
spectra
characteristic quantities
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97953656A
Other languages
German (de)
French (fr)
Other versions
EP0946820A1 (en
Inventor
Christoph Roth
Herbert Furumoto
Gerhard Zeiner
Uwe Lampe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0946820A1 publication Critical patent/EP0946820A1/en
Application granted granted Critical
Publication of EP0946820B1 publication Critical patent/EP0946820B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G9/00Other accessories for paper-making machines
    • D21G9/0009Paper-making control systems
    • D21G9/0018Paper-making control systems controlling the stock preparation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/32Defibrating by other means of waste paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C7/00Digesters
    • D21C7/12Devices for regulating or controlling
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/002Control devices
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/78Controlling or regulating not limited to any particular process or apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the invention relates to a process control method and process optimization in the manufacture of paper made of fibrous material, in particular waste paper and / or cellulose, by processing the pulp and then forming it of the paper using at least one state model and / or process model.
  • the invention also relates to an apparatus for performing this method.
  • waste paper is used as a raw material for the production of paper Portions of waste paper and separately produced cellulose used.
  • the waste paper is usually dissolved and Deinken, the pulp by removing the residual lignin processed, the mixed product generally referred to as "substance" becomes.
  • Substance For a paper making plant, including stock preparation and paper machine, are involved in litigation, especially litigation with automation devices, significant requirements.
  • DE 195 10 009 A1 selected spectral characteristic values are used for a process for the process control of a paper machine for the determination of product quality parameters with neural networks.
  • neural networks are used that have been trained on the product parameters measured in the laboratory.
  • DE 195 10 008 A1 describes a process control process in pulp and paper production, which uses spectral parameters of different wavelengths to determine the starting materials and to evaluate the quality of the raw materials. Correction signals for the regulating or control device are derived therefrom, in particular with neural networks.
  • the spectral parameters are measured on the raw material "wood”, in particular wood chips, wood fibers, or on the raw material “waste paper” as raw materials for pulp and paper production.
  • WO 95/31709 A1 makes a prediction of the wet tear resistance with the help of spectroscopic measurements on paper or pulp using mathematical methods.
  • WO 93/15389 A1 describes a method and a Device for inline determination of the so-called "freeness'", i.e. the degree of refining of refiner wood pulp is known: spectral characteristics of selected wavelength bands processed by a calculation process around the desired quality index Get "Freeness”.
  • the main component method is determined using the Wavelengths are between 0.1 - 10 ⁇ m.
  • WO 95/08019 A1 deals with the processing of waste paper, i.e. to the production of so-called deinked pulp, where spectral and / or physical on the waste paper suspension Characteristic values are recorded. As spectral parameters become more spectral after irradiation with light Distribution of special intensities at defined wavelengths detected and evaluated in particular via a neural network.
  • DE 41 33 439 A1 describes a method for continuous measurement of the so-called dynamic water retention a coating on a passing support and especially described on a piece of paper in which radiation at a first station with a known frequency spectrum in any level in terms of direction the expiry of the carrier is irradiated and in the same Plane the reflected radiation is detected.
  • specific Procedure of the measurement in particular repetitive measurement, is from the reflected signals Retention determined according to a specific rule.
  • the process control in papermaking further optimize and an associated device too create.
  • the object of the invention is with the features of the claim 1 solved, the dependent claims being advantageous Include further training.
  • the associated device is specified in the only property claim.
  • Spectroscopic measurements are preferably used in the invention online in the spectral range from 0.1 ⁇ m to 400 ⁇ m Fabric and / or on paper, i.e. specifically on a stock suspension in the stock preparation and / or on the headbox and / or carried out on the running paper web.
  • the spectra can be evaluated using different calculation methods and allow a prediction of the achievable Paper quality, the influence of auxiliaries, e.g. Glue, also taken into account in the prediction models can be. Based on this prediction, the Process can be intervened regulatingly, e.g. B. by change the raw material mixture, reducing the proportion of high quality Raw materials, change in grinding or the addition of Auxiliaries, e.g. of glue. This can advantageously a saving in the use of raw materials with the same Product quality and avoiding wrong productions inferior quality can be achieved.
  • auxiliaries e.g. Glue
  • the invention is therefore compared to what was initially discussed State of the art in all essential points, such as the Location, method of measurement, processing of spectra, and Advantageously developed the modeling.
  • the measurement can also be carried out on a With the help of a sampler.
  • the sample can be processed in the desired way, e.g. by concentrating, drying and / or forming a Sample sheet.
  • a sample sheet is one subsequent laboratory measurement of the paper properties possible, e.g. to control the quality of the predictions and, if necessary, the models for quality parameters improve if e.g. important process variables such as raw material quality change or the process flow changed has been.
  • a measurement on the running paper web e.g. before the dryer section or at the end of the paper machine in front of the so-called drum of the associated one Winder.
  • the measurement is carried out in particular with electromagnetic waves in the wavelength range of 0.1 ⁇ m - 400 ⁇ m.
  • the excitation of the luminescence can e.g. through the radiation of electromagnetic Radiation, e.g. UV radiation, or by a specific chemical reaction such as chemiluminescence or the like, the In contrast, excitation of the emission can e.g. by irradiation with Electrons take place.
  • nfra r soldering When measured in the range of I nfra r soldering (IR: 1 .mu.m to 25 .mu.m) may preferably F ourier- T ransformations- spectroscopy (FTIR) can be used.
  • FTIR F ourier- T ransformations- spectroscopy
  • the models for calculating the quality parameters can be found at sufficiently large number of data, preferably neurons Networks, fuzzy systems or multilinear regression models or combinations thereof.
  • Combined models are also possible, where analytical knowledge is introduced, e.g. that with increasing ash content of the raw material the mechanical quality parameters the paper produced from it deteriorate. To increase the accuracy of the forecast, it makes sense to e.g. to form five to ten sub-models, their assignment e.g. about the raw materials used.
  • 1 shows an example of a measuring point diagram for the Paper production shown, in which the production of the Paper is made using waste paper.
  • the production of the Paper is made using waste paper.
  • 1 shows a mixing chest with 10, for example three types of waste paper via a first pulper 1, one second pulper 2 and a third pulper 3 are supplied. Pulpers 1 to 3 are followed by stock preparation units 11 to 13. From the mixing chest 10 the processed one Substance on the headbox not shown in detail given a paper machine 15, in the known Way the paper is formed. The paper machine 15 gives a continuous paper web 200 as a production product out.
  • FIG. 1 shows the measuring point diagram of the waste paper preparation and the paper machine in detail.
  • Three measuring points for spectra A, B, C are introduced into the mass flow m ⁇ 1 , m Meß 2 and m ⁇ 3 of the processed substance.
  • a spectrum D is taken from the current m ⁇ M.
  • Further spectra E and F can be recorded on paper machine 15 on the one hand during paper formation and on the running paper web 200 on the other hand.
  • the measured values in the material flow are from Importance. This can be done according to the sorting and cleaning stages before the headbox a not shown in detail Samplers can be installed.
  • a sample sheet for paper formation which in particular can also be used for laboratory measurements.
  • an FTIR spectrometer is integrated with which under Exclusion of air humidity, e.g. by nitrogen flushing in a vacuum, in the IR range (1 to 25 ⁇ m) the sample sheet several times, for example 10 to 20 spectra, on different Spectroscopy measuring sites in transmission or diffuse reflection can be.
  • FIG. 2a 21 indicates the course of an IR spectrum of paper.
  • a section according to FIG. 2b in the range from 3700 to 3600 cm ⁇ 1 (so-called ash range) of the spectrum is particularly important for practice.
  • FIG. 2c shows the spectrum of a fiber length distribution of fiber or paper, as can be seen from an example measurement of the mechanical properties. There is approximately a course along the boundary line 22 of the bar representation corresponding to a so-called Bernoulli distribution. The distribution of the sieve fractions of individual fibers of the fibrous material has a similar course.
  • the spectra obtained using FIGS. 2a and 2b are prepared using a wide variety of mathematical methods. This essentially involves preprocessing of the spectra to bring analytical knowledge to a possible outlier detection and the intended Deriving control variables for the operation of the entire process engineering Investment.
  • the measured spectra are first smoothed and standardized.
  • the optical spectra according to FIG. 2a are advantageously divided into three sub-spectra, the "OH range” (3800-2600 cm -1 ), the “fingerprint area” (2600-600 cm -1 ) and the “ash range” (3700-3600 cm -1 ).
  • the "OH area” and “fingerprint area” are each standardized individually, namely the "OH area” to the minimum at, for example, 3750 cm -1 and the maximum at 3420 cm -1 , the fingerprint area to the maximum at 2900 cm -1 and the minimum at 1920 cm -1 .
  • the "ash area" between 3700 and 3600 cm -1 is subjected to a baseline correction for the following processing.
  • the absorption maxima are determined as peaks in the spectra using a minimum-maximum method and the second derivative, peak position, peak intensities, peak width and other values being recorded. Spectra identified as useful are used for averaging.
  • the ash content is calculated from the "ash area". This is considered one of the direct quality parameters of the Product saved. On the other hand, the value is considered one of the input variables for the later modeling.
  • the calculated mean spectra are then separated according to "OH area” and "fingerprint area” and broken down into its main components.
  • achievable Quality parameters e.g. the burst strength, the CMT or predicted the tearing length.
  • Quality parameters e.g. the burst strength, the CMT or predicted the tearing length.
  • Quality parameters e.g. the burst strength, the CMT or predicted the tearing length.
  • Quality parameters e.g. the burst strength, the CMT or predicted the tearing length.
  • For everyone to be calculated Quality parameters are to be created in own models.
  • to Increasing the prediction accuracy will be for each parameter Sub-models formed.
  • the assignment to the sub-models takes place based on the assignment of the measurements to substance classes during preprocessing.
  • combination models are calculated, e.g. a linear mix of models according to the proportion of Class of substance in the sheet.
  • the predicted values are as To mark the result of a combination model.
  • 30 denotes a state model of the paper machine, from which the quality parameters for paper such as fiber length, tear length, burst pressure, tear resistance and the like are essentially derived.
  • PCA principal component analysis
  • PLS method p artial l east s quare
  • the substance classes can, for example, according to the raw materials, by type of waste paper or type of fiber such as TMP, cellulose or sanded wood, or according to the products, e.g. classified according to the basis weight or the type of paper produced, be divided.
  • each measurement should only be for a single sheet can be assigned to a substance class. Can do more are classified as three substance classes Alarm, because the mixture of substances is obviously very inhomogeneous is.
  • the fabric differs only slightly from the known compositions ab, but is not yet known to the system, it will Spectrum used for evaluation. The system does, however a message that a new measurement of the quality parameters in the laboratory for a new learning phase.
  • Figure 4 is a process model 40 specifically for waste paper processing as a sub-process in papermaking shown. The following are entered here for the individual waste paper preparation lines the flow, the optical Spectrum and fiber length distribution, being specifically according to Figure 3 is proceeding. The result is the so-called CMT value of the waste paper mixture.
  • Figure 5 is a process model 50 of the paper machine shown in which the input variables, the flow, the optical spectrum, the mechanical spectrum of the Fiber length distribution, the amount of glue and the temperature of the Glue can be chosen.
  • the output the CMT value of the paper, the burst pressure, the tear length and other significant sizes.
  • the process is generally designated 70 in FIG. 7, which gives the current process status based on the spectra with 71 results.
  • the process model is designated 72 here from which the data into a unit for cost function 73 be given at the same time as data for costs and prices from unit 74 is applied.
  • An optimizer From this, 75 determines the manipulated variables 76 that are used in the process model 72 are fed back and continue to be the optimal ones Actuating variables 77 for process control. This can be done via a Switch 78 can be entered by the operator, provided that recognized as meaningful.
  • FIG. 9 shows that a unit 91 for preprocessing and compression of the entire spectrum from which the parameters are calculated in accordance with unit 92.
  • the Parameters flow into state model 93 and into the process model 94, with additional discrete mechanical and / or chemical properties and the process status description complement the state model to the process model. From the state model 93 becomes the quality parameter for the fiber and from the process model 94 the quality parameters for derived the final product.
  • Figure 10 shows how using a digital computer 105 with appropriate evaluation and optimization software in the entire process control system is integrated. In doing so generates optimized manipulated variables that a known automation device 100 act as a process control system, which in familiar with the actual plant for implementation the process interacts. Basically are the usual systems with several spectrometers 101 to 103 and an associated software package that on usual computers runs, added.

Abstract

In order to produce paper from fibrous material, a prepared substance is conveyed to a paper machine (15) with a head box. The substance can contain, for example, a mixture of different recycling paper types with cellulose. In accordance with the invention, at at least one point on the prepared substance and/or the paper (200), continuous spectra of electromagnetic radiation and/or continuous spectra of mechanical properties are measured on the substance (A, B, C, D) and/or paper (E, F). Characteristic quantities are derived from these spectra and fed into a state model, from whence a process model is, in addition, derived with the process qualities. In certain cases, discrete physical and/or chemical properties are also used to form the model. The state model and/or process model are used for conducting and optimising the process.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Prozeßführung und Prozeßoptimierung bei der Herstellung von Papier aus Faserstoff, insbesondere Altpapier und/oder Zellstoff, durch Aufbereiten des Faserstoffes und anschließendes Bilden des Papiers unter Einsatz wenigstens eines Zustandsmodells und/oder Prozeßmodells. Daneben bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a process control method and process optimization in the manufacture of paper made of fibrous material, in particular waste paper and / or cellulose, by processing the pulp and then forming it of the paper using at least one state model and / or process model. The invention also relates to an apparatus for performing this method.

Zur Herstellung von Papier werden heutzutage als Rohstoff variable Anteile aus Altpapier und separat erzeugtem Zellstoff eingesetzt. Üblicherweise wird das Altpapier durch Auflösen und Deinken, der Zellstoff durch Herauslösen des Restlignins aufbereitet, wobei das Mischprodukt allgemein als "Stoff" bezeichnet wird. Für eine Anlage zur Papierherstellung, einschließlich der Stoffaufbereitung und der Papiermaschine, werden an die Prozeßführung, insbesondere der Prozeßführung mit Automatisierungsgeräten, erhebliche Anforderungen gestellt.Nowadays, paper is used as a raw material for the production of paper Portions of waste paper and separately produced cellulose used. The waste paper is usually dissolved and Deinken, the pulp by removing the residual lignin processed, the mixed product generally referred to as "substance" becomes. For a paper making plant, including stock preparation and paper machine, are involved in litigation, especially litigation with automation devices, significant requirements.

Die Prozeßführung bei der Papierherstellung ist deswegen schwierig, da mechanische Papiereigenschaften - wie beispielsweise Zugfestigkeit, Weiterreißfestigkeit, Flachstauchwiderstand, Ringstauchwiderstand, die Berstfestigkeit, Rupffestigkeit, Verhalten gegenüber Flüssigkeit, Bedruckbarkeit - . erst am fertigen Produkt erfaßt werden können. Da diese Werte im Labor mit Zeitverzögerung gemessen werden, kann eine zwischenzeitliche Fehlproduktion nicht ausgeschlossen werden. Um Fehlproduktionen möglichst zu vermeiden, werden üblicherweise höherwertige Rohstoffe und Hilfsstoffe, z.B. Leimauftrag, Additive, in größerem Umfang eingesetzt, als eigentlich zur Erzielung der gewünschten Papierqualität erforderlich wäre.The process control in papermaking is therefore difficult because of mechanical paper properties - such as Tensile strength, tear propagation resistance, flat crush resistance, Ring crush resistance, the burst strength, pick resistance, Behavior towards liquid, printability - , can only be recorded on the finished product. This one Values measured in the laboratory with a time delay can be a interim incorrect production cannot be excluded. In order to avoid wrong productions as far as possible, usually higher quality raw materials and auxiliary materials, e.g. glue, Additives used on a larger scale than actually would be necessary to achieve the desired paper quality.

Beim Stand der Technik werden häufig folgende Strategien angewandt:

  • Der Prozeß wird nach Erfahrungswerten gesteuert. Regeleingriffe sind nur in geringem Umfang möglich. Die Produktqualität kann nur im nachhinein bestimmt werden. Eine große Streuung der Qualitätsparameter ist daher häufig nicht vermeidbar, insbesondere wenn die Qualität der eingesetzten Rohstoffe wie die des Altpapiers oder die des Zellstoffes stark schwankt.
  • Es wird bereits versucht, den Prozeß über online meßbare Hilfsgrößen zu regeln. Diese Strategie wird nur gelegentlich eingesetzt, da die Zahl der mit nicht zu hohen Aufwand meßbaren Hilfsgrößen begrenzt ist und zudem häufig nur ein empirischer Zusammenhang mit den Zielgrößen besteht.
The following strategies are often used in the prior art:
  • The process is controlled based on experience. Regular interventions are only possible to a limited extent. The product quality can only be determined after the fact. A wide spread of the quality parameters is therefore often unavoidable, especially if the quality of the raw materials used, such as that of the waste paper or that of the pulp, fluctuates greatly.
  • Attempts are already being made to regulate the process via auxiliary variables which can be measured online. This strategy is only used occasionally because the number of auxiliary variables that cannot be measured with too much effort is limited and, moreover, there is often only an empirical connection with the target variables.

Zum Einsatz der Infrarot-Spektroskopie bei der Papierherstellung sind folgende Veröffentlichungen bekannt:
In der DE 195 10 009 A1 werden für ein Verfahren zur Prozeßführung einer Papiermaschine ausgewählte spektrale Kennwerte für die Bestimmung von Produktqualitätsparametern mit neuronalen Netzen verwendet. Speziell am Beispiel des Stoffauflaufes einer Papiermaschine werden solche neuronale Netze eingesetzt, die an den im Labor gemessenen Produktparametern trainiert wurden. In der DE 195 10 008 A1 wird ein Verfahren zur Prozeßführung bei der Zellstoff- und Papierherstellung beschrieben, dem spektrale Kennwerte unterschiedlicher Wellenlängen zur Bestimmung der Ausgangsstoffe und zur Bewertung der Rohstoffqualität verwendet werden. Insbesondere mit neuronalen Netzen werden daraus Korrektursignale für die Regel- oder Steuereinrichtung abgeleiteten. Die Messung der spektralen Kennwerte erfolgt am Rohstoff "Holz", wie insbesondere Holzhackschnitzel, Holzfasern, oder am Rohrstoff "Altpapier" als Ausgangsstoffe für die Zellstoff- und Papierherstellung.
The following publications are known about the use of infrared spectroscopy in papermaking:
In DE 195 10 009 A1, selected spectral characteristic values are used for a process for the process control of a paper machine for the determination of product quality parameters with neural networks. Using the example of the headbox of a paper machine, neural networks are used that have been trained on the product parameters measured in the laboratory. DE 195 10 008 A1 describes a process control process in pulp and paper production, which uses spectral parameters of different wavelengths to determine the starting materials and to evaluate the quality of the raw materials. Correction signals for the regulating or control device are derived therefrom, in particular with neural networks. The spectral parameters are measured on the raw material "wood", in particular wood chips, wood fibers, or on the raw material "waste paper" as raw materials for pulp and paper production.

Mit der WO 95/31709 A1 wird eine Vorhersage der Naßreißfestigkeit mit Hilfe von spektroskopischen Messungen an Papier oder Zellstoff unter Verwendung mathematischer Methoden vorgeschlagen. Aus der WO 93/15389 A1 sind ein Verfahren und eine Vorrichtung zur Inline-Bestimmung der sog. "Freeness'", d.h. dem Mahlgrad von Refiner-Holzstoff, bekannt: Dazu werden spektrale Kennwerte von ausgewählten Wellenlängenbändern durch ein Rechenverfahren verarbeitet um den gewünschten Qualitätsindex "Freeness" zu erhalten. Bei der Kalibrierung werden gleichzeitig spektrale Messungen und Qualitätsmessungen durchgeführt, die Meßergebnisse werden in neue Variable verarbeitet und die Abhängigkeit der "Freeness" unter Verwendung der Hauptkomponenten-Methode bestimmt, wobei die verwendeten Wellenlängen zwischen 0,1 - 10 µm liegen.WO 95/31709 A1 makes a prediction of the wet tear resistance with the help of spectroscopic measurements on paper or pulp using mathematical methods. WO 93/15389 A1 describes a method and a Device for inline determination of the so-called "freeness'", i.e. the degree of refining of refiner wood pulp is known: spectral characteristics of selected wavelength bands processed by a calculation process around the desired quality index Get "Freeness". When calibrating at the same time spectral measurements and quality measurements The measurement results are processed in new variables and using the dependency of "freeness" the main component method is determined using the Wavelengths are between 0.1 - 10 µm.

Bei der WO 95/08019 A1 geht um die Aufbereitung von Altpapier, d.h. um die Erzeugung von sogenanntem deinktem Zellstoff, wobei an der Altpapiersuspension spektrale und/oder physikalische Kennwerte aufgenommen werden. Als spektrale Kennwerte werden nach Einstrahlen von Licht mit vorgegebener spektraler Verteilung speziell Intensitäten bei definierten Wellenlängen erfaßt und insbesondere über ein neuronales Netz ausgewertet.WO 95/08019 A1 deals with the processing of waste paper, i.e. to the production of so-called deinked pulp, where spectral and / or physical on the waste paper suspension Characteristic values are recorded. As spectral parameters become more spectral after irradiation with light Distribution of special intensities at defined wavelengths detected and evaluated in particular via a neural network.

Schließlich wird in der DE 41 33 439 A1 ein Verfahren zur kontinuierlichen Messung der sogenannten dynamischen Wasserretention einer Beschichtung auf einem vorbeilaufenden Träger und insbesondere auf einem Blatt Papier beschrieben, bei dem an einer ersten Station Strahlung mit einem bekannten Frequenzspektrum in irgendeiner Ebene in bezug auf die Richtung des Ablaufens des Trägers eingestrahlt wird und in derselben Ebene die reflektierte Strahlung erfaßt wird. Durch spezifisches Vorgehen der Messung, insbesondere wiederholende Messung, wird aus den reflektierten Signalen nach bestimmter Vorschrift die Retention ermittelt.Finally, DE 41 33 439 A1 describes a method for continuous measurement of the so-called dynamic water retention a coating on a passing support and especially described on a piece of paper in which radiation at a first station with a known frequency spectrum in any level in terms of direction the expiry of the carrier is irradiated and in the same Plane the reflected radiation is detected. By specific Procedure of the measurement, in particular repetitive measurement, is from the reflected signals Retention determined according to a specific rule.

Ausgehend vom abgehandelten Stand der Technik ist es Aufgabe der Erfindung, die Prozeßführung bei der Papierherstellung weiter zu optimieren und eine zugehörige Vorrichtung zu schaffen. Based on the state of the art, it is a task the invention, the process control in papermaking further optimize and an associated device too create.

Die Aufgabe ist erfindungsgemäß mit den Merkmalen des Patentanspruches 1 gelöst, wobei die abhängigen Ansprüche vorteilhafte Weiterbildungen beinhalten. Die zugehörige Vorrichtung ist im einzigen Sachanspruch angegeben.The object of the invention is with the features of the claim 1 solved, the dependent claims being advantageous Include further training. The associated device is specified in the only property claim.

Bei der Erfindung werden vorzugsweise spektroskopische Messungen online im Spektralbereich von 0,1 µm bis 400 µm am Stoff und/oder am Papier, d.h. im einzelnen an einer Stoffsuspension in der Stoffaufbereitung und/oder am Stoffauflauf und/oder an der laufenden Papierbahn, durchgeführt. Die Spektren können mit unterschiedlichen Rechenverfahren ausgewertet werden und ermöglichen eine Vorhersage der erzielbaren Papierqualität, wobei der Einfluß von Hilfsstoffen, z.B. Leim, ebenfalls in den Vorhersagemodellen berücksichtigt werden kann. Auf der Basis dieser Vorhersage kann in den Prozeß regelnd eingegriffen werden, z. B. durch Veränderung der Rohstoffmischung, Verringerung des Anteiles hochwertiger Rohstoffe, Veränderung der Mahlung oder des Zusatzes von Hilfsstoffen, z.B. von Leim. Damit kann vorteilhafterweise eine Ersparnis beim Rohstoffeinsatz bei gleichbleibender Produktqualität und eine Vermeidung von Fehlproduktionen mit minderer Qualität erreicht werden.Spectroscopic measurements are preferably used in the invention online in the spectral range from 0.1 µm to 400 µm Fabric and / or on paper, i.e. specifically on a stock suspension in the stock preparation and / or on the headbox and / or carried out on the running paper web. The spectra can be evaluated using different calculation methods and allow a prediction of the achievable Paper quality, the influence of auxiliaries, e.g. Glue, also taken into account in the prediction models can be. Based on this prediction, the Process can be intervened regulatingly, e.g. B. by change the raw material mixture, reducing the proportion of high quality Raw materials, change in grinding or the addition of Auxiliaries, e.g. of glue. This can advantageously a saving in the use of raw materials with the same Product quality and avoiding wrong productions inferior quality can be achieved.

Neben der Vorhersage von bisher nur offline meßbaren Eigenschaften können nunmehr Eigenschaften wie Aschegehalt, Weiße, Opazität, Schmutzpunkte direkt bestimmt und/oder vorhergesagt werden, die z. Zt. online nur mit einer speziellen, zum Teil sehr aufwendigen Sensorik gemessen werden können. Ein wesentlicher Vorteil der Erfindung liegt in der Ersparnis dieser zusätzlichen Sensorik. In addition to predicting properties that were previously only measurable offline properties such as ash content, whiteness, Opacity, dirt spots directly determined and / or predicted be the z. Currently online only with a special, in part very complex sensors can be measured. An essential one The advantage of the invention lies in the fact that it is saved additional sensors.

Die Erfindung ist also gegenüber dem eingangs abgehandelten Stand der Technik in allen wesentlichen Punkten, wie der Meßort, die Meßmethode, die Verarbeitung der Spektren, und die Modellbildung vorteilhaft weiterentwickelt.The invention is therefore compared to what was initially discussed State of the art in all essential points, such as the Location, method of measurement, processing of spectra, and Advantageously developed the modeling.

Im Rahmen der Erfindung kann die Messung auch an einer mit Hilfe eines Probennehmers gewonnenen Stoffprobe erfolgen. Die Stoffprobe kann in gewünschter Weise aufbereitet werden, z.B. durch Aufkonzentrieren, Trocknen und/oder Bildung eines Probenblattes. Bei Bildung eines Probenblattes ist eine anschließende Labormessung der Papiereigenschaften möglich, z.B. um die Qualität der Vorhersagen kontrollieren zu können und um gegebenenfalls die Modelle für Qualitätsparameter zu verbessern, wenn z.B. wichtige Prozeßgrößen wie die Rohstoffqualität sich ändern oder der Prozeßablauf geändert wurde. Alternativ oder parallel kann auch eine Messung an der laufenden Papierbahn erfolgen, z.B. vor der Trockenpartie oder am Ende der Papiermaschine vor dem sog. Tambour des zugehörigen Rollenschneiders.Within the scope of the invention, the measurement can also be carried out on a With the help of a sampler. The The sample can be processed in the desired way, e.g. by concentrating, drying and / or forming a Sample sheet. When forming a sample sheet is one subsequent laboratory measurement of the paper properties possible, e.g. to control the quality of the predictions and, if necessary, the models for quality parameters improve if e.g. important process variables such as raw material quality change or the process flow changed has been. Alternatively or in parallel, a measurement on the running paper web, e.g. before the dryer section or at the end of the paper machine in front of the so-called drum of the associated one Winder.

Wie bereits erwähnt, erfolgt die Messung insbesondere mit elektromagnetischen Wellen im Wellenlängenbereich von 0,1 µm - 400 µm erfolgen. Gemessen werden können die Absorptions-, Emissions-, Lumineszenz- oder Raman-Spektren der Stoffproben. Die Absorptionsspektroskopie kann in Transmission, diffuser Reflexion oder gedämpfter Totalreflexion (ATR = "attenuated total reflection") erfolgen. Die Anregung der Lumineszenz kann z.B. durch die Einstrahlung von elektromagnetischer Strahlung, z.B. UV-Strahlung, oder durch eine spezifische chemische Reaktion wie Chemolumineszenz od. dgl., die Anregung der Emission kann dagegen z.B. durch Bestrahlung mit Elektronen erfolgen.As already mentioned, the measurement is carried out in particular with electromagnetic waves in the wavelength range of 0.1 µm - 400 µm. The absorption, Emission, luminescence or Raman spectra of the material samples. Absorption spectroscopy can be diffuse in transmission Reflection or attenuated total reflection (ATR = "attenuated total reflection "). The excitation of the luminescence can e.g. through the radiation of electromagnetic Radiation, e.g. UV radiation, or by a specific chemical reaction such as chemiluminescence or the like, the In contrast, excitation of the emission can e.g. by irradiation with Electrons take place.

Bei Messung im Bereich des Infraroten (IR: 1 µm bis 25 µm) kann vorzugsweise die Fourier-Transformations-Spektroskopie (FTIR) eingesetzt werden. An inhomogen Stoffproben kann die spektroskopische Messung mehrfach oder verschiedene Meßorte am gelösten bzw. aufbereiteten Faserstoff und/oder am Papier erfolgen.When measured in the range of I nfra r soldering (IR: 1 .mu.m to 25 .mu.m) may preferably F ourier- T ransformations- spectroscopy (FTIR) can be used. On inhomogeneous material samples, the spectroscopic measurement can be carried out several times or different measuring locations on the dissolved or prepared fiber material and / or on the paper.

Die Spektren können vorteilhaft durch folgende Maßnahmen vorverarbeitet werden:

  • durch Fourier-Transformation
  • bei Messung der Absorption durch diffuse Reflexion Umrechnung in Kubelka-Munk-Einheiten und Korrektur von Mehrfachstreueffekten
  • durch Normierung und Glättung der Spektren
  • durch Ermittlung von für die Modellbildung ungeeigneten Spektren. Bei der Modellierung der z.B. mechanischen Papiereigenschaften sind Spektren, die z.B. an Schutzpunkten, z.B. Farbreste im Altpapier usw., gemessen wurden, ungeeignet und müssen verworfen werden. Die Ausschaltung ungeeigneter Messungen kann z.B. durch Vergleich mit Referenzspektren erfolgen.
  • Bei mehreren Spektren zu einer Probennahme durch Bildung von Mittelwerten.
The spectra can advantageously be preprocessed by the following measures:
  • through Fourier transform
  • when measuring the absorption by diffuse reflection, conversion into Kubelka-Munk units and correction of multiple scattering effects
  • by normalizing and smoothing the spectra
  • by determining spectra that are unsuitable for modeling. When modeling the mechanical paper properties, for example, spectra that have been measured, for example, at protective points, for example color residues in the waste paper, etc., are unsuitable and must be rejected. Unsuitable measurements can be switched off, for example, by comparison with reference spectra.
  • For several spectra, take a sample by averaging.

Nach diesen ersten Verarbeitungsschritten können zur Weiterverarbeitung der ganz oder abschnittsweise aufbereiteten Spektren vorzugsweise folgende rechnerische Verfahren zur Ermittlung von Kenngrößen angewandt werden:

  • Hauptkomponentenanalyse (PCA), bei dem eine Beschreibung der Spektren durch die Hauptkomponenten erfolgt
  • "Partial Least Square"(PLS)-Verfahren
  • Neuronale Netze
  • Analytische Beschreibung der Spektren, z.B. im Bereich des IR durch Lage, Intensität und Breite der wichtigsten Absorptions- oder Emissionspeaks, Ermittlung dieser Größen z.B. mit einfachen Minimum-Maximum-Verfahren oder der 2. Ableitung.
Die Kenngrößen werden zur Modellierung der gewünschten Qualitätsparameter herangezogen.After these first processing steps, the following computational methods for determining characteristic values can preferably be used for further processing of the spectra, which are prepared in whole or in sections:
  • Main component analysis (PCA), in which the spectra are described by the main components
  • Partial Least Square (PLS) process
  • Neural Networks
  • Analytical description of the spectra, for example in the area of the IR by position, intensity and width of the most important absorption or emission peaks, determination of these quantities, for example using a simple minimum-maximum method or the second derivative.
The parameters are used to model the desired quality parameters.

Die Modelle für Berechnung der Qualitätsparameter können bei ausreichend großer Zahl von Daten vorzugsweise Neuronale Netze, Fuzzy-Systeme oder Multilineare Regressionsmodelle bzw. Kombinationen daraus sein. Alternativ zu rein datengetriebenen Modellen sind auch kombinierte Modelle möglich, bei denen analytisches Wissen eingebracht wird, z.B. daß mit steigendem Aschegehalt des Rohstoffes die mechanischen Qualitätsparameter des daraus erzeugten Papiers sich verschlechtern. Zur Erhöhung der Vorhersagegenauigkeit ist es sinnvoll, z.B. fünf bis zehn Teilmodelle zu bilden, deren Zuordnung z.B. über die eingesetzten Rohstoffe erfolgen kann.The models for calculating the quality parameters can be found at sufficiently large number of data, preferably neurons Networks, fuzzy systems or multilinear regression models or combinations thereof. As an alternative to purely data-driven ones Combined models are also possible, where analytical knowledge is introduced, e.g. that with increasing ash content of the raw material the mechanical quality parameters the paper produced from it deteriorate. To increase the accuracy of the forecast, it makes sense to e.g. to form five to ten sub-models, their assignment e.g. about the raw materials used.

Die Aufstellung der Modelle, d.h. Auswahl der Modelleingangsgrößen, und deren Validierung erfolgt mit Labormessungen am Zwischen- und Endprodukt. Es können neuronale Netze eingesetzt werden, die online trainiert werden. Eine in die Spektrenvorverarbeitung integrierte Methode der sogenannten "Novelty Detection" entsprechend der älteren, nichtvorveröffentlichten DE 196 322 45 A1 kann im laufenden Prozeß rechtzeitig die Notwendigkeit einer neuen Trainingsphase anzeigen.The list of models, i.e. Selection of model input variables, and their validation takes place with laboratory measurements on Intermediate and final product. Neural networks can be used be trained online. One in the Spectra preprocessing integrated method of the so-called "Novelty Detection" according to the older, unpublished DE 196 322 45 A1 can in the running process in time the need for a new training phase Show.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung. Es zeigen

Figur 1
ein Schema der Meßstellen bei einer Anlage zur Papierherstellung,
Figur 2a bis 2c
kontinuierliche Spektren von optischen Messungen an einer Faserstoffsuspension und von mechanischen Messungen an Fasern,
Figur 3
ein Zustandsmodell für die Qualitätsparameter bei einer Papiermaschine,
Figur 4
ein Prozeßmodell des sogenannten CMT-Wertes einer Fasermischung bei der Altpapieraufbereitung,
Figur 5
ein Prozeßmodell des CMT-Wertes des Papiers auf der Papiermaschine,
Figur 6
ein dynamisches Prozeßmodell für den CMT-Wert,
Figur 7
den schematischen Aufbau einer Prozeßoptimierung zum Steuern der Papierherstellung,
Figur 8
eine Variante von Figur 7 unter Einbeziehung des dynamischen Modells gemäß Figur 6,
Figur 9
die Vorverarbeitung und Verdichtung der Spektren und
Figur 10
eine Vorrichtung zur optimierten Prozeßführung bei der Papierherstellung.
Further details and advantages of the invention result from the following description of the figures of exemplary embodiments with reference to the drawing. Show it
Figure 1
a diagram of the measuring points in a plant for paper production,
Figure 2a to 2c
continuous spectra of optical measurements on a fiber suspension and of mechanical measurements on fibers,
Figure 3
a state model for the quality parameters in a paper machine,
Figure 4
a process model of the so-called CMT value of a fiber mixture in waste paper processing,
Figure 5
a process model of the CMT value of the paper on the paper machine,
Figure 6
a dynamic process model for the CMT value,
Figure 7
the schematic structure of a process optimization for controlling the paper production,
Figure 8
7 shows a variant of FIG. 7 including the dynamic model according to FIG. 6,
Figure 9
the preprocessing and compression of the spectra and
Figure 10
a device for optimized process control in papermaking.

Die Figuren werden nachfolgend teilweise gemeinsam beschrieben. Gleiche bzw. gleichwirkende Teile haben sich entsprechende Bezugszeichen. The figures are partially described below together. The same or equivalent parts have corresponding Reference numerals.

In der Figur 1 ist beispielhaft ein Meßstellenschema für die Papierherstellung dargestellt, bei dem die Herstellung des Papieres unter Einsatz von Altpapier erfolgt. Dafür ist in der Figur 1 eine Mischbütte mit 10 bezeichnet, der beispielsweise drei Altpapiersorten über einen ersten Pulper 1, einen zweiten Pulper 2 und einen dritten Pulper 3 zugeführt werden. Den Pulpern 1 bis 3 folgen jeweils Einheiten zur Stoffaufbereitung 11 bis 13. Von der Mischbütte 10 wird der aufbereitete Stoff auf den nicht im einzelnen dargestellten Stoffauflauf einer Papiermaschine 15 gegeben, in der in bekannter Weise das Papier gebildet wird. Die Papiermaschine 15 gibt als Herstellungsprodukt eine durchlaufende Papierbahn 200 aus.1 shows an example of a measuring point diagram for the Paper production shown, in which the production of the Paper is made using waste paper. For that is in 1 shows a mixing chest with 10, for example three types of waste paper via a first pulper 1, one second pulper 2 and a third pulper 3 are supplied. Pulpers 1 to 3 are followed by stock preparation units 11 to 13. From the mixing chest 10 the processed one Substance on the headbox not shown in detail given a paper machine 15, in the known Way the paper is formed. The paper machine 15 gives a continuous paper web 200 as a production product out.

In der Figur 1 ist das Meßstellenschema der Altpapieraufbereitung und der Papiermaschine im einzelnen dargestellt. In den Massestrom m ˙ 1 , m ˙ 2 und m ˙ 3 des aufbereiteten Stoffes sind jeweils drei Meßstellen für Spektren A, B, C eingebracht. Nach der Mischbütte wird ein Spektrum D am Strom m ˙M abgenommen. Weitere Spektren E und F können an der Papiermaschine 15 einerseits bei der Papierbildung und an der laufenden Papierbahn 200 andererseits aufgenommen werden.FIG. 1 shows the measuring point diagram of the waste paper preparation and the paper machine in detail. Three measuring points for spectra A, B, C are introduced into the mass flow m ˙ 1 , m Meß 2 and m ˙ 3 of the processed substance. After the mixing chest, a spectrum D is taken from the current m ˙ M. Further spectra E and F can be recorded on paper machine 15 on the one hand during paper formation and on the running paper web 200 on the other hand.

Für die Prozeßsteuerung sind die Meßwerte im Stoffstrom von Bedeutung. Dafür kann nach den Sortier- und Reinigungsstufen vor dem Stoffauflauf ein nicht im einzelnen dargestellter Probennehmer installiert werden. In diesem Probennehmer wird ein Probenblatt für die Papierbildung gebildet, das insbesondere auch für Labormessungen benutzt werden kann. Im Probennehmer ist ein FTIR-Spektrometer integriert, mit dem unter Ausschluß der Luftfeuchtigkeit, z B. durch Stickstoffspülung im Vakuum, im Bereich des IR (1 bis 25 µm) das Probenblatt mehrfach, beispielsweise 10 bis 20 Spektren, an verschiedenen Meßorten in Transmission oder diffuser Reflexion spektroskopiert werden kann.For process control, the measured values in the material flow are from Importance. This can be done according to the sorting and cleaning stages before the headbox a not shown in detail Samplers can be installed. In this sampler formed a sample sheet for paper formation, which in particular can also be used for laboratory measurements. In the sampler an FTIR spectrometer is integrated with which under Exclusion of air humidity, e.g. by nitrogen flushing in a vacuum, in the IR range (1 to 25 µm) the sample sheet several times, for example 10 to 20 spectra, on different Spectroscopy measuring sites in transmission or diffuse reflection can be.

In Figur 2a kennzeichnet 21 den Verlauf eines IR-Spektrums von Papier. Dabei ist für die Praxis speziell ein Ausschnitt gemäß Figur 2b im Bereich von 3700 - 3600cm-1 (sog. Aschebereich) des Spektrums von Bedeutung. In Figur 2c ist dagegen das Spektrum einer Faserlängenverteilung von Faserstoff oder Papier dargestellt, wie es sich aus einer beispielhaften Messung der mechanischen Eigenschaften ergibt. Es ergibt sich entlang der Grenzlinie 22 der Balkendarstellung in etwa ein Verlauf entsprechend einer sog. Bernoulli-Verteilung. Die Verteilung der Siebfraktionen von einzelnen Fasern des Faserstoffes hat einen ähnlichen Verlauf.In FIG. 2a, 21 indicates the course of an IR spectrum of paper. A section according to FIG. 2b in the range from 3700 to 3600 cm −1 (so-called ash range) of the spectrum is particularly important for practice. In contrast, FIG. 2c shows the spectrum of a fiber length distribution of fiber or paper, as can be seen from an example measurement of the mechanical properties. There is approximately a course along the boundary line 22 of the bar representation corresponding to a so-called Bernoulli distribution. The distribution of the sieve fractions of individual fibers of the fibrous material has a similar course.

Die anhand der Figuren 2a bzw. 2b erhaltenen Spektren werden mittels unterschiedlichster mathematischer Methoden aufbereitet. Dabei geht es im wesentlichen um eine Vorverarbeitung der Spektren, um das Einbringen von analytischem Wissen, um eine mögliche Ausreißererkennung und der bestimmungsgemäßen Ableitung von Steuergrößen für den Betrieb der gesamten verfahrenstechnischen Anlage.The spectra obtained using FIGS. 2a and 2b are prepared using a wide variety of mathematical methods. This essentially involves preprocessing of the spectra to bring analytical knowledge to a possible outlier detection and the intended Deriving control variables for the operation of the entire process engineering Investment.

Die gemessenen Spektren werden zunächst geglättet und normiert. Dabei werden die optischen Spektren gemäß Figur 2a vorteilhaft in drei Teilspektren aufgeteilt, den "OH - Bereich" (3800 - 2600 cm-1), den "Fingerprintbereich" (2600 - 600 cm-1) und den "Aschebereich" (3700 - 3600 cm-1). Der "OH-Bereich" und "Fingerprintbereich" werden jeweils für sich normiert, und zwar der "OH - Bereich" auf das Minimum bei z.B. 3750 cm-1 und das Maximum bei 3420 cm-1, der Fingerprintbereich auf das Maximum bei 2900 cm-1 und das Minimum bei 1920 cm-1.The measured spectra are first smoothed and standardized. The optical spectra according to FIG. 2a are advantageously divided into three sub-spectra, the "OH range" (3800-2600 cm -1 ), the "fingerprint area" (2600-600 cm -1 ) and the "ash range" (3700-3600 cm -1 ). The "OH area" and "fingerprint area" are each standardized individually, namely the "OH area" to the minimum at, for example, 3750 cm -1 and the maximum at 3420 cm -1 , the fingerprint area to the maximum at 2900 cm -1 and the minimum at 1920 cm -1 .

Der "Asche-Bereich" zwischen 3700 und 3600 cm-1 wird für die folgende Verarbeitung einer Basislinienkorrektur unterworfen. Mit einem Minimum - Maximum Verfahren und der 2. Ableitung werden die Absorptionsmaxima als Peaks in den Spektren ermittelt, wobei Peaklage, Peakintensitäten, Peakbreite und andere Werte erfaßt werden. Als brauchbar identifizierte Spektren werden zur Mittelwertbildung herangezogen.The "ash area" between 3700 and 3600 cm -1 is subjected to a baseline correction for the following processing. The absorption maxima are determined as peaks in the spectra using a minimum-maximum method and the second derivative, peak position, peak intensities, peak width and other values being recorded. Spectra identified as useful are used for averaging.

Aus den "Aschebereich" wird der Aschegehalt berechnet. Dieser wird zum einen als eine der direkten Qualitätsparameter des Produktes abgespeichert. Zum andern wird der Wert als eine der Eingangsgrößen für die spätere Modellbildung herangezogen.The ash content is calculated from the "ash area". This is considered one of the direct quality parameters of the Product saved. On the other hand, the value is considered one of the input variables for the later modeling.

Die berechneten Mittelwertspektren werden anschließend getrennt nach "OH - Bereich" und "Fingerprintbereich" und einer Zerlegung in ihre Hauptkomponenten unterworfen. Mit z.B. einer multilinearen Regression werden mit Hilfe von ausgewählten Hauptkomponenten als Eingangsgrößen die erreichbaren Qualitätsparameter, z.B. die Berstfestigkeit, der CMT oder die Reißlänge vorhergesagt. Für jeden zu berechnenden Qualitätsparameter sind eigene Modelle zu erstellen. Zur Erhöhung der Vorhersagegenauigkeit werden für jeden Parameter Teilmodelle gebildet. Die Zuordnung zu den Teilmodellen erfolgt auf der Basis der Zuordnung der Messungen zu Stoffklassen während der Vorverarbeitung. Bei einer Zuordnung von bis zu drei Stoffklassen zu Messungen an einem Blatt, können entsprechende Kombinationsmodelle berechnet werden, z.B. eine lineare Mischung der Modelle entsprechend dem Anteil der Stoffklasse im Blatt. Die vorhergesagten Werte sind als Ergebnis eines Kombinationsmodelles zu kennzeichnen.The calculated mean spectra are then separated according to "OH area" and "fingerprint area" and broken down into its main components. With e.g. a multilinear regression using selected main components as input variables the achievable Quality parameters, e.g. the burst strength, the CMT or predicted the tearing length. For everyone to be calculated Quality parameters are to be created in own models. to Increasing the prediction accuracy will be for each parameter Sub-models formed. The assignment to the sub-models takes place based on the assignment of the measurements to substance classes during preprocessing. When assigning Up to three substance classes for measurements on one sheet corresponding combination models are calculated, e.g. a linear mix of models according to the proportion of Class of substance in the sheet. The predicted values are as To mark the result of a combination model.

Auf der Basis dieser Information ist es möglich, die Rohstoffzusammensetzung zu optimieren oder den Einsatz von Hilfsstoffen, wie insbesondere von Leim, zu regeln.Based on this information, it is possible to determine the raw material composition to optimize or use To regulate auxiliary materials, such as glue in particular.

In Figur 3 bedeuten 30 ein Zustandsmodell der Papiermaschine, aus dem im wesentlichen die Qualitätsparameter für Papier wie Faserlänge, Reißlänge, Berstdruck, Durchreißfestigkeit und dgl. abgeleitet werden. Dazu werden aus Spektren gemäß Figur 2a und/oder Figur 2b entweder mit der sogenannten Hauptkomponentenanalyse (PCA = principal component analysis) oder mit der sogenannten PLS-Methode (partial least square) Kenngrößen ermittelt und in das Modell eingegeben. Dargestellt sind beispielsweise die Kenngrößen PC1 bis PCn, die mit beispielsweise 10 Scores ermittelt wurden. Weiterhin werden auch diskrete mechanische oder chemische Eigenschaften ausgewählt und in das Modell 30 eingegeben. Mit einer zusätzlichen Eingabe der Prozeßeigenschaften wird aus dem eigentlichen Zustandsmodell ein Prozeßmodell.In FIG. 3, 30 denotes a state model of the paper machine, from which the quality parameters for paper such as fiber length, tear length, burst pressure, tear resistance and the like are essentially derived. For this purpose, from spectra according to figure 2a and / or figure detected with either 2b of the so-called principal component analysis (PCA = p rincipal c omponent a nalysis) or with the so-called PLS method (p artial l east s quare) parameters, and input to the model. The parameters PC1 to PCn are shown, for example, which were determined with, for example, 10 scores. Furthermore, discrete mechanical or chemical properties are also selected and entered into the model 30. With an additional input of the process properties, the actual state model becomes a process model.

Um die Modellierung flexibler zu gestalten und um die Vorhersagegenauigkeit zu erhöhen, werden die bereits erwähnten Stoffklassen basierend auf der Stoffzusammensetzung gebildet. Die Stoffklassen können beispielsweise nach den Rohstoffen, nach Altpapiersorte oder Faserstoffart wie TMP, Zellstoff oder Holzschliff, oder nach den Produkten, z.B. klassifiziert nach dem Flächengewicht oder der hergestellten Papiersorte, aufgeteilt werden.To make the modeling more flexible and to make the prediction more precise to increase, the ones already mentioned Classes of substances are formed based on the composition of the substance. The substance classes can, for example, according to the raw materials, by type of waste paper or type of fiber such as TMP, cellulose or sanded wood, or according to the products, e.g. classified according to the basis weight or the type of paper produced, be divided.

Idealerweise sollte für ein einziges Blatt jede Messung nur zu einer Stoffklasse zugeordnet werden können. Können mehr als drei Stoffklassen zugeordnet werden, gibt das System Alarm, da die Stoffmischung offensichtlich sehr inhomogen ist.Ideally, each measurement should only be for a single sheet can be assigned to a substance class. Can do more are classified as three substance classes Alarm, because the mixture of substances is obviously very inhomogeneous is.

Weicht der Stoff nur wenig von den bekannten Zusammensetzungen ab, ist aber noch nicht dem System bekannt, wird das Spektrum zur Auswertung herangezogen. Das System gibt jedoch eine Meldung aus, daß eine erneute Nachmessung der Qualitätsparameter im Labor für eine neue Lernphase erforderlich ist.The fabric differs only slightly from the known compositions ab, but is not yet known to the system, it will Spectrum used for evaluation. The system does, however a message that a new measurement of the quality parameters in the laboratory for a new learning phase.

Wenn das gemessene Spektrum stark von den Referenzen abweicht, ist die Messung z.B. an einem Schmutzpunkt erfolgt. Das Spektrum wird dann nicht für die weiteren Berechnungen herangezogen, jedoch zu Dokumentationszwecken abgespeichert. Stellt sich heraus, daß ein zu großer Anteil der Messungen z.B. 25 % verworfen werden müssen, dann gibt das System Alarm, da z.B. ein Fehler in den vorangehenden Sortier- und Reinigungsstufen vorliegen kann.If the measured spectrum deviates significantly from the references, is the measurement e.g. at a dirt point. The spectrum is then not used for further calculations used, but saved for documentation purposes. It turns out that too much of the measurements e.g. 25% must be discarded, then the system returns Alarm, e.g. an error in the previous sorting and Cleaning levels can be present.

In Figur 4 ist speziell ein Prozeßmodell 40 für die Altpapieraufbereitung als Teilprozeß bei der Papierherstellung dargestellt. Eingegeben werden hier für die einzelnen Altpapieraufbereitungslinien jeweils der Durchfluß, das optische Spektrum und die Faserlängenverteilung, wobei speziell gemäß Figur 3 vorgegangen wird. Als Ergebnis liegt der sogenannte CMT-Wert der Altpapiermischung vor.In Figure 4 is a process model 40 specifically for waste paper processing as a sub-process in papermaking shown. The following are entered here for the individual waste paper preparation lines the flow, the optical Spectrum and fiber length distribution, being specifically according to Figure 3 is proceeding. The result is the so-called CMT value of the waste paper mixture.

Gleichermaßen ist in Figur 5 ein Prozeßmodell 50 der Papiermaschine dargestellt, bei dem die Eingangsgrößen, der Durchfluß, das optische Spektrum, das mechanische Spektrum der Faserlängenverteilung, die Leimmenge und die Temperatur des Leimes gewählt werden. Hier ergibt sich als Ausgangsgrößen der CMT-Wert des Papieres, der Berstdruck, die Reißlänge und andere signifikante Größen.Similarly, in Figure 5 is a process model 50 of the paper machine shown in which the input variables, the flow, the optical spectrum, the mechanical spectrum of the Fiber length distribution, the amount of glue and the temperature of the Glue can be chosen. Here is the output the CMT value of the paper, the burst pressure, the tear length and other significant sizes.

In Figur 6 ist dargestellt, daß bei einer dynamischen Vorgabe der Eingangsgrößen zum Zeitpunkt k, ... k-n und zusätzlich vorher bekannten CMT-Werten zum Zeitpunkt k, ... k-n durch ein dynamisches Prozeßmodell 60 der Papiermaschine sich die zeitlich variablen Werte wie CMT-Wert, Berstdruck und Reißlänge für Papier zum Zeitpunkt k+1 ergeben.In Figure 6 it is shown that with a dynamic specification of the input variables at time k, ... k-n and additionally previously known CMT values at time k, ... k-n a dynamic process model 60 of the paper machine itself Time-variable values such as CMT value, burst pressure and tear length for paper at time k + 1.

Bei der Aufstellung der Modelle kann von neuronalen Netzen und/oder Fuzzy-Logikverfahren Gebrauch gemacht werden. Insbesondere geht es darum, die Gültigkeit der Modelle zu validieren, was durch ein online-Training der einzelnen Modelle bzw. der Teilmodelle erfolgen kann. Dabei kann es für die Praxis wichtig sein, durch rechnergestützte Auswahl aller informationstragender Daten eine Überprüfung der jeweils erhaltenen Ergebnisse vorzunehmen. Dieses Verfahren wurde als sog. "Novelty Detection" vorgeschlagen und ermöglicht, neue Datensätze in das Auswerteverfahren einzubringen. Bei Vorliegen nicht konsistenter Ergebnisse ist ein Nachtrainieren der Modelle notwendig. When setting up the models can be of neural networks and / or fuzzy logic methods can be used. In particular, it is about the validity of the models validate what is done through an online individual training Models or the partial models can be made. It can be for practice will be important through computer-aided selection of all information-carrying data a check of each results obtained. This procedure was called So-called "Novelty Detection" proposed and enables new Bring data records into the evaluation process. If available Results that are not consistent are retraining of the models necessary.

Die so erhaltenen Größen werden zur Prozeßführung eingesetzt. Dafür ist in Figur 7 der Prozeß allgemein mit 70 bezeichnet, woraus sich der aktuelle Prozeßzustand anhand der Spektren mit 71 ergibt. Das Prozeßmodell ist hier mit 72 bezeichnet, aus dem die Daten in eine Einheit zur Kostenfunktion 73 gegeben werden, die gleichzeitig mit Daten für Kosten und Preise aus der Einheit 74 beaufschlagt wird. Ein Optimierer 75 ermittelt daraus die Stellgrößen 76, die in das Prozeßmodell 72 zurückgekoppelt werden und weiterhin die optimalen Stellgrößen 77 zur Prozeßführung. Diese können über einen Schalter 78 vom Anlagenfahrer eingegeben werden, sofern sie als sinnvoll erkannt werden.The sizes thus obtained are used for process control. For this purpose, the process is generally designated 70 in FIG. 7, which gives the current process status based on the spectra with 71 results. The process model is designated 72 here from which the data into a unit for cost function 73 be given at the same time as data for costs and Prices from unit 74 is applied. An optimizer From this, 75 determines the manipulated variables 76 that are used in the process model 72 are fed back and continue to be the optimal ones Actuating variables 77 for process control. This can be done via a Switch 78 can be entered by the operator, provided that recognized as meaningful.

Entsprechendes ergibt sich aus Figur 8 für eine Prozeßführung, bei der gleichermaßen ein dynamisches Modell entsprechend der Figur 6 verwendet wird. Hier ist zusätzlich eine Einheit 79 mit dem dynamischen Modell vorhanden, in die der aktuelle Prozeßzustand einerseits und die optimalen Stellgrößen andererseits eingegeben werden.The corresponding results from FIG. 8 for process control, at which equally a dynamic model accordingly 6 is used. Here is additional a unit 79 with the dynamic model in which the current process status on the one hand and the optimal ones On the other hand, manipulated variables can be entered.

In Figur.9 ist dargestellt, daß eine Einheit 91 zur Vorverarbeitung und Verdichtung des Gesamtspektrums dient, aus dem entsprechend Einheit 92 die Kenngrößen berechnet werden. Die Kenngrößen fließen in das Zustandsmodell 93 und in das Prozeßmodell 94 ein, wobei zusätzlich diskrete mechanische und/oder chemische Eigenschaften und die Prozeßzustandsbeschreibung das Zustandsmodell zum Prozeßmodell ergänzen. Vom Zustandsmodell 93 wird der Qualitätsparameter für den Faserstoff und aus dem Prozeßmodell 94 der Qualitätsparameter für das Endprodukt abgeleitet. FIG. 9 shows that a unit 91 for preprocessing and compression of the entire spectrum from which the parameters are calculated in accordance with unit 92. The Parameters flow into state model 93 and into the process model 94, with additional discrete mechanical and / or chemical properties and the process status description complement the state model to the process model. From the state model 93 becomes the quality parameter for the fiber and from the process model 94 the quality parameters for derived the final product.

Figur 10 zeigt, wie die anhand eines Digitalrechners 105 mit entsprechender Auswerte- und Optimierungssoftware in das gesamte Prozeßleitsystem eingebunden wird. Dabei werden optimierte Stellgrößen erzeugt, die ein bekanntes Automatisierungsgerät 100 als Prozeßleitsystem beaufschlagen, das in sich bekannter Weise mit der eigentlichen Anlage zur Durchführung des Prozesses in Wechselwirkung steht. Im Prinzip werden also die üblichen Anlagen durch mehrere Spektrometer 101 bis 103 und ein zugehöriges Software-Paket, das auf üblichen Rechnern abläuft, ergänzt.Figure 10 shows how using a digital computer 105 with appropriate evaluation and optimization software in the entire process control system is integrated. In doing so generates optimized manipulated variables that a known automation device 100 act as a process control system, which in familiar with the actual plant for implementation the process interacts. Basically are the usual systems with several spectrometers 101 to 103 and an associated software package that on usual computers runs, added.

Claims (27)

  1. Method for process management and for process optimisation in the production of paper from fibre pulp, in particular from recycled paper and/or chemical pulp, by treating the fibre pulp and subsequently forming the paper in a paper-making machine while using at least one state model and/or process model, having the following features:
    a) at at least one point, continuous spectra of electromagnetic radiation and/or continuous spectra of mechanical properties are measured from the treated fibre pulp and/or from the paper,
    b) characteristic quantities (PC1, ..., PCn) for the treated fibre pulp and/or the paper are determined by mathematical evaluation of the continuous spectra,
    c) the characteristic quantities (PC1, ..., PCn) and the laboratory measurements of the product properties are entered into the state model and/or the process properties are additionally entered into the process model, by means of which the models are verified,
    d) optimised manipulated variables for an existing process control system are formed with the aid of the state model and/or process model set up in this way.
  2. Method according to Claim 1, characterised in that at at least one point, discrete physical and/or chemical properties are recorded from the fibre pulp and/or from the paper.
  3. Method according to Claim 1 and Claim 2, characterised in that the discrete physical and/or chemical properties are additionally used for setting up the state model and optionally the process model.
  4. Method according to Claim 1, characterised in that measurements are taken at wavelengths of the electromagnetic radiation of between 100 nm and 400 µm.
  5. Method according to Claim 4, characterised in that the electromagnetic radiation is recorded in an absorption, emission or luminescence spectrum or as a Raman spectrum.
  6. Method according to Claim 4, characterised in that the electromagnetic radiation is recorded in transmission, direct or diffuse reflection or attenuated total reflection (ATR).
  7. Method according to Claim 1, characterised in that the fibre length distribution or the screen fractions of the fibres are employed as spectra of the mechanical properties.
  8. Method according to Claim 1, characterised in that recycled paper from at least one recycled-paper line is used for the production of paper, the number of recycled-paper lines that are connected in parallel being unlimited.
  9. Method according to Claim 1, characterised in that the measurement of the continuous spectra is carried out at the output of the recycled-paper treatment and/or after the pulp-treatment and/or in the region of the paper-formation in the paper-making machine.
  10. Method according to Claim 1, characterised in that a principal component analysis is carried out on a predetermined number of spectra and, for data reduction, a corresponding number of scores is selected, and in that the characteristic quantities for the model formation are determined therefrom.
  11. Method according to Claim 9, characterised in that the spectra are pre-processed and compressed, and in that the specific characteristic values of the spectra, in particular the principal components, are selected for describing the product state and are entered directly into the state model.
  12. Method according to Claim 9, characterised in that the spectra are pre-processed and compressed, in that their specific characteristic quantities, in particular the principal components, are introduced into the state model, and in that the product properties are formed at the output of the state model and are entered directly into the process model.
  13. Method according to Claim 1, characterised in that spectra that are unsuitable for the model formation are eliminated by plausibility testing.
  14. Method according to Claim 1, characterised in that the consistency, the degree of freeness, the flow rate of the fibre suspension and/or the basis weight and the moisture of the paper are recorded as discrete physical and/or chemical properties.
  15. Method according to Claim 1, characterised in that the characteristic quantities that are obtained by evaluating the continuous spectra are employed for controlling and/or regulating the paper-formation process.
  16. Method according to Claim 14, characterised in that the characteristic quantities that are obtained by evaluating the continuous spectra are employed for controlling and/or regulating the treatment stages, the treatment stages being optimised individually or even in combination.
  17. Method according to Claim 1, characterised in that the quality parameters of the treated pulp, such as in particular the whiteness, dirt specks, tearing length, are modelled in order to control and/or regulate the treatment stages.
  18. Method according to Claim 16, characterised in that the model approaches are also employed for calculating the use of the auxiliary materials, such as glue or chemical utilization, besides predicting the product quality.
  19. Method according to Claim 16, wherein control and/or regulation of the paper production is carried out, characterised in that the model approach is used with the quality parameters in a process optimisation.
  20. Method according to one of the preceding claims, characterised in that a cost function is formed that is optimised by an optimiser through suitable variation of the manipulated variables.
  21. Method according to one of the preceding claims, characterised in that the optimisation is carried out using genetic algorithms.
  22. Method according to Claim 19, characterised in that a cost function for the production costs and/or a profit function is used as the cost function.
  23. Method according to one of the preceding claims, characterised in that as a dynamic model is used for checking the manipulated variables that are optimised by a static model, a neural network being used as the dynamic model which is used.
  24. Method according to one of the preceding claims, characterised in that the model and/or the submodels are trained online.
  25. Method according to one of the preceding claims, characterised in that a check of the results that are obtained ("novelty detection") is carried out by computer-assisted selection of all data carrying information.
  26. Method according to Claim 25, characterised in that retraining is carried out when there are inconsistent results.
  27. Device for carrying out the method according to one of Claims 1 to 26, consisting of at least one spectrometer (101, 102, 103) for measuring continuous spectra, a digital computer (105) for mathematical evaluation of the continuous spectra with a view to determining the characteristic quantities (PC1 ... PCn) and for setting up the state model and/or process model from the characteristic quantities (PC1 ... PCn) and optionally the process properties, as well as a process control system (100) for optimising the process for the production of paper from fibre pulp with the use of optimised manipulated variables.
EP97953656A 1996-12-20 1997-12-19 Method and device for conducting a process in the production of paper Expired - Lifetime EP0946820B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19653477A DE19653477C2 (en) 1996-12-20 1996-12-20 Process and device for process control in the manufacture of paper
DE19653477 1996-12-20
PCT/DE1997/002987 WO1998028490A1 (en) 1996-12-20 1997-12-19 Method and device for conducting a process in the production of paper

Publications (2)

Publication Number Publication Date
EP0946820A1 EP0946820A1 (en) 1999-10-06
EP0946820B1 true EP0946820B1 (en) 2002-03-13

Family

ID=7815658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97953656A Expired - Lifetime EP0946820B1 (en) 1996-12-20 1997-12-19 Method and device for conducting a process in the production of paper

Country Status (4)

Country Link
EP (1) EP0946820B1 (en)
AT (1) ATE214444T1 (en)
DE (2) DE19653477C2 (en)
WO (1) WO1998028490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241754A (en) * 2020-01-17 2020-06-05 广州博依特智能信息科技有限公司 Soft measurement method for key process parameters of paper sheet drying

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814385C1 (en) * 1998-03-31 1999-10-07 Siemens Ag Process and device for process control and process optimization of chemical recovery in the manufacture of pulp
DE19827525A1 (en) * 1998-06-22 1999-12-30 Siemens Ag Process for evaluating complex spectra from complex chemical substances e.g., wood, cellulose or paper
DE19911395A1 (en) 1999-03-15 2000-09-21 Voith Sulzer Papiertech Patent Device for determining properties of a running material web and / or a machine for its production and / or refinement
DE19911394A1 (en) 1999-03-15 2000-09-21 Voith Sulzer Papiertech Patent Method for operating a machine for the production and / or finishing of material webs
DE19913926A1 (en) * 1999-03-26 2000-09-28 Voith Sulzer Papiertech Patent Manufacture and control of quality in band of paper, requires sensors at headbox discharge, and locations throughout plant, measurements being computer coordinated and used in control model
US6452679B1 (en) 1999-12-29 2002-09-17 Kimberly-Clark Worldwide, Inc. Method and apparatus for controlling the manufacturing quality of a moving web
DE10004612A1 (en) * 2000-02-03 2001-05-17 Siemens Ag Measurement head for non-contact measurement of the characteristics of a moving paper/cardboard web has a gas outlet opening for air to flow between the suction foot and the web with a light source and optical signal receiver
DE10126251A1 (en) * 2001-05-29 2003-01-23 Buehler Ag Online process monitoring and online process modeling
DE10253822A1 (en) * 2002-11-18 2004-05-27 Voith Paper Patent Gmbh Sensors, for monitoring the production of paper/cardboard webs, are given an on-line calibration, using laboratory measurement data which generate calibration software to correct sensor measurements
DE10342769A1 (en) * 2003-09-16 2005-04-21 Voith Paper Patent Gmbh System for computer-aided measurement of quality and / or process data
DE102012105957A1 (en) * 2012-07-04 2014-05-08 Océ Printing Systems GmbH & Co. KG Method of treating waste paper for reuse, involves detecting chemical analysis of reprocessed waste paper processing parameters and changing composition of waste paper and controlling processing of waste paper
US20150292158A1 (en) 2012-09-28 2015-10-15 Voith Patent Gmbh Method for controlling the formation of a fiber web of a fiber or paper producing process
DE102016204599A1 (en) 2016-03-21 2017-03-30 Voith Patent Gmbh Paper machine control
EP3862483A1 (en) * 2020-02-05 2021-08-11 Siemens Aktiengesellschaft Waste paper processing
DE102021103233A1 (en) * 2021-02-11 2022-08-11 Voith Patent Gmbh Optimized manufacture of a waste paper product
CN114351496B (en) * 2021-12-17 2023-07-18 浙江华章科技有限公司 Automatic pressure setting method and system for vacuum system of net pressure part

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098641A (en) * 1973-04-02 1978-07-04 Measurex Corporation Method for the on-line control of the opacity of a paper sheet
CA1332663C (en) * 1989-09-29 1994-10-25 Jean-Guy Breault Method of colouring or tinting paper
FR2667940B1 (en) * 1990-10-11 1992-12-18 Centre Tech Ind Papier PROCESS FOR CONTINUOUSLY MEASURING THE DYNAMIC WATER RETENTION OF A COATING ON A CARRIER AND IN PARTICULAR ON A SHEET OF PAPER.
FI92742C (en) * 1991-04-08 1994-12-27 Keskuslaboratorio Diagnosis of paper machine wet chemistry disorders
FI91446C (en) * 1992-01-24 1994-06-27 Abb Stroemberg Drives Oy Method and plant for evaluating the freene number of refiner pulp
CN1038202C (en) * 1993-09-16 1998-04-29 西门子公司 Device for controlling deinked cellulose production plant with state analysers constituted of neural networks for waste paper
EP0731913B1 (en) * 1993-12-02 1999-03-10 Siemens Aktiengesellschaft Device for monitoring the cross-sectional shape of a continuously produced web of material
SE503101C2 (en) * 1994-05-18 1996-03-25 Eka Nobel Ab Ways of determining the wet strength of paper and process control means using the method
WO1996019615A1 (en) * 1994-12-19 1996-06-27 Siemens Aktiengesellschaft Process and device for detecting and influencing transversally given properties of paper webs
DE19510008C2 (en) * 1995-03-23 1997-01-30 Siemens Ag Process and device for process control in pulp and / or paper production
DE19510009C2 (en) * 1995-03-23 2000-05-11 Siemens Ag Process and device for process control of a paper machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241754A (en) * 2020-01-17 2020-06-05 广州博依特智能信息科技有限公司 Soft measurement method for key process parameters of paper sheet drying
CN111241754B (en) * 2020-01-17 2023-08-11 广州博依特智能信息科技有限公司 Soft measurement method for key process parameters of paper drying

Also Published As

Publication number Publication date
DE59706636D1 (en) 2002-04-18
WO1998028490A1 (en) 1998-07-02
DE19653477C2 (en) 1999-04-22
EP0946820A1 (en) 1999-10-06
ATE214444T1 (en) 2002-03-15
DE19653477A1 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP0946820B1 (en) Method and device for conducting a process in the production of paper
DE19510008C9 (en) Method and device for process control in pulp and / or paper manufacture
EP0815315B1 (en) Method and device for process control in cellulose and paper manufacture
EP0815320B1 (en) Method and device for process management in paper and cardboard manufacture
DE19850825C2 (en) Method and device for measuring the quality properties of paper and / or cardboard on running material webs
EP0719358B1 (en) Device for controlling a deinked cellulose production plant with state analysers constituted of neural networks for the waste paper suspension
EP0946815B1 (en) Means and device for conducting a process in the production of fibrous material from wood
EP0946816B1 (en) Method and device for conducting a process in the production of cellulose
EP0946818B1 (en) Method and device for process control during bleaching of fibrous materials
EP0947625B1 (en) Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production
DE69824616T2 (en) METHOD AND DEVICE FOR REGULATING A MAINLY CONTINUOUS PROCESS
EP0967326B1 (en) Method for conducting and optimising a process in the production of fibre mats and/or boards
EP1740764A2 (en) Method and installation for processing waste paper
EP0892924B1 (en) Process and device for determining the mechanical properties of paper
EP1886123B1 (en) Device and method for detecting and evaluating hygroscopic materials
DE3717144A1 (en) Method and device for controlling paper constituents in papermaking
DE19827525A1 (en) Process for evaluating complex spectra from complex chemical substances e.g., wood, cellulose or paper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FI SE

17Q First examination report despatched

Effective date: 19991125

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FI SE

REF Corresponds to:

Ref document number: 214444

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59706636

Country of ref document: DE

Date of ref document: 20020418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20101207

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20101207

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 214444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160219

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706636

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701