EP0820212B1 - Acoustic signal processing based on loudness control - Google Patents

Acoustic signal processing based on loudness control Download PDF

Info

Publication number
EP0820212B1
EP0820212B1 EP97810460A EP97810460A EP0820212B1 EP 0820212 B1 EP0820212 B1 EP 0820212B1 EP 97810460 A EP97810460 A EP 97810460A EP 97810460 A EP97810460 A EP 97810460A EP 0820212 B1 EP0820212 B1 EP 0820212B1
Authority
EP
European Patent Office
Prior art keywords
filter
signal
value
interpolation
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810460A
Other languages
German (de)
French (fr)
Other versions
EP0820212A3 (en
EP0820212A2 (en
Inventor
Arthur Schaub
Remo Leber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bernafon AG
Original Assignee
Bernafon AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernafon AG filed Critical Bernafon AG
Publication of EP0820212A2 publication Critical patent/EP0820212A2/en
Publication of EP0820212A3 publication Critical patent/EP0820212A3/en
Application granted granted Critical
Publication of EP0820212B1 publication Critical patent/EP0820212B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression

Definitions

  • the invention relates to a method for the loudness-controlled processing of acoustic signals in sound processing equipment and to an apparatus for carrying out the method according to the preambles of the independent claims.
  • the invention is particularly suitable for use in hearing aids for the hearing impaired; incoming acoustic signals are processed in such a way that the loudness subjectively perceived by the hearing impaired again always corresponds to the loudness perceived by normal hearing persons.
  • the idea of the loudness-controlled processing of acoustic signals has been known for some time and has been described by various authors in the specialist literature, for example also by N. Dillier et al. in the Journal of Rehabilitation Research and Development, Vol. 1, 1993, pp. 100-103 , The method is based on the fact that normal hearing and hearing impaired known test signals for assessing the subjectively perceived loudness are presented. As test signals, harmonic sine signals or narrow band noise are used. The subjectively perceived loudness depends on the signal power and on the frequency of a sine signal, or on the frequency of the dominant signal components of a complex signal. The subjective loudness data are on a normalized scale with value range [0, 1].
  • hearing loss-specific, loudness-dependent correction data By comparing the information of a hearing impaired person with those of a reference group of normal hearing impaired, hearing loss-specific, loudness-dependent correction data can be determined. In a suitable signal processing method, these correction data are then used to prepare the hearing impaired the acoustic signals of his environment in the targeted manner. In the aforementioned article, in comprehensibility tests with a group of 13 hearing impaired, remarkable improvements in intelligibility were demonstrated.
  • the loudness-controlled processing in the previously known form can not be used in practice. Namely, as described in the article mentioned, the processing takes place by Fourier transformation of short signal segments, modification of the short-term spectra and back transformation of the modified short-term spectra into the time domain. Due to the segment-by-segment processing, the processed signal has a delay of almost 20 ms. In intelligibility tests, this delay does not matter. However, in practice, when the hearing impaired person also speaks and perceives his own voice as being delayed, it is totally unacceptable. In the method described in the article mentioned the duration of the individual segments is 12.8 ms, and this value can not be significantly undershot, because to obtain a useful short-term spectrum, a minimum segment duration of this magnitude is essential.
  • the loudness model used in the processing In contrast to the simple test signals, the signal power of speech, music and noise is distributed over a wide frequency interval in a time-dependent and complex manner. With a loudness model, a loudness value is assigned to these complex signals in a time-dependent manner, which in the ideal case coincides exactly with the loudness perceived by normal hearing persons. The value determined with the loudness model is used for the time-dependent control of the signal processing.
  • the loudness model described in the article mentioned takes into account not only the total energy of a signal segment but also the center of gravity frequency of its short-term spectrum. To calculate the center of gravity frequency is based on fundamentals of E.
  • the loudness subjectively perceived by the hearing aid user should always correspond to the loudness perceived by normal hearing persons.
  • the signal delay should be so small that a hearing aid user is not irritated by the delayed perception of his own voice when speaking. It should also reduce the computational resources compared to known methods for the loudness-controlled processing of acoustic signals.
  • an apparatus for carrying out the method according to the invention is to be created.
  • the processing of the acoustic signal without Fourier transformation takes place, ie completely in the time domain, and also without division into subband signals.
  • the peculiarity of the inventive method is that a characteristic of the loudness control ⁇ is calculated in an iterative manner and used to control a time-dependent correction filter.
  • iterative calculation mode is meant that a new value is calculated for the control variable ⁇ at each sampling time, using values which have the quantities necessary for their calculation in the respectively preceding sampling time.
  • the loudness-specific control variable is thus determined not only as an average of successive signal segments but as a continuous time function.
  • the short signal delay typically measured at 2 ms, represents the observation time required for reliable estimation beyond the respective validity time point, and thus, unlike the segment-wise method, is not merely the result of an adverse property of the chosen implementation.
  • the iterative method of calculation takes place in the method according to the invention by means of particularly efficient and at the same time original method steps.
  • the time-dependent correction filter is controlled by assigning new values to parameters of the correction filter at each sampling time by interpolation with the aid of the control variable ⁇ .
  • the hearing-impaired correction data are stored as gain values for the individual spectral lines of a short-term spectrum
  • for well-defined values of the control variable ⁇ coefficient sets for prototype filters are determined in advance and stored. The transfer functions of these prototype filters run along the corresponding gain values, which are determined in the segment-by-segment procedure for the individual spectral lines of a short-term spectrum.
  • sets of coefficients are used in the process according to the invention which are known to be suitable for interpolation, ie that the transfer function determined by interpolated coefficients is expected to run between the transfer functions determined by the coefficient sets on which the interpolation is based.
  • the invention further relates to a device for carrying out the method according to the invention.
  • This device contains a stage for the iterative calculation of the loudness characteristic control variable ⁇ and thus a time-dependent controlled correction filter stage, which prepares incoming acoustic signals target setting.
  • the already mentioned drastic reduction of the required processing resources has different causes.
  • the iterative calculation method eliminates the segment-by-segment buffering of the input and output signals. Then, saving the coefficient sets for the prototype filters also results in a substantial saving compared to storing the gain values for the individual spectral lines of the short-term spectra.
  • FIG. 1 shows the use of the inventive method and the method itself in a schematic overview.
  • An acoustic signal is converted by a microphone 1 into an electrical signal, which is digitized by a signal converter 2 and then freed in a high-pass filter 3 of any offset and lowest-frequency interference signal components.
  • the essential steps of the method according to the invention consist in the processing of an output signal x of the high-pass filter 3.
  • a processing stage 4 the iterative calculation of the control variable ⁇ takes place.
  • the parameters of a time-dependent correction filter 7 are thus determined and transferred to this.
  • a delay stage 6 provides with respect to the filtering with the correction filter 7 for the synchronization of the signal x with the filter parameter values derived therefrom by causing a corresponding signal delay, for example by 2 ms.
  • the delay stage 6 is advantageously designed as a cyclic buffer with 32 memory locations.
  • the filtered with the correction filter 7 signal y passes to a signal converter 8 and is converted there into an analog electrical signal.
  • an analog amplifier stage 9 it is amplified with a hearing impaired but constant gain value g e , and then fed to an electro-acoustic signal converter 10.
  • the value of g e is determined in processing the coefficient sets for the prototype filters, such that the 16-bit number format used in the apparatus for performing the method is used as optimally as possible, with limitation of the processed signals due to the assumption in the apparatus However, saturation arithmetic only exceptionally effective.
  • the loudness of complex signals can be determined on the basis of the total energy of short signal segments and the center of gravity frequency of their short-term spectra.
  • the loudness depends approximately quadratically on the signal energy expressed on a logarithmic scale.
  • L represents the loudness limited to the value range [L min , L max ], and L min and L max are sensibly selected minimum and maximum values of loudness, thus defining the working range of the method within which the correction filter due to smallest changes the loudness is constantly updated.
  • the block diagram in Fig. 2 shows in more detail how the control variable ⁇ is obtained from the input signal x.
  • a momentary signal power q takes the place of the signal energy of a short signal segment and an instantaneous center of gravity c takes the place of the center frequency of its short-term spectrum.
  • These quantities are determined in processing stages 11-15.
  • corresponding output signal values c r and q r due to the iterative type of calculation still have an undesired scattering, which is eliminated in subsequent smoothing filters 14 and 15.
  • the smoothed signals c and q are applied in a processing stage 16 to the already mentioned two-dimensional interpolation, wherein the successive output signal values ⁇ r also have a still undesirable scattering, which is eliminated with a subsequent smoothing filter 17.
  • An essential aspect of the method according to the invention lies in the iterative calculation mode of the logarithmic signal power q as well as the center of gravity frequency c expressed on a bar scale, ie the conversion of the formula (1) into an iterative calculation scheme.
  • a frequency-selective weighting of the input signal x is made with a filter, which is hereinafter referred to as a frequency group filter.
  • the frequency group filter is in Fig. 2 shown as processing stage 11, and its output signal is denoted by ⁇ .
  • a frequency-selective weighting of the signal ⁇ is carried out in the method according to the invention with a filter which is referred to below as a bark filter.
  • the denominator in formula (4) in turn causes a normalization for the purpose of optimal use of the given number format.
  • the transfer function H B (f) is also approximated by a second order recursive digital filter 12, which in turn maps the in Fig. 3 having shown structure.
  • a simple first-order estimated value calculation unit is used for the time-exponentially weighted expected value of the squared input signal.
  • Such an estimated value calculation unit is for the general case, with input signal u and output signal v, in Fig. 4 shown.
  • a new output signal value v results from the fact that the output signal value of the preceding sampling instant is multiplied by the constant (1- ⁇ ) and the square of the new input signal value u multiplied by the constant factor ⁇ is added to this product.
  • the adaptation constant ⁇ for which 0 ⁇ ⁇ ⁇ 1 the speed at which the output signal v follows the changing input signal power can be controlled.
  • the simple estimate calculation unit of Fig. 4 has the disadvantages that a doubly wide number format is required for processing the squared input signal, and that the logarithm of the output signal v is additionally required for the subsequent calculations. Both Aspects in the inventive method in a simple way, as in Fig. 5 by embedding the simple estimate computing unit of Fig. 4 solved in a digital control loop.
  • the operation of the signal flow diagram in Fig. 5 is based on the fact that the variable v is controlled to a fixed setpoint. For this purpose, for each newly calculated signal value v, the incremental logarithmic increase or decrease in the signal power is determined, which corresponds to the deviation of the value v from the predetermined desired value.
  • the desired logarithmic signal power p results in the sequence by simply accumulating the successive incremental change values.
  • the iterative calculation of the center of gravity frequency is based on the calculation of the quotient of the signal powers of the signals ⁇ and ⁇ , for example in the processing stage 13.
  • the calculation of the signal powers is based on the in Fig. 5 mapped signal flow diagram returned. This results in the calculation of the center of gravity frequency in Fig. 8 illustrated signal flow diagram.
  • the lower part of the diagram is identical to the Fig. 5 , It is used to calculate the power of the signal ⁇ .
  • the upper part is used to calculate the power of the signal ⁇ .
  • the scaling and adjustment values are taken from the lower part of the circuit, which compares the signal flow diagram in the upper part Fig. 5 simplified. With this arrangement, the optimal use of the number format is also guaranteed for the calculation of the power of the signal ⁇ , and the sought center frequency results, as mentioned, by quotient of the two signal powers.
  • the loudness can be determined from the signal power p and the center of gravity frequency c.
  • the direct solution would be to place the signal flow diagrams in the Fig. 5 and 8th and their output signals after passing through smoothing filters of the interpolation stage 16 (see Fig. 2 ).
  • the method according to the invention involves a further substantial simplification due to the fact that the frequency group filter 11 performs only a frequency-selective weighting of the input signal x. This makes it possible to modify the entries in the original interpolation tables in such a way that the same value results for the control variable ⁇ when, instead of the logarithmic signal power p of the input signal x, the logarithmic signal power q of the signal ⁇ is used together with the modified tables. This eliminates the separate calculation of the signal power p, and the processing stage 13 in the inventive method Fig. 2 includes only the in Fig. 8 illustrated signal flow diagram.
  • a new output value c is obtained by adding a correction quantity D to the output value of the preceding sampling instant.
  • the correction quantity D is determined from the difference d, which results from the new input signal value c r and the previous output signal value.
  • the quantity d is first multiplied by a constant factor ⁇ > 1.
  • the value of ⁇ is set to, for example, 2 and 3, respectively, and the result of the multiplication is limited to the value range [-1, 1] by a saturation arithmetic.
  • the product w is then squared and limited to a value ⁇ , and the correction quantity D is obtained by multiplying the value thus calculated by the quantity w.
  • mapping curve D (d) is composed of five different curve parts 27.1-27.5.
  • the correction quantity D in the third power depends on the difference d; this corresponds to a first curve part 27.1.
  • mapping curve D (d) merges into linear parts; this corresponds to a second and third curve part 27.2 and 27.3. With significant changes in the input signal, these parts make sure that the output signal follows with only minimal delay.
  • fourth and fifth parts 27.4 and 27.5 of the imaging curve, where a limit is set to a constant value, guarantees a smooth transition even in the case of extremely unsteady changes in the input signal d.
  • the schema comprises three tables.
  • the table designated by ⁇ 0 contains the interpolation point values for fixed values of the input quantities c and q.
  • the other two tables, denoted by ⁇ / ⁇ c and ⁇ / ⁇ q, contain the gradient values of the function ⁇ (c, q) in the direction of the c and q coordinates, which match the interpolation points.
  • ⁇ r ⁇ 0 (c i , q k ) + (c - c i ) ⁇ ( ⁇ / ⁇ c)
  • c i and q k represent the nearest to c and q interpolation point coordinates, which are at the same time not greater than c or q itself.
  • Another aspect of the method according to the invention relates to the use of optimal table values in two-dimensional interpolation.
  • the Values of the function ⁇ (c, q) at the corners of a rectangle defined by successive vertex coordinates are shown schematically as ⁇ (c i , q k ), ⁇ (c i + 1 , q k ), ⁇ (c i , q k + 1 ) and ⁇ (c i + 1 , q k + 1 ).
  • the unavoidable interpolation errors are more evenly distributed than with the approximate table values ⁇ (c i , q k ), [ ⁇ (c i + 1 , q k ) - ⁇ (c i , q k )] and [ ⁇ (c i , q k + 1 ) - ⁇ (c i , q k )].
  • the successive signal values ⁇ r have an undesirable scattering, which is combined with the smoothing filter 17 (cf. Fig. 2 ) is eliminated.
  • the output signal of the smoothing filter 17 is the control variable ⁇ , which in the interpolation stage 5 (see. Fig. 1 ) is used to determine filter parameters of the correction filter 7.
  • the interpolation stage 5 is in the block diagram of Fig. 12 shown in more detail.
  • the control variable ⁇ arrives at a processing stage 18, from where it is masked out for the subsequent interpolations by the in Fig. 13 shown bit fields a table address ⁇ a and a proportional size ⁇ f are obtained.
  • a processing stage 19 represents a 3-bit-wide counter whose count is denoted by j.
  • a gain value g of the correction filter 7 is determined, and in a processing stage 21, filter coefficients k j (n) and k j (p) are determined.
  • the count value j and the interpolated filter parameters g, k j (n) and k j (p) are designated as a whole with m
  • the count value j and the interpolated filter parameters g, k j (n) and k j (p) reach the correction filter 7, which is shown in the block diagram of FIG Fig. 14 is shown in more detail. It comprises an amplifier stage 22, a cross-member filter 24 for the realization of zeros and a cross-member filter 26 for the realization of poles. For completeness, the structures of the cross-member filters 24 and 26 in the signal flow diagrams of FIGS. 15 or 16 reproduced in detail.
  • an interpolated gain value g reaches the amplifier stage 22 (cf. Fig. 14 ) and is multiplied by the input signal x d delayed by, for example, 2 ms.
  • the filter coefficients k j (n) and k j (p) reach processing stages 23 and 25, respectively, to which the counter value j is also passed.
  • the processing stages 23 and 25 are merely switches which assign the interpolated filter coefficient values corresponding to the counter value j to the correct filter coefficients in the cross-member filters 24 and 26, respectively.
  • the counter values 0 to 7 are assigned the filter coefficients with the indices 1 to 8 in ascending order.
  • the interpolation stages 20 and 21 are in the Figures 17 or 18 detailed.
  • the hearing correction data determined from the individual loudness data in the method according to the invention are stored as filter parameters in a form suitable for interpolation.
  • the table ⁇ is omitted and the corresponding value can be recalculated each time by subtracting the read value ⁇ 0 from the value tabulated below.
  • the Fig. 17 thus represents a two-stage interpolation scheme, which makes use of the normality of the signal values and matched tables for the efficient determination of the required output value.
  • the hearing-impaired-specific values are stored in the form of the log area-ratio coefficients.
  • the modulo 7 counter represented by the processing stage 19 controls the selection mechanism. In the two-stage interpolation scheme of Fig. 18 is therefore the three-bit value of the counter with the size ⁇ a joined to the current table address.
  • the filter coefficients k j (n) and k j (p) required in the cross-member filters 24 and 26 are determined in a renewed interpolation, wherein from each of the log area ratio coefficients ⁇ , in turn, by masking out the in Fig. 20 shown bit fields, an address value ⁇ a and a proportional variable ⁇ f are obtained.
  • this process, as well as the subsequent interpolation itself, can take place one after the other, which in Fig. 18 is indicated with the multiplexer M and in particular has the consequence that the tanh and ⁇ tanh designated tables of the tangent hyperbolic function must be stored only once.
  • an acoustic signal x to be processed is completely in the time domain is processed.
  • a control variable ⁇ which is characteristic of the subjective loudness sensation is continuously calculated.
  • the input signal x is processed with a time-dependent filter 7, the parameters of which are newly determined by means of the control variable ⁇ continuously by interpolation in user-specific correction data previously calculated and stored in tables and applied to the time-dependent filter 7.
  • a device according to the invention for carrying out the method has a processing stage 4 for the iterative calculation of the control variable ⁇ and a time-dependent controlled correction filter stage 7.

Description

Die Erfindung betrifft ein Verfahren zur lautheitsgesteuerten Verarbeitung akustischer Signale in Schallverarbeitungsgeräten sowie eine Vorrichtung zur Durchführung des Verfahrens gemäss den Oberbegriffen der unabhängigen Patentansprüche. Die Erfindung eignet sich besonders für den Einsatz in Hörgeräten für Hörbehinderte; eintreffende akustische Signale werden auf eine solche Weise verarbeitet, dass die vom Hörbehinderten subjektiv empfundene Lautheit wieder stets der von Normalhörenden empfundenen Lautheit entspricht.The invention relates to a method for the loudness-controlled processing of acoustic signals in sound processing equipment and to an apparatus for carrying out the method according to the preambles of the independent claims. The invention is particularly suitable for use in hearing aids for the hearing impaired; incoming acoustic signals are processed in such a way that the loudness subjectively perceived by the hearing impaired again always corresponds to the loudness perceived by normal hearing persons.

Die Idee der lautheitsgesteuerten Verarbeitung akustischer Signale ist seit längerem bekannt und von verschiedenen Autoren in der Fachliteratur beschrieben worden, so z.B. auch von N. Dillier et al. im "Journal of Rehabilitation Research and Development", Vol. 30, No. 1, 1993, S. 100-103 . Das Verfahren beruht darauf, dass Normalhörenden und Hörbehinderten bekannte Testsignale zur Beurteilung der subjektiv empfundenen Lautheit vorgeführt werden. Als Testsignale werden harmonische Sinussignale oder Schmalbandrauschen verwendet. Die subjektiv empfundene Lautheit hängt von der Signalleistung und von der Frequenz eines Sinussignals, bzw. von der Frequenz der dominanten Signalkomponenten eines komplexen Signals, ab. Die subjektiven Lautheitsangaben werden auf einer normierten Skala mit Wertebereich [0, 1] erfasst. Durch Vergleich der Angaben eines Hörbehinderten mit jenen einer Referenzgruppe Normalhörender lassen sich hörbehindertenspezifische, lautheitsabhängige Korrekturdaten ermitteln. In einem dazu passenden Signalverarbeitungsverfahren werden diese Korrekturdaten dann eingesetzt, um dem Hörbehinderten die akustischen Signale seiner Umwelt in der zielsetzungsgemässen Art aufzubereiten. Im erwähnten Artikel wurden in Verständlichkeitstests mit einer Gruppe von 13 Hörbehinderten bemerkenswerte Verbesserungen der Verständlichkeit nachgewiesen.The idea of the loudness-controlled processing of acoustic signals has been known for some time and has been described by various authors in the specialist literature, for example also by N. Dillier et al. in the Journal of Rehabilitation Research and Development, Vol. 1, 1993, pp. 100-103 , The method is based on the fact that normal hearing and hearing impaired known test signals for assessing the subjectively perceived loudness are presented. As test signals, harmonic sine signals or narrow band noise are used. The subjectively perceived loudness depends on the signal power and on the frequency of a sine signal, or on the frequency of the dominant signal components of a complex signal. The subjective loudness data are on a normalized scale with value range [0, 1]. By comparing the information of a hearing impaired person with those of a reference group of normal hearing impaired, hearing loss-specific, loudness-dependent correction data can be determined. In a suitable signal processing method, these correction data are then used to prepare the hearing impaired the acoustic signals of his environment in the targeted manner. In the aforementioned article, in comprehensibility tests with a group of 13 hearing impaired, remarkable improvements in intelligibility were demonstrated.

Trotz der audiologischen Wirkung kann die lautheitsgesteuerte Verarbeitung in der bisher bekannten Form in der Praxis nicht eingesetzt werden. Wie im erwähnten Artikel beschrieben, erfolgt nämlich die Verarbeitung durch Fouriertransformation kurzer Signalsegmente, Modifikation der Kurzzeitspektren und Rücktransformation der modifizierten Kurzzeitspektren in den Zeitbereich. Infolge der segmentweisen Verarbeitung ergibt sich für das verarbeitete Signal eine Verzögerung von nahezu 20 ms. Bei Verständlichkeitstests spielt diese Verzögerung keine Rolle. In der Praxis, wenn der Hörbehinderte selbst auch spricht und seine eigene Stimme dermassen verzögert wahrnimmt, ist sie jedoch völlig inakzeptabel. Bei dem im erwähnten Artikel beschriebenen Verfahren beträgt die Dauer der einzelnen Segmente 12.8 ms, und dieser Wert kann auch nicht wesentlich unterschritten werden, weil zur Gewinnung eines brauchbaren Kurzzeitspektrums eine minimale Segmentdauer in dieser Grössenordnung unerlässlich ist.Despite the audiological effect, the loudness-controlled processing in the previously known form can not be used in practice. Namely, as described in the article mentioned, the processing takes place by Fourier transformation of short signal segments, modification of the short-term spectra and back transformation of the modified short-term spectra into the time domain. Due to the segment-by-segment processing, the processed signal has a delay of almost 20 ms. In intelligibility tests, this delay does not matter. However, in practice, when the hearing impaired person also speaks and perceives his own voice as being delayed, it is totally unacceptable. In the method described in the article mentioned the duration of the individual segments is 12.8 ms, and this value can not be significantly undershot, because to obtain a useful short-term spectrum, a minimum segment duration of this magnitude is essential.

Als Alternative zur segmentweisen Verarbeitung wurde gelegentlich der Ansatz versucht, das akustische Signal in Teilbandsignale aufzuteilen und die einzelnen Teilbandsignale mit separaten Verstärkungswerten zu verarbeiten (siehe z.B. US 5 500 902 und EP 0 661 905 ). Aus praktischen Erprobungen ist bekannt, dass sich beim Aufteilen in bis zu drei Teilbandsignale Verbesserungen erzielen lassen. Eine Aufteilung in mehr Teilbandsignale führt jedoch wieder zu schlechteren Ergebnissen. Ein Grund dafür sind möglicherweise die an den Teilbandgrenzen entstehenden Diskontinuitäten der Übertragungsfunktion. Stellt man der Aufteilung des Signals in drei Teilbandsignale die Frequenzauflösung der Kurzzeitspektren der segmentweisen Verarbeitung gegenüber, so ist auf jeden Fall klar, dass das Potential der segmentweisen Verarbeitung mit dem alternativen Ansatz nicht ausgeschöpft werden kann. Und selbst wenn sich mit dem Aufteilen in mehr Teilbandsignale Wege zu verbesserten Ergebnissen finden liessen, entstünde dabei wiederum das Problem deutlich zunehmender Signalverzögerung.As an alternative to segmental processing, an attempt has sometimes been made to divide the acoustic signal into subband signals and to process the individual subband signals with separate gain values (see, eg, US Pat US 5 500 902 and EP 0 661 905 ). From practical tests it is known that improvements can be achieved when splitting up to three subband signals. A breakdown into more However, subband signals again lead to worse results. One reason for this may be the discontinuities of the transfer function arising at the subband boundaries. If one compares the frequency resolution of the short-term spectra of the segment-by-segment processing to the division of the signal into three subband signals, it is clear in any case that the potential of segment-wise processing can not be exploited with the alternative approach. And even if dividing into more subband signals could lead to improved results, the problem of significantly increasing signal delay would again arise.

Ein weiterer Aspekt für das gute Gelingen der lautheitsgesteuerten Signalverarbeitung hat mit dem in der Verarbeitung verwendeten Lautheitsmodell zu tun. Im Gegensatz zu den einfachen Testsignalen verteilt sich die Signalleistung von Sprache, Musik und Geräuschen zeitabhängig und in komplexer Art über ein weites Frequenzintervall. Mit einem Lautheitsmodell wird diesen komplexen Signalen zeitabhängig ein Lautheitswert zugeordnet, der im Idealfall exakt mit der von Normalhörenden empfundenen Lautheit zusammenfällt. Der mit dem Lautheitsmodell ermittelte Wert wird für die zeitabhängige Steuerung der Signalverarbeitung eingesetzt. Das im erwähnten Artikel beschriebene Lautheitsmodell berücksichtigt nebst der Gesamtenergie eines Signalsegments auch die Schwerpunktsfrequenz seines Kurzzeitspektrums. Zur Berechnung der Schwerpunktsfrequenz wird auf Grundlagen von E. Zwicker zurückgegriffen, die in dessen Lehrbuch "Psychoakustik", Springer Verlag, Berlin, 1982, auf den Seiten 51 bis 53 zusammengefasst sind. Aus den Spektrallinien des Kurzzeitspektrums werden in einem ersten Schritt die Energien E(z) der einzelnen Frequenzgruppen gebildet und anschliessend in Analogie zur Berechnung des Schwerpunkts in der Mechanik zu einer Schwerpunktsfrequenz

        c = Σz·E(z)/ΣE(z)     (1)

auf der mit z bezeichneten Barkskala verrechnet. Wollte man dieses Lautheitsmodell mittels Aufteilung des Signals in Teilbandsignale realisieren, so wären zur Verarbeitung einer Bandbreite von 7700 Hz insgesamt 21 Teilbandsignale unterschiedlicher Bandbreite entsprechend den bekannten Frequenzgruppenbreiten zu bilden. Nebst der bereits erwähnten, stark ansteigenden Signalverzögerung würde dieses Vorgehen auch ausserordentlich grosse rechnerische Ressourcen erfordern. Mit den derzeit verfügbaren Technologien für integrierte Schaltungen ist damit aber, wie auch für den Ansatz mit segmentweiser Verarbeitung, die Umsetzung in ein Hörgerät mit heute üblichen geometrischen Abmessungen und Stromverbrauch ausgeschlossen.
Another aspect of the goodness of the sound-controlled signal processing has to do with the loudness model used in the processing. In contrast to the simple test signals, the signal power of speech, music and noise is distributed over a wide frequency interval in a time-dependent and complex manner. With a loudness model, a loudness value is assigned to these complex signals in a time-dependent manner, which in the ideal case coincides exactly with the loudness perceived by normal hearing persons. The value determined with the loudness model is used for the time-dependent control of the signal processing. The loudness model described in the article mentioned takes into account not only the total energy of a signal segment but also the center of gravity frequency of its short-term spectrum. To calculate the center of gravity frequency is based on fundamentals of E. Zwicker, who in his textbook "Psychoacoustics", Springer Verlag, Berlin, 1982, on pages 51 to 53 are summarized. From the spectral lines of the short-term spectrum, the energies E (z) of the individual frequency groups are formed in a first step and then, in analogy to the calculation of the center of gravity in mechanics, to a center of gravity frequency

c = Σz * E (z) / ΣE (z) (1)

billed on the bark scale marked z. If one wanted to realize this loudness model by dividing the signal into subband signals, a total of 21 subband signals of different bandwidth corresponding to the known frequency group widths would have to be formed for processing a bandwidth of 7700 Hz. In addition to the already mentioned, strongly increasing signal delay, this procedure would also require extraordinarily large computational resources. However, with the technologies currently available for integrated circuits, as well as for the approach with segmental processing, the implementation into a hearing aid with today's usual geometric dimensions and power consumption is excluded.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur lautheitsgesteuerten Verarbeitung akustischer Signale in Schallverarbeitungsgeräten anzugeben, welches insbesondere in Hörgeräten einsetzbar ist. Die vom Hörgerätbenützer subjektiv empfundene Lautheit soll stets der von Normalhörenden empfundenen Lautheit entsprechen. Insbesondere soll die Signalverzögerung so klein sein, dass ein Hörgerätbenützer durch die verzögerte Wahrnehmung seiner eigenen Stimme beim Sprechen nicht irritiert wird. Es sollen auch die rechnerischen Ressourcen gegenüber bekannten Verfahren für die lautheitsgesteuerte Verarbeitung akustischer Signale reduziert werden. Weiter soll eine Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens geschaffen werden.It is an object of the present invention to specify a method for the loudness-controlled processing of acoustic signals in sound processing devices, which can be used in particular in hearing aids. The loudness subjectively perceived by the hearing aid user should always correspond to the loudness perceived by normal hearing persons. In particular, the signal delay should be so small that a hearing aid user is not irritated by the delayed perception of his own voice when speaking. It should also reduce the computational resources compared to known methods for the loudness-controlled processing of acoustic signals. Furthermore, an apparatus for carrying out the method according to the invention is to be created.

Die Aufgabe wird gelöst durch das Verfahren und die Vorrichtung gemäss den unabhängigen Patentansprüchen.The object is achieved by the method and the device according to the independent patent claims.

Im erfindungsgemässen Verfahren erfolgt die Verarbeitung des akustischen Signals ohne Fouriertransformation, also vollständig im Zeitbereich, und auch ohne Aufteilung in Teilbandsignale. Die Besonderheit des erfindungsgemässen Verfahrens liegt darin, dass eine für die Lautheit charakteristische Steuergrösse ψ auf iterative Weise berechnet und zur Steuerung eines zeitabhängigen Korrekturfilters eingesetzt wird. Mit dem Ausdruck "iterative Berechnungsweise" ist gemeint, dass für die Steuergrösse ψ zu jedem Abtastzeitpunkt ein neuer Wert berechnet wird, und zwar unter Verwendung von Werten, welche die zu ihrer Berechnung notwendigen Grössen im jeweils vorhergehenden Abtastzeitpunkt aufwiesen. Im Gegensatz zum bekannten segmentweisen Verfahren wird die lautheitsspezifische Steuergrösse also nicht nur als Mittelwert aufeinanderfolgender Signalsegmente, sondern als kontinuierliche Zeitfunktion ermittelt. Die kurze, typischerweise auf 2 ms bemessene Signalverzögerung stellt die für eine zuverlässige Schätzwertbildung über den jeweiligen Gültigkeitszeitpunkt hinaus erforderliche Beobachtungsdauer dar und ist somit, im Gegensatz zum segmentweisen Verfahren, nicht bloss die Folge einer nachteiligen Eigenschaft der gewählten Implementation. Die iterative Berechnungsweise erfolgt im erfindungsgemässen Verfahren mittels besonders effizienter und zugleich origineller Verfahrensschritte.In the method according to the invention, the processing of the acoustic signal without Fourier transformation takes place, ie completely in the time domain, and also without division into subband signals. The peculiarity of the inventive method is that a characteristic of the loudness control ψ is calculated in an iterative manner and used to control a time-dependent correction filter. By the term "iterative calculation mode" is meant that a new value is calculated for the control variable ψ at each sampling time, using values which have the quantities necessary for their calculation in the respectively preceding sampling time. In contrast to the known segment-wise method, the loudness-specific control variable is thus determined not only as an average of successive signal segments but as a continuous time function. The short signal delay, typically measured at 2 ms, represents the observation time required for reliable estimation beyond the respective validity time point, and thus, unlike the segment-wise method, is not merely the result of an adverse property of the chosen implementation. The iterative method of calculation takes place in the method according to the invention by means of particularly efficient and at the same time original method steps.

Das zeitabhängige Korrekturfilter wird dadurch gesteuert, dass Parametern des Korrekturfilters zu jedem Abtastzeitpunkt durch Interpolation mit Hilfe der Steuergrösse ψ neue Werte zugewiesen werden. Im Gegensatz zum segmentweisen Verfahren, wo die hörbehindertenspezifischen Korrekturdaten als Verstärkungswerte für die einzelnen Spektrallinien eines Kurzzeitspektrums gespeichert sind, werden beim erfindungsgemässen Verfahren für wohldefinierte Werte der Steuergrösse ψ Koeffidentensätze für Prototypenfilter im voraus bestimmt und gespeichert. Dabei verlaufen die Übertragungsfunktionen dieser Prototypenfilter entlang den entsprechenden Verstärkungswerten, die beim segmentweisen Verfahren für die einzelnen Spektrallinien eines Kurzzeitspektrums bestimmt sind. Zur Charakterisierung der Prototypenfilter werden im erfindungsgemässen Verfahren Koeffizientensätze verwendet, von denen bekannt ist, dass sie sich für eine Interpolation eignen, d.h. dass die durch interpolierte Koeffizienten bestimmte Übertragungsfunktion erwartungsgemäss zwischen den Übertragungsfunktionen verläuft, welche durch die der Interpolation zugrunde liegenden Koeffizientensätze bestimmt sind.The time-dependent correction filter is controlled by assigning new values to parameters of the correction filter at each sampling time by interpolation with the aid of the control variable ψ. In contrast to the segment-by-segment method, in which the hearing-impaired correction data are stored as gain values for the individual spectral lines of a short-term spectrum, in the method according to the invention for well-defined values of the control variable ψ coefficient sets for prototype filters are determined in advance and stored. The transfer functions of these prototype filters run along the corresponding gain values, which are determined in the segment-by-segment procedure for the individual spectral lines of a short-term spectrum. To characterize the prototype filters, sets of coefficients are used in the process according to the invention which are known to be suitable for interpolation, ie that the transfer function determined by interpolated coefficients is expected to run between the transfer functions determined by the coefficient sets on which the interpolation is based.

Mit dem erfindungsgemässen Verfahren werden also völlig neue Wege beschritten. Es werden die im erwähnten Artikel von N. Dillier et al. beschriebenen guten Verständlichkeitsergebnisse erzielt. Darüber hinaus reduziert aber das erfindungsgemässe Verfahren die Signalverzögerung auf ca. 2 ms und erreicht zugleich eine drastische Reduktion der rechnerischen Ressourcen. Daher ist es möglich, das erfndungsgemässe Verfahren in einem Hörgerät heute üblicher Bauform umzusetzen.With the method according to the invention, completely new approaches are taken. There are in the mentioned article by N. Dillier et al. achieved good intelligibility results described. In addition, however, the inventive method reduces the signal delay to about 2 ms and at the same time achieves a drastic reduction of the computational resources. Therefore, it is possible to implement the erfndungsgemässe method in a hearing aid today common design.

Die Erfindung betrifft weiter eine Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens. Diese Vorrichtung enthält eine Stufe zur iterativen Berechnung der für die Lautheit charakteristischen Steuergrösse ψ und eine damit zeitabhängig gesteuerte Korrekturfilterstufe, welche eintreffende akustische Signale zielsetzungsgemäss aufbereitet. Die bereits erwähnte drastische Reduktion der benötigten Verarbeitungsressourcen hat verschiedene Ursachen. Zum einen entfällt bei der iterativen Berechnungsweise die segmentweise Pufferung des Eingangs- und Ausgangssignals. Dann ergibt sich beim Speichern der Koeffizientensätze für die Prototypenfilter auch eine wesentliche Einsparung gegenüber dem Speichern der Verstärkungswerte für die einzelnen Spektrallinien der Kurzzeitspektren.The invention further relates to a device for carrying out the method according to the invention. This device contains a stage for the iterative calculation of the loudness characteristic control variable ψ and thus a time-dependent controlled correction filter stage, which prepares incoming acoustic signals target setting. The already mentioned drastic reduction of the required processing resources has different causes. On the one hand, the iterative calculation method eliminates the segment-by-segment buffering of the input and output signals. Then, saving the coefficient sets for the prototype filters also results in a substantial saving compared to storing the gain values for the individual spectral lines of the short-term spectra.

Im folgenden wird die Erfindung anhand der Zeichnungen und eines detaillierten Ausführungsbeispiels näher erläutert. Es zeigen:

Fig. 1
ein Blockdiagramm der lautheitsgesteuerten Verarbeitung im Überblick,
Fig. 2
ein Blockdiagramm zur Ermittlung der für die Lautheit charakteristischen Steuergrösse,
Fig. 3
ein Signalflussdiagramm eines rekursiven Digitalfilters,
Fig. 4
ein Signalflussdiagramm einer einfachen Schätzwertberechnungseinheit,
Fig. 5
ein Signalflussdiagramm einer Schätzwertberechnungseinheit für die Signalleistung,
Fig. 6 und 7
Schemas zur Gewinnung von Tabellenadressen,
Fig. 8
ein Signalflussdiagramm einer Schätzwertberechnungseinheit für die Schwerpunktsfrequenz,
Fig. 9
ein Signalflussdiagramm eines nichtlinearen Glättungsfilters,
Fig. 10
ein Diagramm für den Zusammenhang interner Grössen des nichtlinearen Glättungsfilters,
Fig. 11
ein Schema für eine zweidimensionale Interpolation,
Fig. 12
ein Blockdiagramm der Interpolation von Parametern des Korrekturfilters,
Fig. 13
ein Schema zur Gewinnung von Tabellenadressen und Proportionalgrössen für Interpolationen,
Fig. 14
ein Blockdiagramm des zeitabhängigen Korrekturfilters,
Fig. 15
ein Signalflussdiagramm eines Kreuzgliedfilters zur Realisierung von Nullstellen,
Fig. 16
ein Signalflussdiagramm eines Kreuzgliedfilters zur Realisierung von Polstellen,
Fig. 17 und 18
Schemas für zweistufige lineare Interpolationen und
Fig. 19 und 20
Schemas zur Gewinnung von Tabellenadressen und Proportionalgrössen für Interpolationen.
In the following the invention with reference to the drawings and a detailed embodiment will be explained in more detail. Show it:
Fig. 1
a block diagram of the loudness-controlled processing at a glance,
Fig. 2
a block diagram for determining the characteristic of the loudness control,
Fig. 3
a signal flow diagram of a recursive digital filter,
Fig. 4
a signal flow diagram of a simple estimated value calculation unit,
Fig. 5
a signal flow diagram of an estimated value calculation unit for the signal power,
6 and 7
Schemas for obtaining table addresses,
Fig. 8
a signal flow diagram of an estimated value calculation unit for the center of gravity frequency,
Fig. 9
a signal flow diagram of a nonlinear smoothing filter,
Fig. 10
a diagram for the relationship between internal magnitudes of the non-linear smoothing filter,
Fig. 11
a scheme for a two-dimensional interpolation,
Fig. 12
a block diagram of the interpolation of parameters of the correction filter,
Fig. 13
a scheme for obtaining table addresses and proportional quantities for interpolations,
Fig. 14
a block diagram of the time-dependent correction filter,
Fig. 15
a signal flow diagram of a cross-member filter for the realization of zeros,
Fig. 16
a signal flow diagram of a cross-member filter for the realization of poles,
FIGS. 17 and 18
Schemas for two-stage linear interpolations and
FIGS. 19 and 20
Schemas for obtaining table addresses and proportional quantities for interpolations.

Figur 1 zeigt den Einsatz des erfindungsgemässen Verfahrens und das Verfahren selbst in einem schematischen Überblick. Ein akustisches Signal wird von einem Mikrofon 1 in ein elektrisches Signal gewandelt, das von einem Signalumsetzer 2 digitalisiert und anschliessend in einem Hochpassfilter 3 von allfälligem Offset und tiefstfrequenten Störsignalkomponenten befreit wird. FIG. 1 shows the use of the inventive method and the method itself in a schematic overview. An acoustic signal is converted by a microphone 1 into an electrical signal, which is digitized by a signal converter 2 and then freed in a high-pass filter 3 of any offset and lowest-frequency interference signal components.

Die wesentlichen Schritte des erfindungsgemässen Verfahrens bestehen in der Verarbeitung eines Ausgangssignals x des Hochpassfilters 3. In einer Verarbeitungsstufe 4 erfolgt die iterative Berechnung der Steuergrösse ψ. In einer anschliessenden Interpolationsstufe 5 werden damit die Parameter eines zeitabhängigen Korrekturfilters 7 ermittelt und an dieses übergeben. Eine Verzögerungsstufe 6 sorgt hinsichtlich der Filterung mit dem Korrekturfilter 7 für die Synchronisation des Signals x mit den aus ihm abgeleiteten Filterparameterwerten, indem sie eine entsprechende Signalverzögerung, beispelsweise um 2 ms, bewirkt. Bei einer Abtastrate von 16 kHz wird die Verzögerungsstufe 6 vorteilhafterweise als zyklischer Puffer mit 32 Speicherplätzen ausgelegt.The essential steps of the method according to the invention consist in the processing of an output signal x of the high-pass filter 3. In a processing stage 4, the iterative calculation of the control variable ψ takes place. In a subsequent interpolation stage 5, the parameters of a time-dependent correction filter 7 are thus determined and transferred to this. A delay stage 6 provides with respect to the filtering with the correction filter 7 for the synchronization of the signal x with the filter parameter values derived therefrom by causing a corresponding signal delay, for example by 2 ms. At a sampling rate of 16 kHz, the delay stage 6 is advantageously designed as a cyclic buffer with 32 memory locations.

Das mit dem Korrekturfilter 7 gefilterte Signal y gelangt zu einem Signalumsetzer 8 und wird dort in ein analoges elektrisches Signal gewandelt. In einer analogen Verstärkerstufe 9 wird es noch mit einem hörbehindertenspezifischen, aber zeitlich konstanten Verstärkungswert ge verstärkt und anschliessend einem elektro-akustischen Signalwandler 10 zugeführt. Der Wert von ge wird beim Aufbereiten der Koeffizientensätze für die Prototypenfilter bestimmt, und zwar so, dass das in der Vorrichtung zur Durchführung des Verfahrens verwendete 16 Bit breite Zahlenformat möglichst optimal genutzt wird, wobei eine Begrenzung der verarbeiteten Signale infolge der in der Vorrichtung vorausgesetzten Sättigungsarithmetik jedoch nur ausnahmsweise wirksam werden soll.The filtered with the correction filter 7 signal y passes to a signal converter 8 and is converted there into an analog electrical signal. In an analog amplifier stage 9, it is amplified with a hearing impaired but constant gain value g e , and then fed to an electro-acoustic signal converter 10. The value of g e is determined in processing the coefficient sets for the prototype filters, such that the 16-bit number format used in the apparatus for performing the method is used as optimally as possible, with limitation of the processed signals due to the assumption in the apparatus However, saturation arithmetic only exceptionally effective.

Wie bereits erwähnt wurde, kann die Lautheit komplexer Signale aufgrund der Gesamtenergie kurzer Signalsegmente und der Schwerpunktsfrequenz ihrer Kurzzeitspektren ermittelt werden. Dabei hängt die Lautheit näherungsweise quadratisch von der auf einer logarithmischen Skala ausgedrückten Signalenergie ab. Wie noch gezeigt wird, lässt sich das Lautheitsmodell im erfindungsgemässen Verfahren mit einer zweidimensionalen linearen Interpolation implementieren. Diese Interpolation liefert genauere Ergebnisse, wenn die Steuergrösse

        ψ = (√L' - √Lmin)/(√Lmax - √Lmin)     (2)

eingeführt wird, die folglich näherungsweise linear von der logarithmischen Signalenergie abhängt. Dabei stellt L' die auf den Wertebereich [Lmin, Lmax] begrenzte Lautheit dar, und Lmin und Lmax sind sinnvoll gewählte Minimal- und Maximalwerte der Lautheit, die somit den Arbeitsbereich des Verfahrens definieren, innerhalb dessen das Korrekturfilter aufgrund kleinster Veränderungen der Lautheit stetig nachgeführt wird. Aufgrund der Formel (2) ist ψ eine auf den Wertebereich [0, 1] normierte Steuergrösse, und für Lautheitswerte ausserhalb des Wertebereichs [Lmin, Lmax] wird das Korrekturfilter für ψ = 0 bzw. jenes für ψ = 1 eingesetzt.
As already mentioned, the loudness of complex signals can be determined on the basis of the total energy of short signal segments and the center of gravity frequency of their short-term spectra. The loudness depends approximately quadratically on the signal energy expressed on a logarithmic scale. As will be shown, the loudness model can be implemented in the method according to the invention with a two-dimensional linear interpolation. This interpolation gives more accurate results when the control quantity

ψ = (√L '- √L min ) / (√L max - √L min ) (2)

Consequently, it depends approximately linearly on the logarithmic signal energy. In this case, L 'represents the loudness limited to the value range [L min , L max ], and L min and L max are sensibly selected minimum and maximum values of loudness, thus defining the working range of the method within which the correction filter due to smallest changes the loudness is constantly updated. Based on the formula (2), ψ is a control value normalized to the value range [0, 1], and for loudness values outside the value range [L min , L max ], the correction filter for ψ = 0 or that for ψ = 1 is used.

Das Blockdiagramm in Fig. 2 zeigt etwas detaillierter, wie die Steuergrösse ψ aus dem Eingangssignal x gewonnen wird. Verglichen mit dem bekannten segmentweisen Verfahren tritt beim erfindungsgemässen iterativen Signalverarbeitungsverfahren an die Stelle der Signalenergie eines kurzen Signalsegments eine momentane Signalleistung q und an die Stelle der Schwerpunktsfrequenz seines Kurzzeitspektrums eine momentane Schwerpunktsfrequenz c. Diese Grössen werden in Verarbeitungsstufen 11-15 ermittelt. Nach einer Verarbeitungsstufe 13 weisen entsprechende Ausgangssignalwerte cr und qr aufgrund der iterativen Berechnungsart noch eine unerwünschte Streuung auf, die in nachfolgenden Glättungsfiltern 14 und 15 eliminiert wird. Die geglätteten Signale c und q werden in einer Verarbeitungsstufe 16 der bereits erwähnten zweidimensionalen Interpolation zugeführt, wobei die aufeinanderfolgenden Ausgangssignalwerte ψr ebenfalls eine noch unerwünschte Streuung aufweisen, die mit einem nachfolgenden Glättungsfilter 17 eliminiert wird.The block diagram in Fig. 2 shows in more detail how the control variable ψ is obtained from the input signal x. Compared with the known segment-wise method, in the inventive iterative signal processing method, a momentary signal power q takes the place of the signal energy of a short signal segment and an instantaneous center of gravity c takes the place of the center frequency of its short-term spectrum. These quantities are determined in processing stages 11-15. After a processing stage 13, corresponding output signal values c r and q r due to the iterative type of calculation still have an undesired scattering, which is eliminated in subsequent smoothing filters 14 and 15. The smoothed signals c and q are applied in a processing stage 16 to the already mentioned two-dimensional interpolation, wherein the successive output signal values ψr also have a still undesirable scattering, which is eliminated with a subsequent smoothing filter 17.

Ein wesentlicher Aspekt des erfindungsgemässen Verfahrens liegt in der iterativen Berechnungsart der logarithmischen Signalleistung q sowie der auf einer Barkskala ausgedrückten Schwerpunktsfrequenz c, also der Umsetzung der Formel (1) in ein iteratives Berechnungsschema. Anstelle der Bildung der frequenzgruppenspezifischen Energien E(z) wird im erfindungsgemässen Verfahren eine frequenzselektive Gewichtung des Eingangssignals x mit einem Filter vorgenommen, das im weiteren als Frequenzgruppenfilter bezeichnet wird. Das Frequenzgruppenfilter ist in Fig. 2 als Verarbeitungsstufe 11 dargestellt, und sein Ausgangssignal ist mit ϕ bezeichnet. Seine von der Frequenz f abhängige Übertragungsfunktion

        HFG(f) = √ΔfG(f)/√ΔfG(fN)     (3)

ergibt sich aus der Frequenzgruppenbreitefunktion ΔfG(f). Der Nenner in Formel (3) bewirkt eine Normierung, wobei fN die Nyquistfrequenz, im Ausführungsbeispiel also 8 kHz, bezeichnet. Die Normierung dient der optimalen Nutzung des im Ausführungsbeispiel vorgegebenen, 16 Bit breiten Festkommazahlenformats. Im Ausführungsbeispiel wird die Übertragungsfunktion HFG(f) durch ein rekursives Filter 11 zweiter Ordnung approximiert. Die Struktur des Frequenzgruppenfilters 11 ist der Vollständigkeit halber in Fig. 3 illustriert.
An essential aspect of the method according to the invention lies in the iterative calculation mode of the logarithmic signal power q as well as the center of gravity frequency c expressed on a bar scale, ie the conversion of the formula (1) into an iterative calculation scheme. Instead of forming the Frequency-group-specific energies E (z) in the inventive method, a frequency-selective weighting of the input signal x is made with a filter, which is hereinafter referred to as a frequency group filter. The frequency group filter is in Fig. 2 shown as processing stage 11, and its output signal is denoted by φ. Its frequency-dependent transfer function

H FG (f) = √Δf G (f) / √Δf G (f N ) (3)

results from the frequency group width function Δf G (f). The denominator in formula (3) effects a normalization, where f N denotes the Nyquist frequency, in the exemplary embodiment thus 8 kHz. The normalization serves the optimal use of the 16-bit wide fixed-point format specified in the exemplary embodiment. In the exemplary embodiment, the transfer function H FG (f) is approximated by a second-order recursive filter 11. The structure of the frequency group filter 11 is for the sake of completeness in FIG Fig. 3 illustrated.

Anstelle der Gewichtung der Frequenzgruppenenergien E(z) mit den Frequenzgruppenindizes z im Zähler von Formel (1) wird im erfindungsgemässen Verfahren eine frequenzselektive Gewichtung des Signals ϕ mit einem Filter vorgenommen, das im weitern als Barkfilter bezeichnet wird. Das Barkfilter ist in Fig. 2 als Verarbeitungsstufe 12 dargestellt, und sein Ausgangssignal ist mit ϑ bezeichnet Seine Übertragungsfunktion

        HB(f) = √z(f)/√z(fN)     (4)

ergibt sich aus der Tonheitsfunktion z(f). Der Nenner in Formel (4) bewirkt wiederum eine Normierung zum Zwecke einer optimalen Nutzung des vorgegebenen Zahlenformats. Im Ausführungsbeispiel ist die Übertragungsfunktion HB(f) ebenfalls durch ein rekursives Digitalfilter 12 zweiter Ordnung approximiert, das wiederum die in Fig. 3 abgebildete Struktur aufweist.
Instead of the weighting of the frequency group energies E (z) with the frequency group indices z in the numerator of formula (1), a frequency-selective weighting of the signal φ is carried out in the method according to the invention with a filter which is referred to below as a bark filter. The bark filter is in Fig. 2 shown as processing stage 12, and its output signal is denoted by θ its transfer function

H B (f) = √z (f) / √z (f N ) (4)

results from the pitch function z (f). The denominator in formula (4) in turn causes a normalization for the purpose of optimal use of the given number format. In the embodiment, the transfer function H B (f) is also approximated by a second order recursive digital filter 12, which in turn maps the in Fig. 3 having shown structure.

Mit den Signalen ϑ und ϕ ist es im erfindungsgemässen Verfahren möglich, die momentane Schwerpunktfrequenz gemäss Formel (1) auf iterative Weise zu berechnen. Dazu wird in einer Verarbeitungsstufe 13 der Quotient ihrer Signalleistungen berechnet.With the signals θ and φ, it is possible in the method according to the invention to calculate the instantaneous centroid frequency according to formula (1) in an iterative manner. For this purpose, the quotient of its signal powers is calculated in a processing stage 13.

Zur iterativen Berechnung von Signalleistungen wird im erfindungsgemässen Verfahren auf eine einfache Schätzwertberechnungseinheit erster Ordnung für den zeitlich exponentiell gewichteten Erwartungswert des quadrierten Eingangssignals zurückgegriffen. Eine solche Schätzwertberechnungseinheit ist für den allgemeinen Fall, mit Eingangssignal u und Ausgangssignal v, in Fig. 4 dargestellt. In diesem Signalflussdiagramm ergibt sich ein neuer Ausgangssignalwert v dadurch, dass der Ausgangssignalwert des vorhergehenden Abtastzeitpunkts mit der Konstanten (1 - ε) multipliziert und zu diesem Produkt das mit dem konstanten Faktor ε multiplizierte Quadrat des neuen Eingangssignalwertes u hinzuaddiert wird. Mit der Adaptionskonstanten ε, für welche 0 < ε < 1

Figure imgb0001
gilt, lässt sich die Geschwindigkeit steuern, mit der das Ausgangssignal v der sich verändernden Eingangssignalleistung folgt.For the iterative calculation of signal powers, in the method according to the invention a simple first-order estimated value calculation unit is used for the time-exponentially weighted expected value of the squared input signal. Such an estimated value calculation unit is for the general case, with input signal u and output signal v, in Fig. 4 shown. In this signal flow diagram, a new output signal value v results from the fact that the output signal value of the preceding sampling instant is multiplied by the constant (1-ε) and the square of the new input signal value u multiplied by the constant factor ε is added to this product. With the adaptation constant ε, for which 0 < ε < 1
Figure imgb0001
the speed at which the output signal v follows the changing input signal power can be controlled.

Die einfache Schätzwertberechnungseinheit von Fig. 4 weist die Nachteile auf, dass zur Verarbeitung des quadrierten Eingangssignals ein doppelt breites Zahlenformat erforderlich ist, und dass für die nachfolgenden Berechnungen zusätzlich noch der Logarithmus des Ausgangssignals v benötigt wird. Beide Aspekte werden im erfindungsgemässen Verfahren auf einfache Art, wie in Fig. 5 gezeigt, durch Einbettung der einfachen Schätzwertberechnungseinheit von Fig. 4 in eine digitale Regelschleife gelöst.The simple estimate calculation unit of Fig. 4 has the disadvantages that a doubly wide number format is required for processing the squared input signal, and that the logarithm of the output signal v is additionally required for the subsequent calculations. Both Aspects in the inventive method in a simple way, as in Fig. 5 by embedding the simple estimate computing unit of Fig. 4 solved in a digital control loop.

Die Funktionsweise des Signalflussdiagramms in Fig. 5 beruht darauf, dass die Grösse v auf einen fest vorgegebenen Sollwert geregelt wird. Zu diesem Zweck wird für jeden neu berechneten Signalwert v die inkrementelle logarithmische Zuwachs- bzw. Abnahmegrösse der Signalleistung bestimmt, welche der Abweichung des Wertes v vom vorgegebenen Sollwert entspricht. Die gesuchte logarithmische Signalleistung p ergibt sich in der Folge durch blosses Akkumulieren der aufeinanderfolgenden inkrementellen Veränderungswerte. Für das richtige Funktionieren der Regelschleife ist es notwendig, dass jeder Eingangssignalwert x mit einem jeweils zum Schätzwert p passenden Skalierungsfaktor skaliert wird und dass auch die Grösse v selbst vor dem erneuten Aufdatieren mit einem der Leistungsänderung entsprechenden Justierwert multiplikativ nachgeführt wird. Die Ermittlung sowohl der inkrementellen Änderung wie auch der Skalierungs- und Justierwerte erfolgt im erfindungsgemässen Verfahren zu jedem Abtastzeitpunkt für Werte der Grössen v und p, deren Genauigkeit durch Abschneiden auf 6 bzw. 7 Nachkommastellen beschränkt ist. Damit ist der effiziente Einsatz von Tabellen möglich, in denen die 64 bzw. 128 im voraus berechneten, passenden Werte abgespeichert sind. Schliesslich brauchen zur Adressierung der Tabellen dann lediglich, wie in den Fig. 6 und 7 gezeigt, die relevanten Bitfelder aus den Grössen v und p extrahiert zu werden. In Fig. 5 ist die Tabelle mit den inkrementellen logarithmischen Leistungsänderungen mit Δp bezeichnet Zum Einsparen ansonsten separat auszuführender Multiplikationen enthält die Tabelle S in Fig. 5 ferner noch modifizierte Skalierungswerte, die aus den ursprünglichen Skalierungswerten durch Multiplikation mit der Wurzel aus der Konstanten ε gewonnen wurden. Zum gleichen Zwecke sind die Justierwerte in der mit A bezeichneten Tabelle bereits mit der Konstanten (1 - ε) multipliziert. Ferner reicht für die Speicherung der Grössen v und p sowie aller Tabellenwerte in Fig. 5 das übliche, 16 Bit breite Festkommazahlenformat.The operation of the signal flow diagram in Fig. 5 is based on the fact that the variable v is controlled to a fixed setpoint. For this purpose, for each newly calculated signal value v, the incremental logarithmic increase or decrease in the signal power is determined, which corresponds to the deviation of the value v from the predetermined desired value. The desired logarithmic signal power p results in the sequence by simply accumulating the successive incremental change values. For the proper functioning of the control loop, it is necessary for each input signal value x to be scaled with a scaling factor which corresponds in each case to the estimated value p, and for the quantity v itself to be adjusted multiplicatively even before the renewed updating with an adjustment value corresponding to the change in power. The determination of both the incremental change as well as the scaling and Justierwerte takes place in the inventive method at each sampling time for values of the sizes v and p whose accuracy is limited by truncation to 6 or 7 decimal places. This makes it possible to use tables efficiently in which the 64 or 128 predefined, suitable values are stored. Finally, to address the tables then only need, as in the 6 and 7 shown to extract the relevant bit fields from the quantities v and p. In Fig. 5 is the table with the incremental logarithmic power changes denoted by Δp To save otherwise separately performed multiplications, the table contains S in Fig. 5 furthermore modified scaling values which were obtained from the original scaling values by multiplication with the root from the constant ε. For the same purpose, the calibration values in the table labeled A are already multiplied by the constant (1 - ε). Further is sufficient for storing the quantities v and p as well as all table values in Fig. 5 the usual 16-bit fixed-point format.

Wie bereits erwähnt wurde, beruht im erfindungsgemässen Verfahren die iterative Berechnung der Schwerpunktsfrequenz auf der Berechnung des Quotienten der Signalleistungen der Signale ϑ und ϕ, beispielsweise in der Verarbeitungsstufe 13. Die Berechnung der Signalleistungen wird auf das in Fig. 5 abgebildete Signalflussdiagramm zurückgeführt. Damit ergibt sich für die Berechnung der Schwerpunktsfrequenz das in Fig. 8 dargestellte Signalflussdiagramm. Der untere Teil des Diagramms ist identisch mit der Fig. 5. Er dient der Berechnung der Leistung des Signals ϕ. Der obere Teil dient der Berechnung der Leistung des Signals ϑ. Bei dieser Berechnung werden die Skalierungs- und Justierwerte aus dem unteren Schaltungsteil übernommen, wodurch sich das Signalflussdiagramm im oberen Teil gegenüber Fig. 5 vereinfacht. Mit dieser Anordnung ist die optimale Nutzung des Zahlenformats auch für die Berechnung der Leistung des Signals ϑ gewährleistet, und die gesuchte Schwerpunktsfrequenz ergibt sich, wie erwähnt, durch Quotientenbildung der beiden Signalleistungen.As already mentioned, in the method according to the invention the iterative calculation of the center of gravity frequency is based on the calculation of the quotient of the signal powers of the signals θ and φ, for example in the processing stage 13. The calculation of the signal powers is based on the in Fig. 5 mapped signal flow diagram returned. This results in the calculation of the center of gravity frequency in Fig. 8 illustrated signal flow diagram. The lower part of the diagram is identical to the Fig. 5 , It is used to calculate the power of the signal φ. The upper part is used to calculate the power of the signal θ. In this calculation, the scaling and adjustment values are taken from the lower part of the circuit, which compares the signal flow diagram in the upper part Fig. 5 simplified. With this arrangement, the optimal use of the number format is also guaranteed for the calculation of the power of the signal θ, and the sought center frequency results, as mentioned, by quotient of the two signal powers.

Wie in Fig. 8 gezeigt, erfolgt die Berechnung eines aus einem Zähler Z und einem Nenner N gebildeteten Quotienten Q = Z/N anhand der bereits mit einem Justierwert aus der Tabelle A nachgeführten Signalleistungswerten. Das hat den Vorteil, dass die ansonsten benötigte, ungünstige Division signifikant vereinfacht werden kann. In einem auf den vorgegebenen Sollwert normierten Zahlenformat nimmt der Nenner N = 1 + δ mit δ < 1

Figure imgb0002
nur unwesentlich von 1 verschiedene Werte an, und anstelle der Division durch (1 + δ) kann der Quotient

        Q ≈ Z·(1 - δ)     (7)

durch Multiplikation des Zählers Z mit (1 - δ) angenähert werden.As in Fig. 8 1, the calculation of a quotient Q = Z / N formed from a counter Z and a denominator N is carried out on the basis of the signal power values already tracked with an adjustment value from the table A. This has the advantage that the otherwise required, unfavorable division can be significantly simplified. The denominator decreases in a number format standardized to the specified nominal value N = 1 + δ with δ < 1
Figure imgb0002
only slightly different from 1 different values, and instead of dividing by (1 + δ), the quotient

Q ≈ Z · (1 - δ) (7)

by multiplying the counter Z by (1 - δ).

Wie schon zuvor ausgeführt wurde, kann die Lautheit aus der Signalleistung p und der Schwerpunktsfrequenz c ermittelt werden. Die direkte Lösung bestünde darin, die Signalfiussdiagramme in den Fig. 5 und 8 einzusetzen und deren Ausgangssignale nach Durchlaufen passender Glättungsfilter der Interpolationsstufe 16 (siehe Fig. 2) zuzuführen. Das erfindungsgemässe Verfahren beinhaltet jedoch eine weitere wesentliche Vereinfachung aufgrund der Tatsache, dass das Frequenzgruppenfilter 11 lediglich eine frequenzselektive Gewichtung des Eingangssignals x vornimmt. Damit ist es möglich, die Einträge in den ursprünglichen Interpolationstabellen so zu modifizieren, dass für die Steuergrösse ψ jeweils der gleiche Wert resultiert, wenn anstelle der logarithmischen Signalleistung p des Eingangssignals x die logarithmische Signalleistung q des Signais ϕ zusammen mit den modifizierten Tabellen verwendet wird. Damit entfällt im erfindungsgemässen Verfahren die separate Berechnung der Signalleistung p, und die Verarbeitungsstufe 13 in Fig. 2 umfasst lediglich das in Fig. 8 dargestellte Signalflussdiagramm.As already stated above, the loudness can be determined from the signal power p and the center of gravity frequency c. The direct solution would be to place the signal flow diagrams in the Fig. 5 and 8th and their output signals after passing through smoothing filters of the interpolation stage 16 (see Fig. 2 ). However, the method according to the invention involves a further substantial simplification due to the fact that the frequency group filter 11 performs only a frequency-selective weighting of the input signal x. This makes it possible to modify the entries in the original interpolation tables in such a way that the same value results for the control variable ψ when, instead of the logarithmic signal power p of the input signal x, the logarithmic signal power q of the signal φ is used together with the modified tables. This eliminates the separate calculation of the signal power p, and the processing stage 13 in the inventive method Fig. 2 includes only the in Fig. 8 illustrated signal flow diagram.

Wie ebenfalls schon erwähnt wurde, weisen die aufeinanderfolgenden Signalwerte der Ausgangssignale der Verarbeitungsstufen 13 und 16 eine unerwünschte Streuung auf, die mit Glättungsfiltern 14, 15 und 17 eliminiert wird. Der Einsatz klassischer, linearer Tiefpassfilter wäre naheliegend, ist aber wegen der damit verbundenen Verzögerungszeiten im erfindungsgemässen Verfahren völlig inakzeptabel. An deren Stelle wird deshalb ein nichtlineares Glättungsfilter gemäss Fig. 9 eingesetzt, das sich nebst minimaler Verzögerungszeit noch durch wesentlich reduzierten Rechenaufwand auszeichnet. Ein neuer Ausgangswert c ergibt sich dabei durch Hinzuaddieren einer Korrekturgrösse D zum Ausgangswert des vorhergehenden Abtastzeitpunkts. Die Korrekturgrösse D wird aus der Differenz d ermittelt, die sich aus dem neuen Eingangssignalwert cr und dem vorhergehenden Ausgangssignalwert ergibt. Die Grösse d wird zunächst mit einem konstanten Faktor α > 1 multipliziert. In den Glättungsfiltern 14, 15 und 17 ist der Wert von α beispielsweise auf 2 bzw. 3 gesetzt, und das Resultat der Multiplikation wird mit einer Sättigungsarithmetik auf den Wertebereich [-1, 1] begrenzt. Das Produkt w wird anschliessend quadriert und auf einen Wert β begrenzt, und die Korrekturgrösse D ergibt sich durch Multiplikation des so errechneten Wertes mit der Grösse w.As already mentioned, the successive signal values of the output signals of the processing stages 13 and 16 have an undesired scattering, which is eliminated with smoothing filters 14, 15 and 17. The use of classical, linear low-pass filter would be obvious, but is completely unacceptable because of the associated delay times in the inventive method. In its place, therefore, becomes a nonlinear Smoothing filter according to Fig. 9 used, which, in addition to minimal delay time yet characterized by significantly reduced computational effort. A new output value c is obtained by adding a correction quantity D to the output value of the preceding sampling instant. The correction quantity D is determined from the difference d, which results from the new input signal value c r and the previous output signal value. The quantity d is first multiplied by a constant factor α> 1. In the smoothing filters 14, 15 and 17, the value of α is set to, for example, 2 and 3, respectively, and the result of the multiplication is limited to the value range [-1, 1] by a saturation arithmetic. The product w is then squared and limited to a value β, and the correction quantity D is obtained by multiplying the value thus calculated by the quantity w.

Die Wirkung des nichtlinearen Glättungsfilters, dessen Signalflussdiagramm in Fig. 9 gezeigt ist, wird aus der Fig. 10 verständlich, welche den Zusammenhang der internen Grössen d und D aufzeigt. Zunächst ist zu bemerken, dass diese Glättungsfilter von der Normiertheit der zu filternden Signale Gebrauch machen, dass deren Wertebereich also das Intervall [0, 1] umfasst. Damit nimmt die Differenz d Werte aus dem Intervall [-1, 1] an. Die in Fig. 10 gezeigte Abbildungskurve D(d) setzt sich aus fünf unterschiedlichen Kurventeilen 27.1-27.5 zusammen. Für betragsmässig kleine Werte der Differenz d, beispielsweise für -0.2 < d < 0.2, hängt die Korrekturgrösse D in der dritten Potenz von der Differenz d ab; dies entspricht einem ersten Kurventeil 27.1. Die geringfügigen Streuungen aufeinanderfolgender Signalwerte mit Werten aus dem Wertebereich [-0.1, 0.1] werden damit effizient unterdrückt. Für betragsmässig grössere Werte der Differenz d, beispielsweise für 0.2 ≤ |d| < 0.5, geht die Abbildungskurve D(d) in linear verlaufende Teile über; dies entspricht einem zweiten und dritten Kurventeil 27.2 und 27.3. Bei signifikanten Veränderungen des Eingangssignals sorgen dieser Teile dafür, dass das Ausgangssignal mit nur minimaler Verzögerung folgt. Ein vierter und fünfter Teil 27.4 und 27.5 der Abbildungskurve, wo eine Begrenzung auf je einen konstanten Wert erfolgt, garantiert schliesslich einen glatten Transitionsverlauf selbst bei extrem unstetigen Veränderungen des Eingangssignals d.The effect of the nonlinear smoothing filter, whose signal flow diagram in Fig. 9 is shown is from the Fig. 10 understandable, which shows the connection of the internal quantities d and D. First, it should be noted that these smoothing filters make use of the normality of the signals to be filtered, so that their range of values includes the interval [0, 1]. Thus, the difference d assumes values from the interval [-1, 1]. In the Fig. 10 shown mapping curve D (d) is composed of five different curve parts 27.1-27.5. For absolute values of the difference d, for example for -0.2 <d <0.2, the correction quantity D in the third power depends on the difference d; this corresponds to a first curve part 27.1. The slight scattering of successive signal values with values from the value range [-0.1, 0.1] are thus effectively suppressed. For absolute values of the difference d, for example for 0.2 ≦ | d | <0.5, the mapping curve D (d) merges into linear parts; this corresponds to a second and third curve part 27.2 and 27.3. With significant changes in the input signal, these parts make sure that the output signal follows with only minimal delay. Finally, fourth and fifth parts 27.4 and 27.5 of the imaging curve, where a limit is set to a constant value, guarantees a smooth transition even in the case of extremely unsteady changes in the input signal d.

Mit der gefilterten Schwerpunktsfrequenz c und der gefilterten Signalleistung q erfolgt in der Verarbeitungsstufe 16 die Berechnung der Steuergrösse ψ. Wie bereits erwähnt wurde, erfolgt dieser Vorgang mittels einer zweidimensionalen Interpolation, die in Fig. 11 in einem detaillierten Schema dargestellt ist. Das Schema umfasst drei Tabellen. Die mit ψ0 bezeichnete Tabelle beinhaltet die Stützpunktwerte für fest vorgegebene Werte der Eingangsgrössen c und q. Die beiden anderen, mit ∂ψ/∂c und ∂ψ/∂q bezeichneten Tabellen enthalten die zu den Stützpunkten passenden Gradientenwerte der Funktion ψ(c,q) in Richtung der c- und der q-Koordinaten. Der Wert der Steuergrösse ψ für beliebige Eingangssignalwerte c und q ergibt sich folglich näherungsweise durch

        ψr = ψ0(ci,qk) + (c - ci)·(∂ψ/∂c)|ci,qk + (q - qk)·(∂ψ/∂q)|ci,qk     (8)

wobei ci und qk die zu c bzw. q nächstgelegenen Stützpunktkoordinaten darstellen, die zugleich nicht grösser als c bzw. q selbst sind. Aufgrund der auf den Wertebereich [0, 1] normierten Eingangsgrössen c und q lassen sich im erfindungsgemässen Verfahren die Werte ci und qk sowie (c - ci) und (q - qk) durch einfaches Ausmaskieren der in Fig. 11 gezeigten Bitfelder aus den Grössen c und q ermitteln. Zur Adressierung der Tabellenwerte werden schliesslich die gemäss Fig. 11 zusammengefassten Werte ci und qk verwendet.
With the filtered center of gravity frequency c and the filtered signal power q, the calculation of the control variable ψ takes place in the processing stage 16. As already mentioned, this process takes place by means of a two-dimensional interpolation, which in Fig. 11 is shown in a detailed scheme. The schema comprises three tables. The table designated by ψ 0 contains the interpolation point values for fixed values of the input quantities c and q. The other two tables, denoted by ∂ψ / ∂c and ∂ψ / ∂q, contain the gradient values of the function ψ (c, q) in the direction of the c and q coordinates, which match the interpolation points. The value of the control variable ψ for arbitrary input signal values c and q thus results approximately by

ψ r = ψ 0 (c i , q k ) + (c - c i ) · (∂ψ / ∂c) | ci, qk + (q - q k) · (∂ψ / ∂q) | ci, qk (8)

where c i and q k represent the nearest to c and q interpolation point coordinates, which are at the same time not greater than c or q itself. Due to the input variables c and q normalized to the value range [0, 1], the values c i and q k as well as (c - c i ) and (q - q k ) can be simply masked out in the method according to the invention Fig. 11 determine bit fields from the quantities c and q. For addressing the table values, finally, the according to Fig. 11 summarized values c i and q k used.

Ein weiterer Aspekt des erfindungsgemässen Verfahrens betrifft die Verwendung optimaler Tabellenwerte in der zweidimensionalen Interpolation. Die Werte der Funktion ψ(c,q) an den Ecken eines durch aufeinanderfolgende Stützpunktkoordinaten definierten Rechtecks seien schematisch mit ψ(ci,qk), ψ(ci+1,qk), ψ(ci,qk+1) und ψ(ci+1,qk+1) bezeichnet. Dann werden im erfindungsgemässen Verfahren die Tabellenwerte

        ψ0(ci,qk) = ψ(ci,qk) + [ψ(ci+1,qk) + ψ(ci,qk+1) - ψ(ci+1,qk+1) - ψ(ci,qk)]/4     (9)

        (∂ψ/∂c)|ci,qk = {[ψ(ci+1,qk+1) - ψ(ci,qk+1)] + [ψ(ci+1,qk) - ψ(ci,qk)]}/2     (10)

und

        (∂ψ/∂q)|ci,qk = {[ψ(ci+1,qk+1) - ψ(ci+1,qk)] + [ψ(ci,qk+1) - ψ(ci,qk)]}/2     (11)

verwendet. Damit werden die unvermeidlichen Interpolationsfehler gleichmässiger verteilt als mit den nahliegenden Tabellenwerten ψ(ci,qk), [ψ(ci+1,qk)- ψ(ci,qk)] und [ψ(ci,qk+1) - ψ(ci,qk)]. Wie ebenfalls schon erwähnt wurde, weisen die aufeinanderfolgenden Signalwerte ψr eine unerwünschte Streuung auf, die mit dem Glättungsfilter 17 (vgl. Fig. 2) eliminiert wird. Das Ausgangssignal des Glättungsfilters 17 ist die Steuergrösse ψ, die in der Interpolationsstufe 5 (vgl. Fig. 1) zum Bestimmen von Filterparametern des Korrekturfilters 7 eingesetzt wird.
Another aspect of the method according to the invention relates to the use of optimal table values in two-dimensional interpolation. The Values of the function ψ (c, q) at the corners of a rectangle defined by successive vertex coordinates are shown schematically as ψ (c i , q k ), ψ (c i + 1 , q k ), ψ (c i , q k + 1 ) and ψ (c i + 1 , q k + 1 ). Then in the process according to the invention the table values

ψ 0 (c i , q k ) = ψ (c i , q k ) + [ψ (c i + 1 , q k ) + ψ (c i , q k + 1 ) - ψ (c i + 1 , q k + 1 ) - ψ (c i , q k )] / 4 (9)

(∂ψ / ∂c) | ci, qk = {[ψ (c i + 1 , q k + 1 ) - ψ (c i , q k + 1 )] + [ψ (c i + 1 , q k ) - ψ (c i , q k )] / 2 (10)

and

(∂ψ / ∂q) | ci, qk = {[ψ (c i + 1 , q k + 1 ) - ψ (c i + 1 , q k )] + [ψ (c i , q k + 1 ) - ψ (c i , q k )] / 2 (11)

used. Thus, the unavoidable interpolation errors are more evenly distributed than with the approximate table values ψ (c i , q k ), [ψ (c i + 1 , q k ) - ψ (c i , q k )] and [ψ (c i , q k + 1 ) - ψ (c i , q k )]. As has already been mentioned, the successive signal values ψ r have an undesirable scattering, which is combined with the smoothing filter 17 (cf. Fig. 2 ) is eliminated. The output signal of the smoothing filter 17 is the control variable ψ, which in the interpolation stage 5 (see. Fig. 1 ) is used to determine filter parameters of the correction filter 7.

Die Interpolationsstufe 5 ist im Blockdiagramm der Fig. 12 detaillierter dargestellt. Die Steuergrösse ψ gelangt zu einer Verarbeitungsstufe 18, wo aus ihr für die nachfolgenden Interpolationen durch Ausmaskieren der in Fig. 13 gezeigten Bitfelder eine Tabellenadresse ψa und eine Proportionalgrösse ψf gewonnen werden. Eine Verarbeitungsstufe 19 stellt einen 3 Bit breiten Zähler dar, dessen Zählwert mit j bezeichnet ist. In einer Verarbeitungsstufe 20 wird ein Verstärkungswert g des Korrekturfilters 7 ermittelt, und in einer Verarbeitungsstufe 21 werden Filterkoeffizienten kj (n) und kj (p) ermittelt. Der Zählwert j und die interpolierten Filterparameter g, kj (n) und kj (p), werden als Gesamtheit mit m bezeichnetThe interpolation stage 5 is in the block diagram of Fig. 12 shown in more detail. The control variable ψ arrives at a processing stage 18, from where it is masked out for the subsequent interpolations by the in Fig. 13 shown bit fields a table address ψ a and a proportional size ψ f are obtained. A processing stage 19 represents a 3-bit-wide counter whose count is denoted by j. In a processing stage 20, a gain value g of the correction filter 7 is determined, and in a processing stage 21, filter coefficients k j (n) and k j (p) are determined. The count value j and the interpolated filter parameters g, k j (n) and k j (p) are designated as a whole with m

Der Zählwert j und die interpolierten Filterparameter g, kj (n) und kj (p) gelangen zum Korrekturfilter 7, das im Blockdiagramm der Fig. 14 detaillierter dargestellt ist. Es umfasst eine Verstärkerstufe 22, ein Kreuzgliedfilter 24 zur Realisierung von Nullstellen und ein Kreuzgliedfilter 26 zur Realisierung von Polstellen. Der Vollständigkeit halber sind die Strukturen der Kreuzgliedfilter 24 bzw. 26 in den Signalflussdiagrammen der Figuren 15 bzw. 16 ausführlich wiedergegeben.The count value j and the interpolated filter parameters g, k j (n) and k j (p) reach the correction filter 7, which is shown in the block diagram of FIG Fig. 14 is shown in more detail. It comprises an amplifier stage 22, a cross-member filter 24 for the realization of zeros and a cross-member filter 26 for the realization of poles. For completeness, the structures of the cross-member filters 24 and 26 in the signal flow diagrams of FIGS. 15 or 16 reproduced in detail.

Zu jedem Abtastzeitpunkt gelangt ein interpolierter Verstärkungswert g zur Verstärkerstufe 22 (vgl. Fig. 14) und wird mit dem um beispielsweise 2 ms verzögerten Eingangssignal xd multipliziert. Die Filterkoeffizienten kj (n) bzw. kj (p) gelangen zu Verarbeitungsstufen 23 bzw. 25, zu welchen auch der Zählerwert j geführt wird. Die Verarbeitungsstufen 23 bzw. 25 sind lediglich Schalter, welche die interpolierten Filterkoeffizientenwerte entsprechend dem Zählerwert j dem richtigen Filterkoeffizienten in den Kreuzgliedfiltern 24 bzw. 26 zuweisen. Den Zählerwerten 0 bis 7 sind die Filterkoeffizienten mit den Indizes 1 bis 8 in aufsteigender Reihenfolge zugeordnet.At each sampling instant, an interpolated gain value g reaches the amplifier stage 22 (cf. Fig. 14 ) and is multiplied by the input signal x d delayed by, for example, 2 ms. The filter coefficients k j (n) and k j (p) reach processing stages 23 and 25, respectively, to which the counter value j is also passed. The processing stages 23 and 25 are merely switches which assign the interpolated filter coefficient values corresponding to the counter value j to the correct filter coefficients in the cross-member filters 24 and 26, respectively. The counter values 0 to 7 are assigned the filter coefficients with the indices 1 to 8 in ascending order.

Die Interpolationsstufen 20 bzw. 21 (vgl. Fig. 12) sind in den Figuren 17 bzw. 18 detailliert dargestellt. Wie bereits erwähnt wurde, werden die aus den individuellen Lautheitsangaben ermittelten Hörkorrekturdaten im erfindungsgemässen Verfahren als Filterparameter in einer für die Interpolation geeigneten Form abgespeichert. Für die Verstärkung handelt es sich dabei um einen logarithmischen Verstärkungswert

        γ = γ0a) + ψf·Δγ(ψa)     (12)

der mit Hilfe der Tabellen γ0 und Δγ, wie in Fig. 17 gezeigt, aus den Eingangsgrössen ψa und ψf interpoliert wird. Der Vollständigkeit halber sei erwähnt, dass im vorliegenden Falle einer eindimensionalen Interpolation die Tabelle Δγ entfallen und der entsprechende Wert durch Differenzbildung des ausgelesenen Wertes γ0 zum nachfolgend tabellierten Wert jedes Mal neu berechnet werden kann.
The interpolation stages 20 and 21 (cf. Fig. 12 ) are in the Figures 17 or 18 detailed. As already mentioned, the hearing correction data determined from the individual loudness data in the method according to the invention are stored as filter parameters in a form suitable for interpolation. The gain is a logarithmic gain value

γ = γ 0a ) + ψ f Δ Δγ (ψ a ) (12)

using the tables γ 0 and Δγ, as in Fig. 17 shown, is interpolated from the input variables ψ a and ψ f . For the sake of completeness, it should be mentioned that in the present case of a one-dimensional interpolation, the table Δγ is omitted and the corresponding value can be recalculated each time by subtracting the read value γ 0 from the value tabulated below.

Zur Ermittlung des in der Verstärkerstufe 22 benötigten Verstärkungswertes g werden aus dem Wert γ anschliessend durch Ausmaskieren der in Fig. 19 gezeigten Bitfelder die Adresse γa und der Proportionalwert γf gewonnen. Mit ihrer Hilfe wird ein Verstärkungswert

        g = exp(γa) + γf·Δexp(γa)     (13)

aus den mit exp und Δexp bezeichneten Tabellen, welche Werte der Exponentialfunktion enthalten, in einer weiteren Interpolation gewonnen. Die Fig. 17 stellt somit ein zweistufiges Interpolationsschema dar, das zur effizienten Ermittlung des benötigten Ausgangswertes wiederum von der Normiertheit der Signalwerte und darauf abgestimmter Tabellen Gebrauch macht.
In order to determine the gain value g required in the amplifier stage 22, the value .gamma Fig. 19 shown bit fields, the address γ a and the proportional value γ f won. With their help becomes a gain value

g = exp (γ a ) + γ f · Δexp (γ a ) (13)

from the tables designated by exp and Δexp which contain values of the exponential function, obtained in a further interpolation. The Fig. 17 thus represents a two-stage interpolation scheme, which makes use of the normality of the signal values and matched tables for the efficient determination of the required output value.

Im Falle der Filterkoeffizienten werden die hörbehindertenspezifischen Werte in der Form der Log-area-ratio-Koeffizienten abgespeichert. Im Gegensatz zum Verstärkungswert wird zu jedem Abtastzeitpunkt jeweils nur ein Koeffizient der beiden Kreuzgliedfilter 24 und 26 neu bestimmt. Wie bereits erwähnt wurde, steuert der durch die Verarbeitungsstufe 19 dargestellte Modulo-7-Zähler den Auswahlmechanismus. Im zweistufigen Interpolationsschema der Fig. 18 wird darum der drei Bit breite Wert des Zählers mit der Grösse ψa zur aktuellen Tabellenadresse zusammengefügt. Für jedes der beiden Kreuzgliedfilter 24 und 26 ergibt sich der Log-area-ratio-Koeffizient

        λ(ν) = λ0(ν)a,j) + ψf·Δλ(ν)a,j)     (14)

durch Interpolation mit den Tabellen λ0(ν) und Δλ(ν), wobei ν für eines der Symbole n oder p steht, welche die Kreuzgliedfilter 24 und 26 zur Realisierung von Nullstellen bzw. Polstellen unterscheiden.
In the case of the filter coefficients, the hearing-impaired-specific values are stored in the form of the log area-ratio coefficients. In contrast to the amplification value, in each case only one coefficient of the two cross-link filters 24 and 26 is newly determined at each sampling instant. As already mentioned, the modulo 7 counter represented by the processing stage 19 controls the selection mechanism. In the two-stage interpolation scheme of Fig. 18 is therefore the three-bit value of the counter with the size ψ a joined to the current table address. For each of the two cross-member filters 24 and 26, the log area ratio coefficient results

λ (ν) = λ 0 (ν)a , j) + ψ f · Δλ (ν)a , j) (14)

by interpolation with the tables λ 0 (ν) and Δλ (ν) , where ν stands for one of the symbols n or p, which distinguish the cross-member filters 24 and 26 for the realization of zeros or poles.

Die in den Kreuzgliedfiltern 24 und 26 benötigten Filterkoeffizienten kj (n) und kj (p) werden in einer erneuten Interpolation ermittelt, wobei aus jedem der Log-area-ratio-Koeffizienten λ zunächst wiederum durch Ausmaskieren der in Fig. 20 gezeigten Bitfelder ein Adresswert λa und eine Proportionalgrösse λf gewonnen werden. Für die Koeffizienten der beiden Kreuzgliedfilter 24 und 26 kann dieser Vorgang wie auch die anschliessende Interpolation selbst nacheinander geschehen, was in Fig. 18 mit dem Multiplexer M angedeutet ist und insbesondere zur Folge hat, dass die mit tanh und Δtanh bezeichneten Tabellen der Tangens-hyperbolicus-Funktion nur einmal abgespeichert sein müssen. Die Filterkoeffizienten

        k(ν) = tahn(λa(ν)) + λf(ν)·Δtanh(λa(ν))     (15)

ergeben sich mit einer weiteren Interpolation, wobei für die effiziente Implementation wiederum von der Normiertheit der Signalgrössen und darauf abgestimmter Tabellen Gebrauch gemacht wird.
The filter coefficients k j (n) and k j (p) required in the cross-member filters 24 and 26 are determined in a renewed interpolation, wherein from each of the log area ratio coefficients λ, in turn, by masking out the in Fig. 20 shown bit fields, an address value λ a and a proportional variable λ f are obtained. For the coefficients of the two cross-link filters 24 and 26, this process, as well as the subsequent interpolation itself, can take place one after the other, which in Fig. 18 is indicated with the multiplexer M and in particular has the consequence that the tanh and Δtanh designated tables of the tangent hyperbolic function must be stored only once. The filter coefficients

k (ν) = tahn (λ a (ν) ) + λ f (ν) · Δtanh (λ a (ν) ) (15)

result from a further interpolation, whereby the normalization of the signal quantities and the corresponding tables are again used for the efficient implementation.

Zusammenfassend lässt sich sagen, dass im erfindungsgemässen Verfahren zur lautheitsgesteuerten Verarbeitung akustischer Signale in Schallverarbeitungsgeräten ein zu verarbeitendes akustisches Signal x vollständig im Zeitbereich verarbeitet wird. Dabei wird ausgehend vom zu verarbeitenden Signal x laufend eine für die subjektive Lautheitsempfindung Normalhörender charakteristische Steuergrösse ψ berechnet. Das Eingangssignal x wird mit einem zeitabhängigen Filter 7 verarbeitet, dessen Parameter mit Hilfe der Steuergrösse ψ laufend durch Interpolation im voraus berechneter und in Tabellen abgespeicherter anwenderpezifischer Korrekturdaten neu ermittelt und auf den zeitabhängigen Filter 7 angewendet werden. Eine erfindungsgemässe Vorrichtung zur Durchführung des Verfahrens weist eine Verarbeitungsstufe 4 zur iterativen Berechnung der Steuergrösse ψ und eine damit zeitabhängig gesteuerte Korrekturfilterstufe 7 auf.In summary, it can be said that in the method according to the invention for the loudness-controlled processing of acoustic signals in sound processing devices, an acoustic signal x to be processed is completely in the time domain is processed. In this case, starting from the signal x to be processed, a control variable ψ which is characteristic of the subjective loudness sensation is continuously calculated. The input signal x is processed with a time-dependent filter 7, the parameters of which are newly determined by means of the control variable ψ continuously by interpolation in user-specific correction data previously calculated and stored in tables and applied to the time-dependent filter 7. A device according to the invention for carrying out the method has a processing stage 4 for the iterative calculation of the control variable ψ and a time-dependent controlled correction filter stage 7.

Claims (29)

  1. A method for loudness-controlled processing of acoustic signals in sound processing devices, wherein an acoustic signal (x) to be processed is processed entirely in the time domain such that based on the signal (x) to be processed, a control variable (ψ) characteristic of a subjective loudness perception of a person with ordinary hearing abilities is continuously computed, and that the input signal (x) is processed through a time-based filter (7), the parameters of which are continuously determined anew based on the control variable (ψ) through interpolation of user-specific correction data computed in advance and stored in tables, and the parameters are applied to the time-based filter (7).
  2. The method according to claim 1, wherein the acoustic signal (x) is processed in an iterative manner without a division into sub-band Signals.
  3. The method according to claim 1 or 2, wherein the control variable (ψ) is defined as the square root of the loudness standardized for a defined loudness interval.
  4. The method according to one of the claims 1 through 3, wherein the control variable (ψ) is continuously determined through a two-dimensional interpolation, that is, on the basis of two iteratively computed variables, wherein a first iteratively computed variable (p) represents an estimated value for the current signal power expressed on a logarithmic scale, and a second iteratively computed variable (c) represents an estimated value for the center frequency of the current signal power distribution on a Bark scale.
  5. The method according to claim 4, wherein the first iteratively computed variable (p) is determined by an iterative estimated value computing unit of the first order, which is embedded in a digital control loop, for a time based exponentially weighted estimated value for the squared input signal.
  6. The method according to claim 4 or 5, wherein the second iteratively computed variable (c) is computed by dividing an iteratively determined dividend by an iteratively determined divisor, wherein the divisor is an estimated value for the current power of the signals (φ), which signal is weighted by a frequency group filter, and the dividend is an estimated value for the current power of the signal (θ), which, in addition, is weighted with a Bark filter, wherein the transfer function of the frequency group filter corresponds to the square root of a standardized frequency group width function, and the transfer function of the Bark filter corresponds to the square root of a standardized tonalness function.
  7. The method according to claim 6, wherein the divisor and also the dividend are determined through an iterative estimated value computation unit of the first order embedded in a digital control loop for a time based exponentially weighted estimated value of the squared input signal, wherein the unit for determining the dividend receives the regulation signals from the unit for the divisor and applies them to its signals.
  8. The method according to claim 6, wherein the division is computed based on the regulated estimated values and approximated by a multiplication with (1 - δ), wherein 1 is the target value and |δ|<< 1 holds.
  9. A method according to one of the claims 5 - 8, wherein the scaling variables required for regulating the iterative estimated value computation unit and the incremental change values required for updating the logarithmic estimated value are read out from the tables (S, A, Δp) stored in advance.
  10. A method according to claim 9, wherein the readout is performed from tables organized so that the table indices for finding the desired variables can be derived from the still unregulated estimated value (v) and the logarithmic estimated value (p).
  11. A method according to one of the claims 1 through 3, wherein the control variable (ψ) is continuously determined through a two dimensional interpolation and thus based on two iteratively computed variables, of which a first iteratively computed variable (q) is an estimated value expressed on a logarithmic scale for the current power of a signal (φ) weighted with a frequency group filter, wherein the weighting is compensated by changing the entries in the original interpolation table, and a second iteratively computed variable (c) represents an estimated value for the center frequency of the current power distribution on a Bark scale.
  12. A method according to one of the claims 4 through 11, wherein the control variable (ψ) and/or the first iteratively computed variable (p or q) and/or the second iteratively computed variable (c) are smoothed with a non linear filter and thus so that a new start value is generated through adding a correction value (D) to the preceding start value, wherein the correction value (D) is computed from the difference (d) between new input signal and preceding output signal and that the correction value (D) for small absolute values (|d|) of the difference (d) is a function of the third power of the difference (d), for medium absolute values (|d|) of the difference (d) it is a linear function of the difference (d), and for large absolute values (|d|) of the difference (d) it is constant.
  13. A method according to one of the claims 4 through 12, wherein the interpolation of the control variable (ψ) is performed with tables organized, so that the table index for finding the interpolation point value and the incremental growth variables in both dimensions, and also the proportional variables by which the incremental growth variables are multiplied before being added to the interpolation point value can be generated from the iteratively computed variables (p or q; c) by simple masked reading of bit fields.
  14. The method according to claim 13, wherein optimized values according to the following formulas are used in the tables for two-dimensional interpolation of the control variable (ψ): ψ 0 c i q k = ψ c i q k + ψ c i + 1 q k + ψ c i q k + 1 - ψ c i + 1 q k + 1 - ψ c i q k / 4
    Figure imgb0006
    δψ / δ c | ci , qk = ψ c i + 1 q k + 1 - ψ c i q k + 1 + ψ c i + 1 q k - ψ c i q k / 2
    Figure imgb0007
    δψ / δ q | ci , qk = ψ c i + 1 q k + 1 - ψ c i + 1 q k + ψ c i q k + 1 - ψ c i q k / 2
    Figure imgb0008
  15. The method according to one of claims 1 through 14, wherein the values stored in tables for interpolating the user specific correction data are stored as amplification values in the logarithmic portion and as filter coefficients in the log-area-ratio-portion.
  16. The method according to claim 15, wherein the interpolation of the user-specific correction data is performed with tables organized so that the table index for finding the interpolation point value and the table index for finding the proportional variable, by which the difference between the subsequent interpolation point value and instant interpolation point value itself is multiplied before being added to the support value, are generated from the control variable (ψ) by simple masked reading of bit fields.
  17. The method according to claim 15 or 16, wherein the amplification value is determined from the interpolated logarithmic amplification value and the filter coefficients are interpolated from the interpolated log-area-ratio-coefficient through interpolation with stored tables of the exponential function and the hyperbolic tangent function and tables of the incremental variables values of these functions.
  18. A method according to claim 17, wherein the interpolation is performed with tables organized, so that the table indices for finding the interpolation point values and the incremental growth variables and the proportional variables, by which the incremental growth variables are multiplied before addition to the support point values, are generated by simple masked reading of bit fields of the interpolated augmentation value and the interpolated log-area-ratio-coefficients.
  19. A method according to one of claims 15 through 18, wherein the amplification value in each scanning interval and from the filter coefficients in each scanning interval respectively only the coefficients of a pole- / null-pair are determined, anew, wherein a invariably continuous sequence applies for Updating the filter coefficients.
  20. The method according, to one of claims 1 to 19, wherein the input signal for the time-based filter is delayed, so that the filter coefficients and amplification values continuously determined anew through the computation of the variable (ψ) are applied to the signal in a timely manner, on which the computation is based.
  21. An apparatus for implementing the method according to claim 1, comprising a processing stage 4 for iterative computation of the control variable (ψ), and thus a correction filter stage (7) controlled time based.
  22. The apparatus according to claim 21, comprising two dimensional interpolation stage (16) for determining the control variable (ψ) from a signal power (q) and a center frequency (c).
  23. The apparatus according to claim 21 or 22, comprising a frequency group filter (11) and a Bark filter (12) for determining the filtered signals (φ, θ) from an input signal (x).
  24. The apparatus according to claim 23, wherein the frequency group filter and the Bark filter are configured as recursive filters.
  25. The apparatus according to one of claims 21 through 24, comprising an estimated value computation unit (13) for computing the signal power (q) and the center frequency (c) from the filtered input signals (φ, θ).
  26. The apparatus according to one of claims 21 through 25, comprising a smoothing filter (14, 15, 17) for eliminating an undesirable scatter of sequential signal values (cr, qr, ψr).
  27. The apparatus according to one of claims 21 through 26, comprising a serial circuit with an amplifier stage (22), a cross member filter stage (24) for implementing nulls, and a cross member filter stage (26) for implementing poles.
  28. The apparatus according to one of claims 21 through 27, comprising two-stage interpolation stages for determining the amplification value (g) and the coefficients (kj (n) and kj (p) of the correction filter (7) from the control variable (ψ).
  29. The apparatus according to one of claims 21 through 28, comprising a signal delay unit (6) for synchronizing the input signal (x) with respect to processing through the correction filter (7) whose filter parameters are derived from the input signal (x).
EP97810460A 1996-07-19 1997-07-11 Acoustic signal processing based on loudness control Expired - Lifetime EP0820212B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1823/96 1996-07-19
CH182396 1996-07-19

Publications (3)

Publication Number Publication Date
EP0820212A2 EP0820212A2 (en) 1998-01-21
EP0820212A3 EP0820212A3 (en) 2006-03-22
EP0820212B1 true EP0820212B1 (en) 2010-04-21

Family

ID=4219434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810460A Expired - Lifetime EP0820212B1 (en) 1996-07-19 1997-07-11 Acoustic signal processing based on loudness control

Country Status (5)

Country Link
US (1) US6370255B1 (en)
EP (1) EP0820212B1 (en)
AU (1) AU729074B2 (en)
DE (1) DE59713033D1 (en)
DK (1) DK0820212T3 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59713033D1 (en) * 1996-07-19 2010-06-02 Bernafon Ag Loudness-controlled processing of acoustic signals
US7277554B2 (en) * 2001-08-08 2007-10-02 Gn Resound North America Corporation Dynamic range compression using digital frequency warping
US7072477B1 (en) * 2002-07-09 2006-07-04 Apple Computer, Inc. Method and apparatus for automatically normalizing a perceived volume level in a digitally encoded file
US7454331B2 (en) * 2002-08-30 2008-11-18 Dolby Laboratories Licensing Corporation Controlling loudness of speech in signals that contain speech and other types of audio material
DE10245567B3 (en) 2002-09-30 2004-04-01 Siemens Audiologische Technik Gmbh Device and method for fitting a hearing aid
JP4486646B2 (en) * 2003-05-28 2010-06-23 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション Method, apparatus and computer program for calculating and adjusting the perceived volume of an audio signal
US8199933B2 (en) 2004-10-26 2012-06-12 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US8090120B2 (en) * 2004-10-26 2012-01-03 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
BRPI0622303B1 (en) * 2005-04-18 2016-03-01 Basf Se cp copolymers in the form of a polymer obtained by radical polymerization of at least three different monoethylenically unsaturated m monomers
TWI517562B (en) * 2006-04-04 2016-01-11 杜比實驗室特許公司 Method, apparatus, and computer program for scaling the overall perceived loudness of a multichannel audio signal by a desired amount
CN101410892B (en) * 2006-04-04 2012-08-08 杜比实验室特许公司 Audio signal loudness measurement and modification in the mdct domain
MY141426A (en) 2006-04-27 2010-04-30 Dolby Lab Licensing Corp Audio gain control using specific-loudness-based auditory event detection
US8849433B2 (en) 2006-10-20 2014-09-30 Dolby Laboratories Licensing Corporation Audio dynamics processing using a reset
US8521314B2 (en) * 2006-11-01 2013-08-27 Dolby Laboratories Licensing Corporation Hierarchical control path with constraints for audio dynamics processing
WO2008085330A1 (en) * 2007-01-03 2008-07-17 Dolby Laboratories Licensing Corporation Hybrid digital/analog loudness-compensating volume control
BRPI0813723B1 (en) * 2007-07-13 2020-02-04 Dolby Laboratories Licensing Corp method for controlling the sound intensity level of auditory events, non-transient computer-readable memory, computer system and device
KR101597375B1 (en) 2007-12-21 2016-02-24 디티에스 엘엘씨 System for adjusting perceived loudness of audio signals
US8538042B2 (en) 2009-08-11 2013-09-17 Dts Llc System for increasing perceived loudness of speakers
EP2326108B1 (en) * 2009-11-02 2015-06-03 Harman Becker Automotive Systems GmbH Audio system phase equalizion
NL2004294C2 (en) * 2010-02-24 2011-08-25 Ru Jacob Alexander De Hearing instrument.
US9313589B2 (en) * 2011-07-01 2016-04-12 Cochlear Limited Method and system for configuration of a medical device that stimulates a human physiological system
US9312829B2 (en) 2012-04-12 2016-04-12 Dts Llc System for adjusting loudness of audio signals in real time
US9380387B2 (en) 2014-08-01 2016-06-28 Klipsch Group, Inc. Phase independent surround speaker
US10842418B2 (en) 2014-09-29 2020-11-24 Starkey Laboratories, Inc. Method and apparatus for tinnitus evaluation with test sound automatically adjusted for loudness
FR3052951B1 (en) * 2016-06-20 2020-02-28 Arkamys METHOD AND SYSTEM FOR OPTIMIZING THE LOW FREQUENCY AUDIO RENDERING OF AN AUDIO SIGNAL
EP3503574B1 (en) * 2017-12-22 2021-10-27 FalCom A/S Hearing protection device with multiband limiter and related method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225836A (en) * 1988-03-23 1993-07-06 Central Institute For The Deaf Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods
US5495534A (en) * 1990-01-19 1996-02-27 Sony Corporation Audio signal reproducing apparatus
US5388185A (en) * 1991-09-30 1995-02-07 U S West Advanced Technologies, Inc. System for adaptive processing of telephone voice signals
DE4340817A1 (en) * 1993-12-01 1995-06-08 Toepholm & Westermann Circuit arrangement for the automatic control of hearing aids
EP0674463A1 (en) * 1994-03-23 1995-09-27 Siemens Audiologische Technik GmbH Programmable hearing aid
US5500902A (en) * 1994-07-08 1996-03-19 Stockham, Jr.; Thomas G. Hearing aid device incorporating signal processing techniques
ATE229729T1 (en) * 1995-03-13 2002-12-15 Phonak Ag METHOD FOR ADJUSTING A HEARING AID, DEVICE THEREOF AND HEARING AID
JP2970498B2 (en) * 1995-10-26 1999-11-02 日本電気株式会社 Digital hearing aid
US5771299A (en) * 1996-06-20 1998-06-23 Audiologic, Inc. Spectral transposition of a digital audio signal
DE59713033D1 (en) * 1996-07-19 2010-06-02 Bernafon Ag Loudness-controlled processing of acoustic signals
IT1287089B1 (en) * 1996-11-07 1998-08-04 Curti Roberto Delle EQUALIZATION/FILTERING DEVICE FOR THE CORRECTION OF THE RESPONSE LINEARITY OF THE REPRODUCTION AND/OR AMPLIFICATION SYSTEMS

Also Published As

Publication number Publication date
AU2865597A (en) 1998-01-29
DK0820212T3 (en) 2010-08-02
US6370255B1 (en) 2002-04-09
EP0820212A3 (en) 2006-03-22
EP0820212A2 (en) 1998-01-21
DE59713033D1 (en) 2010-06-02
AU729074B2 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
EP0820212B1 (en) Acoustic signal processing based on loudness control
EP0732036B1 (en) Automatic regulation circuitry for hearing aids
DE69433662T2 (en) ADAPTIVE GAIN AND FILTER CIRCUIT FOR SOUND PLAY SYSTEM
DE69906560T2 (en) COCHLEA COMPRESSION MODEL-BASED HEARING AID
EP1453194B1 (en) Method for automatic adjustment of an amplifier of a hearing aid and hearing aid
EP0052847B1 (en) Method and circuit for converting the sampling frequency of a series of samples avoiding conversion into a continuous signal
DE2818204C2 (en) Signal processing system for deriving an output signal with reduced interference
DE3510660C2 (en)
DE60037167T2 (en) Control method for a digital graphic equalizer
EP0661905B1 (en) Method for the fitting of hearing aids, device therefor and hearing aid
DE69933141T2 (en) TONE PROCESSOR FOR ADAPTIVE DYNAMIC RANGE IMPROVEMENT
DE60303214T2 (en) PROCEDURE FOR REDUCING ALIASING FAILURES CAUSED BY THE ADAPTATION OF THE SPECTRAL CURVE IN REAL-VALUE FILTER BANKS
DE10234130B3 (en) Device and method for generating a complex spectral representation of a discrete-time signal
EP0542711A1 (en) Method for shifting the frequency of signals
EP1825356B1 (en) Method for producing a representation of a calculation result that is linearly dependent on the square of a value
DE102012220620A1 (en) Providing audio signals for tinnitus therapy
DE19720651A1 (en) Digital hearing aid
EP1239455A2 (en) Method and system for implementing a Fourier transformation which is adapted to the transfer function of human sensory organs, and systems for noise reduction and speech recognition based thereon
EP0535425B1 (en) Method for amplifying an acoustic signal for the hard of hearing and device for carrying out the method
DE60125072T2 (en) Digital graphical / parametric equalizer
DE60205297T2 (en) Method and apparatus for generating a random signal with controlled histogram and spectrum
DE102011085036A1 (en) Method for determining a compression characteristic
DE4012349C2 (en)
DE102012202469B3 (en) Hearing apparatus with an adaptive filter and method for filtering an audio signal
EP1453355A1 (en) Signal processing in a hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20060920

AKX Designation fees paid

Designated state(s): CH DE DK FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

RTI1 Title (correction)

Free format text: ACOUSTIC SIGNAL PROCESSING BASED ON LOUDNESS CONTROL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59713033

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130716

Year of fee payment: 17

Ref country code: DK

Payment date: 20130718

Year of fee payment: 17

Ref country code: DE

Payment date: 20130724

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130731

Year of fee payment: 17

Ref country code: GB

Payment date: 20130725

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59713033

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140711

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59713033

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731