EP0936632B1 - Resistor element - Google Patents

Resistor element Download PDF

Info

Publication number
EP0936632B1
EP0936632B1 EP98811217A EP98811217A EP0936632B1 EP 0936632 B1 EP0936632 B1 EP 0936632B1 EP 98811217 A EP98811217 A EP 98811217A EP 98811217 A EP98811217 A EP 98811217A EP 0936632 B1 EP0936632 B1 EP 0936632B1
Authority
EP
European Patent Office
Prior art keywords
filler
resistor element
element according
particle sizes
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811217A
Other languages
German (de)
French (fr)
Other versions
EP0936632A1 (en
Inventor
Joachim Dr. Glatz-Reichenbach
Ralf Dr. Strümpler
Jörgen Dr. Skindhoj
Felix Dr. Greuter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0936632A1 publication Critical patent/EP0936632A1/en
Application granted granted Critical
Publication of EP0936632B1 publication Critical patent/EP0936632B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the invention relates to a resistance element according to the Preamble of claim 1.
  • a so-called PTC resistors have one at a particular one Switching current density increasing by several orders of magnitude Resistance on and are used to limit the current, especially in Short circuit case, used.
  • US-A-4,910,389 describes a resistance element with PTC behavior with a polymer matrix and two in that matrix embedded powdered fillers, one of which is an electrically good conductive soot and Has particle sizes from 20 to 250 m ⁇ and the other is doped ZnO or another semiconducting material and particle sizes down to 1 micron.
  • the ratio of Particle sizes from conductivity soot to semiconducting Material can be 1: 5 to 1:20.
  • Such one Resistance element is characterized by great stability because its specific resistance also changes changes several PTC transitions only slightly.
  • the invention is based, generic task Develop resistance elements such that their Dielectric strength is increased significantly.
  • Resistor elements are largely commutated of the current to the second filler in the range of Current densities and corresponding field strengths as they do typically in the switching range of the resistance element occur. This ensures that the training a narrow switching zone does not become an immediate one Power cut - possibly followed by arcing or a punch - leads, but that the current over the particles of the second filler briefly continue flows and the switching zone widens so far, that they can withstand high voltages without damaging the Resistance elements can carry.
  • the main advantages are: significantly higher short-circuit voltages are interrupted can and that the withstand voltage is much higher lies than in known generic Resistance elements.
  • the related services Otherwise, resistance elements according to the invention can only using complex series parallel circuits from Resistance elements and varistors can be achieved.
  • the SiC doped with Al was from the electric melt Related to Kempten. ZnO was obtained from Merck and endowed. Resistance elements were produced from the mixtures and experiments carried out by going into a circuit like it is shown in Fig. 1, installed and Short-circuit currents have been exposed. For this purpose, a Capacitor C charged to 300V, 850V or 1'200V. The Dimensioning of the capacitor C and the series switched inductance L were chosen so that a short-circuit current of 12'000A, based on 50Hz resulted. The short circuit current was closed of a switch S with capacitor C charged. The tested resistance element PTC was always one Varistor element Var as overvoltage protection connected in parallel.
  • the average Particle size of the second filler should therefore be that significantly exceed the first filler, preferably by at least a factor of 2. If the grain is relatively coarse second filler, however, shows an irregular Current distribution in the switching area, which is too high local Energy intake leads and adversely affects the Dielectric strength of the resistance element affects. The Factor by which the average particle size of the second filler that of the first filler is therefore at most 5.
  • the material of the first filler a choice other than the specified TiB 2 , z. B. TiC, VC, WC, MoSi 2 . It is important, especially in the interest of good cold conductivity properties, to have a low specific resistance. If possible, it should not be higher than 10 -3 ⁇ cm. As stated above, the specific resistance is also crucially important for the second filler. The specific resistance of the material should if possible not be less than 10 -2 ⁇ cm. The specific resistance must be so that the resistance element can hold a high holding voltage with a low leakage current.
  • the various requirements for the second filler can also be met with SiC or ZnO doped with B, Ga, In or N, P, As or with other correspondingly doped semiconductors.
  • a thermoplastic such. B. HD polyethylene or a thermoset is preferred.
  • the particle sizes should be small in the interest of a quick response and should preferably be essentially between 10 ⁇ m and 40 ⁇ m.
  • the second filler should be higher, preferably between 50 ⁇ m and 200 ⁇ m.
  • the composition of the resistance body can of course differ from that used in the tests. Fractions of 30 to 70% by volume are preferred for the first filler and between 10 and 40% by volume for the second filler, but together they do not make up more than the highest 90% by volume of the mixture.

Abstract

The resistor body of a nonlinear resistor element having PTC characteristics includes a pulverulent first filler, whose material, e.g. TiB2, TiC, VC, WC, ZrBr2, MoSi2, has a specific conductivity of at most 10-3 OMEGA cm and in which the particle sizes are between 10 and 40 mu , and also, in order to improve the voltage sustaining capability by extending the switching zone and to achieve uniform energy absorption, includes a likewise pulverulent second filler having varistor characteristics and particle sizes between 50 and 200 mu , whose specific resistance at field strengths >/=2000 V/cm such as occur in the switching region of the resistor element and above, is at most 50 OMEGA cm, preferably at most 15 OMEGA cm, the fillers being embedded in a matrix made of a thermoplastic, in particular HD polyethylene or a thermoset. The average particle size of the second filler should exceed that of the first filler by a factor of from 2 to 5. A potentially particularly suitable material for the second filler is SiC doped with Al, B, Ga, In, N, P, As, as is similarly doped ZnO.

Description

Die Erfindung betrifft ein Widerstandselement gemäss dem Oberbegriff des Anspruchs 1. Derartige sogenannte PTC-Widerstände weisen einen bei einer bestimmten Schaltstromdichte um mehrere Grössenordnungen ansteigenden Widerstand auf und werden zur Strombegrenzung, vor allem im Kurzschlussfall, eingesetzt.The invention relates to a resistance element according to the Preamble of claim 1. Such a so-called PTC resistors have one at a particular one Switching current density increasing by several orders of magnitude Resistance on and are used to limit the current, especially in Short circuit case, used.

Die starke Steigerung des Widerstands bei Erreichen der Schaltstromdichte wird dadurch bewirkt, dass aufgrund der durch erhöhte Energieaufnahme bewirkten Erwärmung und Ausdehnung der Polymermatrix die eingebetteten leitenden Teilchen des ersten Füllstoffes getrennt werden. Es hat sich dabei als nachteilig erwiesen, dass dieser Effekt die Tendenz hat, sich in einer Schaltzone, die sich zwar über den Querschnitt des Widerstandselements erstreckt, aber in Stromrichtung verhältnismässig kurz ist, zu konzentrieren, so dass die gesamte Spannung über eine kurze Strecke abfällt und der überwiegende Anteil der umgesetzten elektrischen Energie in einem sehr kleinen Volumen anfällt. Dies kann leicht zu Lichtbogenbildung und Beschädigung des Widerstandselements führen. Ausserdem wird die Haltespannung des Elements, d. h. die Spannung, die es nach Unterbrechung eines Kurzschlusses ohne zu grossen Leckstrom halten kann, dadurch herabgesetzt.The strong increase in resistance when reaching the Switching current density is caused by the fact that heating caused by increased energy consumption and Expansion of the polymer matrix the embedded conductive Particles of the first filler are separated. It has proved to be disadvantageous that this effect Has a tendency to be in a switching zone that is over extends the cross section of the resistance element, but in Current direction is relatively short to concentrate so that the entire tension drops over a short distance and the vast majority of electrical implemented Energy is generated in a very small volume. This can easy to arc and damage the Lead resistance elements. In addition, the withstand voltage of the element, d. H. the tension there after interruption a short circuit without excessive leakage current, thereby reduced.

Es wurde auch bereits versucht, das diesbezügliche Verhalten derartiger Widerstandselemente dadurch zu verbessern, dass dem Material ein zweiter Füllstoff mit Varistorcharakteristik beigemischt wurde. Aus der US-A-5 313 184 etwa ist ein gattungsgemässes Widerstandselement bekannt, das 5 bis 30%(Vol.) Varistormaterial in Pulverform als zweiten Füllstoff aufweist. Die Erwartungen betreffend eine Verbesserung der Spannungsfestigkeit des Widerstandselements wurden jedoch nicht in vollem Umfang erfüllt.Attempts have also been made to determine the behavior in this regard to improve such resistance elements in that the material with a second filler Varistor characteristic was added. From the US-A-5 313 184, for example, is a generic one Resistance element known that 5 to 30% (vol.) Varistor material in powder form as a second filler having. The expectations regarding an improvement in Dielectric strength of the resistance element was however not fully met.

US-A-4,910,389 beschreibt ein Widerstandselement mit PTC-Verhalten mit einer Polymermatrix und zwei in diese Matrix eingebetteten pulverförmigen Füllstoffen, von denen der eine ein elektrisch gutleitender Leitfähigkeitsruss ist und Partikelgrössen von 20 bis 250 mµ aufweist und der andere dotiertes ZnO oder ein anderes halbleitendes Material ist und Partikelgrössen bis zu 1 µ aufweist. Das Verhältnis der Teilchengrössen von Leitfähigkeitsruss zum halbleitenden Material kann 1:5 bis 1:20 betragen. Ein solches Widerstandselement zeichnet sich durch grosse Stabilität aus, da sich dessen spezifischer Widerstand auch nach mehreren PTC-Übergängen nur geringfügig ändert.US-A-4,910,389 describes a resistance element with PTC behavior with a polymer matrix and two in that matrix embedded powdered fillers, one of which is an electrically good conductive soot and Has particle sizes from 20 to 250 mµ and the other is doped ZnO or another semiconducting material and particle sizes down to 1 micron. The ratio of Particle sizes from conductivity soot to semiconducting Material can be 1: 5 to 1:20. Such one Resistance element is characterized by great stability because its specific resistance also changes changes several PTC transitions only slightly.

Der Erfindung liegt die Aufgabe zugrunde, gattungsgemässe Widerstandselemente derart weiterzubilden, dass ihre Spannungsfestigkeit wesentlich erhöht wird.The invention is based, generic task Develop resistance elements such that their Dielectric strength is increased significantly.

Diese Aufgabe wird durch durch die Merkmale im Kennzeichen des Anspruchs 1 gelöst. Bei erfindungsgemässen Widerstandselementen erfolgt eine weitgehende Kommutierung des Stroms auf den zweiten Füllstoff im Bereich von Stromdichten und entsprechenden Feldstärken, wie sie typischerweise im Schaltbereich des Widerstandselements auftreten. Dadurch wird sichergestellt, dass die Ausbildung einer schmalen Schaltzone nicht zu einer sofortigen Stromunterbrechung - eventuell gefolgt von Lichtbogenbildung oder einem Durchschlag - führt, sondern dass der Strom über die Teilchen des zweiten Füllstoffs kurzzeitig weiter fliesst und sich dabei die Schaltzone so weit verbreitert, dass sie auch hohe Spannungen ohne Beschädigung des Widerstandselements zu tragen vermag. This task is performed by the characteristics in the indicator of claim 1 solved. In the case of the invention Resistor elements are largely commutated of the current to the second filler in the range of Current densities and corresponding field strengths as they do typically in the switching range of the resistance element occur. This ensures that the training a narrow switching zone does not become an immediate one Power cut - possibly followed by arcing or a punch - leads, but that the current over the particles of the second filler briefly continue flows and the switching zone widens so far, that they can withstand high voltages without damaging the Resistance elements can carry.

Die dadurch erzielten Vorteile liegen vor allem darin, dass wesentlich höhere Kurzschlusspannungen unterbrochen werden können und dass auch die Haltespannung wesentlich höher liegt als bei bekannten gattungsgemässen Widerstandselementen. Die diesbezüglichen Leistungen erfindungsgemässer Widerstandselemente können sonst nur mittels aufwendiger Serienparallelschaltungen von Widerstandselementen und Varistoren erzielt werden.The main advantages are: significantly higher short-circuit voltages are interrupted can and that the withstand voltage is much higher lies than in known generic Resistance elements. The related services Otherwise, resistance elements according to the invention can only using complex series parallel circuits from Resistance elements and varistors can be achieved.

Im folgenden wird nun die Erfindung anhand von Ausführungsbeispielen und Versuchsergebnissen dargestellt. Dabei zeigt

Fig. 1
den Versuchsaufbau, mit denen die weiter unten geschilderten Ergebnisse gewonnen wurden.
In the following, the invention will now be illustrated on the basis of exemplary embodiments and test results. It shows
Fig. 1
the experimental set-up with which the results described below were obtained.

Es wurden mehrere Mischungen hergestellt, indem jeweils 50%(Vol.) einer Matrix aus dem Polyäthylen HX5231 der BASF mit 30%(Vol.) eines ersten Füllstoffes, und zwar TiB2-Pulver der Elektroschmelze Kempten, bei welchem die Partikelgrössen über ein Intervall von 10-30 µm verteilt waren und 20%(Vol.) eines zweiten Füllstoffs vermischt wurden. Lediglich bei einer Referenzprobe Ref wurden 50%(Vol.) des ersten Füllstoffes zugemischt und kein zweiter Füllstoff. Im folgenden werden die Proben nach dem zweiten Füllstoff bezeichnet. Im einzelnen:

ZnO
ZnO-Pulver
Var
Pulver aus Varistormaterial, d. h. mit verschiedenen Metalloxiden dotiertes ZnO
ZnO+
Pulver aus mit Al dotiertem ZnO
SiC+f (fein)
Pulver aus mit Al dotiertem SiC, Teilchengrössen 45-75 µm
SiC+m (mittel)
Pulver aus mit Al dotiertem SiC, Teilchengrössen 90-125 µm
SiC+g (grob)
Pulver aus mit Al dotiertem SiC, Teilchengrössen 150-212 µm
Several mixtures were produced, in each case by 50% (vol.) Of a matrix made of the polyethylene HX5231 from BASF with 30% (vol.) Of a first filler, namely TiB 2 powder from the electro-melt Kempten, in which the particle sizes over an interval of 10-30 µm were distributed and 20% (vol.) of a second filler were mixed. Only in a reference sample Ref were 50% (vol.) Of the first filler mixed and no second filler. In the following, the samples are named after the second filler. In detail:
ZnO
ZnO powder
var
Powder made of varistor material, ie ZnO doped with various metal oxides
ZnO +
Al-doped ZnO powder
SiC + f (fine)
Powder made of Al-doped SiC, particle sizes 45-75 µm
SiC + m (medium)
Powder made of Al-doped SiC, particle sizes 90-125 µm
SiC + g (rough)
Powder made of Al-doped SiC, particle sizes 150-212 µm

Das mit Al dotierte SiC wurde von der Elektroschmelze Kempten bezogen. ZnO wurde von Merck bezogen und dotiert. Aus den Mischungen wurden Widerstandselemente hergestellt und Versuche durchgeführt, indem sie in eine Schaltung, wie sie in Fig. 1 dargestellt ist, eingebaut und Kurzschlusströmen ausgesetzt wurden. Dazu wurde jeweils ein Kondensator C auf 300V, 850V bzw. 1'200V aufgeladen. Die Dimensionierung des Kondensators C und der in Reihe geschalteten Induktivität L wurden jeweils so gewählt, dass ein Kurzschlussstrom von 12'000A, bezogen auf 50Hz resultierte. Der Kurzschlussstrom wurde durch Schliessen eines Schalters S bei aufgeladenem Kondensator C erzeugt. Dem geprüften Widerstandselement PTC war stets ein Varistorelement Var als Ueberspannungsschutz parallelgeschaltet. Neben der Messung elektrischer Parameter wurden auch Aufnahmen der Widerstandselemente mit einer Thermokamera gemacht, die es erlaubten, die Energieverteilung, insbesondere die Länge der Schaltzone sowie allfällige Beschädigungen festzustellen. Vorgängig wurden ein oder zwei Werte für Feldstärke, Stromdichte und spezifischen Widerstand der als zweiter Füllstoff verwendeten Pulver bei einer Temperatur von 25°C und einem Elektrodenanpressdruck von 9,38MPa ermittelt.The SiC doped with Al was from the electric melt Related to Kempten. ZnO was obtained from Merck and endowed. Resistance elements were produced from the mixtures and experiments carried out by going into a circuit like it is shown in Fig. 1, installed and Short-circuit currents have been exposed. For this purpose, a Capacitor C charged to 300V, 850V or 1'200V. The Dimensioning of the capacitor C and the series switched inductance L were chosen so that a short-circuit current of 12'000A, based on 50Hz resulted. The short circuit current was closed of a switch S with capacitor C charged. The tested resistance element PTC was always one Varistor element Var as overvoltage protection connected in parallel. In addition to measuring electrical parameters were also pictures of the resistance elements with a Thermal camera made that allowed the Energy distribution, especially the length of the switching zone and determine any damage. previously were one or two values for field strength, current density and resistivity as the second filler used powder at a temperature of 25 ° C and a Electrode contact pressure of 9.38MPa determined.

Die bei den Versuchen gewonnenen Resultate sind der Tabelle am Ende der Beschreibung zu entnehmen. Leere Felder in dieser Tabelle bedeuten 'nicht anwendbar', '\', dass kein Versuch gemacht wurde, '-', dass das Widerstandselement bei der Messung beschädigt wurde, und '+', dass das Widerstandselement den Versuch unbeschädigt überstand, aber kein Messwert ermittelt wurde.The results obtained from the tests are in the table at the end of the description. Empty fields in this table means 'not applicable', '\' that none Attempt was made to '-' that the resistance element at measurement was damaged, and '+' that the Resistance element survived the test undamaged, however no measured value was determined.

Aus den Versuchsergebnissen lässt sich ablesen, dass für eine Ausdehnung der Schaltzone der spezifische Widerstand des zweiten Füllstoffs, gemessen am Pulver bei ausreichend grossem Elektrodenanpressdruck - er sollte möglichst einige MPa/cm2 betragen - für die Länge der Schaltzone und damit für eine breite Energieverteilung wesentlich ist. Er sollte auf jeden Fall weit unter den Werten für die zum Vergleich ausgemessenen Pulver aus undotiertem ZnO und aus Niederspannungs-Varistormaterial, das durch Sintern aus D70 der Firma Merck als Ausgangsmaterial hergestellt wurde, liegen. Möglichst sollte er bei Feldstärken, wie sie im liegen. Möglichst sollte er bei Feldstärken, wie sie im Schaltbereich gewöhnlich auftreten - 2'000V/cm und darüber - höchstens 50Ωcm betragen, vorzugsweise jedoch höchstens 20 oder besser 15Ωcm, Werte, wie sie an Pulvern von mit Al dotiertem ZnO und SiC gemessen wurden.It can be seen from the test results that for an expansion of the switching zone the specific resistance of the second filler, measured on the powder with a sufficiently large electrode contact pressure - it should be a few MPa / cm 2 if possible - is essential for the length of the switching zone and thus for a broad energy distribution is. In any case, it should be far below the values for the powders of undoped ZnO and low-voltage varistor material measured for comparison, which were produced by sintering from D70 from Merck as the starting material. If possible, it should be at field strengths as they are in the. As far as possible, it should be at most 50Ωcm at field strengths as they usually occur in the switching range - 2,000V / cm and above, but preferably at most 20 or better 15Ωcm, values as measured on powders of Al-doped ZnO and SiC.

Ebenfalls von beträchtlicher Bedeutung sind die Teilchengrössen. Sind die Teilchen des zweiten Füllstoffs nicht oder nur unwesentlich grösser als die des ersten Füllstoffes, so dürften sie zur Ueberbrückung nach Trennung der Teilchen desselben im Schaltbereich nicht ausreichen. Der zweite Füllstoff kann seine Funktion nicht im erforderlichen Ausmass erfüllen. Die durchschnittliche Teilchengrösse des zweiten Füllstoffes sollte also diejenige des ersten Füllstoffes deutlich übertreffen, vorzugsweise um mindestens einen Faktor 2. Bei verhältnismässig grobkörnigem zweitem Füllstoff dagegen zeigt sich eine unregelmässige Stromverteilung im Schaltbereich, die zu hohen lokalen Energieaufnahmen führt und sich ungünstig auf die Spannungsfestigkeit des Widerstandselements auswirkt. Der Faktor, um den die durchschnittliche Teilchengrösse des zweiten Füllstoffes diejenige des ersten Füllstoffes übertrifft, ist daher höchstens 5.They are also of considerable importance Particle sizes. Are the particles of the second filler not or only slightly larger than that of the first Filler, they are likely to be bridged after separation of the particles in the switching range are insufficient. The second filler cannot function in the meet the required extent. The average Particle size of the second filler should therefore be that significantly exceed the first filler, preferably by at least a factor of 2. If the grain is relatively coarse second filler, however, shows an irregular Current distribution in the switching area, which is too high local Energy intake leads and adversely affects the Dielectric strength of the resistance element affects. The Factor by which the average particle size of the second filler that of the first filler is therefore at most 5.

Für das Material des ersten Füllstoffs ist natürlich auch eine andere Wahl möglich als das angegebene TiB2, z. B. TiC, VC, WC, MoSi2. Wichtig ist, vor allem im Interesse guter Kaltleiteigenschaften, ein niedriger spezifischer Widerstand. Er sollte möglichst nicht höher als 10-3Ωcm sein. Auch für den zweiten Füllstoff ist, wie oben ausgeführt, der spezifische Widerstand entscheidend wichtig. Der spezifische Widerstand des Materials sollte möglichst nicht kleiner als 10-2Ωcm sein. Der spezifische Widerstand sein, damit das Widerstandselement eine hohe Haltespannung mit geringem Leckstrom halten kann. Erst bei den im Schaltbereich des Widerstandselements auftretenden Feldstärken von mindestens 2'000V/cm sollte er auf die weiter oben angegebenen verhältnismässig tiefen Werte abfallen, d. h. das Pulver sollte eine ausgeprägte Varistorcharakteristik aufweisen. Ausser mit Al-dotiertem SiC oder ZnO sind die verschiedenen Anforderungen an den zweiten Füllstoff auch mit SiC oder ZnO, das mit B, Ga, In oder N, P, As dotiert ist, erfüllbar oder mit anderen entsprechend dotierten Halbleitern. Für die Polymermatrix wird ein Thermoplast wie z. B. HD-Polyäthylen oder ein Duromer bevorzugt.For the material of the first filler, a choice other than the specified TiB 2 , z. B. TiC, VC, WC, MoSi 2 . It is important, especially in the interest of good cold conductivity properties, to have a low specific resistance. If possible, it should not be higher than 10 -3 Ωcm. As stated above, the specific resistance is also crucially important for the second filler. The specific resistance of the material should if possible not be less than 10 -2 Ωcm. The specific resistance must be so that the resistance element can hold a high holding voltage with a low leakage current. Only when the field strengths of at least 2,000 V / cm occur in the switching range of the resistance element should it drop to the relatively low values given above, ie the powder should have a pronounced varistor characteristic. In addition to Al-doped SiC or ZnO, the various requirements for the second filler can also be met with SiC or ZnO doped with B, Ga, In or N, P, As or with other correspondingly doped semiconductors. For the polymer matrix, a thermoplastic such. B. HD polyethylene or a thermoset is preferred.

Beim ersten Füllstoff sollten die Teilchengrössen im Interesse eines raschen Ansprechens gering sein und vorzugsweise im wesentlichen, zwischen 10 µm und 40 µm liegen. Beim zweiten Füllstoff sollten sie, wie erwähnt, höher sein, vorzugsweise zwischen 50 µm und 200 µm. Die Zusammensetzung des Widerstandskörpers kann natürlich von der in den Versuchen eingesetzten abweichen. Bevorzugt werden Anteile von 30 bis 70 Vol. % für den ersten Füllstoff und zwischen 10 und 40 Vol. % für den zweiten Füllstoff, wobei sie jedoch zusammen nicht mehr als höchsten 90 Vol. % der Mischung ausmachen.

Figure 00080001
For the first filler, the particle sizes should be small in the interest of a quick response and should preferably be essentially between 10 μm and 40 μm. As mentioned, the second filler should be higher, preferably between 50 μm and 200 μm. The composition of the resistance body can of course differ from that used in the tests. Fractions of 30 to 70% by volume are preferred for the first filler and between 10 and 40% by volume for the second filler, but together they do not make up more than the highest 90% by volume of the mixture.
Figure 00080001

Claims (9)

  1. Electric resistor element including a resistor body which is disposed between two contact connections and comprises a polymer matrix, a first pulverulent filler having particle sizes essentially between 10 µm and 40 µm and made of a material having a specific resistance of at most 10-3 Ωcm and having a second pulverulent filler having a specific resistance which decreases with increasing field strength, characterized in that the average particle size of the second filler exceeds that of the first filler and exceeds that of the first filler at most by a factor of 5, and in that the specific resistance of the second filler at field strengths ≥ 2000 V/cm does not exceed 50 Ωcm.
  2. Resistor element according to Claim 1, characterized in that the specific resistance of the material of the second filler is at least 10-2 Ωcm.
  3. Resistor element according to one of claims 1 or 2, characterized in that the average particle size of the second filler exceeds that of the first filler at least by a factor of 2.
  4. Resistor element according to any one of Claims 1 to 3, characterized in that the second filler essentially comprises at least of the following materials: powder of doped SiC, powder of doped ZnO.
  5. Resistor element according to any one of Claims 1 to 4, characterized in that the particle sizes of the second filler are essentially between 50 µm and 200 µm.
  6. Resistor element according to any one of Claims 1 to 5, characterized in that the first filler essentially comprises powder of TiB2, TiC, VC or WC.
  7. Resistor element according to any one of Claims 1 to 6, characterized in that the polymer matrix essentially comprises a thermoplastic, especially an HD polyethylene, or a thermoset.
  8. Resistor element according to any one of Claims 1 to 7, characterized in that the proportion of the first filler in the resistor body is between 30 and 70 vol.%.
  9. Resistor element according to any one of Claims 1 to 8, characterized in that the proportion of the second filler in the resistor body is between 10 and 40 vol.%.
EP98811217A 1998-01-09 1998-12-10 Resistor element Expired - Lifetime EP0936632B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19800470A DE19800470A1 (en) 1998-01-09 1998-01-09 Resistor element for current limiting purposes especially during short-circuits
DE19800470 1998-01-09

Publications (2)

Publication Number Publication Date
EP0936632A1 EP0936632A1 (en) 1999-08-18
EP0936632B1 true EP0936632B1 (en) 2002-05-29

Family

ID=7854171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811217A Expired - Lifetime EP0936632B1 (en) 1998-01-09 1998-12-10 Resistor element

Country Status (5)

Country Link
US (1) US6157290A (en)
EP (1) EP0936632B1 (en)
CN (1) CN1143324C (en)
AT (1) ATE218242T1 (en)
DE (2) DE19800470A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU735091B2 (en) * 1997-10-28 2001-06-28 Fdgs Group, Llc Process for digital signing of a message
JP3503548B2 (en) * 1999-11-12 2004-03-08 株式会社村田製作所 Voltage nonlinear resistor, method of manufacturing the same, and varistor using this voltage nonlinear resistor
JP3598954B2 (en) * 2000-08-21 2004-12-08 株式会社村田製作所 Method for manufacturing voltage non-linear resistor
US6645393B2 (en) * 2001-03-19 2003-11-11 Inpaq Technology Co., Ltd. Material compositions for transient voltage suppressors
ATE403935T1 (en) * 2004-04-06 2008-08-15 Abb Research Ltd ELECTRICAL NONLINEAR MATERIAL FOR HIGH AND MEDIUM VOLTAGE APPLICATIONS
CN101666613B (en) * 2009-09-25 2012-10-31 上海宏力半导体制造有限公司 Method for extracting length offset value of resistance model
DE102010008603A1 (en) * 2010-02-19 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Electrical resistance element
CN103094890A (en) * 2011-11-02 2013-05-08 上官春轶 Flexible limited current circuit
CN103368165A (en) * 2012-03-05 2013-10-23 顾敏珠 Arc elimination and harmonic elimination and overvoltage protector
CN103632784B (en) * 2013-11-23 2016-04-13 华中科技大学 Quick composite resistor of a kind of lamination sheet type hot pressing and preparation method thereof
GB2541465A (en) * 2015-08-21 2017-02-22 General Electric Technology Gmbh Electrical assembly
CN108727031B (en) * 2018-06-19 2021-02-12 中国科学院上海硅酸盐研究所 Silicon carbide-based complex phase pressure-sensitive ceramic and liquid phase sintering preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547451B1 (en) * 1983-06-13 1986-02-28 Electricite De France COMPOSITE MATERIAL WITH NON-LINEAR ELECTRIC RESISTANCE, IN PARTICULAR FOR POTENTIAL DISTRIBUTION IN CABLE ENDS
JPH0777161B2 (en) * 1986-10-24 1995-08-16 日本メクトロン株式会社 PTC composition, method for producing the same and PTC element
US4910389A (en) * 1988-06-03 1990-03-20 Raychem Corporation Conductive polymer compositions
SE468026B (en) * 1990-06-05 1992-10-19 Asea Brown Boveri SET TO MAKE AN ELECTRIC DEVICE
DE4142523A1 (en) * 1991-12-21 1993-06-24 Asea Brown Boveri RESISTANCE WITH PTC BEHAVIOR
US5378407A (en) * 1992-06-05 1995-01-03 Raychem Corporation Conductive polymer composition
DE4221309A1 (en) * 1992-06-29 1994-01-05 Abb Research Ltd Current limiting element
AU6627394A (en) * 1993-04-28 1994-11-21 Mark Mitchnick Conductive polymers
DE4427161A1 (en) * 1994-08-01 1996-02-08 Abb Research Ltd Process for the manufacture of a PTC resistor and resistor produced thereafter
DE19520869A1 (en) * 1995-06-08 1996-12-12 Abb Research Ltd PTC resistor
GB9600819D0 (en) * 1996-01-16 1996-03-20 Raychem Gmbh Electrical stress control
US5798060A (en) * 1997-02-06 1998-08-25 E. I. Du Pont De Nemours And Company Static-dissipative polymeric composition

Also Published As

Publication number Publication date
CN1226733A (en) 1999-08-25
CN1143324C (en) 2004-03-24
US6157290A (en) 2000-12-05
ATE218242T1 (en) 2002-06-15
EP0936632A1 (en) 1999-08-18
DE59804235D1 (en) 2002-07-04
DE19800470A1 (en) 1999-07-15

Similar Documents

Publication Publication Date Title
EP0936632B1 (en) Resistor element
DE3707503C2 (en) PTC composition
DE2948281C2 (en) Electrical circuit and circuit protection device
DE2902006C2 (en)
EP3146551B1 (en) Electrical switching apparatus for medium and high voltage
EP0576836B1 (en) Current limiting element
DE69606316T3 (en) IMPROVED POLYMER PTC COMPOSITIONS
EP1274102B1 (en) Polymer compound with non linear current-voltage characteristic and method of making a polymer compound
EP0640995B1 (en) Electrical resistor and application of this resistor in a current limiter
DE19824104B4 (en) Non-linear resistor with varistor behavior
DE2903442A1 (en) ELECTRICAL DEVICE, E.G. RADIATOR OR TEMPERATURE SENSOR, WITH AT LEAST TWO ELECTRODES AND A PTC ELEMENT, IN PARTICULAR TO ELIMINATE INRUSH CURRENT FLASHES
DE2235783A1 (en) METAL OXYDE VARISTOR
DE2247643C2 (en) Varistor with at least three electrodes
DE19520869A1 (en) PTC resistor
EP0151797A2 (en) High-voltage insulator
EP0798750A2 (en) Current limiting resistor with PTC-behaviour
DE2500431A1 (en) Surge surge arrester with improved voltage stepping
DE2458512A1 (en) Surge surge arrester with improved voltage stepping
DE2312238A1 (en) DEVICE TO REDUCE EROSION OF SWITCH CONTACTS
DE1638070A1 (en) Fuse
DE10146947C5 (en) Electrical component
EP3688774B1 (en) Insulation system, insulation substance and insulation material for producing the insulation system
DE2525054C2 (en) Non-linear resistor body made of zinc oxide (varistor)
EP0978319A1 (en) Powder spray device with external and internal charging
DE2529280C2 (en) Non-linear resistor body made of zinc oxide (varistor)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FI FR GB NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000124

R17P Request for examination filed (corrected)

Effective date: 20000108

AKX Designation fees paid

Free format text: AT DE ES FI FR GB NL SE

17Q First examination report despatched

Effective date: 20001201

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FI FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

REF Corresponds to:

Ref document number: 218242

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59804235

Country of ref document: DE

Date of ref document: 20020704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020815

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 19

Ref country code: DE

Payment date: 20161213

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161222

Year of fee payment: 19

Ref country code: FR

Payment date: 20161222

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804235

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 218242

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210