EP0845997A1 - Stabile isotonic lyophilized protein formulation - Google Patents

Stabile isotonic lyophilized protein formulation

Info

Publication number
EP0845997A1
EP0845997A1 EP96925497A EP96925497A EP0845997A1 EP 0845997 A1 EP0845997 A1 EP 0845997A1 EP 96925497 A EP96925497 A EP 96925497A EP 96925497 A EP96925497 A EP 96925497A EP 0845997 A1 EP0845997 A1 EP 0845997A1
Authority
EP
European Patent Office
Prior art keywords
formulation
protein
antibody
reconstituted
lyophilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96925497A
Other languages
German (de)
French (fr)
Inventor
James Andya
Jeffrey L. Cleland
Chung C. Hsu
Xanthe M. Lam
David E. Overcashier
Steven J. Shire
Janet Yu-Feng Yang
Sylvia Sau-Yan Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27056058&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0845997(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/615,369 external-priority patent/US6267958B1/en
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to EP10178416.3A priority Critical patent/EP2275119B1/en
Priority to DK04022777.9T priority patent/DK1516628T3/en
Priority to EP04022777.9A priority patent/EP1516628B1/en
Publication of EP0845997A1 publication Critical patent/EP0845997A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention is directed to a lyophilized protein formulation.
  • it relates to a stable lyophilized protein formulation which can be reconstituted with a diluent to generate a stable reconstituted formulation suitable for subcutaneous administration.
  • proteins are larger and more complex than traditional organic and inorganic drugs (i.e. possessing multiple functional groups in addition to complex three-dimensional structures), the formulation of such proteins poses special problems.
  • a formulation must preserve intact the conformational integrity of at least a core sequence ofthe protein's amino acids while at the same time protecting the protein's multiple functional groups from degradation.
  • Degradation pathways for proteins can involve chemical instability (i.e. any process which involves modification of the protein by bond formation or cleavage resulting in a new chemical entity) or physical instability (i.e. changes in the higher order structure ofthe protein).
  • Chemical instability can result from deamidation, racemization, hydrolysis, oxidation, beta elimination or disulfide exchange. Physical instability can result from denaturation. aggregation, precipitation or adsorption, for example. The three most common protein degradation pathways are protein aggregation, deamidation and oxidation. Cleland et al. Critical Reviews in Therapeutic Drug Carrier Systems 10(4): 307-377 (1993).
  • Freeze-drying is a commonly employed technique for preserving proteins which serves to remove water from the protein preparation of interest.
  • Freeze-drying or lyophilization, is a process by which the material to be dried is first frozen and then the ice or frozen solvent is removed by sublimation in a vacuum environment.
  • An excipient may be included in pre-lyophilized formulations to enhance stability during the freeze-drying process and/or to improve stability ofthe lyophilized product upon storage. Pikal, M. Biopharm. 3(9)26-30 (1990) and Arakawa e/ ⁇ t Pharm. Res. 8(3):285-291 (1991).
  • a stable lyophilized protein formulation can be prepared using a lyoprotectant (preferably a sugar such as sucrose or trehalose), which lyophilized formulation can be reconstituted to generate a stable reconstituted formulation having a protein concentration which is significantly higher (e.g. from about 2-40 times higher, preferably 3-10 times higher and most preferably 3-6 times higher) than the protein concentration in the pre-lyophilized formulation.
  • a lyoprotectant preferably a sugar such as sucrose or trehalose
  • the protein concentration in the pre-lyophilized formulation may be 5 mg/mL or less
  • the protein concentration in the reconstituted formulation is generally 50 mg/mL or more.
  • Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where the formulation is intended for subcutaneous administration.
  • the reconstituted formulation is stable (i.e. fails to display significant or unacceptable levels of chemical or physical instability of the protein) at 2-8 ° C for at least about 30 days.
  • the reconstituted formulation is isotonic.
  • the protein in the lyophilized formulation essentially retains its physical and chemical stability and integrity upon lyophilization and storage.
  • the reconstituted formulation When reconstituted with a diluent comprising a preservative (such as bacteriostatic water for injection, BWFI), the reconstituted formulation may be used as a multi-use formulation.
  • a diluent comprising a preservative (such as bacteriostatic water for injection, BWFI)
  • BWFI bacteriostatic water for injection
  • the reconstituted formulation may be used as a multi-use formulation.
  • a formulation is useful, for example, where the patient requires frequent subcutaneous administrations of the protein to treat a chronic medical condition.
  • the advantage of a multi-use formulation is that it facilitates ease of use for the patient, reduces waste by allowing complete use of vial contents, and results in a significant cost savings for the manufacturer since several doses are packaged in a single vial (lower filling and shipping costs).
  • the invention provides a stable isotonic reconstituted formulation comprising a protein in an amount of at least about 50 mg mL and a diluent, which reconstituted formulation has been prepared from a lyophilized mixture of a protein and a lyoprotectant, wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
  • the invention provides a stable reconstituted formulation comprising an antibody in an amount of at least about 50 mg/mL and a diluent, which reconstituted formulation has been prepared from a lyophilized mixture of an antibody and a lyoprotectant, wherein the antibody concentration in the reconstituted formulation is about 2-40 times greater than the antibody concentration in the mixture before lyophilization.
  • the ratio of lyoprotectantrprotein in the lyophilized formulation ofthe preceding paragraphs depends, for example, on both the protein and lyoprotectant of choice, as well as the desired protein concentration and isotonicity ofthe reconstituted formulation.
  • the ratio may, for example, be about 100-1500 mole trehalose or sucrose: 1 mole antibody.
  • the pre-lyophilized formulation ofthe protein and lyoprotectant will further include a buffer which provides the formulation at a suitable pH, depending on the protein in the formulation.
  • a buffer which provides the formulation at a suitable pH, depending on the protein in the formulation.
  • the formulation may further include a surfactant (e.g. a polysorbate) in that it has been observed herein that this can reduce aggregation ofthe reconstituted protein and/or reduce the formation of particulates in the reconstituted formulation.
  • a surfactant e.g. a polysorbate
  • the surfactant can be added to the pre-lyophilized formulation, the lyophilized formulation and/or the reconstituted formulation (but preferably the pre-lyophilized formulation) as desired.
  • the invention further provides a method for preparing a stable isotonic reconstituted formulation comprising reconstituting a lyophilized mixture ofa protein and a lyoprotectant in a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
  • the invention provides a method for preparing a formulation comprising the steps of: (a) lyophilizing a mixture of a protein and a lyoprotectant; and (b) reconstituting the lyophilized mixture of step (a) in a diluent such that the reconstituted formulation is isotonic and stable and has a protein concentration of at least about 50 mg/mL.
  • the protein concentration in the reconstituted formulation may be from about 80 mg/mL to about 300 mg/mL.
  • the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
  • An article of manufacture is also provided herein which comprises: (a) a container which holds a lyophilized mixture of a protein and a lyoprotectant; and (b) instructions for reconstituting the lyophilized mixture with a diluent to a protein concentration in the reconstituted formulation of at least about 50 mg/mL.
  • the article of manufacture may further comprise a second container which holds a diluent (e.g. bacteriostatic water for injection (BWFI) comprising an aromatic alcohol).
  • BWFI bacteriostatic water for injection
  • the invention further provides a method for treating a mammal comprising administering a therapeutically effective amount of a reconstituted formulation disclosed herein to a mammal, wherein the mammal has a disorder requiring treatment with the protein in the formulation.
  • the formulation may be administered subcutaneously.
  • anti-HER2 antibody pre-lyophilized formulation as discovered in the experiments detailed below was found to comprise anti-HER2 in amount from about 5-40 mg/mL (e.g. 20-30 mg/mL) and sucrose or trehalose in an amount from about 10-100 mM (e.g. 40-80 mM), a buffer (e.g. histidine, pH 6 or succinate, pH 5) and a surfactant (e.g. a polysorbate).
  • the lyophilized formulation was found to be stable at 40 ° C for at least 3 months and stable at 30° C for at least 6 months.
  • This anti-HER2 formulation can be reconstituted with a diluent to generate a formulation suitable for intravenous administration comprising anti-HER2 in an amount from about 10-30 mg/mL which is stable at 2-8° C for at least about 30 days. Where higher concentrations ofthe anti-HER2 antibody are desired (for example where subcutaneous delivery ofthe antibody is the intended mode of administration to the patient).
  • the lyophilized formulation may be reconstituted to yield a stable reconstituted formulation having a protein concentration of 50 mg/mL or more.
  • anti-IgE antibody pre-lyophilized formulation discovered herein has anti-IgE in amount from about 5-40 mg/mL (e.g. 20-30 mg/mL) and sucrose or trehalose in an amount from about 60-300 M (e.g.
  • the lyophilized anti- IgE formulation is stable at 30° C for at least 1 year.
  • This formulation can be reconstituted to yield a formulation comprising anti-IgE in an amount from about 15-45 mg/mL (e.g. 15-25 mg/mL) suitable for intravenous administration which is stable at 2-8° C for at least 1 year.
  • the lyophilized formulation can be reconstituted in order to generate a stable formulation having an anti-IgE concentration of ⁇ 50 mg/mL.
  • Figure 1 shows the effect of reconstitution volume on the stability of lyophilized rhuMAb HER2.
  • the lyophilized formulation was prepared from a pre-lyophilization formulation comprising 25 mg/mL protein, 60 mM trehalose. 5 mM sodium succinate, pH 5.0, and 0.01% Tween 20TM. The lyophilized cake was incubated at 40° C and then reconstituted with 4.0 (o) or 20.0 mL (•) of BWFI. The fraction of intact protein in the reconstituted formulation was measured by native size exclusion chromatography and defined as the peak area ofthe native protein relative to the total peak area including aggregates.
  • Figure 2 illustrates the effect of trehalose concentration on the stability of lyophilized rhuMAb HER2.
  • the protein was lyophilized at 25 mg/mL in 5 mM sodium succinate, pH 5.0 (circles) or 5 mM histidine, pH 6.0 (squares) and trehalose concentrations ranging from 60 mM (360 molar ratio) to 200 mM ( 1200 molar ratio).
  • the lyophilized protein was incubated at 40° C for either 30 days (closed symbols) or 91 days (open symbols).
  • the amount of intact protein was measured after reconstitution ofthe lyophilized protein with 20 mL BWFI.
  • Figure 3 demonstrates the effect of trehalose concentration on the long term stability of lyophilized rhuMAb HER2 stored at 40° C.
  • the protein was lyophilized at either 25 mg/mL in 5 mM sodium succinate, pH 5.0, 0.01% Tween 20TM. and 60 mM trehalose ( ⁇ ) or 5 mM histidine, pH 6.0. 0.01% Tween 20TM, and 60 mM trehalose (D) or21 mg/mL in 10 mM sodium succinate, pH 5.0, 0.2% Tween 20TM and 250 mM trehalose (•).
  • the lyophilized protein was incubated at 40° C and then reconstituted with 20 mL of BWFI. The amount of intact protein was measured after reconstitution.
  • Figure 4 shows the stability of rhuMAb HER2 lyophilized in 38.4 mM mannitol (7 mg/mL), 20.4 mM sucrose (7 mg/mL), 5 mM histidine, pH 6.0, 0.01% Tween 20TM.
  • the lyophilized protein was incubated at 40° C and then reconstituted with either 4.0 mL (o) or 20 mL (• ) of BWFI. The amount of intact protein was measured after reconstitution.
  • Figure 5 demonstrates stability of reconstituted rhuMAb HER2 lyophilized in 5 mM sodium succinate, pH 5.0, 60 mM trehalose, 0.01% Tween 20TM.
  • Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL:l.l% benzyl alcohol) and then stored at 5°C (solid symbols) or 25° C (open symbols).
  • the % native protein was defined as the peak area of the native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography.
  • Figure 6 shows stability of reconstituted rhuMAb HER2 lyophilized in 5 mM histidine, pH 6.0, 60 mM trehalose, 0.01% Tween 20.
  • Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL:l.l% benzyl alcohol) and then stored at 5°C (solid symbols) or 25 °C (open symbols).
  • the % native protein was defined as the peak area ofthe native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography.
  • Figure 7 reveals stability of reconstituted rhuMAb HER2 lyophilized in 5 mM histidine, pH 6.0, 38.4 mM mannitol, 20.4 mM sucrose, 0.01% Tween 20.
  • Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL: 1.1 % benzyl alcohol) and then stored at 5° C (solid symbols) or 25 ° C (open symbols).
  • the % native protein was defined as the peak area ofthe native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography.
  • Figure 8 shows stability of reconstituted rhuMAb HER2 lyophilized in 10 mM sodium succinate, pH
  • the buffers were: potassium phosphate pH 7.0 (o); sodium phosphate pH 7.0 (D); histidine pH 7.0 (o); sodium succinate pH 6.5 (•); sodium succinate pH 6.0 ( ⁇ ); sodium succinate pH 5.5 ( ⁇ ); and sodium succinate pH 5.0 (*).
  • Figure 10 depicts aggregation of rhuMAb E25 lyophilized in 5 mM histidine buffer at both pH 6 and pH 7 and assayed following storage as follows.
  • the buffer was at: pH 6.0 stored at 2-8° C (o); pH 6 stored at 25° C (D); pH 6 stored at 40° C (0); pH 7 stored at 2-8° C (•); pH 7 stored at 25° C ( ⁇ ); and pH 7 stored at 40° C
  • Figure 11 illustrates aggregation of 5 mg/mL rhuMAb E25 formulated into 10 mM sodium succinate at pH 5.0 with lyoprotectant added at a concentration of 275 mM (isotonic).
  • the lyoprotectants were: control, no lyoprotectant (o); mannitol (D); lactose (0); maltose (•); trehalose ( ⁇ ): and sucrose ( ⁇ ). Samples were lyophilized and assayed at time zero and after 4 weeks, 8 weeks, and 52 weeks of storage at 2-8° C.
  • Figure 12 shows aggregation of 5 mg/mL rhuMAb E25 formulated into 10 mM sodium succinate at pH 5.0 with lyoprotectant added at a concentration of 275 mM (isotonic).
  • the lyoprotectants were: control, no lyoprotectant (o); mannitol (D); lactose (0); maltose (•); trehalose ( ⁇ ); and sucrose ( ⁇ ). Samples were lyophilized and assayed at time zero and after 4 weeks. 8 weeks, and 52 weeks of storage at 40° C.
  • Figure 13 depicts hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 with an isotonic concentration (Le. 275 mM) of lactose stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
  • Figure 14 shows hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
  • Figure 15 illustrates hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 with an isotonic concentration (Le. 275 mM) of sucrose and stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
  • Figure 16 illustrates the effect of sugar concentration on rhuMAb E25 formulated at 20 mg/mL in 5 mM histidine at pH 6.0.
  • Sucrose (•) and trehalose (D) were added to the formulation at molar ratios ranging from 0 to 2010 (isotonic) (see Table 1 below). Samples were lyophilized and assayed after 12 weeks of storage at 50° C.
  • Figure 17 reveals aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH 6 with 85 mM sucrose (o); 85 mM trehalose (D): 161 mM sucrose ( ⁇ ) or 161 mM trehalose (*).
  • Samples were lyophilized and stored at 2-8° C followed by reconstitution with 0.9% benzyl alcohol to 100 mg/mL antibody in 20 mM histidine at pH 6 with isotonic (340 mM) and hypertonic (644 mM) sugar concentration.
  • Figure 18 shows aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH 6 with 85 mM sucrose (o); 85 mM trehalose (D); 161 mM sucrose ( ⁇ ) or 161 mM trehalose (*). Samples were lyophilized and stored at 30° C followed by reconstitution with 0.9% benzyl alcohol to 100 mg/mL antibody in 20 mM histidine at pH 6 with isotonic (340 mM) and hypertonic (644 mM) sugar concentration.
  • Figure 19 illustrates aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH
  • protein is meant a sequence of amino acids for which the chain length is sufficient to produce the higher levels of tertiary and/or quaternary structure. This is to distinguish from “peptides” or other small molecular weight drugs that do not have such structure.
  • the protein herein will have a molecular weight of at least about 15-20 kD, preferably at least about 20 kD.
  • proteins encompassed within the definition herein include mammalian proteins, such as, e.g., growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; ⁇ -1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor LX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or tissue-type plasminogen activator
  • t-PA bombazine
  • thrombin tumor necrosis factor- ⁇ and - ⁇
  • enkephalinase RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1- ⁇ ); serum albumin such as human serum albumin; mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; DNase; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; an integrin; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF- ⁇ ; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and b
  • Essentially pure protein means a composition comprising at least about 90% by weight ofthe protein, based on total weight ofthe composition, preferably at least about 95% by weight.
  • Essentially homogeneous protein means a composition comprising at least about 99% by weight of protein, based on total weight ofthe composition.
  • the protein is an antibody. The antibody may bind to any of the above ⁇ mentioned molecules, for example.
  • Exemplary molecular targets for antibodies encompassed by the present invention include CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34; members ofthe HER receptor family such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules such as LFA-1, Mol, ⁇ l50,95, VLA-4, ICAM-l. VCAM and ⁇ v/ ⁇ 3 integrin including either ⁇ or ⁇ subunits thereof (e.g. anti-CDl la, anti-CD 18 or anti-CDl lb antibodies); growth factors such as VEGF; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; protein C etc.
  • CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34
  • members ofthe HER receptor family such as the EGF receptor, HER2, HER3 or HER4 receptor
  • cell adhesion molecules such as LFA-1, Mol, ⁇ l50,95, VLA-4, ICAM-l
  • antibody is used in the broadest sense and specifically covers monoclonal antibodies (including full length antibodies which have an immunoglobulin Fc region), antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab');,. and Fv).
  • the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins.
  • the modifier "monoclonal” indicates the character ofthe antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al.. Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4.816,567).
  • the "monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et ai, Nature, 352:624-628 (1991) and Marks et ai, J. Mol. Biol., 222:581-597 (1991), for example.
  • the monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion ofthe heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder ofthe chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et ai, Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
  • chimeric antibodies immunoglobulins in which a portion ofthe heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder ofthe chain(s) is identical with or homologous to corresponding sequences
  • Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementarity determining region (CDR) ofthe recipient are replaced by residues from a CDR of a non ⁇ human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity.
  • CDR complementarity determining region
  • humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all ofthe CDR regions correspond to those of a non-human immunoglobulin and all or substantially all ofthe FR regions are those ofa human immunoglobulin sequence.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • the humanized antibody includes a PrimatizedTM antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.
  • a “stable” formulation is one in which the protein therein essentially retains its physical and chemical stability and integrity upon storage.
  • Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, New York, Pubs. ( 1991 ) and Jones, A. Adv. Drug Delivery Rev. 10: 9-90 ( 1993).
  • Stability can be measured at a selected temperature for a selected time period. For rapid screening, the formulation may be kept at 40 ' C for 2 weeks to 1 month, at which time stability is measured.
  • the formulation should be stable at 30 ° C or 40 ° C for at least 1 month and/or stable at 2-8 ° C for at least 2 years.
  • the formulation should be stable for at least 2 years at 30 ° C and/or stable at 40 ' C for at least 6 months.
  • the extent of aggregation following lyophilization and storage can be used as an indicator of protein stability (see Examples herein).
  • a "stable" formulation may be one wherein less than about 10% and preferably less than about 5% of the protein is present as an aggregate in the formulation. In other embodiments, any increase in aggregate formation following lyophilization and storage ofthe lyophilized formulation can be determined.
  • a “stable" lyophilized formulation may be one wherein the increase in aggregate in the lyophilized formulation is less than about 5% and preferably less than about 3%, when the lyophilized formulation is stored at 2-8° C for at least one year.
  • stability ofthe protein formulation may be measured using a biological activity assay (see, e.g.. Example 2 below).
  • a "reconstituted" formulation is one which has been prepared by dissolving a lyophilized protein formulation in a diluent such that the protein is dispersed in the reconstituted formulation.
  • the reconstituted formulation in suitable for administration (e.g. parenteral administration) to a patient to be treated with the protein of interest and, in certain embodiments ofthe invention, may be one which is suitable for subcutaneous administration.
  • isotonic is meant that the formulation of interest has essentially the same osmotic pressure as human blood. Isotonic formulations will generally have an osmotic pressure from about 250 to 350mOsm. Isotonicity can be measured using a vapor pressure or ice-freezing type osmometer, for example.
  • a “lyoprotectant” is a molecule which, when combined with a protein of interest, significantly prevents or reduces chemical and/or physical instability of the protein upon lyophilization and subsequent storage.
  • exemplary lyoprotectants include sugars such as sucrose or trehalose; an amino acid such as monosodium glutamate or histidine; a methylamine such as betaine; a lyotropic salt such as magnesium sulfate: a polyol such as trihydric or higher sugar alcohols, e.g.
  • the preferred lyoprotectant is a non-reducing sugar, such as trehalose or sucrose.
  • the lyoprotectant is added to the pre-lyophilized formulation in a "lyoprotecting amount" which means that, following lyophilization ofthe protein in the presence ofthe lyoprotecting amount ofthe lyoprotectant, the protein essentially retains its physical and chemical stability and integrity upon lyophilization and storage.
  • the "diluent" of interest herein is one which is pharmaceutically acceptable (safe and non-toxic for administration to a human) and is useful for the preparation of a reconstituted formulation.
  • exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.
  • a "preservative" is a compound which can be added to the diluent to essentially reduce bacterial action in the reconstituted formulation, thus facilitating the production ofa multi-use reconstituted formulation, for example.
  • potential preservatives include octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride (a mixture of alkylbenzyldimethylammonium chlorides in which the alkyl groups are long-chain compounds), and benzethonium chloride.
  • preservatives include aromatic alcohols such as phenol, butyl and benzyl alcohol, alkyl parabens such as methyl or propyl paraben, catechoi, resorcinol, cyclohexanol. 3-pentanol, and m-cresol.
  • aromatic alcohols such as phenol, butyl and benzyl alcohol
  • alkyl parabens such as methyl or propyl paraben
  • catechoi resorcinol
  • cyclohexanol cyclohexanol. 3-pentanol, and m-cresol.
  • the most preferred preservative herein is benzyl alcohol.
  • a “bulking agent” is a compound which adds mass to the lyophilized mixture and contributes to the physical structure ofthe lyophilized cake (e.g. facilitates the production of an essentially uniform lyophilized cake which maintains an open pore structure).
  • Exemplary bulking agents include mannitol, glycine, polyethylene glycol and xorbitol.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc.
  • the mammal is human.
  • a “disorder” is any condition that would benefit from treatment with the protein. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include carcinomas and allergies. II. Modes for Carrying out the Invention A. Protein Preparation
  • the protein to be formulated is prepared using techniques which are well established in the art including synthetic techniques (such as recombinant techniques and peptide synthesis or a combination of these techniques) or may be isolated from an endogenous source ofthe protein.
  • the protein of choice is an antibody. Techniques for the production of antibodies follow. (i) Polyclonal antibodies.
  • a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thy
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 ⁇ g ofthe peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant.
  • the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites.
  • the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus.
  • the animal is boosted with the conjugate ofthe same antigen, but conjugated to a different protein and/or through a different cross-linking reagent.
  • Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response. (ii) Monoclonal antibodies.
  • Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, Le., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character ofthe antibody as not being a mixture of discrete antibodies.
  • the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).
  • a mouse or other appropriate host animal such as a hamster
  • lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
  • lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival ofthe unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival ofthe unfused, parental myeloma cells.
  • the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase
  • HGPRT the culture medium for the hybridomas typically will include hypoxanthine. aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • hypoxanthine aminopterin
  • HAT medium thymidine
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center. San Diego, California USA. and SP-2 cells available from tlie American Type Culture Collection. Rockville, Maryland USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur ..f al, Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al.. Anal. Biochem., 107:220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • Suitable culture media for this purpose include, for example, D-MEM or RPMI- 1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells serve as a preferred source of such D A.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein.
  • Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol, 5:256-262 (1993) and Pluckthun, Immunol. Revs., 130:151-188 (1992).
  • antibodies can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al, Nature, 348:552-554 (1990). Clackson et al. Nature, 352:624-628 (1991) and Marks et al, J. Mol. Biol, 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place ofthe homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, etal, Proc. Natl Acad. Sci. USA, 81 :6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or pan ofthe coding sequence for a non-immunoglobulin polypeptide.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domams of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond.
  • suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non- human amino acid residues are often referred to as "import" residues, which are typically taken from an "import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al, Nature, 321:522-525 (1986); Riechmann et al. Nature, 332:323-327 (1988); Verhoeyen et al, Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences ofa human antibody.
  • humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable- domain sequences.
  • the human sequence which is closest to that ofthe rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al. , J. Immunol. , 151 :2296 ( 1993 ); Chothia et al. , J. Mol. Biol, 196:901 (1987)).
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al, Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al, J. Immnol, 151:2623 (1993)).
  • humanized antibodies are prepared by a process of analysis ofthe parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis ofthe likely role ofthe residues in the functioning ofthe candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability ofthe candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the CDR residues are directly and most substantially involved in influencing antigen binding.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • J H antibody heavy-chain joining region
  • Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Such antibodies can be derived from full length antibodies or antibody fragments (e.g. F(ab') 2 bispecific antibodies).
  • bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al. Nature, 305:537-539 (1983)). Because ofthe random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification ofthe correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829 and in Traunecker et al, EMBO J. , 10:3655-
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part ofthe hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light chain binding, present in at least one ofthe fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co ⁇ transfected into a suitable host organism.
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation ofthe desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published March 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh et al. Methods in Enzymoiogy, 121:210 (1986).
  • Bispecific antibodies include cross-linked or "heteroconjugate" antibodies.
  • one ofthe antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360. WO 92/200373).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art. and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.
  • bispecific antibodies from antibody fragments
  • the following techniques can also be used for the production of bivalent antibody fragments which are not necessarily bispecific.
  • Fab' fragments recovered from E. coli can be chemically coupled in vitro to form bivalent antibodies. See, Shalaby et al, J. Exp. Med., 175:217-225 (1992).
  • bivalent heterodimers have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers.
  • the "diabody" technology described by Hollinger et al, Proc. Natl. Acad. Sci.
  • the fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V tension and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • V H heavy-chain variable domain
  • V L light-chain variable domain
  • Another strategy for making bispecific/bivalent antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al, J. Immunol, 152:5368 (1994).
  • a "pre-lyophilized formulation” is produced.
  • the amount of protein present in the pre-lyophilized formulation is determined taking into account the desired dose volumes, mode(s) of administration etc.
  • the protein of choice is an intact antibody (such as an anti-IgE or anti-HER2 antibody)
  • from about 2 mg/mL to about 50 mg/mL, preferably from about 5 mg mL to about 40 mg/mL and most preferably from about 20-30 mg/mL is an exemplary starting protein concentration.
  • the protein is generally present in solution.
  • the protein may be present in a pH-buffered solution at a pH from about 4-8. and preferably from about 5-7.
  • Exemplary buffers include histidine, phosphate, Tris. citrate, succinate and other organic acids.
  • the buffer concentration can be from about 1 mM to about 20 mM, or from about 3 mM to about 15 mM, depending, for example, on the buffer and the desired isotonicity ofthe formulation (e.g. ofthe reconstituted formulation).
  • the preferred buffer is histidine in that, as demonstrated below, this can have lyoprotective properties. Succinate was shown to be another useful buffer.
  • the lyoprotectant is added to the pre-lyophilized formulation.
  • the lyoprotectant is a non-reducing sugar such as sucrose or trehalose.
  • the amount of lyoprotectant in the pre- lyophilized formulation is generally such that, upon reconstitution, the resulting formulation will be isotonic. However, hypertonic reconstituted formulations may also be suitable. In addition, the amount of lyoprotectant must not be too low such that an unacceptable amount of degradation aggregation ofthe protein occurs upon lyophilization.
  • lyoprotectant concentrations in the pre-lyophilized formulation are from about 10 mM to about 400 mM, and preferably from about 30 mM to about 300 mM, and most preferably from about 50 mM to about 100 mM.
  • the ratio of protein to lyoprotectant is selected for each protein and lyoprotectant combination.
  • the molar ratio of lyoprotectant to antibody may be from about 100 to about 1500 moles lyoprotectant to 1 mole antibody, and preferably from about 200 to about 1000 moles of lyoprotectant to 1 mole antibody, for example from about 200 to about 600 moles of lyoprotectant to 1 mole antibody.
  • a surfactant to the pre-lyophilized formulation.
  • the surfactant may be added to the lyophilized formulation and/or the reconstituted formulation.
  • exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20 or 80); poloxamers (e.g.
  • the amount of surfactant added is such that it reduces aggregation ofthe reconstituted protein and minimizes the formation of particulates after reconstitution.
  • the surfactant may be present in the pre-lyophilized formulation in an amount from about 0.001-0.5%, and preferably from about 0.005-0.05%.
  • a mixture ofthe lyoprotectant such as sucrose or trehalose
  • a bulking agent e.g. mannitol or glycine
  • the bulking agent may allow for the production ofa uniform lyophilized cake without excessive pockets therein etc.
  • Other pharmaceutically acceptable carriers, excipients or stabilizers such as those described in Remington's Pharmaceutical Sciences 16th edition. Osol. A. Ed. (1980) may be included in the pre-lyophilized formulation (and/or the lyophilized formulation and/or the reconstituted formulation) provided that they do not adversely affect the desired characteristics ofthe formulation.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants including ascorbic acid and methionine: chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; and or salt-forming counterions such as sodium.
  • the formulation herein may also contain more than one protein as necessary for the pa ⁇ icular indication being treated, preferably those with complementary activities that do not adversely affect the other protein.
  • it may be desirable to provide two or more antibodies which bind to the HER2 receptor or IgE in a single formulation.
  • anti-HER2 and anti- VEGF antibodies may be combined in the one formulation.
  • Such proteins are suitably present in combination in amounts that are effective for the purpose intended.
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to. or following, lyophilization and reconstitution. Altematively, sterility ofthe entire mixture may be accomplished by autoclaving the ingredients, except for protein, at about 120°C for about 30 minutes, for example.
  • the formulation is lyophilized.
  • freeze-dryers are available for this purpose such as Hull50TM (Hull, USA) or GT20TM (Leybold-Heraeus. Germany) freeze-dryers. Freeze-drying is accomplished by freezing the formulation and subsequently subliming ice from the frozen content at a temperature suitable for primary drying. Under this condition, the product temperature is below the eutectic point or the collapse temperature ofthe formulation.
  • the shelf temperature for the primary drying will range from about -30 to 25° C (provided the product remains frozen during primary drying) at a suitable pressure, ranging typically from about 50 to 250mTorr.
  • the formulation, size and type ofthe container holding the sample (e.g., glass vial) and the volume of liquid will mainly dictate the time required for drying, which can range from a few hours to several days (e.g. 40-60hrs).
  • a secondary drying stage may be ca ⁇ ied out at about 0-40° C, depending primarily on the type and size of container and the type of protein employed. However, it was found herein that a secondary drying step may not be necessary.
  • the shelf temperature throughout the entire water removal phase of lyophilization may be from about 15-30° C (e.g. , about 20° C).
  • the time and pressure required for secondary drying will be that which produces a suitable lyophilized cake, dependent e.g., on the temperature and other parameters.
  • the secondary drying time is dictated by the desired residual moisture level in the product and typically takes at least about 5 hours (e.g. 10-15 hours).
  • the pressure may be the same as that employed during the primary drying step. Freeze-drying conditions can be varied depending on the formulation and vial size. In some instances, it may be desirable to lyophilize the protein formulation in the container in which reconstitution ofthe protein is to be carried out in order to avoid a transfer step.
  • the container in this instance may, for example, be a 3, 5, 10, 20, 50 or lOOcc vial.
  • lyophilization will result in a lyophilized formulation in which the moisture content thereof is less than about 5%, and preferably less than about 3%.
  • the lyophilized formulation may be reconstituted with a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/mL, and most preferably from about 90 mg/mL to about 150 mg/mL.
  • a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/mL, and most preferably from about 90 mg/mL to about 150 mg/mL.
  • Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where subcutaneous delivery ofthe reconstituted formulation is intended.
  • the protein concentration in the reconstituted formulation is significantly higher than that in the pre-lyophilized formulation.
  • the protein concentration in the reconstituted formulation may be about 2-40 times, preferably 3-10 times and most preferably 3-6 times (e.g. at least three fold or at least four fold) that ofthe pre-lyophilized formulation.
  • Reconstitution generally takes place at a temperature of about 25° C to ensure complete hydration, although other temperatures may be employed as desired.
  • the time required for reconstitution will depend, e.g, on the type of diluent, amount of excipient(s) and protein.
  • Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.
  • BWFI bacteriostatic water for injection
  • pH buffered solution e.g. phosphate-buffered saline
  • sterile saline solution e.g. phosphate-buffered saline
  • Ringer's solution or dextrose solution e.g. sterile saline
  • the diluent optionally contains a preservative. Exemplary preservatives have been described above
  • the amount of preservative employed is determined by assessing different preservative concentrations for compatibility with the protein and preservative efficacy testing. For example, if the preservative is an aromatic alcohol (such as benzyl alcohol), it can be present in an amount from about 0.1-2.0% and preferably from about 0.5-1.5%, but most preferably about 1.0-1.2%.
  • aromatic alcohol such as benzyl alcohol
  • the reconstituted formulation has less than 6000 particles per vial which are ⁇ 10 ⁇ m in size. D. Administration of the Reconstituted Formulation
  • the reconstituted formulation is administered to a mammal in need of treatment with the protein, preferably a human, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal. intracerobrospinal, subcutaneous, uitra-articuIar. intrasynovial, intrathecal, oral, topical, or inhalation routes.
  • the reconstituted formulation is administered to the mammal by subcutaneous
  • the formulation may be injected using a syringe.
  • other devices for administration ofthe formulation are available such as injection devices (e.g. the Inject-easeTM and GenjectTM devices); injector pens (such as the GenPen TM; needleless devices (e.g. MediJectorTM and BioJectorTM); and subcutaneous patch delivery systems.
  • the appropriate dosage ("therapeutically effective amount") ofthe protein will depend, for example, on the condition to be treated, the severity and course ofthe condition, whether the protein is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the protein, the type of protein used, and the discretion ofthe attending physician.
  • the protein is suitably administered to the patient at one time or over a series of treatments and may be administered to the patient at any time from diagnosis onwards.
  • the protein may be administered as the sole treatment or in conjunction with other drugs or therapies useful in treating the condition in question.
  • the protein of choice is an antibody
  • from about 0.1-20 mg/kg is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations.
  • other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques.
  • an anti-HER2 antibody In the case of an anti-HER2 antibody, a therapeutically effective amount of the antibody may be administered to treat or prevent cancer characterized by overexpression ofthe HER2 receptor. It is contemplated that a reconstituted formulation of the anti-HER2 antibody may be used to treat breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon and/or bladder cancer. For example, the anti-HER2 antibody may be used to treat ductal carcinoma in situ (DCIS). Exemplary dosages of the anti-HER2 antibody are in the range 1-10 mg/kg by one or more separate administrations.
  • an anti-IgE formulation include the treatment or prophylaxis of IgE-mediated allergic diseases, parasitic infections, interstitial cystitis and asthma, for example.
  • a therapeutically effective amount e.g. from about 1-15 mg/kg
  • the anti-IgE antibody is administered to the patient.
  • an article of manufacture which contains the lyophilized formulation ofthe present invention and provides instructions for its reconstitution and/or use.
  • the article of manufacture comprises a container. Suitable containers include, for example, bottles. vials (e.g. dual chamber vials), syringes (such as dual chamber syringes) and test tubes.
  • the container may be formed from a variety of materials such as glass or plastic.
  • the container holds the lyophilized formulation and the label on, or associated with, the container may indicate directions for reconstitution and/or use.
  • the label may indicate that the lyophilized formulation is reconstituted to protein concentrations as described above.
  • the label may further indicate that the formulation is useful or intended for subcutaneous administration.
  • the container holding the formulation may be a multi-use vial, which allows for repeat administrations (e.g. from 2-6 administrations) ofthe reconstituted formulation.
  • the article of manufacture may further comprise a second container comprising a suitable diluent (e.g. BWFI). Upon mixing ofthe diluent and the lyophilized formulation, the final protein concentration in the reconstituted formulation will generally be at least 50 mg/mL.
  • the article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
  • HER2 Overexpression ofthe HER2 proto-oncogene product has been associated with a variety of aggressive human malignancies.
  • the murine monoclonal antibody known as muMAb4D5 is directed against
  • HER2 the extracellular domain (ECD) of p 185 .
  • the muMAb4D5 molecule has been humanized in an attempt to improve its clinical efficacy by reducing immunogenicity and allowing it to support human effector functions (see WO 92/22653).
  • This example describes the development ofa lyophilized formulation comprising full length humanized antibody huMAb4D5-8 described in WO 92/22653.
  • excipients and buffers are initially screened by measuring the stability ofthe protein after lyophilization and reconstitution.
  • the lyophilized protein in each formulation is also subjected to accelerated stability studies to determine the potential stability ofthe protein over its shelf-life. These accelerated studies are usually performed at temperatures above the proposed storage conditions and the data are then used to estimate the activation energy for the degradation reactions assuming A ⁇ henius kinetics (Cleland et al, Critical Reviews in Therapeutic Drug Carrier Systems 10(4): 307-377 ( 1993)).
  • the activation energy is then used to calculate the expected shelf-life ofthe protein formulation at the proposed storage conditions.
  • rhuMAb HER2 humanized anti-HER2 antibody
  • 5°C proposed storage condition
  • 40° C accelerated stability condition
  • rhuMAb HER2 was observed to degrade by deamidation (30Asn of light chain) and isoaspartate formation via a cyclic imide intermediate, succinimide (102Asp of heavy chain).
  • the deamidation was minimized at pH 5.0 resulting in degradation primarily at the succinimide.
  • pH 6.0 slightly greater deamidation was observed in the liquid protein formulation.
  • the lyophilized formulations were therefore studied with: (a) 5 or 10 mM succinate buffer, pH 5.0 or (b) 5 or 10 mM histidine buffer, pH 6.0. Both buffers contained the surfactant, polysorbate 20 (Tween 20TM), which was employed to reduce the potential for aggregation ofthe reconstituted protein and minimize the formation of particulates after reconstitution. These buffers were used with and without various sugars. The protein was formulated in the buffer at 5.0.21.0 or 25.0 mg/mL. These formulations were then lyophilized and assessed for protein stability after 2 weeks at 5° C and 40° C. In the lyophilizer.
  • the vials were frozen at a shelf temperature of-55°C for approximately 5 hours followed by primary drying at a shelf temperature of 5° C and 150 mTo ⁇ for 30 hours, and drying to 1-2% residual moisture was achieved with secondary drying at a shelf temperature of 20°C for 10 hours.
  • the major degradation route for this protein upon lyophilization was aggregation, and therefore the protein stability was assessed by native size exclusion chromatography to measure the recovery of intact native protein (% intact protein in Table 2 below).
  • the 250 mM trehalose and 250 mM lactose formulations were assessed for long term stability. After 9 months at 40° C or 12 months at 5° C, there was no change in the % intact protein for the trehalose formulation. For the lactose formulation, the % intact protein remained constant (same as initial) after 3 months at 40° C or 6 months at25°C.
  • the trehalose formulation could be stored at controlled room temperature (15-30°C) for 2 years without a significant change in % intact protein.
  • the 10 mM histidine, pH 6.0 formulation with mannitol contained less aggregated protein after storage at 40°C for 2 weeks than the 10 mM succinate formulation. pH 5.0 with mannitol. This result may be related to some stabilizing effect contributed by histidine alone. After storage at 40° C for 2 weeks, there was, however, significant aggregation for histidine alone or histidine/mannitol formulations. The addition of sucrose at an equal mass to mannitol (10 mg/mL of each) in the histidine formulation stabilized the protein against aggregation for both storage conditions.
  • sucrose/glycine formulation provided the same stability as the sucrose/mannitol formulation.
  • the fraction of intact protein was measured by native size exclusion HPLC and the peak area ofthe native protein relative to the total peak area including aggregates (TSK3000 SW XL column, TosoHaas. with a flow rate of 1.0 mL/min; elution with phosphate buffered saline: detection at 214 and 280 nm).
  • the protein formulations were analyzed before lyophilization (liquid, 5° C) and after lyophilization and storage at 5° C or 40° C for 2 weeks.
  • Formulations containing 5 mg/mL protein were reconstituted with distilled water (20 mL, 5.0 mg/mL protein), and formulations containing 21 mg/mL protein were reconstituted with bacteriostatic water for injection (BWFI, 0.9%) benzyl alcohol; 20 mL, 20 mg/mL protein).
  • the lyophilization process may provide a method to allow concentration of the protein.
  • the protein is filled into vials at a volume (Vf) and then lyophilized.
  • the lyophilized protein is then reconstituted with a smaller volume (Vr) ofwater or preservative (e.g. BWFI) than the original volume (e.g. Vr
  • the solution is desirably isotonic.
  • the amount of trehalose in the lyophilized rhuMAb HER2 was reduced to produce an isotonic solution upon reconstitution to yield 100 mg/mL protein.
  • the stabilizing effect of trehalose was determined as a function of concentration for 5 mM sodium succinate, pH 5.0 and 5 mM histidine, pH 6.0 at 25.0 mg mL protein (Table 3). At trehalose concentrations from 60 to 200 mM. there was no significant aggregation after incubation ofthe lyophilized protein for 4 weeks at 40° C. These formulations were reconstituted with 20 mL of bacteriostatic water for injection (BWFI. USP, 0.9% benzyl alcohol).
  • the fraction of intact protein was measured by native size exclusion HPLC and defined as the peak area ofthe native protein relative to the total peak area including aggregates (TSK3000 SW XL column. TosoHaas, with a flow rate of 1.0 mL/min; elution with phosphate buffered saline; detection at 214 and 280 nm).
  • the protein formulations were analyzed before lyophilization (liquid, 5°C) and after lyophilization and storage at 5°C or40°C for 4 weeks.
  • Formulations were reconstituted with bacteriostatic water for injection (BWFI, USP, 0.9% w/w benzyl alcohol; 20 mL, 22 mg/mL protein).
  • BWFI bacteriostatic water for injection
  • b Reconstituted with 4 mL of BWFI (0.9% benzyl alcohol) to yield 100 mg/mL protein.
  • c Reconstituted with 4 mL of BWFI (1.1% benzyl alcohol) to yield 100 mg/mL protein.
  • Sample incubated for 2 weeks at 5°C or 40° C and then reconstituted with 20 mL of BWFI (0.9% benzyl alcohol) to yield 22 mg/mL protein.
  • rhuMAb HER2 is under investigation as a therapeutic for the treatment of breast cancer.
  • the protein is dosed to patients at 2 mg/kg on a weekly basis. Since the average weight of these patients is 65 kg, the average weekly dose is 130 mg of rhuMAb HER2.
  • the protein concentration for a weekly subcutaneous administration of rhuMAb HER2 may be approximately 100 mg/mL (130 mg average dose/1.5 mL). As mentioned above, this high protein concentration is difficult to manufacture and maintain in a stable form.
  • rhuMAb HER2 formulated in: (a) 5 mM sodium succinate, pH 5.0 or (b) 5 mM histidine, pH 6.0, was lyophilized at 25 mg/mL protein in 60 M trehalose, 0.01% Tween 20TM. The lyophilization was performed by filling 18 mL ofthe protein formulation into 50 cc vials. In the lyophilizer, the vials were frozen at a shelf temperature of -55°C for approximately 5 hours followed by primary drying at a shelf temperature of 5°C and 150 mTo ⁇ for 30 hours, and drying to 1-2% residual moisture was achieved with secondary drying at a shelf temperature of 20° C for 10 hours.
  • the lyophilized protein was then reconstituted with either 4 or 20 mL of BWFI (0.9 or 1.1% benzyl alcohol) to yield concentrated protein solutions:
  • the amount of aggregated protein appeared to increase slightly with decreasing trehalose concentration.
  • the stability ofthe lyophilized protein was not affected by the volume of reconstitution.
  • the amount of intact protein after incubation of the lyophilized protein at 40° C was the same for the 60 mM trehalose, 5 mM sodium succinate, pH 5.0, 0.01% Tween 20TM formulation reconstituted with either 4 or 20 mL of BWFI.
  • the 250 mM trehalose formulation was unchanged after 6 months at 40° C while both the 60 mM trehalose formulations were less stable.
  • the 60 mM trehalose formulations may then require refrigerated storage if the product specification at the end of its shelf-life is, for example, >98% intact protein by native size exclusion chromatography.
  • sucrose was also observed to prevent aggregation of rhuMAb HER2 after lyophilization and subsequent storage.
  • sucrose concentration must be reduced significantly.
  • the equal mass concentration of sucrose and mannitol (bulking agent) used in the screening studies prevented aggregation ofthe protein.
  • a lower concentration of sucrose and mannitol (equal mass concentrations) was chosen as a potential subcutaneous formulation of rhuMAb HER2.
  • the protein solution 25 mg/mL protein, 5 mM histidine, pH 6.0. 38.4 mM (7 mg/mL) mannitol.
  • the stability ofthe lyophilized rhuMAb HER2 formulations was dete ⁇ nined as a function of temperature.
  • These studies demonstrated that the trehalose and mannitol/sucrose formulations prevented degradation of the protein in the lyophilized state at high temperatures (40° C).
  • these experiments did not address the stability ofthe protein after reconstitution and storage.
  • the lyophilized rhuMAb HER2 formulations may be used for several administrations of the drug.
  • the vial configuration 450 mg rhuMAb HER2
  • the vial may be stored at least three weeks after reconstitution.
  • stability studies on the reconstituted rhuMAb HER2 formulations were performed at 5°C and 25° C.
  • the formulations were reconstituted to 100 mg/mL (4 mL BWFI).
  • the protein may be more susceptible to aggregation than the intravenous dosage form that was reconstituted to 22 mg/mL protein (20 mL BWFI).
  • the four rhuMAb HER2 formulations from the previous example were assessed for aggregation (loss of intact protein).
  • the samples were reconstituted with 4.0 or 20.0 mL of BWFI (1.1% or 0.9% benzyl alcohol), and then stored at 5°C or 25 °C.
  • rhuMAb HER2 the major degradation route for rhuMAb HER2 in aqueous solutions is deamidation or succinimide formation.
  • the loss of native protein due to deamidation or succinimide formation was assessed for the four reconstituted rhuMAb HER2 formulations.
  • Peak elution was monitored at 214 nm and 75 ⁇ g of protein was loaded for each analysis.
  • Multi-use formulations should pass preservative efficacy testing as described by the US Pharmacopeia (USP) for use in the United States.
  • USP US Pharmacopeia
  • the rhuMAb HER2 lyophilized formulation consisting of 25 mg/mL protein, 5 mM histidine, pH 6.0, 60 M trehalose, 0.01% Tween 20TM was reconstituted with 20 mL of benzyl alcohol at concentrations between 0.9 and 1.5% w/w. For concentrations at or above 1.3% w/w, the reconstituted solution became cloudy after overnight incubation at room temperature ( ⁇ 25 °C). Reconstitution with the standard BWFI solution (0.9% benzyl alcohol) resulted in a solution that did not consistently pass the preservative challenge tests.
  • a single step lyophilization cycle for the rhuMAb HER2 formulation was developed .
  • rhuMAb HER2 at 25 mg/mL, 60 mM trehalose, 5 mM histidine pH 6 and 0.01% polysorbate 20 was lyophilized at a shelf temperature of 20° C. and a pressure of 150 mTo ⁇ . After 47 hours. the residual moisture content ofthe lyophilized cake was less than 5%.
  • This lyophilization cycle is considered to be useful in that it simplifies the manufacturing process, by eliminating the secondary drying step.
  • IgE antibodies bind to specific high-affinity receptors on mast cells, leading to mast ceil degranulation and release of mediators, such as histamine, which produce symptoms associated with allergy.
  • mediators such as histamine
  • anti-IgE antibodies that block binding of IgE to its high-affinity receptor are of potential therapeutic value in the treatment of allergy.
  • These antibodies must also not bind to IgE once it is bound to the receptor because this would trigger histamine release.
  • This example describes the development of a lyophilized formulation comprising full length humanized anti-IgE antibody MaEl 1 described in Presta et al. J. Immunology, 151 : 2623-2632 (1993).
  • rhuMAb E25 recombinant humanized anti-IgE antibody MaE 11
  • Tween 20TM was used in the formulations described below.
  • Spectra/Por 7 dialysis membranes were purchased from Spectmm (Los Angeles, CA). All other reagents used in this study were obtained from commercial sources and were of analytical grade.
  • Formulation buffers and chromatography mobile phase were prepared by mixing the appropriate amount of buffer and salt with Milli-Q water in a volumetric flask.
  • E25 S Sepharose pool was dialyzed into formulation buffers as specified. Dialysis was accomplished by a minimum of 4 x 2L buffer exchanges over a 48 hour period at 2-8° C. Following dialysis, lyoprotectant was added at a isotonic concentration to some of the formulations as required. Protein concentration following dialysis was determined by UV spectroscopy using a molar absorptivity of 1.60. The dialyzed protein was diluted to the predetermined formulation concentration with an appropriate formulation buffer, sterile filtered using a 0.22 ⁇ m Millex-GV filter (Millipore) and dispensed into pre-washed and autoclaved glass vials.
  • Millex-GV filter Millex-GV filter
  • F(ab') 2 fragments of the E25 antibody were chromatographed using a TosoHaas Butyl-NPR column (3.5 x 4.6 mm) and a Hewlett Packard 1090L HPLC equipped with a diode array detector.
  • Elution buffer A was: 20 mM Tris, 2 M ammonium sulfate, 20% (v/v) glycerol, pH 8.0 while elution buffer B was: 20 mM Tris, 20% (v/v) glycerol, pH 8.0.
  • the column was equilibrated with 10% elution buffer B at a flow rate of 1.0 mL/min for a minimum of 20 minutes.
  • the sample load was 5 ⁇ g and protein was detected by monitoring the UV abso ⁇ tion at 214 nm using Turbochrom 3 data acquisition software (PE Nelson, Inc). Following injection ofthe sample, the column was maintained at 10% buffer B for 1 minute followed by a linear gradient of from 10% to 62% buffer B in 20 minutes. The column was washed with 100% buffer B for 5 minutes and re-equilibrated with 10% buffer B for a minimum of 20 minutes between successive sample injections.
  • IgE receptor binding inhibition assay (IE25:2) was ca ⁇ ied out as described in Presta et al, supra, on samples diluted to 20 ⁇ g/mL and 30 ⁇ g/mL in assay diluent (phosphate buffered saline, 0.5% BSA, 0.05% polysorbate 20. 0.01% Thimerosol). Each dilution was then assayed in triplicate and the results were multiplied by an appropriate dilution factor to yield an active concentration. The results from 6 assays were averaged. The assay measures the ability of rhuMAb E25 to competitively bind to
  • Particulate Assay Reconstituted vials of lyophilized rhuMAb E25 were pooled to achieve a volume of approximately 7 mL. A count ofthe number of particles of size ranging from 2 to 80 ⁇ m present in 1 mL of sample was determined using a Hiac/Royco model 8000 counter. The counter was first washed with 1 mL of sample three times followed by the measurement of 1 mL of sample in triplicate. The instrument determines the number of particles per mL that are equal to or greater than 10 ⁇ m and the number of particles per mL that are equal to or greater than 25 ⁇ m.
  • the first step in the development of a formulation for the anti-IgE antibody was to determine a suitable buffer and pH for lyophilization and storage ofthe product.
  • Antibody at a concentration of 5.0 mg/mL was formulated into 10 M succinate buffers ranging from pH 5.0 to pH 6.5 and into sodium phosphate, potassium phosphate and histidine buffers at pH 7.0.
  • Figure 9 shows increased antibody aggregate was observed in the higher pH formulations both before and after lyophilization.
  • An exception was the histidine formulation at pH 7, where no increase in aggregate was observed upon storage at 2-8° C.
  • Figure 10 shows rhuMAb E25 lyophilized in 5 mM histidine buffer at both pH 6 and pH 7 and stored for 1 year at 2-8° C. 25° C, and 40° C.
  • the pH 6 formulation had less aggregate than the antibody formulated at pH 7.
  • the anti-IgE antibody was formulated into sodium succinate at pH 5 with or without a lyoprotectant.
  • non-reducing monosaccharide i.e. mannitol
  • reducing disaccharides i.e. lactose and maltose
  • non-reducing disaccharides i.e. trehalose and sucrose.
  • Hydrophobic interaction chromatography ofthe antibody formulated in histidine buffer at pH 6 with lactose shows the antibody is altered following storage for 6 months at 40° C ( Figure 13).
  • the chromatography peaks are broadened and the retention time decreases. These changes are not observed with the buffer control and sucrose formulations stored under similar conditions as shown in Figures 14 and 15, respectively.
  • isoelectric focusing showed an acidic shift in the pi ofthe antibody formulated in lactose and stored at 25° C and 40° C. This indicates that reducing sugars are not suitable as lyoprotectants for the antibody.
  • Isotonic formulation Anti-IgE at 25 mg/mL formulated in 5 mM histidine buffer at pH 6 with 500 moles of sugar per mole antibody which equals a sugar concentration of 85 mM. This formulation is reconstituted with BWFI (0.9% benzyl alcohol) at a volume which is four times less than was filled. This results in a 100 mg/mL of antibody in 20 mM histidine at pH 6 with an isotonic sugar concentration of 340 mM.
  • Hypertonic formulation Anti-IgE at 25 mg/mL formulated in 5 M histidine buffer at pH 6 with 1000 moles of sugar per mole antibody which equals a sugar concentration of 161 mM. This formulation is reconstituted with BWFI (0.9% benzyl alcohol) at a volume which is four times less than was filled. This results in a 100 mg/mL of antibody in 20 mM histidine at pH 6 with a hypertonic sugar concentration of 644 mM.
  • BWFI 0.9% benzyl alcohol
  • IgE receptor inhibition assay It was discovered that the binding activity ofthe isotonic and hypertonic sucrose and trehalose formulations was essentially unchanged following storage at -70° C, 2-8° C, 30° C and 50° C for up to 36 weeks.
  • Lyophilized formulations of proteins are known to contain insoluble aggregates or particulates (Cleland et al. Critical Reviews in Therapeutic Drug Carrier Systems, 10 (4):307-377 (1993)). Accordingly, a particulate assay of antibody lyophilized at a concentration of 25 mg/mL in 5 mM histidine, pH 6 with the addition of 85 mM and 161 mM sucrose and trehalose was performed. Polysorbate 20 was added to the formulations at a concentration of 0.005%, 0.01%, and 0.02%. Samples were lyophilized and assayed following reconstitution to 100 mg/mL antibody in 20 mM histidine, pH 6 with 340 mM and 644 mM sugar. The polysorbate 20 concentration following reconstitution was 0.02%. 0.04%. and 0.08%.
  • Table 9 shows the number of particles of size equal to or greater than 10 ⁇ m and equal to or greater than 25 ⁇ m from the isotonic and hypertonic sucrose and trehalose formulations.
  • Polysorbate 20 was added to the formulations at concentrations of 0.005%. 0.01%, and 0.02% prior to lyophilization. The results show that the addition of TweenTM to the formulation significantly reduces the number of particles in each size range tested.
  • the US Pharmacopeia (USP) specification for small volume injections are not more than 6,000 particles of greater than or equal to 10 ⁇ m and not more than 600 particles of greater than or equal to 25 ⁇ m per container (Cleland et al, supra). With the addition of polysorbate 20, both the hypertonic and isotonic formulations pass this specification.
  • a 10 cc vial is filled with 5.7 L of rhuMAb E25 at a concentration of 25 mg/mL formulated in 5 mM histidine at pH 6.0 with 0.01% polysorbate 20.
  • Sucrose is added as a lyoprotectant at a concentration of 85 mM which co ⁇ esponds to a molar ratio of sugar to antibody of 500 to 1.
  • the vial is lyophilized and reconstituted with 0.9% benzyl alcohol to one quarter ofthe volume ofthe fill or 1.2 mL.
  • the final concentration of components in the formulation is increased four fold to 100 mg/mL rhuMAb E25 in 20 mM histidine at pH 6 with 0.04% polysorbate 20 and 340 mM sucrose (isotonic) and 0.9% benzyl alcohol.
  • the formulation contains histidine buffer at pH 6 because of its demonstrated protective effect on antibody aggregation.
  • Sucrose was added as the lyoprotectant because of previous use in the pharmaceutical industry.
  • the concentration of sugar was chosen to result in an isotonic formulation upon reconstitution.
  • polysorbate 20 is added to prevent the formation of insoluble aggregates.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A stable lyophilized protein formulation is described which can be reconstituted with a suitable diluent to generate a high protein concentration reconstituted formulation which is suitable for subcutaneous administration. For example, anti-IgE and anti-HER2 antibody formulations have been prepared by lyophilizing these antibodies in the presence of a lyoprotectant. The lyophilized mixture thus formed is reconstituted to a high protein concentration without apparent loss of stability of the protein.

Description

Stabi le I sotonic lyophl . ized protein formulation
Background ofthe Invention Field of the Invention
This invention is directed to a lyophilized protein formulation. In particular, it relates to a stable lyophilized protein formulation which can be reconstituted with a diluent to generate a stable reconstituted formulation suitable for subcutaneous administration. Description of Related Disclosures
In the past ten years, advances in biotechnology have made it possible to produce a variety of proteins for pharmaceutical applications using recombinant DNA techniques. Because proteins are larger and more complex than traditional organic and inorganic drugs (i.e. possessing multiple functional groups in addition to complex three-dimensional structures), the formulation of such proteins poses special problems. For a protein to remain biologically active, a formulation must preserve intact the conformational integrity of at least a core sequence ofthe protein's amino acids while at the same time protecting the protein's multiple functional groups from degradation. Degradation pathways for proteins can involve chemical instability (i.e. any process which involves modification of the protein by bond formation or cleavage resulting in a new chemical entity) or physical instability (i.e. changes in the higher order structure ofthe protein). Chemical instability can result from deamidation, racemization, hydrolysis, oxidation, beta elimination or disulfide exchange. Physical instability can result from denaturation. aggregation, precipitation or adsorption, for example. The three most common protein degradation pathways are protein aggregation, deamidation and oxidation. Cleland et al. Critical Reviews in Therapeutic Drug Carrier Systems 10(4): 307-377 (1993).
Freeze-drying is a commonly employed technique for preserving proteins which serves to remove water from the protein preparation of interest. Freeze-drying, or lyophilization, is a process by which the material to be dried is first frozen and then the ice or frozen solvent is removed by sublimation in a vacuum environment. An excipient may be included in pre-lyophilized formulations to enhance stability during the freeze-drying process and/or to improve stability ofthe lyophilized product upon storage. Pikal, M. Biopharm. 3(9)26-30 (1990) and Arakawa e/ αt Pharm. Res. 8(3):285-291 (1991).
It is an object ofthe present invention to provide a lyophilized protein formulation which is stable upon storage and delivery. It is a further object to provide a stable reconstituted protein formulation which is suitable for subcutaneous administration. In certain embodiments, it is an object to provide a multi-use formulation which is stable for at least the time over which it will be administered to a patient.
Summary of the Invention This invention is based on the discovery that a stable lyophilized protein formulation can be prepared using a lyoprotectant (preferably a sugar such as sucrose or trehalose), which lyophilized formulation can be reconstituted to generate a stable reconstituted formulation having a protein concentration which is significantly higher (e.g. from about 2-40 times higher, preferably 3-10 times higher and most preferably 3-6 times higher) than the protein concentration in the pre-lyophilized formulation. In particular, while the protein concentration in the pre-lyophilized formulation may be 5 mg/mL or less, the protein concentration in the reconstituted formulation is generally 50 mg/mL or more. Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where the formulation is intended for subcutaneous administration. Despite the very high protein concentration in the reconstituted formulation, it has been found that the reconstituted formulation is stable (i.e. fails to display significant or unacceptable levels of chemical or physical instability of the protein) at 2-8°C for at least about 30 days. In certain embodiments, the reconstituted formulation is isotonic. In spite ofthe use of lower concentrations ofthe lyoprotectant to achieve such isotonic formulations upon reconstitution, it was discovered herein that the protein in the lyophilized formulation essentially retains its physical and chemical stability and integrity upon lyophilization and storage.
When reconstituted with a diluent comprising a preservative (such as bacteriostatic water for injection, BWFI), the reconstituted formulation may be used as a multi-use formulation. Such a formulation is useful, for example, where the patient requires frequent subcutaneous administrations of the protein to treat a chronic medical condition. The advantage of a multi-use formulation is that it facilitates ease of use for the patient, reduces waste by allowing complete use of vial contents, and results in a significant cost savings for the manufacturer since several doses are packaged in a single vial (lower filling and shipping costs).
Based on the observations described herein. in one aspect the invention provides a stable isotonic reconstituted formulation comprising a protein in an amount of at least about 50 mg mL and a diluent, which reconstituted formulation has been prepared from a lyophilized mixture of a protein and a lyoprotectant, wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
In another embodiment, the invention provides a stable reconstituted formulation comprising an antibody in an amount of at least about 50 mg/mL and a diluent, which reconstituted formulation has been prepared from a lyophilized mixture of an antibody and a lyoprotectant, wherein the antibody concentration in the reconstituted formulation is about 2-40 times greater than the antibody concentration in the mixture before lyophilization.
The ratio of lyoprotectantrprotein in the lyophilized formulation ofthe preceding paragraphs depends, for example, on both the protein and lyoprotectant of choice, as well as the desired protein concentration and isotonicity ofthe reconstituted formulation. In the case ofa full length antibody (as the protein) and trehalose or sucrose (as the lyoprotectant) for generating a high protein concentration isotonic reconstituted formulation, the ratio may, for example, be about 100-1500 mole trehalose or sucrose: 1 mole antibody.
Generally, the pre-lyophilized formulation ofthe protein and lyoprotectant will further include a buffer which provides the formulation at a suitable pH, depending on the protein in the formulation. For this purpose, it has been found to be desirable to use a histidine buffer in that, as demonstrated below, this appears to have lyoprotective properties.
The formulation may further include a surfactant (e.g. a polysorbate) in that it has been observed herein that this can reduce aggregation ofthe reconstituted protein and/or reduce the formation of particulates in the reconstituted formulation. The surfactant can be added to the pre-lyophilized formulation, the lyophilized formulation and/or the reconstituted formulation (but preferably the pre-lyophilized formulation) as desired.
The invention further provides a method for preparing a stable isotonic reconstituted formulation comprising reconstituting a lyophilized mixture ofa protein and a lyoprotectant in a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
In yet a further embodiment, the invention provides a method for preparing a formulation comprising the steps of: (a) lyophilizing a mixture of a protein and a lyoprotectant; and (b) reconstituting the lyophilized mixture of step (a) in a diluent such that the reconstituted formulation is isotonic and stable and has a protein concentration of at least about 50 mg/mL. For example, the protein concentration in the reconstituted formulation may be from about 80 mg/mL to about 300 mg/mL. Generally, the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization. An article of manufacture is also provided herein which comprises: (a) a container which holds a lyophilized mixture of a protein and a lyoprotectant; and (b) instructions for reconstituting the lyophilized mixture with a diluent to a protein concentration in the reconstituted formulation of at least about 50 mg/mL. The article of manufacture may further comprise a second container which holds a diluent (e.g. bacteriostatic water for injection (BWFI) comprising an aromatic alcohol). The invention further provides a method for treating a mammal comprising administering a therapeutically effective amount of a reconstituted formulation disclosed herein to a mammal, wherein the mammal has a disorder requiring treatment with the protein in the formulation. For example, the formulation may be administered subcutaneously.
One useful anti-HER2 antibody pre-lyophilized formulation as discovered in the experiments detailed below was found to comprise anti-HER2 in amount from about 5-40 mg/mL (e.g. 20-30 mg/mL) and sucrose or trehalose in an amount from about 10-100 mM (e.g. 40-80 mM), a buffer (e.g. histidine, pH 6 or succinate, pH 5) and a surfactant (e.g. a polysorbate). The lyophilized formulation was found to be stable at 40° C for at least 3 months and stable at 30° C for at least 6 months. This anti-HER2 formulation can be reconstituted with a diluent to generate a formulation suitable for intravenous administration comprising anti-HER2 in an amount from about 10-30 mg/mL which is stable at 2-8° C for at least about 30 days. Where higher concentrations ofthe anti-HER2 antibody are desired (for example where subcutaneous delivery ofthe antibody is the intended mode of administration to the patient). the lyophilized formulation may be reconstituted to yield a stable reconstituted formulation having a protein concentration of 50 mg/mL or more.
One desirable anti-IgE antibody pre-lyophilized formulation discovered herein has anti-IgE in amount from about 5-40 mg/mL (e.g. 20-30 mg/mL) and sucrose or trehalose in an amount from about 60-300 M (e.g.
80-170 mM), a buffer (preferably histidine, pH 6) and a surfactant (such as a polysorbate). The lyophilized anti- IgE formulation is stable at 30° C for at least 1 year. This formulation can be reconstituted to yield a formulation comprising anti-IgE in an amount from about 15-45 mg/mL (e.g. 15-25 mg/mL) suitable for intravenous administration which is stable at 2-8° C for at least 1 year. Alternatively, where higher concentrations of anti-IgE in the formulation are desired, the lyophilized formulation can be reconstituted in order to generate a stable formulation having an anti-IgE concentration of ≥50 mg/mL.
Brief Description ofthe Drawings Figure 1 shows the effect of reconstitution volume on the stability of lyophilized rhuMAb HER2. The lyophilized formulation was prepared from a pre-lyophilization formulation comprising 25 mg/mL protein, 60 mM trehalose. 5 mM sodium succinate, pH 5.0, and 0.01% Tween 20™. The lyophilized cake was incubated at 40° C and then reconstituted with 4.0 (o) or 20.0 mL (•) of BWFI. The fraction of intact protein in the reconstituted formulation was measured by native size exclusion chromatography and defined as the peak area ofthe native protein relative to the total peak area including aggregates. Figure 2 illustrates the effect of trehalose concentration on the stability of lyophilized rhuMAb HER2.
The protein was lyophilized at 25 mg/mL in 5 mM sodium succinate, pH 5.0 (circles) or 5 mM histidine, pH 6.0 (squares) and trehalose concentrations ranging from 60 mM (360 molar ratio) to 200 mM ( 1200 molar ratio). The lyophilized protein was incubated at 40° C for either 30 days (closed symbols) or 91 days (open symbols). The amount of intact protein was measured after reconstitution ofthe lyophilized protein with 20 mL BWFI. Figure 3 demonstrates the effect of trehalose concentration on the long term stability of lyophilized rhuMAb HER2 stored at 40° C. The protein was lyophilized at either 25 mg/mL in 5 mM sodium succinate, pH 5.0, 0.01% Tween 20™. and 60 mM trehalose (■) or 5 mM histidine, pH 6.0. 0.01% Tween 20™, and 60 mM trehalose (D) or21 mg/mL in 10 mM sodium succinate, pH 5.0, 0.2% Tween 20™ and 250 mM trehalose (•). The lyophilized protein was incubated at 40° C and then reconstituted with 20 mL of BWFI. The amount of intact protein was measured after reconstitution.
Figure 4 shows the stability of rhuMAb HER2 lyophilized in 38.4 mM mannitol (7 mg/mL), 20.4 mM sucrose (7 mg/mL), 5 mM histidine, pH 6.0, 0.01% Tween 20™. The lyophilized protein was incubated at 40° C and then reconstituted with either 4.0 mL (o) or 20 mL (• ) of BWFI. The amount of intact protein was measured after reconstitution. Figure 5 demonstrates stability of reconstituted rhuMAb HER2 lyophilized in 5 mM sodium succinate, pH 5.0, 60 mM trehalose, 0.01% Tween 20™. Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL:l.l% benzyl alcohol) and then stored at 5°C (solid symbols) or 25° C (open symbols). The % native protein was defined as the peak area of the native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography. Figure 6 shows stability of reconstituted rhuMAb HER2 lyophilized in 5 mM histidine, pH 6.0, 60 mM trehalose, 0.01% Tween 20. Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL:l.l% benzyl alcohol) and then stored at 5°C (solid symbols) or 25 °C (open symbols). The % native protein was defined as the peak area ofthe native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography. Figure 7 reveals stability of reconstituted rhuMAb HER2 lyophilized in 5 mM histidine, pH 6.0, 38.4 mM mannitol, 20.4 mM sucrose, 0.01% Tween 20. Samples were reconstituted with either 4.0 mL (squares) or 20.0 mL (circles) of BWFI (20 mL:0.9% benzyl alcohol; 4 mL: 1.1 % benzyl alcohol) and then stored at 5° C (solid symbols) or 25 ° C (open symbols). The % native protein was defined as the peak area ofthe native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography. Figure 8 shows stability of reconstituted rhuMAb HER2 lyophilized in 10 mM sodium succinate, pH
5.0, 250 M trehalose, 0.2% Tween 20. Samples were reconstituted with 20.0 mL of BWFI (0.9% benzyl alcohol) and then stored at 5° C (•) or 25 ° C (o). The % native protein was defined as the peak area ofthe native (not degraded) protein relative to the total peak area as measured by cation exchange chromatography. Figure 9 shows aggregation of rhuMAb E25 formulated into buffers ranging from pH 5 to pH 7 at 10 mM buffer concentration and 5 mg/mL antibody concentration. Samples were lyophilized and assayed at time zero and after 4 weeks, 8 weeks, and 52 weeks of storage at 2-8° C. The buffers were: potassium phosphate pH 7.0 (o); sodium phosphate pH 7.0 (D); histidine pH 7.0 (o); sodium succinate pH 6.5 (•); sodium succinate pH 6.0 (■); sodium succinate pH 5.5 (♦); and sodium succinate pH 5.0 (*).
Figure 10 depicts aggregation of rhuMAb E25 lyophilized in 5 mM histidine buffer at both pH 6 and pH 7 and assayed following storage as follows. The buffer was at: pH 6.0 stored at 2-8° C (o); pH 6 stored at 25° C (D); pH 6 stored at 40° C (0); pH 7 stored at 2-8° C (•); pH 7 stored at 25° C (■); and pH 7 stored at 40° C
(♦)•
Figure 11 illustrates aggregation of 5 mg/mL rhuMAb E25 formulated into 10 mM sodium succinate at pH 5.0 with lyoprotectant added at a concentration of 275 mM (isotonic). The lyoprotectants were: control, no lyoprotectant (o); mannitol (D); lactose (0); maltose (•); trehalose (■): and sucrose (♦). Samples were lyophilized and assayed at time zero and after 4 weeks, 8 weeks, and 52 weeks of storage at 2-8° C.
Figure 12 shows aggregation of 5 mg/mL rhuMAb E25 formulated into 10 mM sodium succinate at pH 5.0 with lyoprotectant added at a concentration of 275 mM (isotonic). The lyoprotectants were: control, no lyoprotectant (o); mannitol (D); lactose (0); maltose (•); trehalose (■); and sucrose (♦). Samples were lyophilized and assayed at time zero and after 4 weeks. 8 weeks, and 52 weeks of storage at 40° C.
Figure 13 depicts hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 with an isotonic concentration (Le. 275 mM) of lactose stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
Figure 14 shows hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
Figure 15 illustrates hydrophobic interaction chromatography of 20 mg/mL rhuMAb E25 lyophilized in histidine buffer at pH 6 with an isotonic concentration (Le. 275 mM) of sucrose and stored for 24 weeks at 2-8, 25 or 40° C and reconstituted to 20 mg/mL.
Figure 16 illustrates the effect of sugar concentration on rhuMAb E25 formulated at 20 mg/mL in 5 mM histidine at pH 6.0. Sucrose (•) and trehalose (D) were added to the formulation at molar ratios ranging from 0 to 2010 (isotonic) (see Table 1 below). Samples were lyophilized and assayed after 12 weeks of storage at 50° C.
TABLE 1
Moles of Sugar: E25 antibody Sugar cone. (mM)
0 0
260 34.4
380 51.6
510 68.8
760 103.1
1020 137.5
1530 206.3
Figure 17 reveals aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH 6 with 85 mM sucrose (o); 85 mM trehalose (D): 161 mM sucrose (♦) or 161 mM trehalose (*). Samples were lyophilized and stored at 2-8° C followed by reconstitution with 0.9% benzyl alcohol to 100 mg/mL antibody in 20 mM histidine at pH 6 with isotonic (340 mM) and hypertonic (644 mM) sugar concentration.
Figure 18 shows aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH 6 with 85 mM sucrose (o); 85 mM trehalose (D); 161 mM sucrose (♦) or 161 mM trehalose (*). Samples were lyophilized and stored at 30° C followed by reconstitution with 0.9% benzyl alcohol to 100 mg/mL antibody in 20 mM histidine at pH 6 with isotonic (340 mM) and hypertonic (644 mM) sugar concentration. Figure 19 illustrates aggregation of rhuMAb E25 formulated at 25 mg/mL into 5 mM histidine at pH
6 with 85 mM sucrose (o); 85 mM trehalose (D); 161 mM sucrose (♦) or 161 mM trehalose (*). Samples were lyophilized and stored at 50° C followed by reconstitution with 0.9% benzyl alcohol to 100 mg/mL antibody in 20 mM histidine at pH 6 with isotonic (340 mM) and hypertonic (644 mM) sugar concentration. Detailed Description of the Preferred Embodiments I. Definitions
By "protein" is meant a sequence of amino acids for which the chain length is sufficient to produce the higher levels of tertiary and/or quaternary structure. This is to distinguish from "peptides" or other small molecular weight drugs that do not have such structure. Typically, the protein herein will have a molecular weight of at least about 15-20 kD, preferably at least about 20 kD. Examples of proteins encompassed within the definition herein include mammalian proteins, such as, e.g., growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; α-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor LX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or tissue-type plasminogen activator
(t-PA); bombazine; thrombin; tumor necrosis factor-α and -β; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1-α); serum albumin such as human serum albumin; mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; DNase; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; an integrin; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-β; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-α and TGF- β, including TGF-β 1, TGF-β2, TGF-β3, TGF-β4, or TGF-β5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(l-3)-IGF-I (brain IGF-I); insulin-like growth factor binding proteins; CD proteins such as CD3, CD4, CD8, CD 19 and CD20; erythropoietin (EPO); thrombopoietin (TPO); osteoinductive factors; immunotoxins; a bone moφhogenetic protein (BMP); an interferon such as interferon-α, -β, and -γ; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interleukins (ILs), e.g., IL-1 to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor (DAF); a viral antigen such as, for example, a portion ofthe AIDS envelope; transpoπ proteins: homing receptors; addressins; regulatory proteins; immunoadhesins; antibodies; and biologically active fragments or variants of any ofthe above-listed polypeptides. The protein which is formulated is preferably essentially pure and desirably essentially homogeneous
(Le. free from contaminating proteins etc). "Essentially pure" protein means a composition comprising at least about 90% by weight ofthe protein, based on total weight ofthe composition, preferably at least about 95% by weight. "Essentially homogeneous" protein means a composition comprising at least about 99% by weight of protein, based on total weight ofthe composition. In certain embodiments, the protein is an antibody. The antibody may bind to any of the above¬ mentioned molecules, for example. Exemplary molecular targets for antibodies encompassed by the present invention include CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34; members ofthe HER receptor family such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules such as LFA-1, Mol, ρl50,95, VLA-4, ICAM-l. VCAM and αv/β3 integrin including either α or β subunits thereof (e.g. anti-CDl la, anti-CD 18 or anti-CDl lb antibodies); growth factors such as VEGF; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; protein C etc.
The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including full length antibodies which have an immunoglobulin Fc region), antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab');,. and Fv).
The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character ofthe antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al.. Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4.816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et ai, Nature, 352:624-628 (1991) and Marks et ai, J. Mol. Biol., 222:581-597 (1991), for example.
The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion ofthe heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder ofthe chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et ai, Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
"Humanized" forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementarity determining region (CDR) ofthe recipient are replaced by residues from a CDR of a non¬ human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all ofthe CDR regions correspond to those of a non-human immunoglobulin and all or substantially all ofthe FR regions are those ofa human immunoglobulin sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321:522-525 (1986); Reichmann et al.. Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992). The humanized antibody includes a Primatized™ antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.
A "stable" formulation is one in which the protein therein essentially retains its physical and chemical stability and integrity upon storage. Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, New York, Pubs. ( 1991 ) and Jones, A. Adv. Drug Delivery Rev. 10: 9-90 ( 1993). Stability can be measured at a selected temperature for a selected time period. For rapid screening, the formulation may be kept at 40'C for 2 weeks to 1 month, at which time stability is measured. Where the formulation is to be stored at 2-8°C, generally the formulation should be stable at 30°C or 40°C for at least 1 month and/or stable at 2-8°C for at least 2 years. Where the formulation is to be stored at 30 C, generally the formulation should be stable for at least 2 years at 30° C and/or stable at 40'C for at least 6 months. For example, the extent of aggregation following lyophilization and storage can be used as an indicator of protein stability (see Examples herein). For example, a "stable" formulation may be one wherein less than about 10% and preferably less than about 5% of the protein is present as an aggregate in the formulation. In other embodiments, any increase in aggregate formation following lyophilization and storage ofthe lyophilized formulation can be determined. For example, a "stable" lyophilized formulation may be one wherein the increase in aggregate in the lyophilized formulation is less than about 5% and preferably less than about 3%, when the lyophilized formulation is stored at 2-8° C for at least one year. In other embodiments, stability ofthe protein formulation may be measured using a biological activity assay (see, e.g.. Example 2 below). A "reconstituted" formulation is one which has been prepared by dissolving a lyophilized protein formulation in a diluent such that the protein is dispersed in the reconstituted formulation. The reconstituted formulation in suitable for administration (e.g. parenteral administration) to a patient to be treated with the protein of interest and, in certain embodiments ofthe invention, may be one which is suitable for subcutaneous administration.
By "isotonic" is meant that the formulation of interest has essentially the same osmotic pressure as human blood. Isotonic formulations will generally have an osmotic pressure from about 250 to 350mOsm. Isotonicity can be measured using a vapor pressure or ice-freezing type osmometer, for example.
A "lyoprotectant" is a molecule which, when combined with a protein of interest, significantly prevents or reduces chemical and/or physical instability of the protein upon lyophilization and subsequent storage. Exemplary lyoprotectants include sugars such as sucrose or trehalose; an amino acid such as monosodium glutamate or histidine; a methylamine such as betaine; a lyotropic salt such as magnesium sulfate: a polyol such as trihydric or higher sugar alcohols, e.g. glycerin, erythritol, glycerol, arabitol, xylitol, sorbitol, and mannitol; propylene glycol; polyethylene glycol; Pluronics; and combinations thereof. The preferred lyoprotectant is a non-reducing sugar, such as trehalose or sucrose.
The lyoprotectant is added to the pre-lyophilized formulation in a "lyoprotecting amount" which means that, following lyophilization ofthe protein in the presence ofthe lyoprotecting amount ofthe lyoprotectant, the protein essentially retains its physical and chemical stability and integrity upon lyophilization and storage.
The "diluent" of interest herein is one which is pharmaceutically acceptable (safe and non-toxic for administration to a human) and is useful for the preparation of a reconstituted formulation. Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.
A "preservative" is a compound which can be added to the diluent to essentially reduce bacterial action in the reconstituted formulation, thus facilitating the production ofa multi-use reconstituted formulation, for example. Examples of potential preservatives include octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride (a mixture of alkylbenzyldimethylammonium chlorides in which the alkyl groups are long-chain compounds), and benzethonium chloride. Other types of preservatives include aromatic alcohols such as phenol, butyl and benzyl alcohol, alkyl parabens such as methyl or propyl paraben, catechoi, resorcinol, cyclohexanol. 3-pentanol, and m-cresol. The most preferred preservative herein is benzyl alcohol.
A "bulking agent" is a compound which adds mass to the lyophilized mixture and contributes to the physical structure ofthe lyophilized cake (e.g. facilitates the production of an essentially uniform lyophilized cake which maintains an open pore structure). Exemplary bulking agents include mannitol, glycine, polyethylene glycol and xorbitol. "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human. A "disorder" is any condition that would benefit from treatment with the protein. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include carcinomas and allergies. II. Modes for Carrying out the Invention A. Protein Preparation
The protein to be formulated is prepared using techniques which are well established in the art including synthetic techniques (such as recombinant techniques and peptide synthesis or a combination of these techniques) or may be isolated from an endogenous source ofthe protein. In certain embodiments ofthe invention. the protein of choice is an antibody. Techniques for the production of antibodies follow. (i) Polyclonal antibodies.
Polyclonal antibodies are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections ofthe relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues). N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R'N=C=NR, where R and R ' are different alkyl groups.
Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 μg ofthe peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate ofthe same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response. (ii) Monoclonal antibodies.
Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, Le., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character ofthe antibody as not being a mixture of discrete antibodies.
For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).
In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival ofthe unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase
(HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine. aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center. San Diego, California USA. and SP-2 cells available from tlie American Type Culture Collection. Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur ..f al, Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al.. Anal. Biochem., 107:220 (1980). After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI- 1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal. The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such D A.
Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol, 5:256-262 (1993) and Pluckthun, Immunol. Revs., 130:151-188 (1992).
In a further embodiment antibodies can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al, Nature, 348:552-554 (1990). Clackson et al. Nature, 352:624-628 (1991) and Marks et al, J. Mol. Biol, 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al. Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al, Nuc. Acids. Res.. 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies. The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place ofthe homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, etal, Proc. Natl Acad. Sci. USA, 81 :6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or pan ofthe coding sequence for a non-immunoglobulin polypeptide.
Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domams of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate. (m)
Humanized and human antibodies.
Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non- human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al, Nature, 321:522-525 (1986); Riechmann et al. Nature, 332:323-327 (1988); Verhoeyen et al, Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences ofa human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable- domain sequences. The human sequence which is closest to that ofthe rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al. , J. Immunol. , 151 :2296 ( 1993 ); Chothia et al. , J. Mol. Biol, 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al, Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al, J. Immnol, 151:2623 (1993)).
It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis ofthe parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis ofthe likely role ofthe residues in the functioning ofthe candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability ofthe candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.
Altematively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion ofthe antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer ofthe human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al, Proc. Natl Acad Sci. USA. 90:2551 (1993); Jakobovits et al. Nature, 362:255-258 (1993); Bruggermann e/ al. Year in Immuno., 7:33 (1993). Human antibodies can also be derived from phage-display libraries (Hoogenboom et al, J. Mol. Biol, 227:381 (1991); Marks et al. J. Mol. Biol, 222:581-597 (1991)). (tv) Bispecific antibodies
Bispecific antibodies (BsAbs) are antibodies that have binding specificities for at least two different epitopes. Such antibodies can be derived from full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies).
Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al. Nature, 305:537-539 (1983)). Because ofthe random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification ofthe correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829 and in Traunecker et al, EMBO J. , 10:3655-
3659 (1991).
According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part ofthe hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light chain binding, present in at least one ofthe fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co¬ transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions ofthe three polypeptide fragments in embodiments when unequal ratios ofthe three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.
In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation ofthe desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published March 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh et al. Methods in Enzymoiogy, 121:210 (1986).
Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one ofthe antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360. WO 92/200373). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art. and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.
Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. The following techniques can also be used for the production of bivalent antibody fragments which are not necessarily bispecific. For example, Fab' fragments recovered from E. coli can be chemically coupled in vitro to form bivalent antibodies. See, Shalaby et al, J. Exp. Med., 175:217-225 (1992).
Various techniques for making and isolating bivalent antibody fragments directly from recombinant cell culture have also been described. For example, bivalent heterodimers have been produced using leucine zippers. Kostelny et al, J. Immunol, 148(5): 1547- 1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. The "diabody" technology described by Hollinger et al, Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an altemative mechanism for making bispecific/bivalent antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V„ and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific/bivalent antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al, J. Immunol, 152:5368 (1994). B. Preparation of he Lyophilized Formulation After preparation of the protein of interest as described above, a "pre-lyophilized formulation" is produced. The amount of protein present in the pre-lyophilized formulation is determined taking into account the desired dose volumes, mode(s) of administration etc. Where the protein of choice is an intact antibody (such as an anti-IgE or anti-HER2 antibody), from about 2 mg/mL to about 50 mg/mL, preferably from about 5 mg mL to about 40 mg/mL and most preferably from about 20-30 mg/mL is an exemplary starting protein concentration. The protein is generally present in solution. For example, the protein may be present in a pH-buffered solution at a pH from about 4-8. and preferably from about 5-7. Exemplary buffers include histidine, phosphate, Tris. citrate, succinate and other organic acids. The buffer concentration can be from about 1 mM to about 20 mM, or from about 3 mM to about 15 mM, depending, for example, on the buffer and the desired isotonicity ofthe formulation (e.g. ofthe reconstituted formulation). The preferred buffer is histidine in that, as demonstrated below, this can have lyoprotective properties. Succinate was shown to be another useful buffer.
The lyoprotectant is added to the pre-lyophilized formulation. In preferred embodiments, the lyoprotectant is a non-reducing sugar such as sucrose or trehalose. The amount of lyoprotectant in the pre- lyophilized formulation is generally such that, upon reconstitution, the resulting formulation will be isotonic. However, hypertonic reconstituted formulations may also be suitable. In addition, the amount of lyoprotectant must not be too low such that an unacceptable amount of degradation aggregation ofthe protein occurs upon lyophilization. Where the lyoprotectant is a sugar (such as sucrose or trehalose) and the protein is an antibody, exemplary lyoprotectant concentrations in the pre-lyophilized formulation are from about 10 mM to about 400 mM, and preferably from about 30 mM to about 300 mM, and most preferably from about 50 mM to about 100 mM.
The ratio of protein to lyoprotectant is selected for each protein and lyoprotectant combination. In the case of an antibody as the protein of choice and a sugar (e.g., sucrose or trehalose) as the lyoprotectant for generating an isotonic reconstituted formulation with a high protein concentration, the molar ratio of lyoprotectant to antibody may be from about 100 to about 1500 moles lyoprotectant to 1 mole antibody, and preferably from about 200 to about 1000 moles of lyoprotectant to 1 mole antibody, for example from about 200 to about 600 moles of lyoprotectant to 1 mole antibody.
In preferred embodiments ofthe invention. it has been found to be desirable to add a surfactant to the pre-lyophilized formulation. Altematively, or in addition, the surfactant may be added to the lyophilized formulation and/or the reconstituted formulation. Exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20 or 80); poloxamers (e.g. poloxamer 188); Triton; sodium dodecyl sulfate (SDS): sodium laurel sulfate: sodium octyi glycoside; lauryl-, myristyl-, linoleyl-, or stearyl-sulfobetaine; lauryl-, myristyl-, linoleyl- or stearyl-sarcosine; linoleyl-, myristyl-, or cetyl-betaine; lauroamidopropyl-, cocamidopropyl-, linoleamidopropyl-, myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-betaine (e.g. lauroamidopropyl); myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-dimethylamine; sodium methyl cocoyi-, or disodium methyl oleyl-taurate; and the MONAQUAT™ series (Mona Industries, Inc., Paterson, New
Jersey), polyethyl glycol, polypropyl glycol, and copolymers of ethylene and propylene glycol (e.g. Pluronics, PF68 etc). The amount of surfactant added is such that it reduces aggregation ofthe reconstituted protein and minimizes the formation of particulates after reconstitution. For example, the surfactant may be present in the pre-lyophilized formulation in an amount from about 0.001-0.5%, and preferably from about 0.005-0.05%. In certain embodiments ofthe invention, a mixture ofthe lyoprotectant (such as sucrose or trehalose) and a bulking agent (e.g. mannitol or glycine) is used in the preparation ofthe pre-lyophilization formulation. The bulking agent may allow for the production ofa uniform lyophilized cake without excessive pockets therein etc. Other pharmaceutically acceptable carriers, excipients or stabilizers such as those described in Remington's Pharmaceutical Sciences 16th edition. Osol. A. Ed. (1980) may be included in the pre-lyophilized formulation (and/or the lyophilized formulation and/or the reconstituted formulation) provided that they do not adversely affect the desired characteristics ofthe formulation. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants including ascorbic acid and methionine: chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; and or salt-forming counterions such as sodium.
The formulation herein may also contain more than one protein as necessary for the paπicular indication being treated, preferably those with complementary activities that do not adversely affect the other protein. For example, it may be desirable to provide two or more antibodies which bind to the HER2 receptor or IgE in a single formulation. Furthermore, anti-HER2 and anti- VEGF antibodies may be combined in the one formulation.
Such proteins are suitably present in combination in amounts that are effective for the purpose intended.
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to. or following, lyophilization and reconstitution. Altematively, sterility ofthe entire mixture may be accomplished by autoclaving the ingredients, except for protein, at about 120°C for about 30 minutes, for example.
After the protein. lyoprotectant and other optional components are mixed together, the formulation is lyophilized. Many different freeze-dryers are available for this purpose such as Hull50™ (Hull, USA) or GT20™ (Leybold-Heraeus. Germany) freeze-dryers. Freeze-drying is accomplished by freezing the formulation and subsequently subliming ice from the frozen content at a temperature suitable for primary drying. Under this condition, the product temperature is below the eutectic point or the collapse temperature ofthe formulation. Typically, the shelf temperature for the primary drying will range from about -30 to 25° C (provided the product remains frozen during primary drying) at a suitable pressure, ranging typically from about 50 to 250mTorr. The formulation, size and type ofthe container holding the sample (e.g., glass vial) and the volume of liquid will mainly dictate the time required for drying, which can range from a few hours to several days (e.g. 40-60hrs). A secondary drying stage may be caπied out at about 0-40° C, depending primarily on the type and size of container and the type of protein employed. However, it was found herein that a secondary drying step may not be necessary. For example, the shelf temperature throughout the entire water removal phase of lyophilization may be from about 15-30° C (e.g. , about 20° C). The time and pressure required for secondary drying will be that which produces a suitable lyophilized cake, dependent e.g., on the temperature and other parameters. The secondary drying time is dictated by the desired residual moisture level in the product and typically takes at least about 5 hours (e.g. 10-15 hours). The pressure may be the same as that employed during the primary drying step. Freeze-drying conditions can be varied depending on the formulation and vial size. In some instances, it may be desirable to lyophilize the protein formulation in the container in which reconstitution ofthe protein is to be carried out in order to avoid a transfer step. The container in this instance may, for example, be a 3, 5, 10, 20, 50 or lOOcc vial.
As a general proposition, lyophilization will result in a lyophilized formulation in which the moisture content thereof is less than about 5%, and preferably less than about 3%. C. Reconstitution ofthe Lyophilized Formulation
At the desired stage, typically when it is time to administer the protein to the patient the lyophilized formulation may be reconstituted with a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/mL, and most preferably from about 90 mg/mL to about 150 mg/mL. Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where subcutaneous delivery ofthe reconstituted formulation is intended. However, for other routes of administration, such as intravenous administration, lower concentrations ofthe protein in the reconstituted formulation may be desired (for example from about 5-50 mg/mL, or from about 10-40 mg/mL protein in the reconstituted formulation). In certain embodiments, the protein concentration in the reconstituted formulation is significantly higher than that in the pre-lyophilized formulation. For example, the protein concentration in the reconstituted formulation may be about 2-40 times, preferably 3-10 times and most preferably 3-6 times (e.g. at least three fold or at least four fold) that ofthe pre-lyophilized formulation.
Reconstitution generally takes place at a temperature of about 25° C to ensure complete hydration, although other temperatures may be employed as desired. The time required for reconstitution will depend, e.g, on the type of diluent, amount of excipient(s) and protein. Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution. The diluent optionally contains a preservative. Exemplary preservatives have been described above, with aromatic alcohols such as benzyl or phenol alcohol being the prefeπed preservatives. The amount of preservative employed is determined by assessing different preservative concentrations for compatibility with the protein and preservative efficacy testing. For example, if the preservative is an aromatic alcohol (such as benzyl alcohol), it can be present in an amount from about 0.1-2.0% and preferably from about 0.5-1.5%, but most preferably about 1.0-1.2%.
Preferably, the reconstituted formulation has less than 6000 particles per vial which are ≥ 10 μm in size. D. Administration of the Reconstituted Formulation
The reconstituted formulation is administered to a mammal in need of treatment with the protein, preferably a human, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal. intracerobrospinal, subcutaneous, uitra-articuIar. intrasynovial, intrathecal, oral, topical, or inhalation routes. In prefeπed embodiments, the reconstituted formulation is administered to the mammal by subcutaneous
(i.e. beneath the skin) administration. For such purposes, the formulation may be injected using a syringe. However, other devices for administration ofthe formulation are available such as injection devices (e.g. the Inject-ease™ and Genject™ devices); injector pens (such as the GenPen ™; needleless devices (e.g. MediJector™ and BioJector™); and subcutaneous patch delivery systems. The appropriate dosage ("therapeutically effective amount") ofthe protein will depend, for example, on the condition to be treated, the severity and course ofthe condition, whether the protein is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the protein, the type of protein used, and the discretion ofthe attending physician. The protein is suitably administered to the patient at one time or over a series of treatments and may be administered to the patient at any time from diagnosis onwards. The protein may be administered as the sole treatment or in conjunction with other drugs or therapies useful in treating the condition in question.
Where the protein of choice is an antibody, from about 0.1-20 mg/kg is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques.
In the case of an anti-HER2 antibody, a therapeutically effective amount of the antibody may be administered to treat or prevent cancer characterized by overexpression ofthe HER2 receptor. It is contemplated that a reconstituted formulation of the anti-HER2 antibody may be used to treat breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon and/or bladder cancer. For example, the anti-HER2 antibody may be used to treat ductal carcinoma in situ (DCIS). Exemplary dosages of the anti-HER2 antibody are in the range 1-10 mg/kg by one or more separate administrations.
Uses for an anti-IgE formulation include the treatment or prophylaxis of IgE-mediated allergic diseases, parasitic infections, interstitial cystitis and asthma, for example. Depending on the disease or disorder to be treated, a therapeutically effective amount (e.g. from about 1-15 mg/kg) ofthe anti-IgE antibody is administered to the patient.
E. Articles of Manufacture
In another embodiment of the invention, an article of manufacture is provided which contains the lyophilized formulation ofthe present invention and provides instructions for its reconstitution and/or use. The article of manufacture comprises a container. Suitable containers include, for example, bottles. vials (e.g. dual chamber vials), syringes (such as dual chamber syringes) and test tubes. The container may be formed from a variety of materials such as glass or plastic. The container holds the lyophilized formulation and the label on, or associated with, the container may indicate directions for reconstitution and/or use. For example, the label may indicate that the lyophilized formulation is reconstituted to protein concentrations as described above. The label may further indicate that the formulation is useful or intended for subcutaneous administration. The container holding the formulation may be a multi-use vial, which allows for repeat administrations (e.g. from 2-6 administrations) ofthe reconstituted formulation. The article of manufacture may further comprise a second container comprising a suitable diluent (e.g. BWFI). Upon mixing ofthe diluent and the lyophilized formulation, the final protein concentration in the reconstituted formulation will generally be at least 50 mg/mL. The article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention. All literature citations are incoφorated by reference.
EXAMPLE 1 ANTI-HER2 FORMULATION
HER2 Overexpression ofthe HER2 proto-oncogene product (p 185 ) has been associated with a variety of aggressive human malignancies. The murine monoclonal antibody known as muMAb4D5 is directed against
HER2 the extracellular domain (ECD) of p 185 . The muMAb4D5 molecule has been humanized in an attempt to improve its clinical efficacy by reducing immunogenicity and allowing it to support human effector functions (see WO 92/22653). This example describes the development ofa lyophilized formulation comprising full length humanized antibody huMAb4D5-8 described in WO 92/22653.
In the development of a lyophilized formulation, excipients and buffers are initially screened by measuring the stability ofthe protein after lyophilization and reconstitution. The lyophilized protein in each formulation is also subjected to accelerated stability studies to determine the potential stability ofthe protein over its shelf-life. These accelerated studies are usually performed at temperatures above the proposed storage conditions and the data are then used to estimate the activation energy for the degradation reactions assuming Aπhenius kinetics (Cleland et al, Critical Reviews in Therapeutic Drug Carrier Systems 10(4): 307-377 ( 1993)). The activation energy is then used to calculate the expected shelf-life ofthe protein formulation at the proposed storage conditions.
In early screening studies, the stability of several lyophilized recombinant humanized anti-HER2 antibody (rhuMAb HER2) formulations was investigated after incubation at 5°C (proposed storage condition) and 40° C (accelerated stability condition). In the liquid state, rhuMAb HER2 was observed to degrade by deamidation (30Asn of light chain) and isoaspartate formation via a cyclic imide intermediate, succinimide (102Asp of heavy chain). The deamidation was minimized at pH 5.0 resulting in degradation primarily at the succinimide. At pH 6.0, slightly greater deamidation was observed in the liquid protein formulation. The lyophilized formulations were therefore studied with: (a) 5 or 10 mM succinate buffer, pH 5.0 or (b) 5 or 10 mM histidine buffer, pH 6.0. Both buffers contained the surfactant, polysorbate 20 (Tween 20™), which was employed to reduce the potential for aggregation ofthe reconstituted protein and minimize the formation of particulates after reconstitution. These buffers were used with and without various sugars. The protein was formulated in the buffer at 5.0.21.0 or 25.0 mg/mL. These formulations were then lyophilized and assessed for protein stability after 2 weeks at 5° C and 40° C. In the lyophilizer. the vials were frozen at a shelf temperature of-55°C for approximately 5 hours followed by primary drying at a shelf temperature of 5° C and 150 mToπ for 30 hours, and drying to 1-2% residual moisture was achieved with secondary drying at a shelf temperature of 20°C for 10 hours. The major degradation route for this protein upon lyophilization was aggregation, and therefore the protein stability was assessed by native size exclusion chromatography to measure the recovery of intact native protein (% intact protein in Table 2 below).
The stabilizing effects of various lyoprotectant sugars on lyophilized protein was measured in 10 mM sodium succinate, pH 5.0 (Table 2). At high sugar concentrations (250-275 mM) and low protein concentration (5.0 mg/mL), trehalose and lactose stabilized the protein against aggregation for the lyophilized protein stored for 2 weeks at 40° C. However, lactose, a reducing sugar, was observed to react with the protein over longer term storage at 40° C. The formulations at 5.0 mg/mL protein containing either sorbitol or mannitol yielded aggregated protein after storage at 40° C for 2 weeks. At the higher protein concentration (21.0 mg/mL), formulations comprising mannitol. or mannitol in combination with sorbitol or glycine, contained aggregated protein after lyophilization and storage at both conditions. In contrast, trehalose and sucrose prevented aggregation at both storage conditions.
The 250 mM trehalose and 250 mM lactose formulations were assessed for long term stability. After 9 months at 40° C or 12 months at 5° C, there was no change in the % intact protein for the trehalose formulation. For the lactose formulation, the % intact protein remained constant (same as initial) after 3 months at 40° C or 6 months at25°C. The trehalose formulation could be stored at controlled room temperature (15-30°C) for 2 years without a significant change in % intact protein.
The 10 mM histidine, pH 6.0 formulation with mannitol contained less aggregated protein after storage at 40°C for 2 weeks than the 10 mM succinate formulation. pH 5.0 with mannitol. This result may be related to some stabilizing effect contributed by histidine alone. After storage at 40° C for 2 weeks, there was, however, significant aggregation for histidine alone or histidine/mannitol formulations. The addition of sucrose at an equal mass to mannitol (10 mg/mL of each) in the histidine formulation stabilized the protein against aggregation for both storage conditions. The use of glycine with mannitol did not improve the protein stability, while the sucrose/glycine formulation provided the same stability as the sucrose/mannitol formulation. These results further indicated that sucrose was useful for preventing aggregation ofthe lyophilized protein during storage.
TABLE 2
Composition Prior to Lyophilization % Intact Protein*
[Protein |b Liquid Lyophilized Lyophilized (mg/mL) Formulation (5°C) (2 k, 5°C) 2wk, 40°C)
10 mM sodium succinate pH 5.0
5.0 275 mM trehalose, 0.01% Tween 20™ 98.9 99.1 98.9
5.0 275 mM lactose, 0.01% Tween 20™ 96.8 96.5 96.6
5.0 275 mM sorbitol, 0.01% Tween 20™ 99.4 99.3 95.4
5.0 250 mM mannitol, 0.01% Tween 20™ 100.0 99.9 98.8
5.0 250 mM trehalose. 0.01% Tween 20™ 100.0 99.9 100.0
5.0 250 mM lactose, 0.01% Tween 20™ 100.0 100.0 100.0
21.0 250 mM trehalose. 0.2% Tween 20™ 99.3 99.1 99.1
21.0 250 mM sucrose. 0.2% Tween 20™ 99.6 99.6 99.7
21.0 250 mM mannitol. 0.01% Tween 20™ 100.0 94.6 94.0
21.0 188 mM mannitol/63 mM sorbitol. 0.01% 99.8 98.6 96.5 Tween 20™
21.0 250 mM mannitol/25 mM glycine. 0.01% 99.5 96.5 96.4 Tween 20™
10 mM histidine pH 6.0
21.0 No sugar, 0.01% Tween 20™ 100.0 99.9 98.9
21.0 54.9 mM mannitol, 0.01% Tween 20™ 100.0 99.9 99.2
21.0 29.2 mM sucrose/266.4 mM glycine, 100.0 100.0 99.6 0.01% Tween 20™
21.0 54.9 mM mannitol/266.4 mM glycine, 100.0 99.8 98.9 0.01% Tween 20™ Composition Prior to Lyophilization % Intact Protein*
[Protein]" Liquid Lyophilized Lyophilized (mg/mL) Formulation (5°C) (2 k, 5°C) (2wk, 40°C)
21.0 54.9 mM mannitol/29.2 mM sucrose, 99.8 100.0 99.7 0.01% Tween 20™
a. The fraction of intact protein was measured by native size exclusion HPLC and the peak area ofthe native protein relative to the total peak area including aggregates (TSK3000 SW XL column, TosoHaas. with a flow rate of 1.0 mL/min; elution with phosphate buffered saline: detection at 214 and 280 nm). The protein formulations were analyzed before lyophilization (liquid, 5° C) and after lyophilization and storage at 5° C or 40° C for 2 weeks. b. Formulations containing 5 mg/mL protein were reconstituted with distilled water (20 mL, 5.0 mg/mL protein), and formulations containing 21 mg/mL protein were reconstituted with bacteriostatic water for injection (BWFI, 0.9%) benzyl alcohol; 20 mL, 20 mg/mL protein).
The delivery ofa high protein concentration is often required for subcutaneous administration due to the volume limitations ( ≤ 1.5 mL) and dosing requirements ( ≥ 100 mg). However, high protein concentrations ( ≥ 50 mg/mL) are often difficult to achieve in the manufacturing process since at high concentrations, the protein has a tendency to aggregate during processing and becomes difficult to manipulate (e.g. pump) and sterile filter. Alternatively, the lyophilization process may provide a method to allow concentration of the protein. For example, the protein is filled into vials at a volume (Vf) and then lyophilized. The lyophilized protein is then reconstituted with a smaller volume (Vr) ofwater or preservative (e.g. BWFI) than the original volume (e.g. Vr
= 0.25Vf) resulting in a higher protein concentration in the reconstituted solution. This process also results in the concentration ofthe buffers and excipients. For subcutaneous administration, the solution is desirably isotonic.
The amount of trehalose in the lyophilized rhuMAb HER2 was reduced to produce an isotonic solution upon reconstitution to yield 100 mg/mL protein. The stabilizing effect of trehalose was determined as a function of concentration for 5 mM sodium succinate, pH 5.0 and 5 mM histidine, pH 6.0 at 25.0 mg mL protein (Table 3). At trehalose concentrations from 60 to 200 mM. there was no significant aggregation after incubation ofthe lyophilized protein for 4 weeks at 40° C. These formulations were reconstituted with 20 mL of bacteriostatic water for injection (BWFI. USP, 0.9% benzyl alcohol). Reconstitution ofthe 50 mM trehalose formulation (5 mM sodium succinate) with 4 mL of BWFI (100 mg/mL protein) after incubation for 4 weeks at 40° C yielded a slight increase in aggregate formation. The preserved reconstituted formulations provided the advantage of multiple withdrawals from the same vial without sterility concerns. When sterile needles are used, these formulations would then allow for several doses from a single vial. TABLE 3
Composition Prior to Lyophilization % Intact Protein*
[Protein] Liquid Lyophilized Lyophilized (mg/mL) Formulation (5°C) (4 wk, 5°C (4 k, 40°C)
5 M sodium succinate pH 5.0
25.0 50 mM trehalose.0.01% Tween 20™ b 100.00 100.0 99.5
25.0 60 mM trehalose, 0.01% Tween 20™ 100.0 100.0 99.9
25.0 60 mM trehalose. 0.01% Tween 20™ 100.0 100.0 99.2
25.0 100 mM trehalose, 0.01% Tween 20™ 100.0 100.0 99.7
25.0 150 M trehalose, 0.01% Tween 20™ 100.0 100.0 99.8
25.0 200 mM trehalose, 0.01% Tween 20™ 100.0 100.0 100.0
5 mM histidine pH 6.0
25.0 38.4 mM mannitol/20.4 mM sucrose, 0.01% 100.0 100.0 99.3 Tween 20™
25.0 38.4 mM mannitol/20.4 mM sucrose, 0.01% 100.0 100.0 99.4 Tween 20™ c
25.0 60 mM trehalose, 0.01% Tween 20™ d 100.0 100.0 99.8
25.0 60 mM trehalose, 0.01% Tween 20™ 100.0 100.0 99.4
25.0 100 mM trehalose, 0.01% Tween 20™ 100.0 100.0 99.6
25.0 150 mM trehalose. 0.01% Tween 20™ 100.0 100.0 100.0
25.0 200 mM trehalose, 0.01% Tween 20™ 100.0 100.0 100.0 a. The fraction of intact protein was measured by native size exclusion HPLC and defined as the peak area ofthe native protein relative to the total peak area including aggregates (TSK3000 SW XL column. TosoHaas, with a flow rate of 1.0 mL/min; elution with phosphate buffered saline; detection at 214 and 280 nm). The protein formulations were analyzed before lyophilization (liquid, 5°C) and after lyophilization and storage at 5°C or40°C for 4 weeks. Formulations were reconstituted with bacteriostatic water for injection (BWFI, USP, 0.9% w/w benzyl alcohol; 20 mL, 22 mg/mL protein). b. Reconstituted with 4 mL of BWFI (0.9% benzyl alcohol) to yield 100 mg/mL protein. c. Reconstituted with 4 mL of BWFI (1.1% benzyl alcohol) to yield 100 mg/mL protein. d. Sample incubated for 2 weeks at 5°C or 40° C and then reconstituted with 20 mL of BWFI (0.9% benzyl alcohol) to yield 22 mg/mL protein.
Cuπently, rhuMAb HER2 is under investigation as a therapeutic for the treatment of breast cancer. The protein is dosed to patients at 2 mg/kg on a weekly basis. Since the average weight of these patients is 65 kg, the average weekly dose is 130 mg of rhuMAb HER2. For subcutaneous administration, injection volumes of 1.5 mL or less are well tolerated and, therefore, the protein concentration for a weekly subcutaneous administration of rhuMAb HER2 may be approximately 100 mg/mL (130 mg average dose/1.5 mL). As mentioned above, this high protein concentration is difficult to manufacture and maintain in a stable form. To achieve this high protein concentration, rhuMAb HER2 formulated in: (a) 5 mM sodium succinate, pH 5.0 or (b) 5 mM histidine, pH 6.0, was lyophilized at 25 mg/mL protein in 60 M trehalose, 0.01% Tween 20™. The lyophilization was performed by filling 18 mL ofthe protein formulation into 50 cc vials. In the lyophilizer, the vials were frozen at a shelf temperature of -55°C for approximately 5 hours followed by primary drying at a shelf temperature of 5°C and 150 mToπ for 30 hours, and drying to 1-2% residual moisture was achieved with secondary drying at a shelf temperature of 20° C for 10 hours. Thermocouples placed in vials containing the placebo (formulation without protein) indicated that the product in the vials was maintained below - 10° C throughout primary drying. Sequential stoppering studies during the lyophilization revealed that the residual moisture after primary drying was usually less than 10%.
The lyophilized protein was then reconstituted with either 4 or 20 mL of BWFI (0.9 or 1.1% benzyl alcohol) to yield concentrated protein solutions:
(a) 4 mL: 102 mg mL rhuMAb HER2.245 mM trehalose, 21 mM sodium succinate, pH 5.0 or 21 mM histidine, pH 6.0. 0.04% Tween 20™;
(b) 20 mL: 22 mg/mL rhuMAb HER2, 52 mM trehalose, 4 mM sodium succinate, pH 5.0 or 4 mM histidine, pH 6.0, 0.009% Tween 20™.
After storage of the lyophilized formulations for 4 weeks at 40° C and reconstitution to 22 mg/mL protein, the amount of aggregated protein appeared to increase slightly with decreasing trehalose concentration. The stability ofthe lyophilized protein was not affected by the volume of reconstitution. As shown in Figure 1, the amount of intact protein after incubation of the lyophilized protein at 40° C was the same for the 60 mM trehalose, 5 mM sodium succinate, pH 5.0, 0.01% Tween 20™ formulation reconstituted with either 4 or 20 mL of BWFI.
The results shown in Table 3 suggested that there may be a relationship between the trehalose concentration and the protein stability. To further assess this relationship, the formulations containing different concentrations of trehalose formulated in either sodium succinate or histidine were incubated for 91 days at 40° C. The stability was then measured as a function ofthe trehalose to protein molar ratio for each concentration of trehalose. As shown in Figure 2, the protein stability clearly decreased with decreasing trehalose concentration for both formulations. There was no apparent difference between the two buffers, succinate and histidine, in these formulations suggesting that the primary stabilizer under these conditions is trehalose. In addition, the observed decrease in intact protein for both these formulations would be acceptable even at the low trehalose concentration for a formulation that is stored at 2-8° C throughout its shelf-life. However, if controlled room temperature (30° C maxmimum temperature) stability is required, higher trehalose concentrations (≥ 600:1 trehalose:protein) may be needed depending on the stability specifications for the product (i.e. the specification for the amount of intact protein remaining after 2 years of storage). Typically, a controlled room temperature storage condition would require stability for 6 months at 40° C which is equivalent to storage at 30° C for 2 years.
As shown in Figure 3, the 250 mM trehalose formulation was unchanged after 6 months at 40° C while both the 60 mM trehalose formulations were less stable. The 60 mM trehalose formulations may then require refrigerated storage if the product specification at the end of its shelf-life is, for example, >98% intact protein by native size exclusion chromatography.
In the previous screening study, sucrose was also observed to prevent aggregation of rhuMAb HER2 after lyophilization and subsequent storage. To achieve isotonic solutions after reconstitution for subcutaneous administration (approximately four-fold concentration of formulation components and protein), the sucrose concentration must be reduced significantly. The equal mass concentration of sucrose and mannitol (bulking agent) used in the screening studies prevented aggregation ofthe protein. A lower concentration of sucrose and mannitol (equal mass concentrations) was chosen as a potential subcutaneous formulation of rhuMAb HER2. The protein solution (25 mg/mL protein, 5 mM histidine, pH 6.0. 38.4 mM (7 mg/mL) mannitol. 20.4 mM (7 mg/mL) sucrose, 0.01% Tween 20™) was lyophilized in the same manner as the 60 mM trehalose formulation except that the primary drying cycle was extended to 54 hours. After 4 weeks at 40° C, there was a slight increase in the amount of aggregates after reconstitution with 4.0 or 20.0 mL of BWFI (Table 3). The amount of aggregated protein was the same for reconstitution at 22 or 100 mg/mL protein (Figure 4). Like the 60 mM trehalose formulations, the mannitol/sucrose formulation yielded less intact protein over time at 40° C. The molar ratio of sucrose to protein for this formulation was 120 to 1, indicating that the mannitol/sucrose combination may be more effective than trehalose alone at the same molar ratio of stabilizing sugar (Figures 2 and 4).
In the previous examples, the stability ofthe lyophilized rhuMAb HER2 formulations was deteπnined as a function of temperature. These studies demonstrated that the trehalose and mannitol/sucrose formulations prevented degradation of the protein in the lyophilized state at high temperatures (40° C). However, these experiments did not address the stability ofthe protein after reconstitution and storage. Once reconstituted with BWFI, the lyophilized rhuMAb HER2 formulations may be used for several administrations of the drug. In particular, the vial configuration (450 mg rhuMAb HER2) was designed to provide three doses to the average patient (130 mg rhuMAb HER2 per dose). Since the drug is dosed weekly, the vial may be stored at least three weeks after reconstitution. To assure that the rhuMAb HER2 remained stable after reconstitution, stability studies on the reconstituted rhuMAb HER2 formulations were performed at 5°C and 25° C. For subcutaneous administration, the formulations were reconstituted to 100 mg/mL (4 mL BWFI). At this high protein concentration, the protein may be more susceptible to aggregation than the intravenous dosage form that was reconstituted to 22 mg/mL protein (20 mL BWFI). The four rhuMAb HER2 formulations from the previous example were assessed for aggregation (loss of intact protein). As shown in Tables 4 through 6, there was no difference in stability for formulations reconstituted at 22 and 100 mg/mL protein. Furthermore, these formulations maintained the protein completely intact for up to 90 days at 5 ° C and 30 days at 25 ° C, indicating that the reconstituted protein could be stored refrigerated for at least 90 days. Unlike the lyophilized protein stability in the previous example, the trehalose concentration in the formulation did not affect the protein stability (Table 7).
TABLE 4 Stability ofthe reconstituted formulations for rhuMAb HER2 lyophilized at 25 mg/mL protein in 5 mM sodium succinate, pH 5.0, 60 mM trehalose, 0.01% Tween 20™
Time % Intact Protein (days) 22 mg/mL protein 100 mg/mL protein
5°C 25° C 5°C 25° C
0 99.9 99.9 99.7 99.7
14 ND 100.0 ND 100.0
30 100.0 100.0 100.0 100.0
91 99.8 ND 100 ND The samples were reconstituted with 4.0 or 20.0 mL of BWFI (1.1% or 0.9% benzyl alcohol), and then stored at 5°C or 25° C. The % intact protein was defined as the fraction of native peak area as measured by native size exclusion chromatography. ND = not determined.
TABLE 5
Stability ofthe reconstituted formulations for rhuMAb HER2 lyophilized at 25 mg/mL protein in 5 mM histidine, pH 6.0, 60 mM trehalose, 0.01% Tween 20™
Time % Intact Protein (days)
22 mg/mL protein 100 mg/mL protein
5°C 25° C 5°C 25° C
0 100.0 100.0 100.0 100.0
14 ND 100.0 ND 100.0
31 99.3 99.7 100.0 100.0
61 100.0 ND ND ND
The samples were reconstituted with 4.0 or 20.0 mL of BWFI (1.1% or 0.9% benzyl alcohol), and then stored at 5°C or 25 °C. The % intact protein was defined as the fraction of native peak area as measured by native size exclusion chromatography. ND = not determined.
TABLE 6
Stability ofthe reconstituted formulations for rhuMAb HER2 lyophilized at 25 mg/mL protein in 5 mM histidine, pH 6.0, 38.4 mM mannitol,
20.4 mM sucrose, 0.01% Tween 20™
Time % Intact Protein
(days)
22 mg/mL protein 100 mg/mL protein
5°C 25° C 5°C 25° C
0 99.7 99.7 99.8 99.8
14 ND 100.0 ND 99.8
31 100.0 100.0 100.0 100.0
92 100.0 ND 100.0 ND
The samples were reconstituted with 4.0 or 20.0 mL of BWFI ( 1.1 % or 0.9% benzyl alcohol), and then stored at 5°C or 25 °C. The % intact protein was defined as the fraction of native peak area as measured by native size exclusion chromatography. ND = not determined. TABLE 7
Stability ofthe reconstituted formulations for rhuMAb HER2 lyophilized at 21 mg/mL protein in 10 mM sodium succinate, pH 5.0. 250 mM trehalose, 0.2% Tween 20™
Time % Intact Protein (days) 21 mg/mL protein
5°C 25° C
0 99.8 99.8
14 ND 100.0
31 99.9 99.4
92 99.8 ND The samples were reconstituted with 20.0 mL of BWFI (0.9% benzyl alcohol), and then stored at 5°C or 25°C. The % intact protein was defined as the fraction of native peak area as measured by native size exclusion chromatography. ND = not determined.
As mentioned previously, the major degradation route for rhuMAb HER2 in aqueous solutions is deamidation or succinimide formation. The loss of native protein due to deamidation or succinimide formation was assessed for the four reconstituted rhuMAb HER2 formulations.
Analysis of rhuMAb HER2 deamidation and succinimide formation was performed using cation exchange chromatography. A Bakerbond Wide-Pore Carboxy Sulfon (CSX) column (4.6 x 250 mm) was operated at a flow rate of 1 mL/min. The mobile phase buffers were (A) 0.02 M sodium phosphate, pH 6.9, and (B) 0.02 M sodium phosphate, pH 6.9, 0.2 M NaCl. The chromatography was then performed at 40° C as follows:
TABLE 8
Time (min) % Buffer B
0 10
55 45
57 100
62 100
62.1 10
63 10
Peak elution was monitored at 214 nm and 75 μg of protein was loaded for each analysis.
Again, there were no differences in stability of the formulations reconstituted at 22 and 100 mg/mL protein (Figures 5 through 7). The protein degradation was more rapid at 25° C than 5°C for each formulation, and the rate of degradation was comparable for all the formulations stored at 5°C. The formulations containing histidine underwent a slightly greater rate of degradation at 25°C than the succinate formulations. The amount of trehalose in the formulation did not affect the degradation rate at either temperature (Figures 5 and 8). These results indicated that these four formulations provide an acceptable rate of degradation under refrigerated storage conditions (5° C) for the intended period of use (30 days after reconstitution with BWFI).
Multi-use formulations should pass preservative efficacy testing as described by the US Pharmacopeia (USP) for use in the United States. The rhuMAb HER2 lyophilized formulation consisting of 25 mg/mL protein, 5 mM histidine, pH 6.0, 60 M trehalose, 0.01% Tween 20™ was reconstituted with 20 mL of benzyl alcohol at concentrations between 0.9 and 1.5% w/w. For concentrations at or above 1.3% w/w, the reconstituted solution became cloudy after overnight incubation at room temperature (~25 °C). Reconstitution with the standard BWFI solution (0.9% benzyl alcohol) resulted in a solution that did not consistently pass the preservative challenge tests. However, reconstitution with 1.0 or 1.1 % benzyl alcohol was both compatible with the formulation and passed the preservative challenge testing. The manufacturer's specifications for the solution required a range of ± 10%. and therefore, the lyophilized formulations are reconstituted with 1.1% benzyl alcohol (1.1 ± 0.1%).
A single step lyophilization cycle for the rhuMAb HER2 formulation was developed . In the single step lyophilization cycle, rhuMAb HER2 at 25 mg/mL, 60 mM trehalose, 5 mM histidine pH 6 and 0.01% polysorbate 20 was lyophilized at a shelf temperature of 20° C. and a pressure of 150 mToπ. After 47 hours. the residual moisture content ofthe lyophilized cake was less than 5%. This lyophilization cycle is considered to be useful in that it simplifies the manufacturing process, by eliminating the secondary drying step.
EXAMPLE 2 ANTI-IgE FORMULATION IgE antibodies bind to specific high-affinity receptors on mast cells, leading to mast ceil degranulation and release of mediators, such as histamine, which produce symptoms associated with allergy. Hence, anti-IgE antibodies that block binding of IgE to its high-affinity receptor are of potential therapeutic value in the treatment of allergy. These antibodies must also not bind to IgE once it is bound to the receptor because this would trigger histamine release. This example describes the development of a lyophilized formulation comprising full length humanized anti-IgE antibody MaEl 1 described in Presta et al. J. Immunology, 151 : 2623-2632 (1993).
Materials: Highly purified rhuMAb E25 (recombinant humanized anti-IgE antibody MaE 11 ) which did not contain Tween 20™ was used in the formulations described below. Spectra/Por 7 dialysis membranes were purchased from Spectmm (Los Angeles, CA). All other reagents used in this study were obtained from commercial sources and were of analytical grade. Formulation buffers and chromatography mobile phase were prepared by mixing the appropriate amount of buffer and salt with Milli-Q water in a volumetric flask.
Formulation: E25 S Sepharose pool was dialyzed into formulation buffers as specified. Dialysis was accomplished by a minimum of 4 x 2L buffer exchanges over a 48 hour period at 2-8° C. Following dialysis, lyoprotectant was added at a isotonic concentration to some of the formulations as required. Protein concentration following dialysis was determined by UV spectroscopy using a molar absorptivity of 1.60. The dialyzed protein was diluted to the predetermined formulation concentration with an appropriate formulation buffer, sterile filtered using a 0.22 μm Millex-GV filter (Millipore) and dispensed into pre-washed and autoclaved glass vials. The vials were fitted with siliconized teflon lyophilization stoppers and lyophilized using the following conditions: the E25 formulation was frozen to -55° C at 80° C/hour and the vial content was kept frozen for 4 hours. The shelf temperature was ramped to 25° C at 10° C/hour for primary drying. Primary drying was carried out at 25° C, 50 μ chamber vacuum pressure for 39 hours such that the residual moisture of the lyophilized cake was 1-2%. Following lyophilization, a vial of each formulation was removed for t=0 analysis and the remaining vials were held at various temperatures which include -70° C. 2-8° C, 25° C, 30° C (controlled room temperature) 40° C and 50° C. Chromatography: Native size exclusion chromatography was carried out on a Bio-Rad Bio-Select™
SEC 250-5 column (300 x 7.8 mm). The column was equilibrated and ran in PBS at a flow rate of 0.5 mL/min using a Hewlett Packard 1090L HPLC equipped with a diode array detector. Molecular weight standards (Bio¬ Rad, Inc.) consisting of thyroglobulin (670 kd), gamma-globulin (158 kd), ovalbumin (44 kd), and cyanocobalamin (1.35 kd) were used to calibrate the column. The sample load was 25 μg and protein was detected by monitoring the UV absoφtion at 214 nm using Turbochrom 3 software (PE Nelson, Inc).
Hydrophobic Interaction Chromatography: F(ab')2 fragments of the E25 antibody were chromatographed using a TosoHaas Butyl-NPR column (3.5 x 4.6 mm) and a Hewlett Packard 1090L HPLC equipped with a diode array detector. Elution buffer A was: 20 mM Tris, 2 M ammonium sulfate, 20% (v/v) glycerol, pH 8.0 while elution buffer B was: 20 mM Tris, 20% (v/v) glycerol, pH 8.0. The column was equilibrated with 10% elution buffer B at a flow rate of 1.0 mL/min for a minimum of 20 minutes. The sample load was 5 μg and protein was detected by monitoring the UV absoφtion at 214 nm using Turbochrom 3 data acquisition software (PE Nelson, Inc). Following injection ofthe sample, the column was maintained at 10% buffer B for 1 minute followed by a linear gradient of from 10% to 62% buffer B in 20 minutes. The column was washed with 100% buffer B for 5 minutes and re-equilibrated with 10% buffer B for a minimum of 20 minutes between successive sample injections.
Antibody Binding Activity: IgE receptor binding inhibition assay (IE25:2) was caπied out as described in Presta et al, supra, on samples diluted to 20 μg/mL and 30 μg/mL in assay diluent (phosphate buffered saline, 0.5% BSA, 0.05% polysorbate 20. 0.01% Thimerosol). Each dilution was then assayed in triplicate and the results were multiplied by an appropriate dilution factor to yield an active concentration. The results from 6 assays were averaged. The assay measures the ability of rhuMAb E25 to competitively bind to
IgE and thereby prevent IgE from binding to its high affinity receptor which is immobilized to an ELISA plate. The results are divided by the antibody concentration as determined by UV absoφtion spectroscopy and reported as a specific activity. Previous experiments have shown that this assay is stability indicating.
Particulate Assay: Reconstituted vials of lyophilized rhuMAb E25 were pooled to achieve a volume of approximately 7 mL. A count ofthe number of particles of size ranging from 2 to 80 μm present in 1 mL of sample was determined using a Hiac/Royco model 8000 counter. The counter was first washed with 1 mL of sample three times followed by the measurement of 1 mL of sample in triplicate. The instrument determines the number of particles per mL that are equal to or greater than 10 μm and the number of particles per mL that are equal to or greater than 25 μm. The first step in the development ofa formulation for the anti-IgE antibody was to determine a suitable buffer and pH for lyophilization and storage ofthe product. Antibody at a concentration of 5.0 mg/mL was formulated into 10 M succinate buffers ranging from pH 5.0 to pH 6.5 and into sodium phosphate, potassium phosphate and histidine buffers at pH 7.0. Figure 9 shows increased antibody aggregate was observed in the higher pH formulations both before and after lyophilization. An exception was the histidine formulation at pH 7, where no increase in aggregate was observed upon storage at 2-8° C. Figure 10 shows rhuMAb E25 lyophilized in 5 mM histidine buffer at both pH 6 and pH 7 and stored for 1 year at 2-8° C. 25° C, and 40° C. At each assay time point and storage temperature the pH 6 formulation had less aggregate than the antibody formulated at pH 7. These results show histidine at pH 6 is a particularly useful buffer system for preventing aggregation ofthe antibody.
To facilitate screening of lyoprotectants. the anti-IgE antibody was formulated into sodium succinate at pH 5 with or without a lyoprotectant. Potential lyoprotectants, added at isotonic concentrations, were grouped into 3 categories:
(a) non-reducing monosaccharide (i.e. mannitol); (b) reducing disaccharides (i.e. lactose and maltose); and
(c) non-reducing disaccharides (i.e. trehalose and sucrose).
Aggregation ofthe formulations following storage at 2-8° C and 40° C for one year is shown in Figures 11 and 12. With storage at 2-8° C, the monosaccharide formulation (mannitol) aggregated at a rate similar to the buffer control, while formulations containing the disaccharides were equally effective in controlling aggregation (Figure 11 ). The results following storage at 40° C where similar with the exception ofthe sucrose formulation which rapidly aggregated (which coπelated with a browning ofthe freeze-dried cake (Figure 12)). This was later shown to be caused by degradation of sucrose following storage at both acidic pH and high temperature.
Hydrophobic interaction chromatography ofthe antibody formulated in histidine buffer at pH 6 with lactose shows the antibody is altered following storage for 6 months at 40° C (Figure 13). The chromatography peaks are broadened and the retention time decreases. These changes are not observed with the buffer control and sucrose formulations stored under similar conditions as shown in Figures 14 and 15, respectively. Furthermore, isoelectric focusing showed an acidic shift in the pi ofthe antibody formulated in lactose and stored at 25° C and 40° C. This indicates that reducing sugars are not suitable as lyoprotectants for the antibody. Aggregation of lyophilized formulations of anti-IgE at a concentration of 20 mg/mL in 5 mM histidine buffer at pH 6 with various concentrations of sucrose and trehalose following storage for 12 weeks at 50° C is shown in Figure 16. Both sugars have a similar protective effect on aggregation when the sugar concentration is greater than 500 moles of sugar per mole of antibody. From these results, isotonic and hypertonic formulations of both sucrose and trehalose were identified for further development. The formulations are designed to be filled prior to lyophilization at a relatively low concentration of antibody and the lyophilized product is reconstituted with less volume than was filled with bacteriostatic water for injection (BWFI) comprising 0.9% benzyl alcohol. This allows the concentration of the antibody immediately prior to subcutaneous delivery and includes a preservative for a potential multi-use formulation while avoiding interactions between the protein and preservative upon long-term storage. Isotonic formulation: Anti-IgE at 25 mg/mL formulated in 5 mM histidine buffer at pH 6 with 500 moles of sugar per mole antibody which equals a sugar concentration of 85 mM. This formulation is reconstituted with BWFI (0.9% benzyl alcohol) at a volume which is four times less than was filled. This results in a 100 mg/mL of antibody in 20 mM histidine at pH 6 with an isotonic sugar concentration of 340 mM. Hypertonic formulation: Anti-IgE at 25 mg/mL formulated in 5 M histidine buffer at pH 6 with 1000 moles of sugar per mole antibody which equals a sugar concentration of 161 mM. This formulation is reconstituted with BWFI (0.9% benzyl alcohol) at a volume which is four times less than was filled. This results in a 100 mg/mL of antibody in 20 mM histidine at pH 6 with a hypertonic sugar concentration of 644 mM.
Comparisons ofthe antibody aggregation following storage ofthe isotonic and hypertonic formulations for up to 36 weeks are shown in Figures 17 to 19. No change in aggregation is observed in either the hypertonic or isotonic formulations with storage at 2-8° C (Figure 17). With storage at controlled room temperature (30° C) increased aggregation is not observed in the hypeπonic formulations while an increase in aggregate of from 1 to 2% occurs in the isotonic formulations (Figure 18). Finally, following storage at 50° C a minimal increase in aggregate is observed with the hypertonic formulations, a 4% increase in aggregate occurs with the isotonic trehalose formulation and a 12% increase in aggregate occurs with the isotonic sucrose formulation (Figure 19). These results show the isotonic formulation contains the minimum amount of sugar necessary to maintain the stability ofthe antibody with storage at a temperature up to 30° C. The binding activity ofthe anti-IgE in the isotonic and hypertonic formulations was measured in an
IgE receptor inhibition assay. It was discovered that the binding activity ofthe isotonic and hypertonic sucrose and trehalose formulations was essentially unchanged following storage at -70° C, 2-8° C, 30° C and 50° C for up to 36 weeks.
Lyophilized formulations of proteins are known to contain insoluble aggregates or particulates (Cleland et al. Critical Reviews in Therapeutic Drug Carrier Systems, 10 (4):307-377 (1993)). Accordingly, a particulate assay of antibody lyophilized at a concentration of 25 mg/mL in 5 mM histidine, pH 6 with the addition of 85 mM and 161 mM sucrose and trehalose was performed. Polysorbate 20 was added to the formulations at a concentration of 0.005%, 0.01%, and 0.02%. Samples were lyophilized and assayed following reconstitution to 100 mg/mL antibody in 20 mM histidine, pH 6 with 340 mM and 644 mM sugar. The polysorbate 20 concentration following reconstitution was 0.02%. 0.04%. and 0.08%.
Table 9 below shows the number of particles of size equal to or greater than 10 μm and equal to or greater than 25 μm from the isotonic and hypertonic sucrose and trehalose formulations. Polysorbate 20 was added to the formulations at concentrations of 0.005%. 0.01%, and 0.02% prior to lyophilization. The results show that the addition of Tween™ to the formulation significantly reduces the number of particles in each size range tested. The US Pharmacopeia (USP) specification for small volume injections are not more than 6,000 particles of greater than or equal to 10 μm and not more than 600 particles of greater than or equal to 25 μm per container (Cleland et al, supra). With the addition of polysorbate 20, both the hypertonic and isotonic formulations pass this specification. TABLE 9
One formulation developed for the anti-IgE antibody (i.e. 143 mg vial isotonic formulation of rhuMAb E25) which is considered to be useful for subcutaneous delivery of this antibody is shown in Table 10 below. A 10 cc vial is filled with 5.7 L of rhuMAb E25 at a concentration of 25 mg/mL formulated in 5 mM histidine at pH 6.0 with 0.01% polysorbate 20. Sucrose is added as a lyoprotectant at a concentration of 85 mM which coπesponds to a molar ratio of sugar to antibody of 500 to 1. The vial is lyophilized and reconstituted with 0.9% benzyl alcohol to one quarter ofthe volume ofthe fill or 1.2 mL. The final concentration of components in the formulation is increased four fold to 100 mg/mL rhuMAb E25 in 20 mM histidine at pH 6 with 0.04% polysorbate 20 and 340 mM sucrose (isotonic) and 0.9% benzyl alcohol. The formulation contains histidine buffer at pH 6 because of its demonstrated protective effect on antibody aggregation. Sucrose was added as the lyoprotectant because of previous use in the pharmaceutical industry. The concentration of sugar was chosen to result in an isotonic formulation upon reconstitution. Finally, polysorbate 20 is added to prevent the formation of insoluble aggregates. TABLE 10
Pre-lyophilized Formulation Reconstituted Formulation (Fill 5.7 mL into 10 cc vial) (1.2 mL 0.9% Benzyl Alcohol)
25 mg/mL rhuMAb E25 100 mg/mL rhuMAb E25
5 mM Histidine, pH 6.0 20 mM Histidine, pH 6.0
85 mM Sucrose 340 mM Sucrose
0.01% Polysorbate 20 0.04% Polysorbate 20
- 0.9% Benzyl Alcohol

Claims

WHAT IS CLAIMED IS:
1. A stable isotonic reconstituted formulation comprising a protein in an amount of at least about 50 mg mL and a diluent which reconstituted formulation has been prepared from a lyophilized mixture ofa protein and a lyoprotectant wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
2. The formulation of claim 1 wherein the lyoprotectant is sucrose or trechalose.
3. The formulation of claim 1 which further comprises a buffer.
4. The formulation of claim 3 wherein the buffer is histidine or succinate.
5. The formulation of claim 1 which further comprises a surfactant.
6. A stable reconstituted formulation comprising an antibody in an amount of at least about 50 mg/mL and a diluent, which reconstituted formulation has been prepared from a lyophilized mixture of an antibody and a lyoprotectant, wherein the antibody concentration in the reconstituted formulation is about 2-40 times greater than the antibody concentration in the mixture before lyophilization.
7. The formulation of claim 6 wherein the antibody is an anti-IgE antibody or anti-HER2 antibody.
8. The formulation of claim 6 which is isotonic.
9. A method for preparing a stable isotonic reconstituted formulation comprising reconstituting a lyophilized mixture of a protein and a lyoprotectant in a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
10. A method for preparing a formulation comprising the steps of:
(a) lyophilizing a mixture of a protein and a lyoprotectant; and
(b) reconstituting the lyophilized mixture of step (a) in a diluent such that the reconstituted formulation is isotonic and stable and has a protein concentration of at least about 50 mg/mL.
11. The method of claim 10 wherein the protein concentration in the reconstituted formulation is from about 80 mg/mL to about 300 mg/mL.
12. The method of claim 10 wherein the protein concentration in the reconstituted formulation is about 2-40 times greater than the protein concentration in the mixture before lyophilization.
13. The method of claim 10 wherein lyophilization is performed at a shelf temperature maintained at about 15-30° C throughout the entire lyophilization process.
14. An article of manufacture comprising:
(a) a container which holds a lyophilized mixture ofa protein and a lyoprotectant; and
(b) instructions for reconstituting the lyophilized mixture with a diluent to a protein concentration in the reconstituted formulation of at least about 50 mg/mL.
15. The article of manufacture of claim 14 further comprising a second container which holds a diluent.
16. The article of manufacture of claim 15 wherein the diluent is bacteriostatic water for injection (BWFI) comprising an aromatic alcohol.
17. A formulation comprising a lyophilized mixture of a lyoprotectant and an antibody, wherein the molar ratio of lyoprotectan antibody is about 100-1500 mole lyoprotectant: 1 mole antibody.
18. Use of the formulation of claim 1 in the preparation ofa medicament for treating a mammal which has a disorder requiring treatment with the protein in the formulation.
19. Use as in claim 18 wherein the formulation is for subcutaneous administration.
20. A formulation comprising anti-HER2 antibody in amount from about 5-40 mg/mL, sucrose or trehalose in an amount from about 10-100 mM, a buffer and a surfactant.
21. The formulation of claim 20 further comprising a bulking agent.
22. The formulation of claim 20 which is lyophilized and stable at 30° C for at least 6 months.
23. The formulation of claim 20 which is reconstituted with a diluent such that the anti-HER2 antibody concentration in the reconstituted formulation is from about 10-30 mg/mL, wherein the reconstituted formulation is stable at 2-8° C for at least about 30 days.
24. A formulation comprising anti-IgE antibody in amount from about 5-40 mg/mL, sucrose or trehalose in an amount from about 80-300 mM, a buffer and a surfactant.
25. The formulation of claim 24 which is lyophilized and stable at about 30°C for at least 1 year.
EP96925497A 1995-07-27 1996-07-23 Stabile isotonic lyophilized protein formulation Withdrawn EP0845997A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10178416.3A EP2275119B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation
DK04022777.9T DK1516628T3 (en) 1995-07-27 1996-07-23 Stable, isotonic lyophilized protein formulation
EP04022777.9A EP1516628B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US50801495A 1995-07-27 1995-07-27
US508014 1995-07-27
US08/615,369 US6267958B1 (en) 1995-07-27 1996-03-14 Protein formulation
US615369 1996-03-14
PCT/US1996/012251 WO1997004801A1 (en) 1995-07-27 1996-07-23 Stabile isotonic lyophilized protein formulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04022777.9A Division EP1516628B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation

Publications (1)

Publication Number Publication Date
EP0845997A1 true EP0845997A1 (en) 1998-06-10

Family

ID=27056058

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10178416.3A Expired - Lifetime EP2275119B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation
EP04022777.9A Expired - Lifetime EP1516628B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation
EP96925497A Withdrawn EP0845997A1 (en) 1995-07-27 1996-07-23 Stabile isotonic lyophilized protein formulation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP10178416.3A Expired - Lifetime EP2275119B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation
EP04022777.9A Expired - Lifetime EP1516628B1 (en) 1995-07-27 1996-07-23 Stable isotonic lyophilized protein formulation

Country Status (18)

Country Link
EP (3) EP2275119B1 (en)
JP (7) JPH11510170A (en)
CN (3) CN1151842C (en)
AR (2) AR003969A1 (en)
AU (1) AU716785B2 (en)
BR (1) BR9609743A (en)
CA (2) CA2745743A1 (en)
DK (2) DK1516628T3 (en)
ES (2) ES2435462T3 (en)
HK (2) HK1117075A1 (en)
IL (1) IL122910A (en)
MX (1) MX9800684A (en)
NO (2) NO323557B1 (en)
NZ (2) NZ313503A (en)
PT (2) PT2275119E (en)
RU (2) RU2497500C2 (en)
SI (2) SI2275119T1 (en)
WO (1) WO1997004801A1 (en)

Families Citing this family (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
CN1151842C (en) * 1995-07-27 2004-06-02 基因技术股份有限公司 Stable isotonic lyophilized protein formulation
GB9610992D0 (en) * 1996-05-24 1996-07-31 Glaxo Group Ltd Concentrated antibody preparation
EP0852951A1 (en) * 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stable lyophilized monoclonal or polyclonal antibodies containing pharmaceuticals
US6991790B1 (en) 1997-06-13 2006-01-31 Genentech, Inc. Antibody formulation
JP3919235B2 (en) * 1997-06-13 2007-05-23 ジェネンテク,インコーポレイテッド Antibody preparation
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
BR9909087A (en) * 1998-03-26 2000-12-05 Schering Corp Formulations for protection of peg-alpha interferon conjugates
EP2311436A1 (en) 1998-04-27 2011-04-20 Altus Pharmaceuticals Inc. Stabilized protein crystals, formulations containing them and methods of making them
DE69936946T2 (en) * 1998-05-06 2008-05-15 Genentech, Inc., South San Francisco Purification of antibodies by ion exchange chromatography
US20030166525A1 (en) 1998-07-23 2003-09-04 Hoffmann James Arthur FSH Formulation
CN1053590C (en) 1998-10-19 2000-06-21 卫生部长春生物制品研究所 Frozen dried heptitis A toxicity-reduced bio-vaccine and protective agent thereof
EP1124961B9 (en) 1998-10-23 2010-07-21 Kirin-Amgen Inc. Thrombopoietic compounds
DE60020529T2 (en) 1999-03-01 2006-04-27 Genentech Inc., San Francisco ANTIBODIES FOR CANCER TREATMENT AND DIAGNOSIS
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
JP4557098B2 (en) * 1999-03-31 2010-10-06 味の素株式会社 Stable 6-amidino-2-naphthyl 4-guanidinobenzoate acid addition salt preparation and method for producing the same
EP1180368B1 (en) * 1999-05-31 2007-04-18 Mitsubishi Chemical Corporation Freeze dried hgf preparations
AU5812800A (en) 1999-06-12 2001-01-02 Stefan Barth Pharmaceutical preparation
EP1191944A2 (en) 1999-06-25 2002-04-03 Genentech, Inc. METHODS OF TREATMENT USING ANTI-ErbB ANTIBODY-MAYTANSINOID CONJUGATES
CH694589A5 (en) 1999-06-25 2005-04-15 Genentech Inc Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies.
EP1064934A1 (en) * 1999-06-30 2001-01-03 Applied Research Systems ARS Holding N.V. GRF-containing lyophilized pharmaceutical composition
NZ517150A (en) 1999-08-27 2005-01-28 Genentech Inc Dosages for treatment with anti-ErbB2 antibodies
AU775373B2 (en) 1999-10-01 2004-07-29 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
IL149008A0 (en) * 1999-10-04 2002-11-10 Chiron Corp Stabilized liquid polypeptide-containing pharmaceutical compositions
ES2307553T3 (en) * 1999-12-02 2008-12-01 Novartis Vaccines And Diagnostics, Inc. COMPOSITIONS AND PROCEDURES TO STABILIZE BIOLOGICAL MOLECULES AFTER LIOPHILIZATION.
AU783246C (en) 1999-12-14 2007-03-15 Asahi Kasei Kabushiki Kaisha Stabilizing diluent for polypeptides and antigens
GB9930882D0 (en) * 1999-12-30 2000-02-23 Nps Allelix Corp GLP-2 formulations
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US6632979B2 (en) 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
DK1282443T3 (en) 2000-05-19 2010-01-04 Genentech Inc Gene detection assay to improve the likelihood of an effective response to an ErbB antagonist cancer therapy
EP1299128A2 (en) 2000-06-20 2003-04-09 Idec Pharmaceuticals Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
JP5485489B2 (en) * 2000-08-11 2014-05-07 中外製薬株式会社 Antibody-containing stabilized preparation
JP2004508420A (en) 2000-09-18 2004-03-18 アイデック ファーマスーティカルズ コーポレイション Combination therapy for treating autoimmune diseases using B cell depleting antibody / immunomodulatory antibody combination
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
ES2332402T5 (en) * 2000-10-12 2018-05-14 Genentech, Inc. Concentrated protein formulations of reduced viscosity
CN1501928A (en) 2000-11-02 2004-06-02 斯隆-凯特林癌症研究所 Small molecule compositions for binding to hsp90
NZ527284A (en) 2001-01-31 2007-03-30 Biogen Idec Inc Anti-CD23 antibodies for the immunotherapeutic treatment of malignancies including B cell chronic lymphocytic leukaemia
US20020159996A1 (en) 2001-01-31 2002-10-31 Kandasamy Hariharan Use of CD23 antagonists for the treatment of neoplastic disorders
CA2436180C (en) 2001-01-31 2011-11-08 Idec Pharmaceutical Corporation Immunoregulatory antibodies and uses thereof
WO2002094196A2 (en) 2001-05-23 2002-11-28 Sloan Kettering Institute For Cancer Research Method of treatment for cancers associated with elevated
GB0113179D0 (en) 2001-05-31 2001-07-25 Novartis Ag Organic compounds
CA2817619A1 (en) 2001-06-08 2002-12-08 Abbott Laboratories (Bermuda) Ltd. Methods of administering anti-tnf.alpha. antibodies
DE10133394A1 (en) * 2001-07-13 2003-01-30 Merck Patent Gmbh Liquid formulation containing cetuximab
JP4317010B2 (en) * 2001-07-25 2009-08-19 ピーディーエル バイオファーマ,インコーポレイティド Stable lyophilized pharmaceutical formulation of IgG antibody
IL161677A0 (en) * 2001-11-08 2004-09-27 Protein Design Labs Stable liquid pharmaceutical formulation of igg antibodies
CN100415769C (en) * 2002-02-07 2008-09-03 中国科学院过程工程研究所 Oligomeric or polymerized methylene protein and its separation and purification process and use
EP3578168A1 (en) 2002-02-14 2019-12-11 Chugai Seiyaku Kabushiki Kaisha Formulation of antibody-containing solutions comprising a sugar as a stabilizer
DE10211227A1 (en) * 2002-03-13 2003-10-02 Aventis Behring Gmbh Process for the reconstitution of lyophilized proteins
CA2481515C (en) 2002-04-10 2013-10-01 Genentech, Inc. Anti-her2 antibody variants
NZ537610A (en) * 2002-07-02 2006-07-28 Smithkline Beecham Corp Stable formulations of the C242 antibody
DK2263691T3 (en) 2002-07-15 2012-10-22 Hoffmann La Roche Treatment of cancer with the recombinant humanized monoclonal anti-ErbB2 antibody 2C4 (rhuMAb-2C4)
US20040033228A1 (en) 2002-08-16 2004-02-19 Hans-Juergen Krause Formulation of human antibodies for treating TNF-alpha associated disorders
LT1543038T (en) 2002-09-11 2017-07-10 Genentech, Inc. Protein purification
MY150740A (en) 2002-10-24 2014-02-28 Abbvie Biotechnology Ltd Low dose methods for treating disorders in which tnf? activity is detrimental
CN103040732B (en) * 2003-02-10 2015-04-01 伊兰药品公司 Immunoglobulin formulation and method of preparation thereof
US20050142139A1 (en) * 2003-03-21 2005-06-30 Norbert Schulke CD4-IgG2 formulations
ATE492292T2 (en) 2003-04-02 2011-01-15 Ares Trading Sa LIQUID OR FREEZE-DRIED PHARMACEUTICAL COMPOSITION CONTAINING FSH AND/OR LH, THE NON-IONIC SURFACTANT POLOXAMER 188 AND AN ANTIBACTERIAL AGENT
SI2335725T1 (en) 2003-04-04 2017-01-31 Genentech, Inc. High concentration antibody and protein formulations
AU2012200957B2 (en) * 2003-04-04 2014-10-23 Genentech, Inc. High concentration antibody and protein formulations
MXPA05010778A (en) 2003-04-09 2005-12-12 Genentech Inc Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor.
FR2853551B1 (en) * 2003-04-09 2006-08-04 Lab Francais Du Fractionnement STABILIZING FORMULATION FOR IMMUNOGLOBULIN G COMPOSITIONS IN LIQUID FORM AND LYOPHILIZED FORM
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
BRPI0410260A (en) * 2003-05-14 2006-05-16 Immunogen Inc drug conjugate composition
RS20150135A1 (en) 2003-05-30 2015-08-31 Genentech Inc. Treatment with anti-vegf antibodies
MXPA05013117A (en) 2003-06-05 2006-03-17 Genentech Inc Combination therapy for b cell disorders.
EP1638595B1 (en) 2003-06-20 2013-03-20 Ares Trading S.A. Freeze-dried fsh / lh formulations
MXPA06001283A (en) 2003-08-05 2006-04-11 Novo Nordisk As Novel insulin derivatives.
AU2004269196B2 (en) 2003-09-03 2010-03-04 Shmuel Bukshpan Methods and apparatus for rapid crystallization of biomolecules
US8277810B2 (en) 2003-11-04 2012-10-02 Novartis Vaccines & Diagnostics, Inc. Antagonist anti-CD40 antibodies
HUE038955T2 (en) 2003-11-05 2018-12-28 Roche Glycart Ag Antigen binding molecules with increased Fc receptor binding affinity and effector function
DE10355251A1 (en) * 2003-11-26 2005-06-23 Merck Patent Gmbh Water-based pharmaceutical preparation for treatment of tumors has active ingredient effective against receptor of endothelial growth factor receptor
WO2005072772A1 (en) * 2004-01-30 2005-08-11 Suomen Punainen Risti Veripalvelu Pharmaceutical compositions
WO2005089503A2 (en) * 2004-03-19 2005-09-29 Progenics Pharmaceuticals, Inc. Cd4-igg2 formulations
US7319032B2 (en) 2004-04-22 2008-01-15 Medtox Non-sugar sweeteners for use in test devices
US7727962B2 (en) 2004-05-10 2010-06-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powder comprising new compositions of oligosaccharides and methods for their preparation
US7611709B2 (en) 2004-05-10 2009-11-03 Boehringer Ingelheim Pharma Gmbh And Co. Kg 1,4 O-linked saccharose derivatives for stabilization of antibodies or antibody derivatives
US7723306B2 (en) 2004-05-10 2010-05-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Spray-dried powder comprising at least one 1,4 O-linked saccharose-derivative and methods for their preparation
DE102004022927A1 (en) * 2004-05-10 2005-12-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg 1,4 O-linked sucrose derivatives for the stabilization of antibodies or antibody derivatives
BRPI0510883B8 (en) 2004-06-01 2021-05-25 Genentech Inc drug-antibody conjugate compound, pharmaceutical composition, method of manufacturing a drug-antibody conjugate compound, and uses of a formulation, a drug-antibody conjugate and a chemotherapeutic agent, and a combination
WO2006014965A2 (en) * 2004-07-27 2006-02-09 Human Genome Sciences, Inc. Pharmaceutical formulation and process
US20060051347A1 (en) * 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
US20100111856A1 (en) 2004-09-23 2010-05-06 Herman Gill Zirconium-radiolabeled, cysteine engineered antibody conjugates
ES2579805T3 (en) 2004-09-23 2016-08-16 Genentech, Inc. Antibodies and conjugates engineered with cysteine
JO3000B1 (en) * 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
EP1817059A2 (en) 2004-12-01 2007-08-15 Genentech, Inc. Conjugates of 1,8-bis-naphthalimides with an antibody
JP5201992B2 (en) * 2004-12-15 2013-06-05 バイオビトラム・アクテイエボラーグ(パブリツク) Keratinocyte growth factor therapeutic formulation
CN102580084B (en) 2005-01-21 2016-11-23 健泰科生物技术公司 The fixed dosage of HER antibody is administered
CN1313161C (en) * 2005-01-27 2007-05-02 北京大学临床肿瘤学院 Preparation of radiative immune guiding operating medicine of colorectal disease
WO2006084030A2 (en) 2005-02-01 2006-08-10 Sloan-Kettering Institute For Cancer Research Small-molecule hsp90 inhibitors
US9403828B2 (en) 2005-02-01 2016-08-02 Sloan-Kettering Institute For Cancer Research Small-molecule Hsp90 inhibitors
NZ556286A (en) 2005-02-07 2010-11-26 Glycart Biotechnology Ag Antigen binding molecules that bind EGFR, vectors encoding same, and uses thereof
CN103251946A (en) 2005-02-23 2013-08-21 健泰科生物技术公司 Extending time to disease progression or survival in cancer patients using a her dimerization inhibitor
LT2586459T (en) * 2005-03-25 2017-09-25 Regeneron Pharmaceuticals, Inc. Vegf antagonist formulations
JP2009503105A (en) * 2005-08-03 2009-01-29 イミュノジェン・インコーポレーテッド Immune complex preparation
CN101291954B (en) 2005-08-26 2013-03-27 罗氏格黎卡特股份公司 Modified antigen binding molecules with altered cell signaling activity
WO2007062040A1 (en) * 2005-11-22 2007-05-31 Wyeth Immunoglobulin fusion protein formulations
US9309316B2 (en) 2005-12-20 2016-04-12 Bristol-Myers Squibb Company Stable subcutaneous protein formulations and uses thereof
KR101378194B1 (en) 2005-12-20 2014-03-27 브리스톨-마이어스 스큅 컴퍼니 Stable protein formulations
AR058568A1 (en) 2005-12-20 2008-02-13 Bristol Myers Squibb Co METHODS TO PRODUCE A COMPOSITION WITH CTLA4-IG MOLECULES FROM A CROP MEANS
TWI423986B (en) 2005-12-20 2014-01-21 必治妥美雅史谷比公司 Compositions and methods for producing a composition
WO2007074133A2 (en) 2005-12-28 2007-07-05 Novo Nordisk A/S Compositions comprising an acylated insulin and zinc and method of making the said compositions
EP1986612B1 (en) * 2006-02-07 2012-09-12 Shire Human Genetic Therapies, Inc. Stabilized composition of glucocerebrosidase
MY159375A (en) 2006-03-21 2016-12-30 Genentech Inc Combinatorial therapy
EP2389946A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
TWI392684B (en) 2006-04-05 2013-04-11 Abbott Biotech Ltd Antibody purification
US9399061B2 (en) 2006-04-10 2016-07-26 Abbvie Biotechnology Ltd Methods for determining efficacy of TNF-α inhibitors for treatment of rheumatoid arthritis
JO3324B1 (en) * 2006-04-21 2019-03-13 Amgen Inc Lyophilized Therapeutic Peptibody Formulations
AU2011265555B2 (en) * 2006-04-21 2016-03-10 Amgen Inc. Lyophilized therapeutic peptibody formulations
ES2406764T3 (en) 2006-06-16 2013-06-10 Regeneron Pharmaceuticals, Inc. Formulations comprising VEGF antagonists for intravitreal administration
AR062223A1 (en) 2006-08-09 2008-10-22 Glycart Biotechnology Ag MOLECULES OF ADHESION TO THE ANTIGEN THAT ADHER TO EGFR, VECTORS THAT CODE THEM, AND THEIR USES OF THESE
CN101199845B (en) * 2006-12-14 2012-05-23 上海国健生物技术研究院 Stable anti-IgE humanized single anti-agent
CN101199483B (en) * 2006-12-14 2011-01-26 上海中信国健药业股份有限公司 Stable anti-HER2 humanized antibody preparation
AR064826A1 (en) * 2007-01-09 2009-04-29 Wyeth Corp FORMULATIONS OF ANTI-IL-13 ANTIBODIES AND USES OF THE SAME. DEVICES, PATCH AND SYRINGE
CN104524567A (en) 2007-01-16 2015-04-22 阿布维公司 Methods for treating psoriasis
JP2010519220A (en) * 2007-02-16 2010-06-03 ワイス エルエルシー Use of sucrose to inhibit mannitol-induced protein aggregation
SI2132573T1 (en) 2007-03-02 2014-07-31 Genentech, Inc. Predicting response to a her dimerisation inhbitor based on low her3 expression
MX2009010361A (en) 2007-03-29 2009-10-16 Abbott Lab Crystalline anti-human il-12 antibodies.
EP2171451A4 (en) 2007-06-11 2011-12-07 Abbott Biotech Ltd Methods for treating juvenile idiopathic arthritis
ES2744384T3 (en) 2007-06-13 2020-02-24 Novo Nordisk As Pharmaceutical formulation comprising an insulin derivative
US8709731B2 (en) 2007-08-24 2014-04-29 Oncotherapy Science, Inc. DKK1 oncogene as therapeutic target for cancer and a diagnosing marker
EP2198021A4 (en) 2007-08-24 2011-01-19 Oncotherapy Science Inc Ebi3, dlx5, nptx1 and cdkn3 for target genes of lung cancer therapy and diagnosis
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
KR20090056543A (en) * 2007-11-30 2009-06-03 주식회사 녹십자 Pharmaceutical formulation comprising hepatitis b virus neutralizing human antibody
US11197916B2 (en) 2007-12-28 2021-12-14 Takeda Pharmaceutical Company Limited Lyophilized recombinant VWF formulations
CA2710762A1 (en) 2007-12-28 2009-07-09 Baxter International Inc. Recombinant vwf formulations
US8454960B2 (en) 2008-01-03 2013-06-04 The Scripps Research Institute Multispecific antibody targeting and multivalency through modular recognition domains
CN108864285A (en) 2008-01-03 2018-11-23 斯克里普斯研究院 Pass through the antibody target of modular recognition domain
US8557243B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute EFGR antibodies comprising modular recognition domains
US8574577B2 (en) 2008-01-03 2013-11-05 The Scripps Research Institute VEGF antibodies comprising modular recognition domains
US8557242B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute ERBB2 antibodies comprising modular recognition domains
EP2085095B1 (en) 2008-01-17 2012-03-07 Philogen S.p.A. Combination of an anti-EDb fibronectin antibody-IL-2 fusion protein, and a molecule binding to B cells, B cell progenitors and/or their cancerous counterpart
AR070141A1 (en) 2008-01-23 2010-03-17 Glenmark Pharmaceuticals Sa SPECIFIC HUMANIZED ANTIBODIES FOR VON WILLEBRAND FACTOR
TWI472339B (en) 2008-01-30 2015-02-11 Genentech Inc Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
MY159517A (en) 2008-03-14 2017-01-13 Biocon Ltd A monoclonal antibody and a method thereof
CY1112212T1 (en) * 2008-04-24 2015-12-09 Immatics Biotechnologies Gmbh NEW VEGETABLE FORMATS OF VOLUME CONNECTED WITH PARTICULARS OF ANTI-HUMAN LEVEL CELLS (HLA) CLASS I OR II
PT2113253E (en) * 2008-04-30 2010-06-15 Immatics Biotechnologies Gmbh Novel formulations of tumour-associated peptides binding to human leukocyte antigen (hla) class i or ii molecules for vaccines
US8093018B2 (en) 2008-05-20 2012-01-10 Otsuka Pharmaceutical Co., Ltd. Antibody identifying an antigen-bound antibody and an antigen-unbound antibody, and method for preparing the same
CA2727915C (en) 2008-07-15 2016-04-26 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
AR073295A1 (en) 2008-09-16 2010-10-28 Genentech Inc METHODS TO TREAT PROGRESSIVE MULTIPLE SCLEROSIS. MANUFACTURING ARTICLE.
DK2349314T3 (en) 2008-10-21 2013-05-27 Baxter Int Lyophilized preparations of recombinant VWF
US10118962B2 (en) 2008-10-29 2018-11-06 Ablynx N.V. Methods for purification of single domain antigen binding molecules
EP4104821A1 (en) * 2008-10-29 2022-12-21 Ablynx N.V. Formulations of single domain antigen binding molecules
AU2009309623B9 (en) 2008-10-30 2014-10-02 Novo Nordisk A/S Treating diabetes melitus using insulin injections with less than daily injection frequency
HUE024872T2 (en) 2008-11-22 2016-02-29 Hoffmann La Roche Use of anti-vegf antibody in combination with chemotherapy for treating breast cancer
EP2196476A1 (en) 2008-12-10 2010-06-16 Novartis Ag Antibody formulation
FR2940617B1 (en) 2008-12-30 2012-04-20 Fractionnement Et Des Biotechonologies Lab Franc IMMUNOGLOBULIN G COMPOSITION
SG174258A1 (en) 2009-03-06 2011-10-28 Genentech Inc Antibody formulation
EP2411411B1 (en) 2009-03-25 2016-08-31 F.Hoffmann-La Roche Ag Novel anti-alpha5beta1 antibodies and uses thereof
AU2010230346A1 (en) 2009-03-31 2011-07-28 Roche Glycart Ag Treatment of cancer with a humanized anti-EGFR IgG1antibody and irinotecan
AR075998A1 (en) 2009-04-01 2011-05-11 Genentech Inc TREATMENT OF INSULIN RESISTANT DISORDERS. PHARMACEUTICAL COMPOSITION. USE. KIT
US20100316639A1 (en) 2009-06-16 2010-12-16 Genentech, Inc. Biomarkers for igf-1r inhibitor therapy
WO2011017177A1 (en) 2009-07-28 2011-02-10 Shire Human Genetic Therapies Compositions and methods for treating gaucher disease
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
AR077848A1 (en) 2009-08-15 2011-09-28 Genentech Inc ANTI-ANGIOGENESIS THERAPY FOR THE TREATMENT OF BREAST CANCER PREVIOUSLY TREATED
AU2010292172A1 (en) 2009-09-09 2012-05-03 Centrose, Llc Extracellular targeted drug conjugates
AR078161A1 (en) * 2009-09-11 2011-10-19 Hoffmann La Roche VERY CONCENTRATED PHARMACEUTICAL FORMULATIONS OF AN ANTIBODY ANTI CD20. USE OF THE FORMULATION. TREATMENT METHOD
SI3133083T1 (en) 2009-10-01 2020-07-31 F. Hoffmann-La Roche Ag Multistep final filtration
MY165614A (en) * 2009-11-20 2018-04-18 Biocon Ltd Formulations of antibody
KR20120123299A (en) 2009-12-04 2012-11-08 제넨테크, 인크. Multispecific antibodies, antibody analogs, compositions, and methods
DK2512450T3 (en) 2009-12-15 2018-04-23 Ascendis Pharma Endocrinology Div A/S Dry growth hormone composition transiently bound to a polymer carrier
MX2012007676A (en) * 2009-12-29 2012-08-03 Hoffmann La Roche Antibody formulation.
TWI505838B (en) 2010-01-20 2015-11-01 Chugai Pharmaceutical Co Ltd Stabilized antibody
WO2011101328A2 (en) 2010-02-18 2011-08-25 Roche Glycart Ag Treatment with a humanized igg class anti egfr antibody and an antibody against insulin like growth factor 1 receptor
CA2789915C (en) 2010-02-19 2018-05-01 Cadila Pharmaceuticals Limited A pharmaceutical composition of killed cells with substantially retained immunogenicity
KR20190143480A (en) 2010-02-23 2019-12-30 제넨테크, 인크. Anti-angiogenesis therapy for the treatment of ovarian cancer
JP5937523B2 (en) 2010-03-01 2016-06-22 サイトダイン インコーポレイテッドCytoDyn, Inc. Concentrated protein formulations and uses thereof
MX2012010198A (en) 2010-03-01 2012-10-03 Bayer Healthcare Llc Optimized Monoclonal Antibodies against Tissue Factor Pathway Inhibitor (TFPI).
AU2011234264B2 (en) 2010-03-31 2016-02-04 Stabilitech Ltd Excipients for stabilising viral particles, polypeptides or biological material
ES2708989T3 (en) 2010-03-31 2019-04-12 Stabilitech Biopharma Ltd Method of preservation of alum adjuvants and alum-enhanced vaccines
DK2898890T3 (en) 2010-03-31 2019-11-25 Stabilitech Biopharma Ltd Stabilization of virus particles
RU2739078C2 (en) * 2010-04-27 2020-12-21 ЭсСиАйЭл Текнолоджи ГмбХ Stable aqueous protein compositions of mia/cd-rap
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011153243A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Anti-angiogenesis therapy for treating gastric cancer
KR101924653B1 (en) 2010-06-24 2018-12-03 제넨테크, 인크. Compositions and methods containing alkylgycosides for stabilizing protein-containing formulations
BR112012033457A2 (en) * 2010-07-02 2017-04-04 Medimmune Llc antibody formulations.
WO2012009705A1 (en) 2010-07-15 2012-01-19 Zyngenia, Inc. Ang-2 binding complexes and uses thereof
NZ605438A (en) 2010-07-22 2015-02-27 Harvard College Multiple input biologic classifier circuits for cells
JP2013538191A (en) 2010-07-23 2013-10-10 トラスティーズ オブ ボストン ユニバーシティ Anti-DEsupR inhibitors as therapeutics for inhibition of pathological angiogenesis and tumor cell invasiveness and for molecular imaging and targeted delivery
EA028945B1 (en) * 2010-10-06 2018-01-31 Ридженерон Фармасьютикалз, Инк. STABLE LIQUID PHARMACEUTICAL FORMULATIONS CONTAINING ANTIBODIES TO HUMAN INTERLEUKIN-4 RECEPTOR ALPHA (hIL-4Rα)
RU2013123515A (en) 2010-10-27 2014-12-10 Ново Нордиск А/С DIABETES TREATMENT USING INSULIN INJECTIONS INJECTED WITH VARIOUS INTERVALS
AR083847A1 (en) 2010-11-15 2013-03-27 Novartis Ag FC VARIANTS (CONSTANT FRAGMENT) SILENCERS OF ANTI-CD40 ANTIBODIES
EA201390810A1 (en) 2010-12-02 2013-09-30 Онколитикс Байотек Инк. LIQUID VIRAL COMPOSITIONS
CN103269716B (en) 2010-12-02 2015-05-27 昂科利蒂克斯生物科技公司 Lyophilized viral formulations
BR112013012422A2 (en) 2010-12-21 2016-08-30 Hoffmann La Roche "method for producing an antibody preparation and anti-her2 antibody"
CN102028661B (en) * 2010-12-31 2012-05-23 山东新时代药业有限公司 Pegylated recombinant human granulocyte colony stimulating factor freeze-dried powder/injection and preparation method thereof
KR20180023015A (en) 2011-01-13 2018-03-06 리제너론 파아마슈티컬스, 인크. Use of a vegf antagonist to treat angiogenic eye disorders
KR102031020B1 (en) 2011-03-31 2019-10-14 머크 샤프 앤드 돔 코포레이션 Stable formulations of antibodies to human programmed death receptor pd-1 and related treatments
WO2012149197A2 (en) 2011-04-27 2012-11-01 Abbott Laboratories Methods for controlling the galactosylation profile of recombinantly-expressed proteins
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
TWI527590B (en) * 2011-06-17 2016-04-01 艾瑞斯貿易公司 Freeze-dried formulations of fgf-18
US9574005B2 (en) 2011-07-19 2017-02-21 Chugai Seiyaku Kabushiki Kaisha Stable Protein-containing preparation containing argininamide or analogous compound thereof
US20130022551A1 (en) 2011-07-22 2013-01-24 Trustees Of Boston University DEspR ANTAGONISTS AND AGONISTS AS THERAPEUTICS
AR087305A1 (en) 2011-07-28 2014-03-12 Regeneron Pharma STABILIZED FORMULATIONS CONTAINING ANTI-PCSK9 ANTIBODIES, PREPARATION METHOD AND KIT
GB201117233D0 (en) 2011-10-05 2011-11-16 Stabilitech Ltd Stabilisation of polypeptides
AU2012322797B2 (en) 2011-10-14 2016-04-21 Genentech, Inc. Uses for and article of manufacture including HER2 dimerization inhibitor Pertuzumab
IN2014CN03555A (en) * 2011-10-25 2015-07-03 Onclave Therapeutics Ltd
WO2013091903A1 (en) 2011-12-22 2013-06-27 Novo Nordisk A/S Anti-crac channel antibodies
EP2793941A1 (en) 2011-12-23 2014-10-29 F.Hoffmann-La Roche Ag Articles of manufacture and methods for co-administration of antibodies
CN102512384B (en) * 2011-12-29 2014-11-26 嘉和生物药业有限公司 Novel freeze-dried preparation-type protein composition and preparation method thereof
KR102082363B1 (en) 2012-03-13 2020-02-27 에프. 호프만-라 로슈 아게 Combination therapy for the treatment of ovarian cancer
WO2013148315A1 (en) 2012-03-27 2013-10-03 Genentech, Inc. Diagnosis and treatments relating to her3 inhibitors
US9150645B2 (en) 2012-04-20 2015-10-06 Abbvie, Inc. Cell culture methods to reduce acidic species
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
US20140004131A1 (en) 2012-05-04 2014-01-02 Novartis Ag Antibody formulation
WO2013173687A1 (en) * 2012-05-18 2013-11-21 Genentech, Inc. High-concentration monoclonal antibody formulations
WO2013176754A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Novel purification of antibodies using hydrophobic interaction chromatography
US20140017318A1 (en) * 2012-07-10 2014-01-16 Kevin O'Connell Method to produce a medicinal product comprising a biologically active protein and the resulting product
SG11201500903XA (en) 2012-08-07 2015-03-30 Genentech Inc Combination therapy for the treatment of glioblastoma
FR2994390B1 (en) 2012-08-10 2014-08-15 Adocia METHOD FOR LOWERING THE VISCOSITY OF HIGH CONCENTRATION PROTEIN SOLUTIONS
US9592297B2 (en) 2012-08-31 2017-03-14 Bayer Healthcare Llc Antibody and protein formulations
US8613919B1 (en) 2012-08-31 2013-12-24 Bayer Healthcare, Llc High concentration antibody and protein formulations
US9206390B2 (en) 2012-09-02 2015-12-08 Abbvie, Inc. Methods to control protein heterogeneity
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
WO2014045081A1 (en) 2012-09-18 2014-03-27 Adocia Stable pharmaceutical composition, comprising an aqueous solution of an antibody-derived therapeutically active protein
US20150216977A1 (en) 2012-09-18 2015-08-06 Adocia Stable pharmaceutical composition, comprising an aqueous solution of an antibody-derived therapeutically active protein
WO2014063205A1 (en) 2012-10-26 2014-05-01 The University Of Queensland Use of endocytosis inhibitors and antibodies for cancer therapy
EP2914289B1 (en) * 2012-10-31 2019-05-22 Takeda GmbH Lyophilized formulation comprising gm-csf neutralizing compound
CA2895869C (en) * 2012-12-21 2020-09-22 Glenmark Pharmaceuticals S.A. Anti her2 antibody formulation
WO2014143205A1 (en) 2013-03-12 2014-09-18 Abbvie Inc. Human antibodies that bind human tnf-alpha and methods of preparing the same
WO2014159579A1 (en) 2013-03-14 2014-10-02 Abbvie Inc. MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
WO2014151878A2 (en) 2013-03-14 2014-09-25 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides
US10150800B2 (en) 2013-03-15 2018-12-11 Zyngenia, Inc. EGFR-binding modular recognition domains
JP6407174B2 (en) * 2013-03-15 2018-10-17 タケダ ゲー・エム・ベー・ハーTakeda GmbH Antibody formulations and uses of the formulations
JP2016519127A (en) 2013-04-30 2016-06-30 ノヴォ ノルディスク アー/エス New dosing regimen
WO2015011658A1 (en) 2013-07-23 2015-01-29 Biocon Limited Use of a cd6 binding partner and method based thereon
MX2016002177A (en) 2013-08-30 2016-06-28 Takeda Gmbh Antibodies neutralizing gm-csf for use in the treatment of rheumatoid arthritis or as analgesics.
AR097762A1 (en) 2013-09-27 2016-04-13 Intervet Int Bv DRY FORMULATIONS OF VACCINES THAT ARE STABLE AT ENVIRONMENTAL TEMPERATURE
EP3052640A2 (en) 2013-10-04 2016-08-10 AbbVie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
WO2015073884A2 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
EP3071237A1 (en) 2013-11-21 2016-09-28 Genmab A/S Antibody-drug conjugate lyophilised formulation
CN104707146B (en) * 2013-12-16 2019-04-16 浙江海正药业股份有限公司 A kind of pharmaceutical composition containing adalimumab
JP2017506640A (en) 2014-02-14 2017-03-09 セントローズ, エルエルシー Extracellular targeted drug conjugates
CN103893135B (en) * 2014-03-28 2017-01-11 中国医学科学院输血研究所 Lyophilized stabilizer composition of human plasma protein C and use of composition
GB201406569D0 (en) 2014-04-11 2014-05-28 Stabilitech Ltd Vaccine compositions
MX2016013559A (en) * 2014-04-16 2017-04-27 Biocon Ltd Stable protein formulations comprising a molar excess of sorbitol.
BR112016025126B1 (en) 2014-05-07 2024-02-15 Takeda Pharmaceutical Company Limited AQUEOUS COMPOSITION COMPRISING GMCSF NEUTRALIZING ANTIBODY, AND USE THEREOF
AU2015265487B2 (en) * 2014-05-28 2020-08-13 Nono Inc. Chloride salt of TAT-NR2B9c
CN106714830B (en) 2014-05-30 2020-08-25 上海复宏汉霖生物技术股份有限公司 anti-Epidermal Growth Factor Receptor (EGFR) antibodies
WO2015196070A1 (en) 2014-06-20 2015-12-23 Genentech, Inc. Chagasin-based scaffold compositions, methods, and uses
JP6634394B2 (en) * 2014-06-26 2020-01-22 アムジェン インコーポレイテッド Protein preparation
WO2016019969A1 (en) 2014-08-08 2016-02-11 Ludwig-Maximilians-Universität München Subcutaneously administered bispecific antibodies for use in the treatment of cancer
CN114181312A (en) 2014-09-10 2022-03-15 豪夫迈·罗氏有限公司 Galactose engineered immunoglobulin 1 antibodies
RS61431B1 (en) 2014-11-19 2021-03-31 Axon Neuroscience Se Humanized tau antibodies in alzheimer's disease
WO2016123329A2 (en) 2015-01-28 2016-08-04 Genentech, Inc. Gene expression markers and treatment of multiple sclerosis
CN114478791A (en) 2015-04-03 2022-05-13 优瑞科生物技术公司 Constructs targeting AFP peptide/MHC complexes and uses thereof
CN107660149B (en) 2015-04-21 2021-04-27 舒泰神(北京)生物制药股份有限公司 Nerve growth factor composition and injection powder
WO2016169453A1 (en) 2015-04-21 2016-10-27 舒泰神(北京)生物制药股份有限公司 Nerve growth factor composition and powder injection
CA2980189A1 (en) 2015-04-24 2016-10-27 Genentech, Inc. Multispecific antigen-binding proteins
PE20221007A1 (en) 2015-06-24 2022-06-15 Hoffmann La Roche ANTI-TRANSFERRIN RECEPTOR ANTIBODIES WITH ENGINEERED AFFINITY
CN107922507B (en) 2015-08-18 2022-04-05 瑞泽恩制药公司 anti-PCSK 9 inhibitory antibodies for treating hyperlipidemic patients receiving lipoprotein apheresis
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
CN114031689A (en) 2015-10-02 2022-02-11 豪夫迈·罗氏有限公司 Bispecific anti-human CD 20/human transferrin receptor antibodies and methods of use
IL293708A (en) 2015-10-06 2022-08-01 Genentech Inc Method for treating multiple sclerosis
CA3007276C (en) 2015-12-03 2021-12-28 Regeneron Pharmaceuticals, Inc. Use of vegf inhibitor to treat macular degeneration in a patient population
BR112018014175A2 (en) 2016-01-12 2018-12-26 Intron Biotechnology Inc antibacterial composition and method for treating staph infections with antibacterial composition
JP7085482B2 (en) * 2016-01-12 2022-06-16 イントロン バイオテクノロジー,インコーポレイテッド How to make a lyophilized formulation for Staphylococcus infection
WO2017121867A1 (en) 2016-01-13 2017-07-20 Genmab A/S Formulation for antibody and drug conjugate thereof
CN108699156A (en) 2016-03-01 2018-10-23 豪夫迈·罗氏有限公司 The outstanding trastuzumab in shore difficult to understand and Rituximab variant of ADCP with reduction
US11297828B2 (en) 2016-03-14 2022-04-12 The Regents Of The University Of Michigan Surface tension mediated lyo-processing technique for preservation of biologics
MX2018013683A (en) 2016-05-10 2019-06-17 Genentech Inc Methods of decreasing trisulfide bonds during recombinant production of polypeptides.
SI3463308T1 (en) * 2016-06-01 2022-04-29 Servier IP UK Limited Formulations of polyalkylene oxide-asparaginase and methods of making and using the same
GB201610198D0 (en) 2016-06-10 2016-07-27 Ucb Biopharma Sprl Anti-ige antibodies
JP2019534858A (en) 2016-09-09 2019-12-05 ジェネンテック, インコーポレイテッド Selective peptide inhibitor of FRIZZLED
JP7072576B2 (en) 2016-09-16 2022-05-20 シャンハイ・ヘンリウス・バイオテック・インコーポレイテッド Anti-PD-1 antibody
JP2019534263A (en) * 2016-10-07 2019-11-28 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Lyophilized protein stable at room temperature
AU2017344462A1 (en) 2016-10-21 2019-05-02 Biocon Limited A monoclonal antibody and a method of use for the treatment of lupus
AU2017361549B2 (en) 2016-11-21 2023-12-21 Obi Pharma, Inc. Conjugated biological molecules, pharmaceutical compositions and methods
US11389515B2 (en) 2016-12-15 2022-07-19 Talengen International Limited Method for mitigating heart disease
TW201829448A (en) 2016-12-15 2018-08-16 大陸商深圳瑞健生命科學硏究院有限公司 Method and drug for preventing and treating obesity
EP3556384B1 (en) 2016-12-15 2024-04-10 Talengen International Limited Plasminogen for use in treating diabetes
EP3556381A4 (en) 2016-12-15 2020-09-23 Talengen International Limited Drug for preventing and treating osteoporosis and uses thereof
TWI684459B (en) 2016-12-15 2020-02-11 大陸商深圳瑞健生命科學研究院有限公司 A method for treating atherosclerosis and its complications
CA3047171A1 (en) 2016-12-15 2018-06-21 Talengen International Limited Method for preventing and treating pathological renal tissue injury
CA3046666A1 (en) 2016-12-15 2018-06-21 Talengen International Limited Method for preventing and treating tissue and organ fibrosis
CN110099926A (en) 2016-12-28 2019-08-06 豪夫迈·罗氏有限公司 The treatment of advanced stage HER2 expressivity cancer
EP3568468A4 (en) 2017-01-12 2020-12-30 Eureka Therapeutics, Inc. Constructs targeting histone h3 peptide/mhc complexes and uses thereof
CN110167594B (en) 2017-01-17 2023-11-21 豪夫迈·罗氏有限公司 Subcutaneous HER2 antibody formulations
US20210330801A1 (en) 2017-03-02 2021-10-28 Cadila Healthcare Limited Novel protein drug conjugate formulation
KR20230144110A (en) 2017-03-02 2023-10-13 제넨테크, 인크. Adjuvant treatment of her2-positive breast cancer
CA3059820A1 (en) 2017-04-26 2018-11-01 Eureka Therapeutics, Inc. Constructs specifically recognizing glypican 3 and uses thereof
RU2019138507A (en) 2017-05-02 2021-06-02 Мерк Шарп И Доум Корп. ANTIBODY AGAINST LAG3 AND JOINT ANTIBODY AGAINST LAG3 AND ANTIBODY AGAINST PD-1
JOP20190260A1 (en) 2017-05-02 2019-10-31 Merck Sharp & Dohme Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof
GB2562241B (en) 2017-05-08 2022-04-06 Stabilitech Biopharma Ltd Vaccine compositions
US11654194B2 (en) 2017-05-16 2023-05-23 Jiangsu Hengrui Medicine Co., Ltd. PD-L1 antibody pharmaceutical composition and use thereof
JP7438942B2 (en) 2017-10-30 2024-02-27 エフ. ホフマン-ラ ロシュ アーゲー Methods for in vivo generation of multispecific antibodies from monospecific antibodies
CN111465408B (en) 2017-12-15 2023-07-04 泰伦基国际有限公司 Method and medicine for preventing or treating osteoarthritis
BR112020018868A2 (en) 2018-03-28 2021-01-26 Axon Neuroscience Se antibody-based methods to detect and treat alzheimer's disease
US11648317B2 (en) * 2018-04-13 2023-05-16 Genentech, Inc. Stable anti-CD79B immunoconjugate formulations
EP3790532A1 (en) 2018-05-10 2021-03-17 Regeneron Pharmaceuticals, Inc. High concentration vegf receptor fusion protein containing formulations
US11519020B2 (en) 2018-05-25 2022-12-06 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
AU2019288136A1 (en) 2018-06-18 2021-01-07 Eureka Therapeutics, Inc. Constructs targeting prostate-specific membrane antigen (PSMA) and uses thereof
US10335464B1 (en) 2018-06-26 2019-07-02 Novo Nordisk A/S Device for titrating basal insulin
EP3852784A1 (en) 2018-09-20 2021-07-28 Mandalmed, Inc. Methods and compositions for preventing, treating, and reversing liver fibrosis
WO2020089743A1 (en) * 2018-11-02 2020-05-07 Cadila Healthcare Limited Pharmaceutical composition of pegylated l-asparaginase
EP3880714A4 (en) 2018-11-16 2022-07-20 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
GB201820547D0 (en) 2018-12-17 2019-01-30 Oxford Univ Innovation Modified antibodies
GB201820554D0 (en) 2018-12-17 2019-01-30 Univ Oxford Innovation Ltd BTLA antibodies
CN111375057A (en) * 2018-12-28 2020-07-07 上海复宏汉霖生物技术股份有限公司 Pharmaceutical formulation comprising anti-Her 2 monoclonal antibody
CN112121150A (en) * 2019-06-24 2020-12-25 杭州生物医药创新研究中心 Fibroblast growth factor 10 freeze-dried powder
CN112300279A (en) 2019-07-26 2021-02-02 上海复宏汉霖生物技术股份有限公司 Methods and compositions directed to anti-CD 73 antibodies and variants
EP3808777A1 (en) 2019-10-16 2021-04-21 Glenmark Specialty S.A. Stable liquid antibody formulations
WO2021143906A1 (en) 2020-01-17 2021-07-22 泰伦基国际有限公司 Method for treatment of nerve injury and related disease
CN115427066A (en) 2020-02-06 2022-12-02 泰伦基国际有限公司 Method and medicine for preventing and treating multiple sclerosis
CN115066440A (en) 2020-02-28 2022-09-16 上海复宏汉霖生物技术股份有限公司 anti-CD 137 constructs and uses thereof
JP2023516941A (en) 2020-02-28 2023-04-21 上海復宏漢霖生物技術股▲フン▼有限公司 Anti-CD137 constructs, multispecific antibodies and uses thereof
TW202143999A (en) 2020-03-24 2021-12-01 大陸商深圳瑞健生命科學研究院有限公司 Method and drug for promoting degradation of misfolded protein and aggregate thereof
CN115697386A (en) 2020-03-24 2023-02-03 泰伦基国际有限公司 Method and medicine for treating Parkinson's disease
TW202144001A (en) 2020-03-24 2021-12-01 大陸商深圳瑞健生命科學研究院有限公司 Method and drug for treating alzheimer disease
WO2021190563A1 (en) 2020-03-24 2021-09-30 泰伦基国际有限公司 Method and medicine for treating huntington's disease
US20230220057A1 (en) 2020-05-27 2023-07-13 Staidson (Beijing) Biopharmaceuticals Co., Ltd. Antibodies specifically recognizing nerve growth factor and uses thereof
AU2021283345A1 (en) 2020-06-02 2023-02-02 Dynamicure Biotechnology Llc Anti-CD93 constructs and uses thereof
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
GB202008860D0 (en) 2020-06-11 2020-07-29 Univ Oxford Innovation Ltd BTLA antibodies
WO2021250275A1 (en) * 2020-06-12 2021-12-16 Ichnos Sciences SA Antibody formulation diluent
CN113827717A (en) * 2020-06-23 2021-12-24 三生国健药业(上海)股份有限公司 anti-HER 2 monoclonal antibody freeze-dried preparation and preparation method thereof
US20230250191A1 (en) 2020-07-10 2023-08-10 Shanghai Jemincare Pharmaceutical Co., Ltd. Anti-ige engineered antibody and application thereof
AU2021315665A1 (en) 2020-07-29 2023-03-16 Dynamicure Biotechnology Llc Anti-CD93 constructs and uses thereof
JP2023537751A (en) 2020-08-14 2023-09-05 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Methods for treating multiple sclerosis with ocrelizumab
CN114246944A (en) * 2020-09-24 2022-03-29 盛禾(中国)生物制药有限公司 Pharmaceutical composition of bispecific antibody and application thereof
CN112684177B (en) * 2020-12-17 2024-05-28 北京维德维康生物技术有限公司 Milk product multi-factor rapid detection kit and detection method thereof
WO2022187863A1 (en) 2021-03-05 2022-09-09 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
EP4314049A1 (en) 2021-03-25 2024-02-07 Dynamicure Biotechnology LLC Anti-igfbp7 constructs and uses thereof
EP4355785A1 (en) 2021-06-17 2024-04-24 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
TW202317633A (en) 2021-07-08 2023-05-01 美商舒泰神(加州)生物科技有限公司 Antibodies specifically recognizing tnfr2 and uses thereof
WO2023284714A1 (en) 2021-07-14 2023-01-19 舒泰神(北京)生物制药股份有限公司 Antibody that specifically recognizes cd40 and application thereof
WO2023019556A1 (en) * 2021-08-20 2023-02-23 齐鲁制药有限公司 High-concentration anti-her2 antibody preparation and use thereof
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
WO2024037633A2 (en) 2022-08-19 2024-02-22 Evive Biotechnology (Shanghai) Ltd Formulations comprising g-csf and uses thereof
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
CN115746082A (en) * 2022-12-02 2023-03-07 大连工业大学 Method for regulating and controlling glycosylated cod protein structure and application of method in preparation of high internal phase emulsion

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896028A (en) * 1981-11-30 1983-06-07 Takeda Chem Ind Ltd Preparation of human ige
US4482483A (en) * 1983-04-06 1984-11-13 Armour Pharmceutical Company Composition of intravenous immune globulin
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1987000196A1 (en) * 1985-07-09 1987-01-15 Quadrant Bioresources Limited Protection of proteins and the like
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
JPH0827283B2 (en) * 1986-03-10 1996-03-21 財団法人化学及血清療法研究所 Composition for immunoaggregation reaction
US4806343A (en) * 1986-03-13 1989-02-21 University Of Southwestern Louisiana Cryogenic protectant for proteins
JPS62289523A (en) * 1986-06-09 1987-12-16 Green Cross Corp:The Heat treatment of immunoglobulin for intravenous administration
JP3040121B2 (en) * 1988-01-12 2000-05-08 ジェネンテク,インコーポレイテッド Methods of treating tumor cells by inhibiting growth factor receptor function
DE68920693T2 (en) * 1988-03-30 1995-05-24 Toray Industries Freeze-dried composition containing a horseradish peroxidase-labeled Fab 'fragment of an anti-human beta interferon antibody and trehalose; EIA kit containing this composition.
JPH01268645A (en) * 1988-04-18 1989-10-26 Teijin Ltd Agent for suppressing schwartzman reaction
DE68908175T2 (en) * 1988-05-27 1994-03-03 Centocor Inc FREEZE DRIED FORMULATION FOR ANTIBODY PRODUCTS.
CN1047342A (en) * 1989-05-13 1990-11-28 杭州市中心血站 The production of Factor IX and virus inactivating method thereof
DE69026380T2 (en) * 1989-06-23 1996-10-17 Liposome Co Inc TARGET LIPOSOMES AND METHOD FOR COUPLING LIPOSOME PROTEINS
ES2096590T3 (en) 1989-06-29 1997-03-16 Medarex Inc BI-SPECIFIC REAGENTS FOR AIDS THERAPY.
US5011676A (en) * 1990-03-27 1991-04-30 Thomas Jefferson University Method to directly radiolabel antibodies for diagnostic imaging and therapy
AU662311B2 (en) * 1991-02-05 1995-08-31 Novartis Ag Recombinant antibodies specific for a growth factor receptor
JPH0565233A (en) * 1991-03-08 1993-03-19 Mitsui Toatsu Chem Inc Monoclonal antibody-containing lyophilized preparation
CA2102511A1 (en) 1991-05-14 1992-11-15 Paul J. Higgins Heteroconjugate antibodies for treatment of hiv infection
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
DE69220080T2 (en) * 1991-10-11 1997-12-11 Abbott Lab REAGENT COMPOSITION IN THE FORM OF USER UNITS FOR SPECIFIC BINDING TESTS
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
US5290764A (en) * 1992-01-14 1994-03-01 The Dupont Merck Pharmaceutical Company Stabilization of active plasminogen activator inhibitor-1
CA2140280A1 (en) 1992-08-17 1994-03-03 Avi J. Ashkenazi Bispecific immunoadhesins
FR2700471B1 (en) * 1993-01-21 1995-04-07 Pasteur Merieux Serums Vacc Use of anti-LFA-1 monoclonal antibodies for the preparation of a medicament intended to prevent rejection of solid organ transplants and medicaments obtained.
ATE197550T1 (en) * 1993-02-23 2000-12-15 Genentech Inc STABILIZATION OF POLYPEPTIDES TREATED WITH ORGANIC SOLVENTS USING AN EXCIPIENT
FR2708467B1 (en) * 1993-07-30 1995-10-20 Pasteur Merieux Serums Vacc Stabilized immunoglobulin preparations and process for their preparation.
DE4344824C1 (en) * 1993-12-28 1995-08-31 Immuno Ag Highly concentrated immunoglobulin preparation and process for its preparation
FR2719479B1 (en) * 1994-05-04 1996-07-26 Sanofi Elf Stable lyophilized formulation comprising a protein: assay kit.
DK0762897T3 (en) * 1994-06-02 2003-07-21 Elan Drug Delivery Ltd Process for preventing protein / peptide aggregation by rehydration or thawing
CN1151842C (en) * 1995-07-27 2004-06-02 基因技术股份有限公司 Stable isotonic lyophilized protein formulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9704801A1 *

Also Published As

Publication number Publication date
JP2007238628A (en) 2007-09-20
AR074517A2 (en) 2011-01-26
NO980335L (en) 1998-03-26
BR9609743A (en) 1999-03-02
NZ500539A (en) 2001-11-30
IL122910A (en) 2002-05-23
JP2017039778A (en) 2017-02-23
PT2275119E (en) 2013-11-21
HK1117075A1 (en) 2009-01-09
EP1516628B1 (en) 2013-08-21
WO1997004801A1 (en) 1997-02-13
CN1539505A (en) 2004-10-27
AR003969A1 (en) 1998-09-30
NZ313503A (en) 2000-01-28
HK1152876A1 (en) 2012-03-16
NO980335D0 (en) 1998-01-26
RU2497500C2 (en) 2013-11-10
DK2275119T3 (en) 2013-11-11
JP2011256205A (en) 2011-12-22
CN1191490A (en) 1998-08-26
JP5043507B2 (en) 2012-10-10
EP1516628A1 (en) 2005-03-23
CN102416176A (en) 2012-04-18
NO2007012I1 (en) 2007-11-29
IL122910A0 (en) 1998-08-16
JP5043506B2 (en) 2012-10-10
ES2434840T3 (en) 2013-12-17
NO323557B3 (en) 2007-06-11
CN1151842C (en) 2004-06-02
JP2007217430A (en) 2007-08-30
PT1516628E (en) 2013-09-24
MX9800684A (en) 1998-04-30
CA2226575A1 (en) 1997-02-13
AU716785B2 (en) 2000-03-09
EP2275119A1 (en) 2011-01-19
CN100360184C (en) 2008-01-09
EP2275119B1 (en) 2013-09-25
AU6599296A (en) 1997-02-26
JP2011256206A (en) 2011-12-22
SI2275119T1 (en) 2013-12-31
DK1516628T3 (en) 2013-09-08
CA2745743A1 (en) 1997-02-13
SI1516628T1 (en) 2013-10-30
NO323557B1 (en) 2007-06-11
JPH11510170A (en) 1999-09-07
RU2013141049A (en) 2015-03-20
CA2226575C (en) 2011-10-18
JP2016033156A (en) 2016-03-10
ES2435462T3 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
US9283273B2 (en) Protein formulation
CA2226575C (en) Stabile isotonic lyophilized protein formulation
US6685940B2 (en) Protein formulation
RU2229288C2 (en) Stable isotonic lyophilized protein composition
MXPA98000684A (en) Formulation of isotonic protocols isotonic s
PT1771208E (en) Use of thioflavin radiolabeled derivatives in amyloid imaging for assessing anti-amyloid therapies
IL155002A (en) Stable liquid formulations comprising a monoclonal antibody, a method for reducing the kinematic viscosity of such a formulation and an article of manufacture copmrising a container containing such formulation
JP2014148555A (en) Protein formulation
AU746668B2 (en) Protein formulation
CA2751188A1 (en) Reduced-viscosity concentrated protein formulations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 980216;LT PAYMENT 980216;LV PAYMENT 980216;SI PAYMENT 980216

17Q First examination report despatched

Effective date: 20010719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040930

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1011185

Country of ref document: HK