EP0881958B1 - Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear - Google Patents

Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear Download PDF

Info

Publication number
EP0881958B1
EP0881958B1 EP97905071A EP97905071A EP0881958B1 EP 0881958 B1 EP0881958 B1 EP 0881958B1 EP 97905071 A EP97905071 A EP 97905071A EP 97905071 A EP97905071 A EP 97905071A EP 0881958 B1 EP0881958 B1 EP 0881958B1
Authority
EP
European Patent Office
Prior art keywords
weight
powder
material according
powder mixture
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97905071A
Other languages
German (de)
French (fr)
Other versions
EP0881958A1 (en
Inventor
Ekkehard KÖHLER
Kirit Dalal
Anil V. Nadkarni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bleistahl Produktions-GmbH and Co KG
SCM Metal Products Inc
Original Assignee
Bleistahl Produktions-GmbH and Co KG
SCM Metal Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bleistahl Produktions-GmbH and Co KG, SCM Metal Products Inc filed Critical Bleistahl Produktions-GmbH and Co KG
Publication of EP0881958A1 publication Critical patent/EP0881958A1/en
Application granted granted Critical
Publication of EP0881958B1 publication Critical patent/EP0881958B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to a material for powder metallurgical production of molded parts with high thermal conductivity and high wear and tear Corrosion resistance through pressing, sintering and, if necessary, recompression a powder mixture with a copper content of at least about 50% by weight.
  • Such sintered materials are used for molded parts, the hot gases or Exposed to gas mixtures are required, for example for production of valve seat rings and valve guides for internal combustion engines, the on the one hand high mechanical loads and on the other hand at the same time are exposed to hot combustion gases.
  • Valve seat ring or valve guide There are molded parts made of sintered materials based on powder metallurgy Iron base with infiltrated copper known to be used as a Valve seat ring or valve guide have sufficient wear resistance, its thermal conductivity compared to sintered materials without Copper content is not high enough.
  • a sintered material is known, which is made of an iron-based material consists of carbon and lead, as well as other alloy components are clogged.
  • Valve seat rings made from this material have sufficient heat and wear resistance, their However, thermal conductivity is not enough, especially around this upcoming problem in the outlet area of a modern Solve internal combustion engine.
  • PCT-EP 89/01343 describes a sintered material for powder metallurgy Manufacture of valve seat rings known to increase Should have thermal conductivity with high wear resistance.
  • the Sintered material consists of a base metal powder with a Copper content of about 70 to 100 wt .-% copper and one Proportion of alloy.
  • the alloy content can be, for example, from 1 to 3 % By weight of cobalt or a high-alloy additional metal powder, which the base metal powder is mixed as a hard phase, the proportion of which is then is a maximum of 30% by weight.
  • a powder mixture consisting of copper powder solidified by 0.1-1.1% by weight of Al 2 O 3 with at least 50% by weight of Cu is generally known from EP-A-144959.
  • the invention has for its object a sintered material for the powder metallurgical production, in particular of valve seat rings or To create valve guides whose wear resistance is very high and at the same time a significantly high thermal conductivity compared to known sintered materials used for this purpose.
  • the invention consists in that the starting powder mixture consists of a base powder containing the Cu content in an amount of 50 to 90% by weight and a powdery alloy additive containing molybdenum in an amount of 10 to 50% by weight and that the base powder is a dispersion-strengthened copper powder, the dispersion-strengthened copper powder being strengthened by Al 2 O 3 , containing 0.1 to 1.1% by weight of Al 2 O 3 and less than 0.5% by weight of impurities and by Spraying a Cu-Al melt and then heating it in an oxidizing atmosphere selective oxidation of the aluminum is made.
  • the invention is based on the surprising finding that the use of a Cu-Al 2 O 3 powder which has been strengthened by means of Al 2 O 3 dispersion as a material for the powder-metallurgical production of molded parts leads to products which on the one hand have high wear and corrosion resistance and on the other hand have a high thermal conductivity, so that they are particularly suitable for the production of valve seat rings or valve guides for internal combustion engines.
  • the applicant attributes this to the fact that in the case of the Cu-Al 2 O 3 powder produced by means of internal oxidation, the distance between the dispersed Al 2 O 3 particles in the copper matrix is of the order of 3 to 12 nm, while in the case of the without inside oxidation produced powder is about 40 ⁇ m.
  • dispersion-strengthened metals as base powder for the powder-metallurgical production of molded parts, in particular valve seat rings or valve guides.
  • a preferred embodiment of the invention provides that the alloy surcharge from a powdered, preferably water atomized intermetallic hard phase from 28 to 32, preferably 30% by weight Molybdenum, 9 to 11, preferably 10% by weight of chromium, 2.5 to 3.5, preferably 3 wt .-% silicon, the rest of cobalt, the intermetallic Hard phase in the powder mixture in an amount of about 10% by weight and the base powder is present in an amount of about 90% by weight.
  • intermetallic Hard phase of 28 to 32, preferably 30% by weight of molybdenum, 9 to 11, preferably 10 wt .-% chromium, 2.5 to 3.5, preferably 3 wt .-% silicon, balance iron, the intermetallic phase in the Powder mixture in an amount of about 10 wt .-% and the base powder in an amount of about 90 wt .-% are present.
  • the alloy surcharge can also consist of a hard phase from a high-speed steel powder of about 6% by weight of tungsten, about 5% by weight Molybdenum, about 2 wt% vanadium, about 4 wt% chromium, balance Iron exist, the hard phase in the powder mixture in an amount up to about 30% by weight and the base powder in an amount of about 70 wt .-% or higher.
  • the alloy surcharge can also consist of a hard phase from a Mo-P-C powder of about 11% by weight molybdenum, about 0.6% by weight Phosphorus, about 1.2 wt .-% carbon, balance iron, the Hard phase and the base powder in the powder mixture in an amount of each about 50 wt .-% are present.
  • the invention also relates to a material which consists of a starting powder mixture from about 80% by weight of base powder, about 10% by weight Molybdenum powder and about 10% by weight copper powder or about 79% by weight Base powder, about 10% by weight molybdenum powder, about 10% by weight copper powder and about 1% by weight of powdered molybdenum trioxide.
  • the invention further provides that the base powder additionally molybdenum disulfide (MoS 2 ) and / or manganese sulfide (MnS) and / or tungsten disulfide (WS 2 ) and / or calcium fluoride (CaF 2 ) and / or tellurium (Te) and / or calcium carbonate ( CaCO 3 ) in a total amount of at least 1 wt .-% to a maximum of 3 wt .-% based on the amount of the base powder.
  • MoS 2 molybdenum disulfide
  • MnS manganese sulfide
  • WS 2 tungsten disulfide
  • CaF 2 calcium fluoride
  • Te tellurium
  • CaCO 3 calcium carbonate
  • the invention further relates to a method for the powder metallurgical production of molded parts with high wear and corrosion resistance and high thermal conductivity, in particular for the production of valve seat rings or valve guides for internal combustion engines, in which a starting powder mixture with one of the compositions described above with about 0.3 wt .-% of a pressure-relieving agent, e.g. B. wax, mixed, molded and pressed into a molded part with a density of about 8.0 g / cm 3 and subjected to a subsequent sintering under protective gas; the sintering is preferably carried out under a protective gas atmosphere of about 80% by weight of nitrogen and about 20% by weight of hydrogen for a period of about 45 minutes at a temperature of about 1,040 ° C. If necessary, the sintered molded part can be subjected to post-compression to a density of approximately 8.8 g / cm 3 .
  • a pressure-relieving agent e.g. B. wax
  • the starting powder according to claim 1 contains one or more of the substances or substance mixtures listed below: a) 5 - 30% by weight tool steel type M35 or type T15, Ni-Cr-Si-Fe-B-Cu-Mo; b) 5-10% by weight of W, Mo, Nb, WC, TiC, B 4 C, TiN, c-BN, TiB 2 ; c) 0.5-5% by weight of Ti, Cr, Zr, Cr + Zr, Be, Ni + P.
  • the substances or substance mixtures listed below a) 5 - 30% by weight tool steel type M35 or type T15, Ni-Cr-Si-Fe-B-Cu-Mo; b) 5-10% by weight of W, Mo, Nb, WC, TiC, B 4 C, TiN, c-BN, TiB 2 ; c) 0.5-5% by weight of Ti, Cr, Zr, Cr + Zr, Be, Ni + P.
  • the proportion should keep the thermal conductivity above 100 W / m ⁇ k Do not exceed 5-20% by weight, typically 10% by weight.
  • the materials of group b) do not alloy with the copper matrix and have therefore no noticeable influence on the thermal conductivity. They are however relatively expensive. However, it has been found that a Share of 5 - 10 wt .-% is sufficient.
  • group c) cause the intermetallic constituents to be excreted and in this way superimpose the hardness effect in addition to the hardening by the Al 2 O 3 particles in the dispersion-strengthened copper. While the aluminum oxide particles effectively harden the copper matrix at high temperatures (> 500 ° C), the precipitation phases result in more effective hardening in the medium temperature range (200 - 500 ° C), which are the typical operating temperatures to which the valve seat rings are concerned are exposed. The higher warm hardness generally leads to higher wear resistance.
  • the wear of the valve seat rings is also caused by the addition of solid lubricants such as graphite, MoS 2 , MnS, h-BN, CaF 2 and the like, as well as metal additives such as Mo, Co, W or the like, which form oxide skins at operating temperatures that have a lubricating effect .
  • solid lubricants such as graphite, MoS 2 , MnS, h-BN, CaF 2 and the like, as well as metal additives such as Mo, Co, W or the like, which form oxide skins at operating temperatures that have a lubricating effect .
  • the starting powder preferably contains one or more of the following powdery substances with an irregular particle shape: 5 - 25 wt .-% Cu high green strength, electrolyte Cu, oxide-reduced Cu, Mo, or the like.
  • the green parts made of this material only have green low strength.
  • the green strength can be achieved by adding the aforementioned Components can be increased significantly.
  • the "Cu high green strength” are powders with fibrous, long, thin particles, which intertwine with each other when pressed together in this way cause a high strength of the green body.
  • the Thermal conductivity is not affected by the addition of pure Cu, so that 5-25% by weight can be added, the preferred one Range is 10-15% by weight.
  • the machinability, in particular the machinability, of dispersion-strengthened copper is improved by adding one or more of the substances mentioned below: a). 0.2-2% by weight of chemical elements such as C (graphite), Te, Se; b). 0.5-5% by weight sulfides such as MoS 2 , MnS, etc .; c). 0.5-5 wt% oxides such as MoO 3 , WO 3 , Co 3 O 4, etc .; d). 0.5 - 5% by weight of compounds such as hexagonal BN, CaF 2 .
  • the radial breaking strength of the valve seat rings which must be given in particular when pressed into the cylinder head, is increased by adding one or more of the following substances: a) 5-20% by weight of Zn, 0.1-5% by weight of Al or Sn, etc .; b) 5 - 30% by weight tool steel type M35 or type T15, Ni-Cr-Si-Fe-B-Cu-Mo
  • valve seat ring manufacturing lies in all of the aforementioned starting powder mixtures according to the invention in that the thermal conductivity is particularly high, d. H. at least 100 W / m ⁇ k.
  • a Cu-Al 2 O 3 powder which had been dispersion-strengthened by means of internal oxidation and had a content of 0.5% by weight of Al 2 O 3 was mixed with 0.3% by weight of a customary pressure-relieving agent and at a pressure of 800 MN / mm 2 pressed into valve seat rings with the dimensions 36.6 x 30.1 x 9 mm.
  • the green compacts, which had a compression density of 8.4 g / cm 3 were then sintered for 45 minutes at a temperature of 1,040 ° C. under a protective gas atmosphere of 80% N 2 and 20% hydrogen. The sintered density was 8.4 g / cm 3 .
  • the sintered rings were then subjected to post-compression to a density of 8.8 g / cm 3 at a pressure of 1,600 MN / mm 2 .
  • Table 1 shows the measured densities and hardness values
  • the green compacts had a compression density of 8.2 g / cm 3 .
  • the rings were then sintered for 45 minutes at a temperature of 1,040 ° C. in a protective gas atmosphere composed of 80% N 2 and 20% H 2 ; the sintered density was 8.2 g / cm 3 .
  • the densification to a density of 8.7 g / cm 3 was carried out with a pressure of 1,600 MN / mm 2 .
  • Table 3 shows the density and hardness values
  • valve seat rings manufactured according to Examples 1 and 2 had one compared to unexpected improvement in thermal conductivity commercially available valve seat rings based on Fe with and without Copper infiltration. This results from Figure 1.
  • Curve 1 shows the Thermal conductivity values of a valve seat ring according to example 1
  • curve 2 the values for a ring according to Example 2
  • curve 3 the values of a Valve seat ring based on Fe with copper infiltration
  • curve 4 die Values of a commercially available valve seat ring from the applicant.
  • the rings produced according to Example 1 have a hardness which permits their use in the inlet area of an internal combustion engine, while the valve seat rings according to Example 2 can be used in the outlet area and have excellent running behavior here. This was determined by tests, the conditions of which are summarized in Table 5. Test duration 125 h Number of cylinders 4th Number of valves / cylinders 4th Displacement 1998 cm 3 power 100 kW at 5500 rpm Torque 190 Nm at 4000 rpm fuel Super lead-free - RON 95 Engine oil Shell Super 3 - 10 W 40 Valve disc, inlet Valve disc, outlet uncoated Armored stellite
  • the results of the engine test are summarized in Table 6 and shown graphically in Figure 2.
  • the sinking depth is the sum of the wear of the valve and the valve seat ring.
  • the valve seat ring according to Example 2 according to the invention was compared with the series material Como12 from the applicant, which is used on a large scale.
  • the sinking depth of the valve seat ring according to the invention with significantly increased thermal conductivity of the material is less than that of a commercially available valve seat ring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft einen Werkstoff zur pulvermetallurgischen Herstellung von Formteilen mit hoher Wärmeleitfähigkeit und hoher Verschleiß- und Korrosionsfestigkeit durch Pressen, Sintern und gegebenenfalls Nachverdichten eines Pulvergemisches mit einem Kupferanteil von wenigstens etwa 50 Gew.-%.The invention relates to a material for powder metallurgical production of molded parts with high thermal conductivity and high wear and tear Corrosion resistance through pressing, sintering and, if necessary, recompression a powder mixture with a copper content of at least about 50% by weight.

Derartige Sinterwerkstoffe werden für Formteile, die heißen Gasen oder Gasgemischen ausgesetzt sind, benötigt, beispielsweise für die Herstellung von Ventilsitzringen und Ventilführungen für Verbrennungsmotoren, die einerseits hohen mechanischen Belastungen und andererseits gleichzeitig der Einwirkung heißer Verbrennungsgase ausgesetzt sind. Sie müssen daher aus Werkstoffen hergestellt werden, die nicht nur verschleiß- und korrosionsfest sind, sondern auch eine hohe Wärmeleitfähigkeit aufweisen. Dabei kommt der Wärmeleitfähigkeit eine steigende Bedeutung zu, da das Temperaturniveau an den Ventilen durch die aus Emissionsgründen erforderliche Ausweitung des stöchiometrischen Gemisches ansteigt und ein anhaltender Trend zu leistungsstärkeren Motoren erkennbar ist. Such sintered materials are used for molded parts, the hot gases or Exposed to gas mixtures are required, for example for production of valve seat rings and valve guides for internal combustion engines, the on the one hand high mechanical loads and on the other hand at the same time are exposed to hot combustion gases. You need to therefore be made from materials that are not only wear and tear are corrosion-resistant, but also have a high thermal conductivity. Thermal conductivity is becoming increasingly important, as that Temperature level at the valves due to the emission reasons required expansion of the stoichiometric mixture increases and there is a continuing trend towards more powerful engines.

Es ist bekannt, die Temperaturdifferenz zwischen dem Kopf des Ventils und dem Zylinderkopf, in den der Ventilsitzring eingearbeitet ist, durch Wärmetransport im Ventil zu erniedrigen. Zu diesem Zweck wird der Ventilschaft mit einer Hohlbohrung versehen und gekühlt. Aus Kosten- und Gewichtsgründen wurden die Durchmesser der Ventilschäfte in den letzten Jahren derart verkleinert, daß es in den meisten Fällen nicht mehr möglich ist, sie mit einer Hohlbohrung zu versehen, so daß der Einsatz von hohlgebohrten und beispielsweise mit Natrium gefüllten Ventilen in Zukunft nicht mehr möglich sein wird. Das Bestreben geht daher dahin, die Wärmeleitfähigkeit des Materials, aus dem der Ventilsitz, insbesondere der Ventilsitzring, hergestellt wird, zu verbessern, um auf diese Weise die Wärme schneller abzuführen, das Temperaturniveau zu senken, um die tribologischen Verhältnisse zu verbessern und das System technologisch und kostenmäßig zu verbessern.It is known the temperature difference between the head of the valve and the cylinder head, into which the valve seat ring is incorporated, by heat transfer decrease in the valve. For this purpose the valve stem provided with a hollow bore and cooled. For reasons of cost and weight have been the diameters of the valve stems in recent years so scaled down that it is no longer possible in most cases to be provided with a hollow hole so that the use of hollow holes and, for example, valves filled with sodium in the future will be possible. The endeavor therefore goes there, the thermal conductivity the material from which the valve seat, in particular the valve seat ring, is produced to improve the heat more quickly dissipate, lower the temperature level to the tribological Improve conditions and the system technologically and cost-effectively to improve.

Es sind pulvermetallurgisch hergestellte Formteile aus Sinterwerkstoffen auf Eisenbasis mit infiltriertem Kupfer bekannt, die einen zur Verwendung als Ventilsitzring oder Ventilführung ausreichenden Verschleißwiderstand aufweisen, dessen Wärmeleitfähigkeit, verglichen mit Sinterwerkstoffen ohne Kupferanteil nicht hoch genug ist. Beispielsweise ist aus der DE-PS 21 14 160 ein Sinterwerkstoff bekannt, der aus einem Eisenbasiswerkstoff besteht, dem Kohlenstoff und Blei sowie andere Legierungsbestandteile zugesetzt sind. Aus diesem Werkstoff hergestellte Ventilsitzringe besitzen zwar eine ausreichende Warm- und Verschleißfestigkeit, ihre Wärmeleitfähigkeit reicht jedoch nicht aus, um das hier insbesondere anstehende Problem im Auslaßbereich eines modernen Verbrennungsmotors zu lösen.There are molded parts made of sintered materials based on powder metallurgy Iron base with infiltrated copper known to be used as a Valve seat ring or valve guide have sufficient wear resistance, its thermal conductivity compared to sintered materials without Copper content is not high enough. For example, from the DE-PS 21 14 160 a sintered material is known, which is made of an iron-based material consists of carbon and lead, as well as other alloy components are clogged. Valve seat rings made from this material have sufficient heat and wear resistance, their However, thermal conductivity is not enough, especially around this upcoming problem in the outlet area of a modern Solve internal combustion engine.

Aus der PCT-EP 89/01343 ist ein Sinterwerkstoff zur pulvermetallurgischen Herstellung von Ventilsitzringen bekannt, die eine erhöhte Wärmeleitfähigkeit bei hoher Verschleißfestigkeit aufweisen sollen. Der Sinterwerkstoff besteht aus einem Grundmetallpulver mit einem Kupferanteil von etwa 70 bis 100 Gew.-% Kupfer und einem Legierungsanteil. Der Legierungsanteil kann beispielsweise aus 1 bis 3 Gew.-% Kobalt oder einem hochlegierten Zusatzmetallpulver bestehen, das dem Grundmetallpulver als Hartphase beigemischt ist, deren Anteil dann maximal 30 Gew.-% beträgt.PCT-EP 89/01343 describes a sintered material for powder metallurgy Manufacture of valve seat rings known to increase Should have thermal conductivity with high wear resistance. The Sintered material consists of a base metal powder with a Copper content of about 70 to 100 wt .-% copper and one Proportion of alloy. The alloy content can be, for example, from 1 to 3 % By weight of cobalt or a high-alloy additional metal powder, which the base metal powder is mixed as a hard phase, the proportion of which is then is a maximum of 30% by weight.

Mit einem derartigen Werkstoff durchgeführte Versuche haben ergeben, daß der Werkstoff eine für die Fertigung von Ventilsitzringen, insbesondere für den Auslaßbereich von Verbrennungsmotoren, nicht ausreichende Verschleißfestigkeit aufweist. Dies ist darauf zurückzuführen, daß zwar die Härte des Werkstoffes durch die Verfestigung der Matrix durch Einlagerung von Hartstoffen mit einer maximalen Partikelgröße von 150 µm und damit die Verschleißbeständigkeit des Ventilsitzringes gesteigert werden konnte, daß jedoch auf der anderen Seite durch die relativ großen und scharfkantigen Einlagerungen der Gegenkörper stärker verschlissen wurde. Es war daher der Verschleiß am Ventilsitzring gering, während der für das dauerhafte Funktionieren des Systems wichtige Gesamtverschleiß verschlechtert wurde.Experiments carried out with such a material have shown that the material has insufficient wear resistance for the manufacture of valve seat rings, in particular for the exhaust area of internal combustion engines. This is due to the fact that although the hardness of the material could be increased by the solidification of the matrix through the incorporation of hard materials with a maximum particle size of 150 μm and thus the wear resistance of the valve seat ring, it could be increased due to the relatively large and sharp-edged Deposits of the opposing body was worn out more. The wear on the valve seat ring was therefore low, while the overall wear, which is important for the permanent functioning of the system, was worsened.

Ein Pulvergemisch bestehend aus durch 0.1-1.1 Gew.% Al2O3 dispersionverfestigtem Kupferpulver mit wenigstens 50 Gew. %Cu ist generell aus EP-A-144959 bekannt.A powder mixture consisting of copper powder solidified by 0.1-1.1% by weight of Al 2 O 3 with at least 50% by weight of Cu is generally known from EP-A-144959.

Der Erfindung liegt die Aufgabe zugrunde, einen Sinterwerkstoff für die pulvermetallurgische Herstellung, insbesondere von Ventilsitzringen oder Ventilführungen zu schaffen, dessen Verschleißbeständigkeit sehr hoch ist und der gleichzeitig eine signifikant hohe Wärmeleitfähigkeit verglichen mit bekannten, für diesen Zweck benutzten Sinterwerkstoffen aufweist.The invention has for its object a sintered material for the powder metallurgical production, in particular of valve seat rings or To create valve guides whose wear resistance is very high and at the same time a significantly high thermal conductivity compared to known sintered materials used for this purpose.

Ausgehend von einem Werkstoff zur pulvermetallurgischen Herstellung von Formteilen mit hoher Verschleiß- und Korrosionsfestigkeit und hoher Wärmeleitfähigkeit, insbesondere zur Herstellung von Ventilsitzringen oder Ventilführungen für Verbrennungsmotoren, durch Pressen, Sintern und gegebenenfalls Nachverdichten eines Ausgangs-Pulvergemisches mit einem Kupferanteil von wenigstens etwa 50 Gew.-% besteht die Erfindung darin, daß das Ausgangs-Pulvergemisch aus einem den Cu-Anteil enthaltenden Basispulver in einer Menge von 50 bis 90 Gew.-% und einem pulverförmigen, Molybdän enthaltenden Legierungszuschlag in einer Menge von 10 bis 50 Gew.-% besteht und daß das Basispulver ein dispersionsverfestigtes Kupferpulver ist, wobei das dispersionsverfestigte Kupferpulver durch Al2O3 verfestigt ist, von 0,1 bis 1,1 Gew.-% Al2O3 und weniger als 0,5 Gew.-% Verunreinigungen enthält und durch Verdüsen einer Cu-Al-Schmelze und anschließender Erwärmung in oxidierender Atmosphäre zur selektiven Oxidation des Aluminiums hergestellt ist.Starting from a material for powder metallurgical production of molded parts with high wear and corrosion resistance and high thermal conductivity, in particular for the production of valve seat rings or valve guides for internal combustion engines, by pressing, sintering and, if necessary, post-compression of an initial powder mixture with a copper content of at least about 50% by weight. %, the invention consists in that the starting powder mixture consists of a base powder containing the Cu content in an amount of 50 to 90% by weight and a powdery alloy additive containing molybdenum in an amount of 10 to 50% by weight and that the base powder is a dispersion-strengthened copper powder, the dispersion-strengthened copper powder being strengthened by Al 2 O 3 , containing 0.1 to 1.1% by weight of Al 2 O 3 and less than 0.5% by weight of impurities and by Spraying a Cu-Al melt and then heating it in an oxidizing atmosphere selective oxidation of the aluminum is made.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß die Verwendung eines in bestimmter Weise mittels Al2O3 dispersionsverfestigten Cu-Al2O3-Pulvers als Werkstoff zur pulvermetallurgischen Herstellung von Formteilen zu Erzeugnissen führt, die einerseits eine hohe Verschleiß- und Korrosionsfestigkeit und andererseits eine hohe Wärmeleitfähigkeit aufweisen, so daß sie sich insbesondere zur Herstellung von Ventilsitzringen oder Ventilführungen für Verbrennungsmotoren eignen.The invention is based on the surprising finding that the use of a Cu-Al 2 O 3 powder which has been strengthened by means of Al 2 O 3 dispersion as a material for the powder-metallurgical production of molded parts leads to products which on the one hand have high wear and corrosion resistance and on the other hand have a high thermal conductivity, so that they are particularly suitable for the production of valve seat rings or valve guides for internal combustion engines.

Für den vorliegenden Verwendungszweck sind nur solche mit Al2O3 dispersionsverfestigten Cu-Pulver geeignet, die nach dem z. B. aus der US-PS 37 79 714 oder der DE-PS 23 55 122 bekannten Verfahren durch Innenoxidation und mit anschließender Erwärmung von Cu-AI legiertem Pulver, hergestellt aus Verdüsen einer Cu-Al-Schmelze, in oxidierender Atmosphäre hergestellt sind, während nach einer anderen Methode gemäß der GB-A-2 083 500 hergestellte dispersionsverfestigte Metallpulver, bei denen eine innere Oxidation ausdrücklich ausgeschlossen werden soll, ungeeignet sind. Die Anmelderin führt dies darauf zurück, daß bei dem mittels Innenoxidation hergestellten Cu-Al2O3-Pulver der Abstand zwischen den dispergierten Al2O3-Teilchen in der Kupfermatrix in der Größenordnung von 3 bis 12 nm liegt, während sie bei dem ohne Innenoxidation hergestellten Pulver etwa 40 µm beträgt. Auf die erfindungsgemäße Verwendung von dispersionsverfestigten Metallen als Basispulver zur pulvermetallurgischen Herstellung von Formteilen, insbesondere von Ventilsitzringen oder Ventilführungen, findet sich in diesen Druckschriften kein Hinweis.Only those with Al 2 O 3 dispersion-strengthened Cu powder are suitable for the present purpose, which after the z. B. from US-PS 37 79 714 or DE-PS 23 55 122 known methods by internal oxidation and subsequent heating of Cu-Al alloy powder, made from atomizing a Cu-Al melt, are produced in an oxidizing atmosphere, while Dispersion-strengthened metal powders produced by another method according to GB-A-2 083 500, in which internal oxidation is expressly to be excluded, are unsuitable. The applicant attributes this to the fact that in the case of the Cu-Al 2 O 3 powder produced by means of internal oxidation, the distance between the dispersed Al 2 O 3 particles in the copper matrix is of the order of 3 to 12 nm, while in the case of the without inside oxidation produced powder is about 40 μ m. There is no reference in these publications to the use according to the invention of dispersion-strengthened metals as base powder for the powder-metallurgical production of molded parts, in particular valve seat rings or valve guides.

Eine bevorzugte Ausführungsform der Erfindung sieht vor, daß der Legierungszuschlag aus einer pulverförmigen, vorzugsweise wasserverdüsten intermetallischen Hartphase aus 28 bis 32, vorzugsweise 30 Gew.-% Molybdän, 9 bis 11, vorzugsweise 10 Gew.-% Chrom, 2,5 bis 3,5, vorzugsweise 3 Gew.-% Silizium, Rest Kobalt besteht, wobei die intermetallische Hartphase in dem Pulvergemisch in einer Menge von etwa 10 Gew.-% und das Basispulver in einer Menge von etwa 90 Gew.-% vorliegen.A preferred embodiment of the invention provides that the alloy surcharge from a powdered, preferably water atomized intermetallic hard phase from 28 to 32, preferably 30% by weight Molybdenum, 9 to 11, preferably 10% by weight of chromium, 2.5 to 3.5, preferably 3 wt .-% silicon, the rest of cobalt, the intermetallic Hard phase in the powder mixture in an amount of about 10% by weight and the base powder is present in an amount of about 90% by weight.

Bei einer anderen Ausführungsform der Erfindung besteht die intermetallische Hartphase aus 28 bis 32, vorzugsweise 30 Gew.-% Molybdän, 9 bis 11, vorzugsweise 10 Gew.-% Chrom, 2,5 bis 3,5, vorzugsweise 3 Gew.-% Silizium, Rest Eisen, wobei die intermetallische Phase in dem Pulvergemisch in einer Menge von etwa 10 Gew.-% und das Basispulver in einer Menge von etwa 90 Gew.-% vorliegen.In another embodiment of the invention, there is the intermetallic Hard phase of 28 to 32, preferably 30% by weight of molybdenum, 9 to 11, preferably 10 wt .-% chromium, 2.5 to 3.5, preferably 3 wt .-% silicon, balance iron, the intermetallic phase in the Powder mixture in an amount of about 10 wt .-% and the base powder in an amount of about 90 wt .-% are present.

Der Legierungszuschlag kann erfindungsgemäß auch aus einer Hartphase aus einem Schnellstahlpulver aus etwa 6 Gew.-% Wolfram, etwa 5 Gew.-% Molybdän, etwa 2 Gew.-% Vanadium, etwa 4 Gew.-% Chrom, Rest Eisen bestehen, wobei die Hartphase in dem Pulvergemisch in einer Menge von bis zu etwa 30 Gew.-% und das Basispulver in einer Menge von etwa 70 Gew.-% oder höher vorliegen.According to the invention, the alloy surcharge can also consist of a hard phase from a high-speed steel powder of about 6% by weight of tungsten, about 5% by weight Molybdenum, about 2 wt% vanadium, about 4 wt% chromium, balance Iron exist, the hard phase in the powder mixture in an amount up to about 30% by weight and the base powder in an amount of about 70 wt .-% or higher.

Der Legierungszuschlag kann auch aus einer Hartphase aus einem Mo-P-C-Pulver aus etwa 11 Gew.-% Molybdän, etwa 0,6 Gew.-% Phosphor, etwa 1,2 Gew.-% Kohlenstoff, Rest Eisen bestehen, wobei die Hartphase und das Basispulver in dem Pulvergemisch in einer Menge von jeweils etwa 50 Gew.-% vorliegen.The alloy surcharge can also consist of a hard phase from a Mo-P-C powder of about 11% by weight molybdenum, about 0.6% by weight Phosphorus, about 1.2 wt .-% carbon, balance iron, the Hard phase and the base powder in the powder mixture in an amount of each about 50 wt .-% are present.

Gegenstand der Erfindung ist ferner ein Werkstoff, der aus einem Ausgangs-Pulvergemisch aus etwa 80 Gew.-% Basispulver, etwa 10 Gew.-% Molybdänpulver und etwa 10 Gew.-% Kupferpulver oder etwa 79 Gew.-% Basispulver, etwa 10 Gew.-% Molybdänpulver, etwa 10 Gew.-% Kupferpulver und etwa 1 Gew.-% pulverförmigem Molybdäntrioxid besteht.The invention also relates to a material which consists of a starting powder mixture from about 80% by weight of base powder, about 10% by weight Molybdenum powder and about 10% by weight copper powder or about 79% by weight Base powder, about 10% by weight molybdenum powder, about 10% by weight copper powder and about 1% by weight of powdered molybdenum trioxide.

Die Erfindung sieht ferner vor, daß das Basispulver zusätzlich Molybdändisulfid (MoS2) und/oder Mangansulfid (MnS) und/oder Wolframdisulfid (WS2) und/oder Calciumfluorid (CaF2) und/oder Tellur (Te) und/oder Calciumcarbonat (CaCO3) in einer Gesamtmenge von wenigstens 1 Gew.-% bis maximal 3 Gew.-% bezogen auf die Menge des Basispulvers enthält. The invention further provides that the base powder additionally molybdenum disulfide (MoS 2 ) and / or manganese sulfide (MnS) and / or tungsten disulfide (WS 2 ) and / or calcium fluoride (CaF 2 ) and / or tellurium (Te) and / or calcium carbonate ( CaCO 3 ) in a total amount of at least 1 wt .-% to a maximum of 3 wt .-% based on the amount of the base powder.

Gegenstand der Erfindung ist ferner ein Verfahren zur pulvermetallurgischen Herstellung von Formteilen mit hoher Verschleiß- und Korrosionsfestigkeit und hoher Wärmeleitfähigkeit, insbesondere zur Herstellung von Ventilsitzringen oder Ventilführungen für Verbrennungsmotoren, bei dem ein Ausgangs-Pulvergemisch mit einer der vorstehend beschriebenen Zusammensetzungen mit etwa 0,3 Gew.-% eines preßerleichternden Mittels, z. B. Wachs, gemischt, verformt und zu einem Formteil mit einer bei etwa 8,0 g/cm3 liegenden Dichte verpreßt und einer anschließenden Sinterung unter Schutzgas unterworfen wird; dabei erfolgt die Sinterung vorzugsweise unter einer Schutzgasatmosphäre aus etwa 80 Gew.-% Stickstoff und etwa 20 Gew.-% Wasserstoff während einer Zeit von etwa 45 min bei einer Temperatur von etwa 1.040 °C. Gegebenenfalls kann das gesinterte Formteil einer Nachverdichtung auf eine Dichte von etwa 8,8 g/cm3 unterworfen werden.The invention further relates to a method for the powder metallurgical production of molded parts with high wear and corrosion resistance and high thermal conductivity, in particular for the production of valve seat rings or valve guides for internal combustion engines, in which a starting powder mixture with one of the compositions described above with about 0.3 wt .-% of a pressure-relieving agent, e.g. B. wax, mixed, molded and pressed into a molded part with a density of about 8.0 g / cm 3 and subjected to a subsequent sintering under protective gas; the sintering is preferably carried out under a protective gas atmosphere of about 80% by weight of nitrogen and about 20% by weight of hydrogen for a period of about 45 minutes at a temperature of about 1,040 ° C. If necessary, the sintered molded part can be subjected to post-compression to a density of approximately 8.8 g / cm 3 .

Eine alternative Ausführungsform der Erfindung sieht vor, daß das Ausgangspulver gemäß Patentanspruch 1 einen oder mehrere der nachfolgend aufgeführten Stoffe bzw. Stoffgemische enthält: a) 5 - 30 Gew.-%   Werkzeugstahl Typ M35 oder Typ T15, Ni-Cr-Si-Fe-B-Cu-Mo; b) 5 - 10 Gew.-%   W, Mo, Nb, WC, TiC, B4C, TiN, c-BN, TiB2; c) 0,5 - 5 Gew.-%   Ti, Cr, Zr, Cr+Zr, Be, Ni+P. An alternative embodiment of the invention provides that the starting powder according to claim 1 contains one or more of the substances or substance mixtures listed below: a) 5 - 30% by weight tool steel type M35 or type T15, Ni-Cr-Si-Fe-B-Cu-Mo; b) 5-10% by weight of W, Mo, Nb, WC, TiC, B 4 C, TiN, c-BN, TiB 2 ; c) 0.5-5% by weight of Ti, Cr, Zr, Cr + Zr, Be, Ni + P.

Die Materialien der Gruppe a) legieren mit der Kupfermatrix des dispersionsverfestigten Kupfers, indem diese Zusätze in das Kupfer eindiffundieren und dabei die elektrische und thermische Leitfähigkeit signifikant verringern. Um die Wärmeleitfähigkeit oberhalb von 100 W/m · k zu halten, soll der Anteil 5 - 20 Gew.-%, typisch 10 Gew.-%, nicht überschreiten.The materials of group a) alloy with the copper matrix of the dispersion hardened Copper by diffusing these additives into the copper and thereby significantly reducing the electrical and thermal conductivity. Around The proportion should keep the thermal conductivity above 100 W / m · k Do not exceed 5-20% by weight, typically 10% by weight.

Die Materialien der Gruppe b) legieren nicht mit der Kupfermatrix und haben deswegen keinen merklichen Einfluß auf die Wärmeleitfähigkeit. Sie sind jedoch relativ kostspielig. Es hat sich allerdings herausgestellt, daß ein Anteil von 5 - 10 Gew.-% ausreichend ist.The materials of group b) do not alloy with the copper matrix and have therefore no noticeable influence on the thermal conductivity. they are however relatively expensive. However, it has been found that a Share of 5 - 10 wt .-% is sufficient.

Die Zusätze der Gruppe c) bewirken eine Ausscheidung der intermetallischen Bestandteile und überlagern auf diese Weise den Härteeffekt zusätzlich zur Härtung durch die Al2O3-Partikel in dem dispersionsverfestigten Kupfer. Während die Aluminiumoxid-Partikel eine effektive Härtung der Kupfermatrix bei hohen Temperaturen (> 500 °C) bewirken, bewirken die Ausscheidungsphasen eine effektivere Härtung im mittleren Temperaturbereich (200 - 500 °C), wobei es sich um die typischen Betriebstemperaturen handelt, denen die Ventilsitzringe ausgesetzt sind. Die höhere Warmhärte führt allgemein zu einer höheren Verschleißfestigkeit.The additions of group c) cause the intermetallic constituents to be excreted and in this way superimpose the hardness effect in addition to the hardening by the Al 2 O 3 particles in the dispersion-strengthened copper. While the aluminum oxide particles effectively harden the copper matrix at high temperatures (> 500 ° C), the precipitation phases result in more effective hardening in the medium temperature range (200 - 500 ° C), which are the typical operating temperatures to which the valve seat rings are concerned are exposed. The higher warm hardness generally leads to higher wear resistance.

Der Verschleiß der Ventilsitzringe wird auch durch den Zusatz von Festschmierstoffen wie Graphit, MoS2, MnS, h-BN, CaF2 und dergleichen sowie Metallzusätze wie Mo, Co, W oder dergleichen bewirkt, die bei den Betriebstemperaturen Oxidhäute bilden, die einen Schmiereffekt haben.The wear of the valve seat rings is also caused by the addition of solid lubricants such as graphite, MoS 2 , MnS, h-BN, CaF 2 and the like, as well as metal additives such as Mo, Co, W or the like, which form oxide skins at operating temperatures that have a lubricating effect .

Dadurch, daß das Ausgangspulver gemäß einen oder mehreren der nachfolgend aufgeführten Stoffe:
5 - 20 Gew.-% Zn, 0,1 - 5 Gew.-% von einem der Elemente Al, Be, Si, Mg, Sn
enthält, wird die Oxidationsfestigkeit, d. h. Korrosionsfestigkeit im Betrieb, erheblich erhöht. Im Hinblick auf eine möglichst geringe Reduzierung der Wärmeleitfähigkeit ist Zn der bevorzugte Legierungsbestandteil. Diesbezüglich ist ein Zusatz von 5 - 30 Gew.-% unkritisch.
The fact that the starting powder according to one or more of the substances listed below:
5-20% by weight of Zn, 0.1-5% by weight of one of the elements Al, Be, Si, Mg, Sn
contains, the oxidation resistance, ie corrosion resistance during operation, is increased considerably. With a view to reducing the thermal conductivity as little as possible, Zn is the preferred alloy component. In this regard, an addition of 5-30% by weight is not critical.

Vorzugsweise enthält das Ausgangspulver einen oder mehreren der nachfolgend aufgeführten pulverförmigen Stoffe mit unregelmäßiger Partikelform:
5 - 25 Gew.-% Cu hoher Grünfestigkeit, Elektrolyt-Cu, oxidreduziertes Cu, Mo, oder dergleichen.
The starting powder preferably contains one or more of the following powdery substances with an irregular particle shape:
5 - 25 wt .-% Cu high green strength, electrolyte Cu, oxide-reduced Cu, Mo, or the like.

Dadurch, daß das verwendete dispersionsverfestigte Kupfer runde, glatte Partikel hat, haben die ungesinterten, grünen Teile aus diesem Material nur eine geringe Festigkeit. Die Grünfestigkeit kann durch Zuführung der vorgenannten Bestandteile erheblich gesteigert werden. Bei dem "Cu hoher Grünfestigkeit" handelt es sich um Pulver mit faserartig langen, dünnen Partikeln, die sich beim Zusammenpressen miteinander verflechten und auf diese Weise eine hohe Festigkeit des Grünkörpers bewirken. Die Wärmeleitfähigkeit wird durch die Zuführung von reinem Cu nicht berührt, so daß 5 - 25 Gew.-% zugefügt werden können, wobei der bevorzugte Bereich bei 10 - 15 Gew.-% liegt.Because the dispersion-strengthened copper used is round, smooth Has particles, the green parts made of this material only have green low strength. The green strength can be achieved by adding the aforementioned Components can be increased significantly. With the "Cu high green strength" are powders with fibrous, long, thin particles, which intertwine with each other when pressed together in this way cause a high strength of the green body. The Thermal conductivity is not affected by the addition of pure Cu, so that 5-25% by weight can be added, the preferred one Range is 10-15% by weight.

Die Bearbeitbarkeit, insbesondere die Zerspanbarkeit von dispersionsverfestigten Kupfer wird durch Zusatz eines oder mehrerer der nachfolgend genannten Stoffe verbessert: a). 0,2 - 2 Gew.-%   chemische Elemente wie C (Graphit), Te, Se; b). 0,5 - 5 Gew.-%   Sulfide wie MoS2, MnS, usw.; c). 0,5 - 5 Gew.-%   Oxide wie MoO3, WO3, Co3O4 usw.; d). 0,5 - 5 Gew.-%   Verbindungen wie hexagonales BN, CaF2. The machinability, in particular the machinability, of dispersion-strengthened copper is improved by adding one or more of the substances mentioned below: a). 0.2-2% by weight of chemical elements such as C (graphite), Te, Se; b). 0.5-5% by weight sulfides such as MoS 2 , MnS, etc .; c). 0.5-5 wt% oxides such as MoO 3 , WO 3 , Co 3 O 4, etc .; d). 0.5 - 5% by weight of compounds such as hexagonal BN, CaF 2 .

Die radiale Bruchfestigkeit der Ventilsitzringe, die insbesondere beim Einpressen in den Zylinderkopf gegeben sein muß, wird durch Zusatz eines oder mehrerer der nachfolgenden Stoffe erhöht: a) 5 - 20 Gew.-%   Zn, 0,1 - 5 Gew.-% von Al oder Sn, usw.; b) 5 - 30 Gew.-%   Werkzeugstahl Typ M35 oder Typ T15, Ni-Cr-Si-Fe-B-Cu-Mo The radial breaking strength of the valve seat rings, which must be given in particular when pressed into the cylinder head, is increased by adding one or more of the following substances: a) 5-20% by weight of Zn, 0.1-5% by weight of Al or Sn, etc .; b) 5 - 30% by weight tool steel type M35 or type T15, Ni-Cr-Si-Fe-B-Cu-Mo

Durch eine entsprechende Kombination der vorgenannten Legierungszusätze läßt sich das Ausgangspulvergemisch im Hinblick auf die jeweils beim Ventilsitzring geforderten Eigenschaften optimal abstimmen. By a corresponding combination of the above Alloy additives can be the starting powder mixture in terms of Optimally match the properties required for each valve seat ring.

Der hauptsächliche Vorteil im Hinblick auf die Fertigung von Ventilsitzringen liegt bei allen vorgenannten, erfindungsgemäßen Ausgangspulvergemischen darin, daß die Wärmeleitfähigkeit besonders hoch ist, d. h. mindestens 100 W/m · k.The main advantage in terms of valve seat ring manufacturing lies in all of the aforementioned starting powder mixtures according to the invention in that the thermal conductivity is particularly high, d. H. at least 100 W / m · k.

AusführungsbeispieleEmbodiments Beispiel 1example 1

Ein mittels Innenoxidation dispersionsverfestigtes Cu-Al2O3-Pulver mit einem Gehalt von 0,5 Gew.-% Al2O3 wurde mit 0,3 Gew.-% eines üblichen preßerleichternden Mittels gemischt und mit einem Preßdruck von 800 MN/mm2 zu Ventilsitzringen mit den Abmessungen 36,6 x 30,1 x 9 mm gepreßt. Die Grünlinge, die eine Preßdichte von 8,4 g/cm3 aufwiesen, wurden anschließend 45 min lang bei einer Temperatur von 1.040 °C unter einer Schutzgasatmosphäre aus 80 % N2 und 20 % Wasserstoff gesintert. Die Sinterdichte betrug 8,4 g/cm3. Die gesinterten Ringe wurden anschließend einer Nachverdichtung auf eine Dichte von 8,8 g/cm3 bei einem Druck von 1.600 MN/mm2 unterworfen.A Cu-Al 2 O 3 powder which had been dispersion-strengthened by means of internal oxidation and had a content of 0.5% by weight of Al 2 O 3 was mixed with 0.3% by weight of a customary pressure-relieving agent and at a pressure of 800 MN / mm 2 pressed into valve seat rings with the dimensions 36.6 x 30.1 x 9 mm. The green compacts, which had a compression density of 8.4 g / cm 3 , were then sintered for 45 minutes at a temperature of 1,040 ° C. under a protective gas atmosphere of 80% N 2 and 20% hydrogen. The sintered density was 8.4 g / cm 3 . The sintered rings were then subjected to post-compression to a density of 8.8 g / cm 3 at a pressure of 1,600 MN / mm 2 .

Tabelle 1 zeigt die gemessenen Dichten und Härtewerte, Tabelle 2 die Wärmeleitfähigkeitswerte, die nach dem Laser-Flash-Verfahren ermittelt wurden. Verfahrensschritte Dichte [g/cm3] Härte HB Pressen 8,41 - Sintern 8,41 89 - 99 - X = 93 Nachverdichten 8,83 111 - 129 - X = 121 Temperatur [°C] Wärmeleitfähigkeit [W/m · k] RT 276 100 300 200 310 300 308 400 311 500 307 600 313 700 311 Table 1 shows the measured densities and hardness values, Table 2 the thermal conductivity values, which were determined by the laser flash method. Procedural steps Density [g / cm 3 ] Hardness HB Press 8.41 - Sintering 8.41 89 - 99 - X = 93 Recompression 8.83 111 - 129 - X = 121 Temperature [° C] Thermal conductivity [W / m · k] RT 276 100 300 200 310 300 308 400 311 500 307 600 313 700 311

Beispiel 2Example 2

90 Gew.-% eines mittels Innenoxidation mit einem Gehalt von 0,5 Gew.-% Al2O3 hergestellten dispersionsverfestigten Cu-Al2O3-Pulvers wurden mit 10 Gew.-% einer wasserverdüsten, pulverförmigen, intermetallischen Hartphase und 0,3 Gew.-% eines üblichen preßerleichternden Mittels gemischt. Die intermetallische Hartphase bestand aus 60 Gew.-% Kobalt, 30 Gew.-% Molybdän, 10 Gew.-% Chrom und 3 Gew.-% Silizium. Das Pulvergemisch wurde bei einem Preßdruck von 800 MN/mm2 in Formen zu Ventilsitzringen mit den Abmessungen 36,6 x 30,1 x 9 mm verpreßt. Die Grünlinge hatten eine Preßdichte von 8,2 g/cm3. Anschließend wurden die Ringe 45 min lang bei einer Temperatur von 1.040 °C in einer Schutzgasatmosphäre aus 80 % N2 und 20 % H2 gesintert; die Sinterdichte betrug 8,2 g/cm3. Die Nachverdichtung auf eine Dichte von 8,7 g/cm3 erfolgte mit einem Druck von 1.600 MN/mm2. 90% by weight of a dispersion-strengthened Cu-Al 2 O 3 powder produced by means of internal oxidation with a content of 0.5% by weight of Al 2 O 3 were mixed with 10% by weight of a water-atomized, powdery, intermetallic hard phase and 3 wt .-% of a conventional pressure-relieving agent mixed. The intermetallic hard phase consisted of 60% by weight of cobalt, 30% by weight of molybdenum, 10% by weight of chromium and 3% by weight of silicon. The powder mixture was pressed at a pressure of 800 MN / mm 2 into molds to form valve seat rings with the dimensions 36.6 x 30.1 x 9 mm. The green compacts had a compression density of 8.2 g / cm 3 . The rings were then sintered for 45 minutes at a temperature of 1,040 ° C. in a protective gas atmosphere composed of 80% N 2 and 20% H 2 ; the sintered density was 8.2 g / cm 3 . The densification to a density of 8.7 g / cm 3 was carried out with a pressure of 1,600 MN / mm 2 .

Tabelle 3 zeigt die Dichte- und Härtewerte, Tabelle 4 die nach dem Laser-Flash-Verfahren ermittelten Wärmeleitfähigkeitswerte. Verfahrensschritte Dichte [g/cm3] Härte HB Pressen 8,20 - Sintern 8,20 88 - 101 - X = 94 Nachverdichten 8,73 124 - 142 - X = 133 Temperatur [°C] Wärmeleitfähigkeit [W/m · k] RT 95 100 102 200 117 300 129 400 139 500 150 600 157 700 155 Table 3 shows the density and hardness values, Table 4 the thermal conductivity values determined by the laser flash method. Procedural steps Density [g / cm 3 ] Hardness HB Press 8.20 - Sintering 8.20 88 - 101 - X = 94 Recompression 8.73 124 - 142 - X = 133 Temperature [° C] Thermal conductivity [W / m · k] RT 95 100 102 200 117 300 129 400 139 500 150 600 157 700 155

Die gemäß den Beispielen 1 und 2 hergestellten Ventilsitzringe wiesen eine unerwartete Verbesserung hinsichtlich der Wärmeleitfähigkeit gegenüber handelsüblichen Ventilsitzringen auf Fe-Basis mit und ohne Kupferinfiltration auf. Dies ergibt sich aus Bild 1. Kurve 1 zeigt die Wärmeleitfähigkeitswerte eines Ventilsitzringes gemäß Beispiel 1, Kurve 2 die Werte für einen Ring gemäß Beispiel 2, Kurve 3 die Werte eines Ventilsitzringes auf Fe-Basis mit Kupferinfiltration und die Kurve 4 die Werte eines im Handel befindlichen Ventilsitzringes der Anmelderin.The valve seat rings manufactured according to Examples 1 and 2 had one compared to unexpected improvement in thermal conductivity commercially available valve seat rings based on Fe with and without Copper infiltration. This results from Figure 1. Curve 1 shows the Thermal conductivity values of a valve seat ring according to example 1, curve 2 the values for a ring according to Example 2, curve 3 the values of a Valve seat ring based on Fe with copper infiltration and curve 4 die Values of a commercially available valve seat ring from the applicant.

Die gemäß Beispiel 1 hergestellten Ringe weisen eine Härte auf, die ihren Einsatz im Einlaßbereich eines Verbrennungsmotors zuläßt, während die Ventilsitzringe gemäß Beispiel 2 im Auslaßbereich eingesetzt werden können und hier ein ausgezeichnetes Laufverhalten aufweisen. Dies wurde durch Versuche ermittelt, deren Bedingungen in der Tabelle 5 zusammengestellt sind. Versuchsdauer 125 h Anzahl der Zylinder 4 Anzahl der Ventile/Zylinder 4 Hubraum 1998 cm3 Leistung 100 kW bei 5500 U/min Drehmoment 190 Nm bei 4000 U/min Kraftstoff Super Bleifrei - ROZ 95 Motoröl Shell Super 3 - 10 W 40 Ventilteller, Einlass
Ventilteller, Auslass
unbeschichtet
Stellit-gepanzert
The rings produced according to Example 1 have a hardness which permits their use in the inlet area of an internal combustion engine, while the valve seat rings according to Example 2 can be used in the outlet area and have excellent running behavior here. This was determined by tests, the conditions of which are summarized in Table 5. Test duration 125 h Number of cylinders 4th Number of valves / cylinders 4th Displacement 1998 cm 3 power 100 kW at 5500 rpm Torque 190 Nm at 4000 rpm fuel Super lead-free - RON 95 Engine oil Shell Super 3 - 10 W 40 Valve disc, inlet
Valve disc, outlet
uncoated
Armored stellite

Die Ergebnisse des Motorversuches sind in Tabelle 6 zusammengefaßt und in Bild 2 graphisch dargestellt. Bei der Einsinktiefe handelt es sich um die Summe aus dem Verschleiß des Ventils und des Ventilsitzringes. Der erfindungsgemäße Ventilsitzring gemäß Beispiel 2 wurde verglichen mit dem Serienwerkstoff Como12 der Anmelderin, der in großem Umfang eingesetzt wird. Einsinktiefe [mm] Ventil Auslass b) Cu-Al2O3 mit 10 % Intermetallische Hartphase 0 0,02 Serienwerkstoff-COMO 12 0,02 0,07 0,04 0 The results of the engine test are summarized in Table 6 and shown graphically in Figure 2. The sinking depth is the sum of the wear of the valve and the valve seat ring. The valve seat ring according to Example 2 according to the invention was compared with the series material Como12 from the applicant, which is used on a large scale. Sinking depth [mm] Valve Outlet b) Cu-Al 2 O 3 with 10% intermetallic hard phase 0 0.02 Series material COMO 12 0.02 0.07 0.04 0

Es zeigt sich, daß die Einsinktiefe des erfindungsgemäßen Ventilsitzringes bei erheblich gesteigerter Wärmeleitfähigkeit des Materials geringer ist, als die eines handelsüblichen Ventilsitzringes.It can be seen that the sinking depth of the valve seat ring according to the invention with significantly increased thermal conductivity of the material is less than that of a commercially available valve seat ring.

Claims (25)

  1. A material for powder-metallurgy production of shaped portions with a high level of resistance to wear and corrosion and a high level of thermal conductivity, in particular for the production of valve seat rings or valve guides for internal combustion engines, by pressing, sintering and possibly post-densification of an initial powder mixture containing at least 50% by weight of copper
    with a proportion of at least 50 to 90% by weight of dispersion-hardened copper powder which forms the base powder containing the proportion of copper, and
    with a proportion of 10 to 50% by weight of a molybdenum-bearing alloying additive in powder form,
    wherein the dispersion-hardened copper powder is hardened by Al2O3, contains from 0.1 to 1.1% by weight of Al2O3 and less than 0.5% by weight of impurities and is produced by atomisation of a Cu-AI-molten material and subsequent heating in an oxidising atmosphere for the selective oxidation of the aluminium.
  2. A material according to claim 1 characterised in that the alloying additive comprises a preferably water-atomised intermetallic hard phase in powder form.
  3. A material according to claims 1 and 2 characterised in that the intermetallic hard phase is of the following composition:
    28 to 32, preferably 30% by weight of molybdenum,
    9 to 11, preferably 10% by weight of chromium,
    2.5 to 3.5, preferably 3% by weight of silicon, and
    balance cobalt.
  4. A material according to claim 3 characterised in that the intermetallic hard phase is present in the powder mixture in an amount of about 10% by weight and the base powder in an amount of about 90% by weight.
  5. A material according to claims 1 and 2 characterised in that the intermetallic hard phase is of the following composition:
    28 to 32, preferably 30% by weight of molybdenum,
    9 to 11, preferably 10% by weight of chromium,
    2.5 to 3.5, preferably 3% by weight of silicon, and
    balance iron.
  6. A material according to claim 5 characterised in that the intermetallic hard phase is present in the powder mixture in an amount of about 10% by weight and the base powder in an amount of about 90% by weight.
  7. A material according to claim 1 characterised in that the alloying additive comprises a hard phase of a high-speed steel powder (AISI-type M2; DIN S-6-5-2) of the following composition:
    about 6% by weight of tungsten,
    about 5% by weight of molybdenum,
    about 2% by weight of vanadium,
    about 4% by weight of chromium, and
    balance iron.
  8. A material according to claim 7 characterised in that the hard phase is present in the powder mixture in an amount of up to 30% by weight and the base powder in an amount of about 70% by weight or higher.
  9. A material according to claim 1 characterised in that the alloying additive comprises a hard phase of an Mo-P-C-powder of the following composition:
    about 11% by weight of molybdenum,
    about 0.6% by weight of phosphorus,
    about 1.2% by weight of carbon, and
    balance iron.
  10. A material according to claim 9 characterised in that the hard phase and the base powder are present in the powder mixture in an amount in each case of about 50%.
  11. A material according to claim 1 characterised by the following composition of the initial powder mixture:
    about 80% by weight of base powder,
    about 10% by weight of molybdenum powder, and
    about 10% by weight of copper powder.
  12. A material according to claim 1 characterised by the following composition of the initial powder mixture:
    about 79% by weight of base powder,
    about 10% by weight of molybdenum powder,
    about 10% by weight of copper powder, and
    about 1% by weight of molybdenum trioxide.
  13. A material according to one of the preceding claims characterised in that the base powder additionally contains molybdenum disulphide (MoS2) and/or manganese sulphide (MnS) and/or tungsten disulphide (WS2) and/or calcium fluoride (CaF2) and/or tellurium (Te) and/or calcium carbonate (CoCO3) in a total amount of at least 1% by weight to a maximum of 3% by weight with respect to the amount of the base powder.
  14. A process for powder-metallurgy production of shaped portions with a high level of resistance to wear and corrosion and a high level of thermal conductivity, in particular for the production of valve seat rings or valve guides for internal combustion engines, characterised in that an initial powder mixture according to one of the preceding claims is mixed with about 0.3% by weight of a pressing-facilitating agent, for example wax, shaped, and pressed to form a shaped portion of a density of about 8.0 g/cm3 and subjected to subsequent sintering under a protective gas.
  15. A process according to claim 14 characterised in that the sintering operation is effected under a protective gas atmosphere comprising about 80% by weight of nitrogen and about 20% by weight of hydrogen for a period of about 45 minutes at a temperature of about 1040°C.
  16. A process according to claims 14 and 15 characterised in that the sintered shaped body is subjected to a post-densification operation to a density of about 8.8 g/cm3.
  17. Use of a Cu-Al2O3-Powder which is dispersion-hardened by means of Al2O3, according to claim 1, with a content of Al2O3 of between 0.3 and 1.1% by weight, which is produced by atomisation of a Cu-Al-molten material and subsequent heating in oxidising atmosphere, for the powder-metallurgy production of shaped portions which are resistant to wear and corrosion with a high level of thermal conductivity for the production of valve seat rings or valve guides.
  18. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances or substance mixtures listed below:
    a) 5 - 30% by weight of tool steel type M35 or type T15,
       Ni-Cr-Si-Fe-B-Cu-Mo;
    b) 5 - 10% by weight of W. Mo, Nb, WC, TiC, B4C, TiN, c-BN, TiB2; and
    c) 0.5 - 5% by weight of Ti, Cr, Zr, Cr+Zr, Be, Ni+P.
  19. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances listed below:
    5 - 10% by weight of Co, W.
  20. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances listed below:
    5 - 20% by weight of Zn, 0.1 - 5% by weight of one of the elements Al, Be, Si, Mg and Sn.
  21. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances in powder form listed below, with an irregular particle form:
    5 - 25% by weight of Cu of high green strength, electrolytic Cu, oxide-reduced Cu and Mo.
  22. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances listed below in a) to d):
    a) 0.2 - 2% by weight of chemical elements such as C (graphite), Te, Se;
    b) 0.5 - 5% by weight of sulphides such as MoS2, MnS, etc;
    c) 0.5 - 5% by weight of oxides such as MoO3, WO3, Co3O4 etc; and
    d) 0.5 - 5% by weight of compounds such as hexagonal BN and CaF2.
  23. A material according to claim 1 characterised in that the initial powder mixture contains one or more of the substances listed below:
    a) 5 - 20% by weight of Zn, 0.1 - 5% by weight of Al or Sn, etc; and
    b) 5 - 30% by weight of tool steel type M35 or type T15,
    Ni-Cr-Si-Fe-B-Cu-Mo.
  24. A material according to claim 1 and one or more of claims 18 to 23 characterised in that the initial powder mixture contains combinations of the substances or the substance mixtures of claims 18 to 23.
  25. Use of a material according to claim 1 and one or more of claims 19 to 24 for the production of a valve seat ring or valve guides, the thermal conductivity thereof being at least 100 W/m • k.
EP97905071A 1996-02-21 1997-02-21 Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear Expired - Lifetime EP0881958B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19606270 1996-02-21
DE19606270A DE19606270A1 (en) 1996-02-21 1996-02-21 Material for powder metallurgical production of molded parts, especially valve seat rings with high thermal conductivity and high wear and corrosion resistance
PCT/EP1997/000837 WO1997030808A1 (en) 1996-02-21 1997-02-21 Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear

Publications (2)

Publication Number Publication Date
EP0881958A1 EP0881958A1 (en) 1998-12-09
EP0881958B1 true EP0881958B1 (en) 2001-05-30

Family

ID=7785898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97905071A Expired - Lifetime EP0881958B1 (en) 1996-02-21 1997-02-21 Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear

Country Status (5)

Country Link
US (1) US6039785A (en)
EP (1) EP0881958B1 (en)
JP (1) JP4272706B2 (en)
DE (2) DE19606270A1 (en)
WO (1) WO1997030808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013226A1 (en) * 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg High heat conducting valve seat ring
DE102016109539A1 (en) * 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Valve seat ring

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19925300A1 (en) * 1999-06-02 2000-12-07 Mahle Ventiltrieb Gmbh Cast material with high warm hardness
DE102013021059A1 (en) 2013-12-18 2015-06-18 Bleistahl-Produktions Gmbh & Co Kg. Double / triple layer valve guide
EP3106533A4 (en) * 2014-02-10 2017-05-17 Nissan Motor Co., Ltd. Sliding mechanism
WO2015198932A1 (en) 2014-06-27 2015-12-30 株式会社リケン Sintered valve seat and method for manufacturing same
CN104561638B (en) * 2015-01-04 2016-06-08 河南科技大学 A kind of Al2O3The preparation method of dispersed and strengthened copper-based composite material
CN108026800B (en) * 2015-10-02 2020-06-09 株式会社理研 Sintered valve seat
WO2018179590A1 (en) 2017-03-28 2018-10-04 株式会社リケン Sintered valve seat
DE102018209682A1 (en) * 2018-06-15 2019-12-19 Mahle International Gmbh Process for the manufacture of a powder metallurgical product
CN109825733B (en) * 2019-03-11 2021-02-19 中南大学 Short-process preparation method of dispersion-strengthened copper alloy
KR20210104418A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 A outer ring for variable oil pump and manufacturing method thereof
US11473456B2 (en) * 2020-09-15 2022-10-18 GM Global Technology Operations LLC Cylinder head valve seat with high thermal conductivity and multiple material cross-section
DE102020213651A1 (en) * 2020-10-29 2022-05-05 Mahle International Gmbh Wear-resistant, highly thermally conductive sintered alloy, especially for bearing applications and valve seat inserts

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578443A (en) * 1969-01-21 1971-05-11 Massachusetts Inst Technology Method of producing oxide-dispersion-strengthened alloys
JPS55122841A (en) * 1979-03-14 1980-09-20 Taiho Kogyo Co Ltd Sliding material
DE3130920A1 (en) * 1980-09-04 1982-04-01 General Electric Co., Schenectady, N.Y. "ELIGIBLE COPPER ALLOYS"
JPS59145756A (en) * 1983-02-08 1984-08-21 Hitachi Powdered Metals Co Ltd Manufacture of sintered alloy for member of control valve mechanism of internal-combustion engine
US4752334A (en) * 1983-12-13 1988-06-21 Scm Metal Products Inc. Dispersion strengthened metal composites
DE3838461A1 (en) * 1988-11-12 1990-05-23 Krebsoege Gmbh Sintermetall POWDER METALLURGICAL MATERIAL BASED ON COPPER AND ITS USE
SE468466B (en) * 1990-05-14 1993-01-25 Hoeganaes Ab ANNUAL-BASED POWDER AND NUTRITION-RESISTANT HEATHOLD SOLID COMPONENT MANUFACTURED FROM THIS AND THE MANUFACTURING COMPONENT
JPH083133B2 (en) * 1990-07-12 1996-01-17 日立粉末冶金株式会社 Outboard motor valve seat material and manufacturing method thereof
JPH05179232A (en) * 1991-12-26 1993-07-20 Toshiba Tungaloy Co Ltd Sintered metallic friction material for brake
US5296189A (en) * 1992-04-28 1994-03-22 International Business Machines Corporation Method for producing metal powder with a uniform distribution of dispersants, method of uses thereof and structures fabricated therewith
DE4232432A1 (en) * 1992-09-28 1994-03-31 Krebsoege Gmbh Sintermetall Powder metallurgy connecting rod - has at least powder metallurgy big-end bearing forming part of compound connecting rod structure
US5551970A (en) * 1993-08-17 1996-09-03 Otd Products L.L.C. Dispersion strengthened copper
EP0769635A1 (en) * 1995-10-20 1997-04-23 Tokyo Yogyo Kabushiki Kaisha Brake lining material for heavy-load braking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013226A1 (en) * 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg High heat conducting valve seat ring
DE102016109539A1 (en) * 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Valve seat ring

Also Published As

Publication number Publication date
DE59703672D1 (en) 2001-07-05
WO1997030808A1 (en) 1997-08-28
JP4272706B2 (en) 2009-06-03
EP0881958A1 (en) 1998-12-09
JP2001500567A (en) 2001-01-16
DE19606270A1 (en) 1997-08-28
US6039785A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
DE102006014291B4 (en) Wear-resistant sintered element and production method thereof
US5466276A (en) Valve seat made of secondary hardening-type high temperature wear-resistant sintered alloy
EP0881958B1 (en) Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear
DE102005022104B4 (en) Sintered iron based alloy with dispersed hard particles
DE3327282C2 (en) Sintered alloy for valve seats
DE2846122C2 (en) Sintered alloy for the manufacture of sliding elements for engines
EP0372223B1 (en) Copper-based sintering material, its use and process for preparing work pieces from this material
DE3048035C2 (en) Use of an alloy as a material for producing sintered bodies and a method for producing a wear-resistant sintered body
DE60208848T2 (en) Powder metallurgical valve guide
DE2753903C2 (en)
DE60203893T2 (en) METHOD FOR PRODUCING COPPER INTEGRATED RAW IRON MATERIAL
DE3224419A1 (en) METHOD FOR PRODUCING A CAM-CAMSHAFT ASSEMBLY
DE3232001C2 (en) Wear-resistant sintered alloy, process for their production and their use
DE19506340C2 (en) Sintered alloy and method for producing a sintered body therefrom
DE3224420C2 (en) Process for the aftertreatment of a sintered sliding element
DE60300728T2 (en) Iron-based sintered alloy for use as a valve seat
DE10236015B4 (en) Sintered alloy for a valve seat with excellent wear resistance and a method of manufacturing the same
DE3730082C2 (en)
EP3311008A1 (en) Valve guide
DE4104909A1 (en) METHOD FOR PRODUCING AT LEAST THE WEARING LAYER OF HIGHLY DURABLE SINTER PARTS, IN PARTICULAR FOR THE VALVE CONTROL OF AN INTERNAL COMBUSTION ENGINE
DE19708197B4 (en) Sintered sliding element and method for its production
EP0719349B1 (en) Process of producing sintered articles
KR20210038691A (en) Modified high speed steel particles, powder metallurgy method using the same, and sintered parts obtained therefrom
EP1250518B1 (en) Powder metallurgy produced valve body and valve fitted with said valve body
DE10016830A1 (en) Sintered molded part produced by powder metallurgy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 59703672

Country of ref document: DE

Date of ref document: 20010705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160226

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59703672

Country of ref document: DE