EP0799885A1 - Betaine ester compounds of active alcohols - Google Patents

Betaine ester compounds of active alcohols Download PDF

Info

Publication number
EP0799885A1
EP0799885A1 EP96302291A EP96302291A EP0799885A1 EP 0799885 A1 EP0799885 A1 EP 0799885A1 EP 96302291 A EP96302291 A EP 96302291A EP 96302291 A EP96302291 A EP 96302291A EP 0799885 A1 EP0799885 A1 EP 0799885A1
Authority
EP
European Patent Office
Prior art keywords
hydrochloride
ester
oxoethyl
composition according
aqueous acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96302291A
Other languages
German (de)
French (fr)
Inventor
Marc Johan Declercq
Hugo Jean Demeyere
Arnaud Pierre Struillou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP96302291A priority Critical patent/EP0799885A1/en
Priority to PCT/US1997/004959 priority patent/WO1997036978A1/en
Priority to AU25908/97A priority patent/AU2590897A/en
Priority to JP53540697A priority patent/JP3770916B2/en
Priority to CA002250837A priority patent/CA2250837C/en
Priority to US09/155,779 priority patent/US5958870A/en
Priority to BR9710416A priority patent/BR9710416A/en
Priority to CN97195159A priority patent/CN1220693A/en
Priority to ARP970101299A priority patent/AR008583A1/en
Priority to ZA9702775A priority patent/ZA972775B/en
Publication of EP0799885A1 publication Critical patent/EP0799885A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/46Esters of carboxylic acids with amino alcohols; Esters of amino carboxylic acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/507Compounds releasing perfumes by thermal or chemical activation

Definitions

  • the present invention relates to betaine ester compounds of active alcohols. More particularly, it relates to stabilised betaine ester compounds of active alcohols in an acidic environment such as in a fabric softener composition.
  • betaine ester compounds are effective in the slow release of perfume, it has now been found that in an acidic environment such as in acidic product, the described compounds hydrolyse upon storage to release their perfume component, therefore reducing the amount of perfume alcohol released upon and after the washing or cleaning process.
  • acidic environment it is meant a pH value of less than 7.0.
  • the formulator of a laundry and/or cleaning compositions is thus faced with the challenge of formulating a compound which is stable in an acidic environment but which still produces a slow release of the active alcohol (e.g perfume) upon and after the washing or cleaning process.
  • active alcohol e.g perfume
  • betaine ester compounds of active alcohols in combination with a surfactant, wherein said betaine esters at a concentration of from 0.01% to 10% by weight are predominantly in the form of micelles, and/or are capable of being incorporated into micelles, overcomes the problem.
  • said betaine esters have at least one long alkyl chain.
  • the present invention encompasses acidic compositions comprising betaine ester compounds of active alcohol components having a long alkyl chain, which at a concentration of from 0.01% to 10% by weight are predominantly in the form of micelles, and/or are capable of being incorporated into micelles, in combination with a surfactant.
  • a cationic surfactant is preferred.
  • betaine ester compounds with at least one long alkyl chain provide said betaine esters with a hydrophobic character which enable them to be rearranged in micelle form and/or to be incorporated into micelles, thereby protecting the ester bond from hydrolysis by the acidic environment.
  • the term "acidic aqueous composition” includes compositions having a pH value below or equal to 7.0, whereby the pH is measured at 20°C in the neat liquid product.
  • slow release is meant release of the active component (e.g perfume) over a longer period of time than by the use of the active (e.g perfume) itself. Accordingly, the slow release concept and storage stability advantage of the invention may be applied to other active alcohol components such as a flavour alcohol ingredient, a pharmaceutical alcohol active or a biocontrol alcohol agent and any other active alcohol component where a slow release of said active component is necessary.
  • the present invention relates to an aqueous acidic composition
  • an aqueous acidic composition comprising
  • the betaine ester is a hydrophobic betaine ester of formula:
  • a process for preparing said acidic composition comprises the following steps:
  • An essential component of the invention is a betaine ester of an active alcohol, which, at a concentration of from 0.01% to 10% by weight in said composition, is predominantly in the form of micelles, and/or is capable of being incorporated into micelles, e.g a micelle can be composed of 100% betaine esters or mixed betaine esters/surfactants.
  • the betaine ester compounds of an active alcohol have the general formula below: wherein each R 1 , R 2 , R 3 independently, is selected from hydrogen, alkyl group, aryl group, and with the proviso that where each R1, R2 and R3, independently, are only selected from hydrogen, aryl or alkyl groups, then at least one of R1, R2 or R3 is an alkyl or aryl group having at least 8 carbon atoms,
  • each n 2 is an integer lying in the range of 0 to 6.
  • each n3, independently, is an integer of value 1 or 2, more preferably 1.
  • R 1 , R 2 , R 3 are each, independently selected from H, alkyl chain having from 1 to 20 carbon atoms, with the proviso that at least one of R 1 , R 2 or R 3 is an alkyl group having at least 8 carbon atoms.
  • R' 1 , R' 2 are, each, independently selected from H, alkyl chain having 1 to 3 carbon atoms, phenyl.
  • the R group which is hydrophobic in nature, is the organic chain of an active alcohol, said active alcohol being selected from a flavour alcohol ingredient, a pharmaceutical alcohol active, a biocontrol alcohol agent, a perfume alcohol component and mixtures thereof.
  • Flavour ingredients include spices, flavour enhancers that contribute to the overall flavour perception.
  • Pharmaceutical actives include drugs.
  • Biocontrol agents include biocides, antimicrobials, bactericides, fungicides, algaecides, mildewcides, disinfectants, antiseptics, insecticides, vermicides, plant growth hormones.
  • Perfume alcohol components include components having odoriferous properties.
  • the R group is the organic chain of a perfume alcohol, said alcohol being selected from 2-phenoxyethanol, phenylethylalcohol, geraniol, citronellol, 3-methyl-5-phenyl-1-pentanol, 2,4-dimethyl-3-cyclohexene-1-methanol, linalool, tetrahydrolinalool, 1,2-dihydromyrcenol, hydroxycitronellal, farnesol, menthol, eugenol, vanilin, cis-3-hexenol, terpineol and mixtures thereof.
  • a perfume alcohol said alcohol being selected from 2-phenoxyethanol, phenylethylalcohol, geraniol, citronellol, 3-methyl-5-phenyl-1-pentanol, 2,4-dimethyl-3-cyclohexene-1-methanol, linalool, tetrahydrolinalool, 1,2-dihydromyr
  • More preferred R groups are selected from the organic chain of a perfume alcohol, said alcohol being selected from geraniol, citronellol, linalool, dihydromyrcenol and mixtures thereof.
  • Preferred compounds for the purpose of the invention are selected from geranyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; citronellyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; linalyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; dihydromyrcenyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride.
  • N-dodecylglycine geranyl ester hydrobromide or hydrochloride N-dodecylglycine citronellyl ester hydrobromide or hydrochloride
  • N-dodecylglycine linalyl ester hydrobromide or hydrochloride N-dodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • N,N-dioctylglycine geranyl ester hydrobromide or hydrochloride N,N-dioctylglycine citronellyl ester hydrobromide or hydrochloride
  • N,N-dioctylglycine linalyl ester hydrobromide or hydrochloride N,N-dioctylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • N,N-didodecylglycine geranyl ester hydrobromide or hydrochloride N,N-didodecylglycine citronellyl ester hydrobromide or hydrochloride, N,N-didodecylglycine linalyl ester hydrobromide or hydrochloride; N,N-didodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride N-butyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride
  • N-butyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride.
  • N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride N-dodecyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride
  • N-dodecyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride.
  • N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride N,N-bis(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride
  • N,N-bis(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride.
  • levels of incorporation of said betaine ester compounds of active alcohols, into the acidic composition are from 0.01% to 8%, more preferably 0.05% to 5%, and most preferably from 0.1% to 2%, by weight of the total composition.
  • the other essential component of the invention is a surfactant.
  • Such surfactant are selected from anionic, nonionic, cationic, amphoteric and zwiterrionic surfactants.
  • any anionic surfactants useful for detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C 5 -C 17 acyl-N-(C 1 -C 4 alkyl) and -N-(C 1 -C 2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 6 -C 18 alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C 6 -C 18 alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactants suitable for use herein include the salts of C 5 -C 20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C 6 -C 22 primary or secondary alkane sulfonates, C 6 -C 24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH 2 CH 2 0) x CH 2 C00 - M + wherein R is a C 6 to C 18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 %, and the amount of material where x is greater than 7, is less than about 25 %, the average x is from about 2 to 4 when the average R is C 13 or less, and the average x is from about 3 to 10 when the average R is greater than C 13 , and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • the preferred alkyl ethoxy carboxylates are those where R is a C 12 to C 18 al
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHR 1 -CHR 2 -O)-R 3 wherein R is a C 6 to C 18 alkyl group, x is from 1 to 25, R 1 and R 2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one R 1 or R 2 is a succinic acid radical or hydroxysuccinic acid radical, and R 3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates.
  • the secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion).
  • the secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • the species M can be any suitable, especially water-solubilizing, counterion.
  • Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-buty-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH 2 COOM, wherein R is a C 5 -C 17 linear or branched alkyl or alkenyl group, R 1 is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 5 -C 17 linear or branched alkyl or alkenyl group
  • R 1 is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • nonionic surfactants useful for detersive purposes can be included in the compositions.
  • exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R 2 CONR 1 Z wherein: R1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight-chain C 5 -C 19 alkyl or alkenyl, more preferably straight-chain C 9 -C 17 alkyl or alkenyl, most preferably straight-chain C 11 -C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from
  • polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein.
  • the polyethylene oxide condensates are preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • the ethoxylated C 6 -C 18 fatty alcohols and C 6 -C 18 mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
  • the ethoxylated fatty alcohols are the C 10 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C 12 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
  • the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
  • Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula R 2 O(C n H 2n O)t(glycosyl) x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
  • the glycosyl is preferably derived from glucose.
  • Fatty acid amide surfactants suitable for use herein are those having the formula: R 6 CON(R 7 ) 2 wherein R 6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R 7 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and -(C 2 H 4 O) x H, where x is in the range of from 1 to 3.
  • Typical cationic surfactants for the purpose of the invention are those commonly mentioned as cationic fabric softener actives.
  • Such cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives, the most commonly used having been di-long alkyl chain ammonium chloride.
  • Preferred cationic softeners among these include the following:
  • cationic fabric softening components are the more environmentally-friendly materials, and rapidly biodegradable quaternary ammonium compounds which have been presented as alternatives to the traditionally used di-long chain ammonium chlorides.
  • Such quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups.
  • Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0,239,910.
  • the alkyl, or alkenyl, chain T 1 , T 2 , T 3 , T 4 , T 5 must contain at least 11 carbon atoms, preferably at least 16 carbon atoms.
  • the chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material.
  • the compounds wherein T 1 , T 2 , T 3 , T 4 , T 5 represents the mixture of long chain materials typical for tallow are particularly preferred.
  • quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
  • compounds 1-7 are examples of compounds of Formula (I); compound 8 is a compound of Formula (II). Particularly preferred is N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride, where the tallow chains are at least partially unsaturated.
  • the level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
  • the anion is merely present as a counterion of the positively charged quaternary ammonium compounds.
  • the nature of the counterion is not critical at all to the practice of the present invention. The scope of this invention is not considered limited to any particular anion.
  • amine precursors thereof is meant the secondary or tertiary amines corresponding to the above quaternary ammonium compounds, said amines being substantially protonated in the present compositions due to the pH values.
  • cationic surfactants may also be used in addition to or in alternative to the above mentioned cationic surfactants having fabric softening properties.
  • This include the monoalkyl ammonium halide such as trimethyl alkyl ammonium halide (R'-N + (Me) 3 X - ) such as C16 trimethyl ammonium bromide or C14 trimethyl ammonium bromide; N-alkyl N,N-dimethyl-N(2-hydroxyethyl) ammonium ( R'-N + (Me) 2 CH 2 CH 2 OH X - ) and mixtures thereof, and wherein R' is an alkyl chain having at least 8 carbons and X - is a conteranion as defined herein before.
  • R' is an alkyl chain having at least 8 carbons and X - is a conteranion as defined herein before.
  • surfactants are the cationic surfactants, most preferably the cationic surfactants mentioned above as having fabric softening properties.
  • Typical levels of said surfactants are from 0.1% to 80% by weight of the compositions.
  • Acidic materials are essential to the stability of the composition of the invention. Acidity may be provided from the above mentioned betaine ester, especially with those selected from N-dodecylglycine geranyl ester hydrobromide or hydrochloride; N,N-dioctylglycine geranyl ester hydrobromide or hydrochloride; N,N-didodecylglycine geranyl ester hydrobromide or hydrochloride; N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; and/or the
  • Suitable conventional acidic materials include the bronstead acids as well as the fatty acids.
  • suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C 1 -C 5 ) carboxylic acids, and alkyl sulfonic acids and mixtures thereof.
  • Suitable inorganic acids include HCl, H 2 SO 4 , HNO 3 and H 3 PO 4 .
  • Suitable organic acids include formic, acetic, methylsulfonic and ethylsulfonic acid.
  • Preferred acids are hydrochloric, phopshoric, formic and methylsulfonic acid.
  • the amount of acidic material should be such that the pH of the composition is less than 7, preferably from 2.0 to 5.5.
  • optimum hydrolytic stability of these compositions will be obtained when the pH of the compositions, measured in the neat compositions at 20°C, is in the range of from 2.0 to 4.5.
  • the amount of acid is from 1% to 30% by weight, preferably 2% to 30%, most preferably 3% to 15% by weight of the cationic surfactant.
  • composition will comprise up to 5% by weight, more preferably from 0.1% to 1.5% by weight of additional perfume.
  • perfumes are those odorous materials that deposit on fabrics or surfaces during the laundry or cleaning process and are detectable by people with normal olfactory sensitivity.
  • perfume ingredients along with their odour corrector and their physical and chemical properties are given in "Perfume and Flavor chemicals (aroma chemicals)", Stephen Arctender, Vols. I and II, Aurthor, Montclair, H.J. and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J.
  • Perfume components and compositions can also be found in the art, e.g. US Patent Nos. 4,145,184, 4,152,272, 4,209,417 or 4,515,705.
  • perfume use includes materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfume, and such materials can be used herein.
  • Typical perfumes can comprise e.g. woody/earthy bases containing exotic materials such as sandalwood oil, civet and patchouli oil.
  • the perfume also can be of a light floral fragrance e.g. rose or violet extract.
  • the perfume can be formulated to provide desirable fruity odours e.g. lime, lemon or orange.
  • perfume ingredients and compositions are anetole, benzaldehyde, benzyl acetate, benzyl alcohol, benzyl formate, isobornyl acetate, camphene, cis-citral (neral), citronellal, citronellol, citronellyl acetate, paracymene, decanal, dihydrolinalool, dihydromyrcenol, dimethyl phenyl carbinol, eucalyptol, geranial, geraniol, geranyl acetate, geranyl nitrile, cis-3-hexenyl acetate, hydroxycitronellal, d-limonene, linalool, linalool oxide, linalyl acetate, linalyl propionate, methyl anthranilate, alpha-methyl ionone, methyl nonyl acetaldehyde, methyl pheny
  • compositions according to the present invention are suitable for use where acidic products and surfactants, preferably a cationic surfactant are present.
  • acidic products include fabric softeners, hard surface cleaners, bathroom cleaners, shower gels, deodorants, bars, shampoos, conditioners.
  • the cationic surfactants which also act as fabric softener will preferably be present, depending on the composition execution, in amount of 1% to 8% by weight where the composition is in diluted form or in amount of 8% to 80%, more preferably 10% to 50%, most preferably 15% to 35% by weight where the composition is in concentrated form.
  • the fabric softener composition may also optionally comprise conventional softening ingredients such as nonionic extenders, surfactants concentration aids, electrolyte concentration aids, stabilisers, such as well known antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents and enzymes.
  • conventional softening ingredients such as nonionic extenders, surfactants concentration aids, electrolyte concentration aids, stabilisers, such as well known antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents and enzymes.
  • Also provided herein by the present invention is a process for preparing a composition as described herein before, which comprises the steps of
  • the molten mixture of step a) will be dispersed in a waterseat of step b) above the Krafft temperature of the surfactant.
  • the waterseat may optionally contain additives such as polyethylene glycol or biocide. Acids may be added in step a) or directly to the waterseat of step b). Optional components such as dyes, perfumes if present will be added either before step e) once the resulting dispersion is made or after step e).
  • the temperature of the molten mixture is above the Krafft temperature of the surfactant.
  • Krafft temperature is meant the temperature at which the solubility of the surfactant becomes equal to the critical micelle concentration (CMC), the CMC being defined in M.J ROSEN, Surfactants and interfacial phenomena, 1988, p.215.
  • the amount of shear should be sufficient to properly disperse the surfactant. Proper dispersion can be verified by controlling the particle size of the resulting dispersion, by e.g microscopy or light scattering techniques. The particle size should preferably be below 50 ⁇ m.
  • the cooling step it is preferred for optimal storage results to cool the resulting mixture below the Krafft temperature of the surfactant before the product is stored.
  • the surfactant used is a cationic surfactant.
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-dioctylglycine phenoxanyl ester; N,N-dioctylglycine cis-3-hexenyl ester as well as for N,N-didodecylglycine phenoxanyl ester, N,N-didodecylglycine cis-3-hexenyl ester and N,N-didodecylglycine geranyl ester with the exception that for the three last one N,N-dioctylglycine methyl ester is used in the synthesis instead of N,N-dioctylglycine methyl ester.
  • Linalyl chloroacetate (5.77 g, 25 mmol, 1 eq), in toluene (50 ml), was slowly added to didodecylamine (10 g, 28.3 mmol, 1.13 eq) and sodium carbonate (5.3 g, 0.05 mol, 2 eq), in toluene (50 ml).
  • the reaction mixture was stirred at 60°C for two weeks after which the reaction seemed completed by 1H NMR.
  • the sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-didodecylglycine linalyl ester as a yellow oil.
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-dioctylglycine esters and N,N-didodecylglycine esters of unhindered alcohols.
  • the N,N-dioctylglycine esters hydrochloride or hydrobromide and the N,N-didodecylglycine esters hydrochloride or hydrobromide can be easily obtained by dissolving N,N-dioctylglycine esters or N,N-didodecylglycine esters in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid in water or in an organic solvant (such as HCl in isopropanol).
  • an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene
  • Linalyl chloroacetate (55.04 g, 200 mmol, 2 eq), in acetonitrile (75 ml), was slowly added to dodecylamine (24.2 ml, 100 mmol, 1 eq) and sodium carbonate (42.4 g, 0.4 mol, 4eq), in acetonitrile (50 ml).
  • the reaction mixture was stirred at 50°C for two weeks after which the reaction seemed completed by 1H NMR.
  • the sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours.
  • This type of synthesis can also be conveniently applied to the chloroacetate or bromoacetate of unhindered alcohols such as geraniol, phenoxanol, cis-3-hexenol.
  • the hydrochloride or hydrobromide salts can be obtained by dissolving for example N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid (HCl or HBr) in water or an organic solvant (such as HCl in isopropanol).
  • an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-bis(2-phenoxanyloxy-2-oxoethyl)glycine phenoxanyl ester and N,N-bis(2-cis-3-hexenyloxy-2-oxoethyl)glycine cis-3-hexenyl ester.
  • Linalyl chloroacetate (82.56 g, 300 mmol, 3 eq), in acetonitrile (100 ml), was slowly added to ammonia (50 ml of 2N solution in 2-propanol, 100 mmol, 1 eq) and sodium carbonate (63.6 g, 0.6 mol, 6 eq), in acetonitrile (350 ml).
  • the reaction mixture was stirred at 50°C for two weeks after which the reaction seemed completed by 1H NMR.
  • the sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester as a brown oil.
  • This type of synthesis can also be conveniently applied to the synthesis of chloroacetate or bromoacetate of unhindered alcohols such as geraniol, phenoxanol, cis-3-hexenol.
  • the hydrochloride or hydrobromide salts can be obtained by dissolving for example N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid (HCl or HBr) in water or an organic solvant (such as HCl in isopropanol).
  • an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene
  • the following hard surface cleaner compositions according to the present invention were prepared by mixing the listed ingredients F G H I CTAB 3.2 - - - Cetrimide - 4.2 - - C8-10 dimethyl amine oxide - - - 4.40 Lutensol® AO 30 - - 0.75 3.0 Dobanol® 91-10 - - 2.60 - Dobanol® 23-6.5 - - 0.90 - Dobanol® 23-3 - - 1.75 - Maleic acid 8.0 8.6 - - Citric acid - - - 5.50 Alkyl sulphate - - - 4.0 Ammonia (as NH 4 OH) - - - 0.40 Propane diol - - - 1.30 H 2 O 2 - - 7.0 - H 2 SO 4 up to pH - - 4.0 - DGGE 1.0 0.5 1.0 0.6 water and miscellaneous to balance pH as is 1.0 0.9 4.0 3.2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention relates to a composition and process for preparing such a composition which provides stabilised betaine ester compounds of active alcohols in an acidic environment. In particular, it relates to an aqueous acidic composition comprising:
  • a) a betaine ester of an active alcohol which, at a concentration of from 0.01% to 10% by weight in said composition, is predominantly in the form of micelles and/ or is capable of being incorporated into micelles,
  • b) a surfactant,
    said composition comprising an acidic material in sufficient amount to render the pH of the composition of less than 7.

Description

    Field of the invention
  • The present invention relates to betaine ester compounds of active alcohols. More particularly, it relates to stabilised betaine ester compounds of active alcohols in an acidic environment such as in a fabric softener composition.
  • Background of the invention
  • Cleaning and laundry products are well known in the art. However, consumer acceptance of cleaning and laundry products is determined not only by the performance achieved with these products but also the aesthetics associated therewith. The perfume components are therefore an important aspect of the successful formulation of such commercial products.
  • Accordingly, formulations of compounds which provide a slow release of the perfume over a longer period of time than by the use of the perfume itself have been provided. Disclosure of such compounds may be found in WO 95/04809, WO 95/08976 and pending application EP 95303762.9. Pending application EP 95303762.9 describes betaine ester compounds of perfume alcohols which provide release of the perfume components over a long period of time.
  • Although betaine ester compounds are effective in the slow release of perfume, it has now been found that in an acidic environment such as in acidic product, the described compounds hydrolyse upon storage to release their perfume component, therefore reducing the amount of perfume alcohol released upon and after the washing or cleaning process. By acidic environment, it is meant a pH value of less than 7.0.
  • The formulator of a laundry and/or cleaning compositions is thus faced with the challenge of formulating a compound which is stable in an acidic environment but which still produces a slow release of the active alcohol (e.g perfume) upon and after the washing or cleaning process.
  • The Applicant has now found that the provision of betaine ester compounds of active alcohols in combination with a surfactant, wherein said betaine esters at a concentration of from 0.01% to 10% by weight are predominantly in the form of micelles, and/or are capable of being incorporated into micelles, overcomes the problem. Preferably, said betaine esters have at least one long alkyl chain.
  • Therefore, the present invention encompasses acidic compositions comprising betaine ester compounds of active alcohol components having a long alkyl chain, which at a concentration of from 0.01% to 10% by weight are predominantly in the form of micelles, and/or are capable of being incorporated into micelles, in combination with a surfactant. For optimum benefit of storage stability and slow release of the active alcohol upon and after the washing or cleaning process, a cationic surfactant is preferred.
  • Not to be bound by theory, it is believed that the use of betaine ester compounds with at least one long alkyl chain provide said betaine esters with a hydrophobic character which enable them to be rearranged in micelle form and/or to be incorporated into micelles, thereby protecting the ester bond from hydrolysis by the acidic environment.
  • For the purpose of the invention, the term "acidic aqueous composition" includes compositions having a pH value below or equal to 7.0, whereby the pH is measured at 20°C in the neat liquid product.
  • By "slow release" is meant release of the active component (e.g perfume) over a longer period of time than by the use of the active (e.g perfume) itself. Accordingly, the slow release concept and storage stability advantage of the invention may be applied to other active alcohol components such as a flavour alcohol ingredient, a pharmaceutical alcohol active or a biocontrol alcohol agent and any other active alcohol component where a slow release of said active component is necessary.
  • Summary of the invention
  • The present invention relates to an aqueous acidic composition comprising
    • a) a betaine ester of an active alcohol which, at a concentration of from 0.01% to 10% by weight, is predominantly in the form of micelles, and/or is capable of being incorporated into micelles, and
    • b) a surfactant,
      said composition comprising an acidic material in sufficient amount to render the pH of the composition of less than 7.
  • In a preferred embodiment of the invention, the betaine ester is a hydrophobic betaine ester of formula:
    Figure imgb0001
    • wherein each R1, R2, R3 independently, is selected from hydrogen, alkyl group, aryl group,
      Figure imgb0002
      and with the proviso that where each R1, R2 and R3, independently, are only selected from hydrogen, aryl or alkyl groups, then at least one of R1, R2 or R3 is an alkyl or aryl group having at least 8 carbon atoms,
    • wherein R4 is an alkyl group having from 7 to 19 carbon atoms,
    • wherein each R'1, R'2, independently, is selected from hydrogen, alkyl group, aryl group, -CH2-COOH, -CH2-COOR, -CH2-CH2-COOH and -CH2-CH2-COOR,
    • wherein each n, n1, independently, is an integer lying in the range from 1 to 20, and
    • wherein n2 is an integer lying in the range of 0 to 20,
    • wherein each n3, independently, is an integer lying in the range from 1 to 3,
    • and wherein each R, independently, is an organic chain of an active alcohol.
  • In another aspect of the invention a process for preparing said acidic composition is provided, whereby said process further improves the betaine ester protection from the acidic environment. A typical process for preparing a composition containing a surfactant comprises the following steps:
    • mixing the surfactant and optional components, if any, at a temperature above the melting point of the surfactant ,
    • preparing a waterseat,
    • dispersing the mixture prepared above in the waterseat, and
    • optionally, cooling the resulting dispersion.
    Protection of the betaine ester occurs by incorporation of said betaine ester with the molten surfactant, or prior to dispersion of the molten surfactant in a waterseat, or with the surfactant dispersion while the dispersion is at a temperature above the Krafft point of the surfactant or combination of any of the above. Detailed description of the invention Betaine ester compounds of active alcohols
  • An essential component of the invention is a betaine ester of an active alcohol, which, at a concentration of from 0.01% to 10% by weight in said composition, is predominantly in the form of micelles, and/or is capable of being incorporated into micelles, e.g a micelle can be composed of 100% betaine esters or mixed betaine esters/surfactants. Preferably, the betaine ester compounds of an active alcohol have the general formula below:
    Figure imgb0003
    wherein each R1, R2, R3 independently, is selected from hydrogen, alkyl group, aryl group,
    Figure imgb0004
    and with the proviso that where each R1, R2 and R3, independently, are only selected from hydrogen, aryl or alkyl groups, then at least one of R1, R2 or R3 is an alkyl or aryl group having at least 8 carbon atoms,
    • wherein R4 is an alkyl group having from 7 to 19 carbon atoms,
    • wherein each R'1, R'2, independently, is selected from hydrogen, alkyl group, aryl group, -CH2-COOH, -CH2-COOR, -CH2-CH2-COOH and -CH2-CH2-COOR,
    • wherein each n, n1, independently, is an integer lying in the range from 1 to 20, and
    • wherein n2 is an integer lying in the range of 0 to 20,
    • wherein each n3, independently, is an integer lying in the range from 1 to 3, and
    • wherein each R, independently, is an organic chain of an active alcohol.
  • Preferably, each n2, independently, is an integer lying in the range of 0 to 6. Preferably, each n3, independently, is an integer of value 1 or 2, more preferably 1.
  • Preferably R1, R2, R3 are each, independently selected from H, alkyl chain having from 1 to 20 carbon atoms, with the proviso that at least one of R1, R2 or R3 is an alkyl group having at least 8 carbon atoms.
    Preferably R'1, R'2 are, each, independently selected from H, alkyl chain having 1 to 3 carbon atoms, phenyl.
  • For the above mentioned compounds, the R group, which is hydrophobic in nature, is the organic chain of an active alcohol, said active alcohol being selected from a flavour alcohol ingredient, a pharmaceutical alcohol active, a biocontrol alcohol agent, a perfume alcohol component and mixtures thereof. Flavour ingredients include spices, flavour enhancers that contribute to the overall flavour perception. Pharmaceutical actives include drugs. Biocontrol agents include biocides, antimicrobials, bactericides, fungicides, algaecides, mildewcides, disinfectants, antiseptics, insecticides, vermicides, plant growth hormones. Perfume alcohol components include components having odoriferous properties.
  • Preferably, for the above mentioned compounds, the R group is the organic chain of a perfume alcohol, said alcohol being selected from 2-phenoxyethanol, phenylethylalcohol, geraniol, citronellol, 3-methyl-5-phenyl-1-pentanol, 2,4-dimethyl-3-cyclohexene-1-methanol, linalool, tetrahydrolinalool, 1,2-dihydromyrcenol, hydroxycitronellal, farnesol, menthol, eugenol, vanilin, cis-3-hexenol, terpineol and mixtures thereof.
  • More preferred R groups, for the purpose of the invention, are selected from the organic chain of a perfume alcohol, said alcohol being selected from geraniol, citronellol, linalool, dihydromyrcenol and mixtures thereof.
  • Preferred compounds for the purpose of the invention are selected from geranyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; citronellyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; linalyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; dihydromyrcenyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride.
  • Other preferred compounds are selected from N-dodecylglycine geranyl ester hydrobromide or hydrochloride; N-dodecylglycine citronellyl ester hydrobromide or hydrochloride; N-dodecylglycine linalyl ester hydrobromide or hydrochloride; N-dodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Other preferred compounds are selected from N,N-dioctylglycine geranyl ester hydrobromide or hydrochloride; N,N-dioctylglycine citronellyl ester hydrobromide or hydrochloride; N,N-dioctylglycine linalyl ester hydrobromide or hydrochloride; N,N-dioctylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Other preferred compounds are selected from N,N-didodecylglycine geranyl ester hydrobromide or hydrochloride; N,N-didodecylglycine citronellyl ester hydrobromide or hydrochloride, N,N-didodecylglycine linalyl ester hydrobromide or hydrochloride; N,N-didodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Other preferred compounds are selected from N-(2-geranyloxy-2-oxoethyl)-N,N-dimethyl-2-geranyloxy-2-oxoethanaminium bromide or chloride; N-(2-citronellyloxy-2-oxoethyl)-N,N-dimethyl-2-citronellyloxy-2-oxoethanaminium bromide or chloride; N-(2-linalyloxy-2-oxoethyl)-N,N-dimethyl-2-linalyloxy-2-oxoethanaminium bromide or chloride; N-(2-dihydromyrcenyloxy-2-oxoethyl)-N,N-dimethyl-2-dihydromyrcenyloxy-2-oxoethanaminium bromide or chloride.
  • Other preferred compounds are selected from N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-butyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N-butyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N-butyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Other preferred compounds are selected from N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Other preferred compounds are selected from N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N,N-bis(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N,N-bis(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  • Mixtures of any of the above components in the betaine ester used herein in the compositions of the invention may be used.
  • Preferably, levels of incorporation of said betaine ester compounds of active alcohols, into the acidic composition are from 0.01% to 8%, more preferably 0.05% to 5%, and most preferably from 0.1% to 2%, by weight of the total composition.
  • Surfactant
  • The other essential component of the invention is a surfactant. Such surfactant are selected from anionic, nonionic, cationic, amphoteric and zwiterrionic surfactants.
  • Anionic surfactant
  • Essentially any anionic surfactants useful for detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C6-C18 alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C6-C18 alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein. Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH2CH20)x CH2C00-M+ wherein R is a C6 to C18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 %, and the amount of material where x is greater than 7, is less than about 25 %, the average x is from about 2 to 4 when the average R is C13 or less, and the average x is from about 3 to 10 when the average R is greater than C13, and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions. The preferred alkyl ethoxy carboxylates are those where R is a C12 to C18 alkyl group.
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one R1 or R2 is a succinic acid radical or hydroxysuccinic acid radical, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion).
  • The secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • The following general structures further illustrate some of the preferred secondary soap surfactants:
    • A. A highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R3 CH(R4)COOM, wherein R3 is CH3(CH2)x and R4 is CH3(CH2)y, wherein y can be O or an integer from 1 to 4, x is an integer from 4 to 10 and the sum of (x + y) is 6-10, preferably 7-9, most preferably 8.
    • B. Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R5-R6-COOM, wherein R5 is C7-C10, preferably C8-C9, alkyl or alkenyl and R6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: R5 can be in the ortho, meta or para position relative to the carboxyl on the ring.)
    • C. Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the formula

              CH3(CHR)k-(CH2)m-(CHR)n-CH(COOM)(CHR)o-(CH2)p-(CHR)q-CH3,

      wherein each R is C1-C4 alkyl, wherein k, n, o, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of 10 to 18.
  • In each of the above formulas A, B and C, the species M can be any suitable, especially water-solubilizing, counterion.
  • Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-buty-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • Nonionic surfactant
  • Essentially any nonionic surfactants useful for detersive purposes can be included in the compositions. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein: R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • The alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • The ethoxylated C6-C18 fatty alcohols and C6-C18 mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble. Preferably the ethoxylated fatty alcohols are the C10-C18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-C18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility. Examples of compounds of this type include certain of the commercially-available Pluronic™ surfactants, marketed by BASF.
  • The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. Examples of this type of nonionic surfactant include certain of the commercially available Tetronic™ compounds, marketed by BASF.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties. (Optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • The preferred alkylpolyglycosides have the formula

            R2O(CnH2nO)t(glycosyl)x

    wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The glycosyl is preferably derived from glucose.
  • Fatty acid amide surfactants suitable for use herein are those having the formula: R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and -(C2H4O)xH, where x is in the range of from 1 to 3.
  • Cationic surfactant
  • Typical cationic surfactants for the purpose of the invention are those commonly mentioned as cationic fabric softener actives. Such cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives, the most commonly used having been di-long alkyl chain ammonium chloride.
  • Preferred cationic softeners among these include the following:
    • 1) ditallow dimethylammonium chloride (DTDMAC);
    • 2) dihydrogenated tallow dimethylammonium chloride;
    • 3) dihydrogenated tallow dimethylammonium methylsulfate;
    • 4) distearyl dimethylammonium chloride;
    • 5) dioleyl dimethylammonium chloride;
    • 6) dipalmityl hydroxyethyl methylammonium chloride;
    • 7) stearyl benzyl dimethylammonium chloride;
    • 8) tallow trimethylammonium chloride;
    • 9) hydrogenated tallow trimethylammonium chloride;
    • 10) C12-14 alkyl hydroxyethyl dimethylammonium chloride;
    • 11) C12-18 alkyl dihydroxyethyl methylammonium chloride;
    • 12) di(stearoyloxyethyl) dimethylammonium chloride (DSOEDMAC);
    • 13) di(tallowoyloxyethyl) dimethylammonium chloride;
    • 14) ditallow imidazolinium methylsulfate;
    • 15) 1-(2-tallowylamidoethyl)-2-tallowyl imidazolinium methylsulfate.
    • 16) ditallow imidazoline
    • 17) ditallow imidazoline ester
  • Also included within the scope of cationic fabric softening components are the more environmentally-friendly materials, and rapidly biodegradable quaternary ammonium compounds which have been presented as alternatives to the traditionally used di-long chain ammonium chlorides. Such quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0,239,910.
  • The quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below:
    Figure imgb0005
    • wherein Q is selected from -O-C(O)-, -C(O)-O-, -O-C(O)-O-, -NR4-C(O)-, - C(O)-NR4-;
    • R1 is (CH2)n-Q-T2 or T3;
    • R2 is (CH2)m-Q-T4 or T5 or R3;
    • R3 is C1-C4 alkyl or C1-C4 hydroxyalkyl or H;
    • R4 is H or C1-C4 alkyl or C1-C4 hydroxyalkyl;
    • T1, T2, T3, T4, T5 are independently C11-C22 alkyl or alkenyl;
    • n and m are integers from 1 to 4; and
    • X- is a softener-compatible anion.
    Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
  • The alkyl, or alkenyl, chain T1, T2, T3, T4, T5 must contain at least 11 carbon atoms, preferably at least 16 carbon atoms. The chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material. The compounds wherein T1, T2, T3, T4, T5 represents the mixture of long chain materials typical for tallow are particularly preferred.
  • Specific examples of quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
    • 1) N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;
    • 2) N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium chloride;
    • 3) N,N-di(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;
    • 4) N,N-di(2-tallowyl-oxy-ethylcarbonyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;
    • 5) N-(2-tallowyl-oxy-2-ethyl)-N-(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;
    • 6) N,N,N-tri(tallowyl-oxy-ethyl)-N-methyl ammonium chloride;
    • 7) N-(2-tallowyl-oxy-2-oxo-ethyl)-N-(tallowyl-N,N-dimethyl-ammonium chloride; and
    • 8) 1,2-ditallowyl-oxy-3-trimethylammoniopropane chloride;
      and mixtures of any of the above materials.
  • Of these, compounds 1-7 are examples of compounds of Formula (I); compound 8 is a compound of Formula (II). Particularly preferred is N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride, where the tallow chains are at least partially unsaturated. The level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25. Indeed, for compounds of Formula (I) made from tallow fatty acids having a IV of from 5 to 25, preferably 15 to 20, it has been found that a cis/trans isomer weight ratio greater than 30/70, preferably greater than 50/50 and more preferably greater than 70/30 provides optimal concentrability. For compounds of Formula (I) made from tallow fatty acids having a IV of above 25, the ratio of cis to trans isomers has been found to be less critical unless very high concentrations are needed.
    Other examples of suitable quaternary ammoniums of Formula (I) and (II) are obtained by, e.g. :
    • replacing "tallow" in the above compounds with, for example, coco, palm, lauryl, oleyl, ricinoleyl, stearyl, palmityl, or the like, said fatty acyl chains being either fully saturated, or preferably at least partly unsaturated;
    • replacing "methyl" in the above compounds with ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl or t-butyl;
    • replacing "chloride" in the above compounds with bromide, methylsulfate, formate, sulfate, nitrate, and the like.
  • In fact, the anion is merely present as a counterion of the positively charged quaternary ammonium compounds. The nature of the counterion is not critical at all to the practice of the present invention. The scope of this invention is not considered limited to any particular anion.
  • By "amine precursors thereof" is meant the secondary or tertiary amines corresponding to the above quaternary ammonium compounds, said amines being substantially protonated in the present compositions due to the pH values.
  • Other cationic surfactants may also be used in addition to or in alternative to the above mentioned cationic surfactants having fabric softening properties. This include the monoalkyl ammonium halide such as trimethyl alkyl ammonium halide (R'-N+(Me)3 X-) such as C16 trimethyl ammonium bromide or C14 trimethyl ammonium bromide; N-alkyl N,N-dimethyl-N(2-hydroxyethyl) ammonium ( R'-N+(Me)2CH2CH2OH X-) and mixtures thereof, and wherein R' is an alkyl chain having at least 8 carbons and X- is a conteranion as defined herein before.
  • Preferred among these surfactants are the cationic surfactants, most preferably the cationic surfactants mentioned above as having fabric softening properties.
  • Typical levels of said surfactants are from 0.1% to 80% by weight of the compositions.
  • Acidic material
  • Acidic materials are essential to the stability of the composition of the invention. Acidity may be provided from the above mentioned betaine ester, especially with those selected from N-dodecylglycine geranyl ester hydrobromide or hydrochloride; N,N-dioctylglycine geranyl ester hydrobromide or hydrochloride; N,N-didodecylglycine geranyl ester hydrobromide or hydrochloride; N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; and/or the cationic surfactants above mentionned themselves.
  • Conventional acidic materials may also be used. Suitable conventional acidic materials include the bronstead acids as well as the fatty acids. Examples of suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C1-C5) carboxylic acids, and alkyl sulfonic acids and mixtures thereof.
  • Suitable inorganic acids include HCl, H2SO4, HNO3 and H3PO4. Suitable organic acids include formic, acetic, methylsulfonic and ethylsulfonic acid. Preferred acids are hydrochloric, phopshoric, formic and methylsulfonic acid. The amount of acidic material should be such that the pH of the composition is less than 7, preferably from 2.0 to 5.5.
  • More preferably, where cationic surfactants are used, especially those mentioned as biodegradable fabric softening agents, optimum hydrolytic stability of these compositions will be obtained when the pH of the compositions, measured in the neat compositions at 20°C, is in the range of from 2.0 to 4.5.
  • Typically the amount of acid is from 1% to 30% by weight, preferably 2% to 30%, most preferably 3% to 15% by weight of the cationic surfactant.
  • Additional ingredients
  • Additional perfume ingredients may be added to the acidic composition. When present, the composition will comprise up to 5% by weight, more preferably from 0.1% to 1.5% by weight of additional perfume.
  • Additional perfumes are those odorous materials that deposit on fabrics or surfaces during the laundry or cleaning process and are detectable by people with normal olfactory sensitivity. Many of the perfume ingredients along with their odour corrector and their physical and chemical properties are given in "Perfume and Flavor chemicals (aroma chemicals)", Stephen Arctender, Vols. I and II, Aurthor, Montclair, H.J. and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J. Perfume components and compositions can also be found in the art, e.g. US Patent Nos. 4,145,184, 4,152,272, 4,209,417 or 4,515,705. A wide variety of chemicals are known for perfume use including materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfume, and such materials can be used herein. Typical perfumes can comprise e.g. woody/earthy bases containing exotic materials such as sandalwood oil, civet and patchouli oil. The perfume also can be of a light floral fragrance e.g. rose or violet extract. Furthermore, the perfume can be formulated to provide desirable fruity odours e.g. lime, lemon or orange.
  • Particular examples of optional perfume ingredients and compositions are anetole, benzaldehyde, benzyl acetate, benzyl alcohol, benzyl formate, isobornyl acetate, camphene, cis-citral (neral), citronellal, citronellol, citronellyl acetate, paracymene, decanal, dihydrolinalool, dihydromyrcenol, dimethyl phenyl carbinol, eucalyptol, geranial, geraniol, geranyl acetate, geranyl nitrile, cis-3-hexenyl acetate, hydroxycitronellal, d-limonene, linalool, linalool oxide, linalyl acetate, linalyl propionate, methyl anthranilate, alpha-methyl ionone, methyl nonyl acetaldehyde, methyl phenyl carbinyl acetate, laevo-menthyl acetate, menthone, iso-menthone, myrcene, myrcenyl acetate, myrcenol, nerol, neryl acetate, nonyl acetate, phenyl ethyl alcohol, alpha-pinene, beta-pinene, gamma-terpinene, alpha-terpineol, beta-terpineol, terpinyl acetate, vertenex (para-tertiary-butyl cyclohexyl acetate), amyl cinnamic aldehyde, iso-amyl salicylate, beta-caryophyllene, cedrene, cinnamic alcohol, couramin, dimethyl benzyl carbinyl acetate, ethyl vanillin, eugenol, iso-eugenol, flor acetate, heliotrophine, 3-cis-hexenyl salicylate, hexyl salicylate, lilial (para-tertiarybutyl-alpha-methyl hydrocinnamic aldehyde), gamma-methyl ionone, nerolidol, patchouli alcohol, phenyl hexanol, beta-selinene, trichloromethyl phenyl carbinyl acetate, triethyl citrate, vanillin, veratraldehyde, alpha-cedrene, beta-cedrene, C15H24sesquiterpenes, benzophenone, benzyl salicylate, ethylene brassylate, galaxolide (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8,-hexamethyl-cyclopenta-gamma-2-benzopyran), hexyl cinnamic aldehyde, lyral (4-(4-hydroxy-4-methyl pentyl)-3-cyclohexene-10-carboxaldehyde), methyl cedrylone, methyl dihydro jasmonate, methyl-beta-naphthyl ketone, musk ambrette, musk idanone, musk ketone, musk tibetine, musk xylol, aurantiol and phenylethyl phenyl acetate and mixtures thereof.
  • The compositions according to the present invention are suitable for use where acidic products and surfactants, preferably a cationic surfactant are present. Such acidic products include fabric softeners, hard surface cleaners, bathroom cleaners, shower gels, deodorants, bars, shampoos, conditioners.
  • Fabric softener compositions
  • When used as a fabric softener composition, the cationic surfactants which also act as fabric softener will preferably be present, depending on the composition execution, in amount of 1% to 8% by weight where the composition is in diluted form or in amount of 8% to 80%, more preferably 10% to 50%, most preferably 15% to 35% by weight where the composition is in concentrated form.
  • The fabric softener composition may also optionally comprise conventional softening ingredients such as nonionic extenders, surfactants concentration aids, electrolyte concentration aids, stabilisers, such as well known antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents and enzymes.
  • Process
  • Also provided herein by the present invention is a process for preparing a composition as described herein before, which comprises the steps of
    • a) mixing the surfactant and optional components, if any, at a temperature above the melting point of the surfactant,
    • b) preparing a waterseat,
    • c) dispersing the mixture prepared in step a) in the waterseat,
    • d) adding the betaine ester to
      • d1)-the mixture prepared under point a), or
      • d2)- the waterseat under point b), or
      • d3)-the surfactant dispersion under c), or
      • d4) combination of any of the above,
      e) optionally, cooling the resulting dispersion.
  • Preferably the molten mixture of step a) will be dispersed in a waterseat of step b) above the Krafft temperature of the surfactant.
  • The waterseat may optionally contain additives such as polyethylene glycol or biocide.
    Acids may be added in step a) or directly to the waterseat of step b). Optional components such as dyes, perfumes if present will be added either before step e) once the resulting dispersion is made or after step e).
  • Preferably, during dispersion of the betaine ester in step d3), care should be taken that the temperature of the molten mixture is above the Krafft temperature of the surfactant. By Krafft temperature is meant the temperature at which the solubility of the surfactant becomes equal to the critical micelle concentration (CMC), the CMC being defined in M.J ROSEN, Surfactants and interfacial phenomena, 1988, p.215.
  • It is also preferred to apply sufficient shear to ensure adequate incorporation of the betaine ester into the micelles/vesicles. The amount of shear should be sufficient to properly disperse the surfactant. Proper dispersion can be verified by controlling the particle size of the resulting dispersion, by e.g microscopy or light scattering techniques. The particle size should preferably be below 50µm.
  • With regard to the cooling step, it is preferred for optimal storage results to cool the resulting mixture below the Krafft temperature of the surfactant before the product is stored.
  • Not to be bound by theory, it is believed that such a process provides effective protection of the weak ester linkage of the betaine ester by shielding it from water; thus avoiding premature hydrolysis during storage. Preferably, for optimum protection provided by this process, the surfactant used is a cationic surfactant.
  • Perfume synthesis examples 1-Synthesis of N,N-dioctylglycine esters and N,N-didodecylglycine esters of unhindered alcohols by transesterification
  • To a mixture of N,N-dioctylglycine methyl ester (47.02 g, 150 mmol, 1 eq) in toluene (250 ml) under argon was slowly added some sodium methoxide (1.01g, 0.019 mol, 0.125 eq) and geraniol (27.3 ml, 158 mmol, 1.05 eq). The mixture was heated under vacuum (10 mm Hg) and the methanol produced by the transesterification reaction is distilled with toluene over one hour after which the reaction appeared completed by 1H NMR. Any remaining toluene is evaporated under vacuum. Diethyl ether was added (200 ml) and the mixture stored at 4°C for one hour prior to filtration. The filtrate was then concentrated under vacuum yielding to the expected N,N-dioctylglycine geranyl ester as a light yellow oil (quantitative yield).
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-dioctylglycine phenoxanyl ester; N,N-dioctylglycine cis-3-hexenyl ester as well as for N,N-didodecylglycine phenoxanyl ester, N,N-didodecylglycine cis-3-hexenyl ester and N,N-didodecylglycine geranyl ester with the exception that for the three last one N,N-dioctylglycine methyl ester is used in the synthesis instead of N,N-dioctylglycine methyl ester.
  • 2-Synthesis of N,N-dioctylglycine esters and N,N-didodecylglycine esters of hindered alcohols (tertiary alcohols) using their chloroacetate or bromoacetate
  • Dihydromyrcenyl bromoacetate (27.7 g, 100 mmol, 1 eq), in ethyl acetate (50 ml), was slowly added to dioctylamine (33 ml, 110 mmol, 1.1 eq) and sodium carbonate (21.2g, 0.2 mol, 2 eq), in ethyl acetate (100 ml). The reaction mixture was stirred at ambient temperature for 72 hours after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-dioctylglycine dihydromyrcenyl ester as a yellow oil (38.05g, 87% yield).
  • Linalyl chloroacetate (5.77 g, 25 mmol, 1 eq), in toluene (50 ml), was slowly added to didodecylamine (10 g, 28.3 mmol, 1.13 eq) and sodium carbonate (5.3 g, 0.05 mol, 2 eq), in toluene (50 ml). The reaction mixture was stirred at 60°C for two weeks after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-didodecylglycine linalyl ester as a yellow oil.
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-dioctylglycine esters and N,N-didodecylglycine esters of unhindered alcohols.
  • In all these experiments, the N,N-dioctylglycine esters hydrochloride or hydrobromide and the N,N-didodecylglycine esters hydrochloride or hydrobromide can be easily obtained by dissolving N,N-dioctylglycine esters or N,N-didodecylglycine esters in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid in water or in an organic solvant (such as HCl in isopropanol).
  • 3-Synthesis of N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester by transesterification (alcohol unhindered)
  • To a mixture of N-dodecyl-N-(2-methoxy-2-oxoethyl)glycine methyl ester (6.59 g, 20 mmol, 1 eq) in toluene (80 ml) under argon was slowly added some sodium methoxide (0.27 g, 0.005 mol, 2*0.125 eq) and geraniol (7.3 ml, 42 mmol, 2*1.05 eq). The mixture was heated under vacuum (10 mm Hg) and the methanol produced by the transesterification reaction was distilled with toluene over two hours after which the reaction appeared completed by 1H NMR. Any remaining toluene was evaporated under vacuum. Diethyl ether was added (200 ml) and the mixture stored at 4°C for one hour prior to filtration. The filtrate was then concentrated under vacuum yielding to the expected N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester as a light brown oil (quantitative yield).
  • This type of synthesis can also be conveniently applied to the synthesis of N-dodecyl-N-(2-phenoxanyloxy-2-oxoethyl)glycine phenoxanyl ester and N-dodecyl-N-(2-cis-3-hexenyloxy-2-oxoethyl)glycine cis-3-hexenyl ester as well as for the synthesis of N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester, N-butyl-N-(2-phenoxanyloxy-2-oxoethyl)glycine phenoxanyl ester and N-butyl-N-(2-cis-3-hexenyloxy-2-oxoethyl)glycine cis-3-hexenyl ester with the exception that for the three last one N-butyl-N-(2-methoxy-2-oxoethyl)glycine methyl ester is used in the synthesis instead of N-dodecyl-N-(2-methoxy-2-oxoethyl)glycine methyl ester.
  • 4-Synthesis of N-dodecyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester or N-dodecyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester (sterically hindered alcohol such as tertairy alcohols) using their chloroacetate or bromoacetate
  • Dihydromyrcenyl bromoacetate (55.44 g, 200 mmol, 2 eq), in acetonitrile (75 ml), was slowly added to dodecylamine (24.2 ml, 100 mmol, 1 eq) and sodium carbonate (42.4 g, 0.4 mol, 4 eq), in acetonitrile (250 ml). The reaction mixture was stirred at ambient temperature for 48 hours after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N-dodecyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester as a brown oil (56.2 g, 97.2% yield).
  • Linalyl chloroacetate (55.04 g, 200 mmol, 2 eq), in acetonitrile (75 ml), was slowly added to dodecylamine (24.2 ml, 100 mmol, 1 eq) and sodium carbonate (42.4 g, 0.4 mol, 4eq), in acetonitrile (50 ml). The reaction mixture was stirred at 50°C for two weeks after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N-dodecyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester as a brown oil (48.6 g, 84.7% yield).
  • Synthesis of N-butyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester and N-butyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester is made as above with the exception that butylamine is used in the synthesis instead of dodecylamine
  • This type of synthesis can also be conveniently applied to the chloroacetate or bromoacetate of unhindered alcohols such as geraniol, phenoxanol, cis-3-hexenol.
  • In all these experiments, the hydrochloride or hydrobromide salts can be obtained by dissolving for example N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid (HCl or HBr) in water or an organic solvant (such as HCl in isopropanol).
  • 5-Synthesis of N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester by transesterification (or any unhindered alcohol)
  • To a mixture of N,N-bis(2-methoxy-2-oxoethyl)glycine methyl ester (7.0 g, 30 mmol, 1 eq) in toluene (80 ml) under argon was slowly added some sodium methoxide (0.49 g, 0.009 mol, 3*0.10 eq) and geraniol (14.57 g, 95 mmol, 3*1.05 eq). The mixture was heated under vacuum (10 mm Hg) and the methanol produced by the transesterification reaction is distilled with toluene over two hours after which the reaction appeared completed by 1H NMR. Any remaining toluene is evaporated under vacuum. Diethyl ether was added (200 ml) and the mixture stored at 4°C for one hour prior to filtration. The filtrate was then concentrated under vacuum yielding to the expected N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester as a yellow oil (quantitative yield).
  • This type of synthesis can also be conveniently applied to the synthesis of N,N-bis(2-phenoxanyloxy-2-oxoethyl)glycine phenoxanyl ester and N,N-bis(2-cis-3-hexenyloxy-2-oxoethyl)glycine cis-3-hexenyl ester.
  • 6-Synthesis of N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester or N,N-bis(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester (sterically hindered alcohols such as tertairy alcohols) using their chloroacetate or bromoacetate
  • Dihydromyrcenyl bromoacetate (83.16 g, 300 mmol, 3 eq), in acetonitrile (100 ml), was slowly added to ammonia (50 ml of 2N solution in 2-propanol, 100 mmol, 1 eq) and sodium carbonate (63.6 g, 0.6 mol, 6 eq), in acetonitrile (350 ml). The reaction mixture was sealed and stirred at ambient temperature for 48 hours after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-bis(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester as a brown oil.
  • Linalyl chloroacetate (82.56 g, 300 mmol, 3 eq), in acetonitrile (100 ml), was slowly added to ammonia (50 ml of 2N solution in 2-propanol, 100 mmol, 1 eq) and sodium carbonate (63.6 g, 0.6 mol, 6 eq), in acetonitrile (350 ml). The reaction mixture was stirred at 50°C for two weeks after which the reaction seemed completed by 1H NMR. The sodium carbonate was filtered off, the filtrate was concentrated under vacuum and diethyl ether (200 ml) was added before storage of the solution at 4°C for 12 hours. Then, the solution was filtered and removal of ether under vacuum yielded to the expected N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester as a brown oil.
  • This type of synthesis can also be conveniently applied to the synthesis of chloroacetate or bromoacetate of unhindered alcohols such as geraniol, phenoxanol, cis-3-hexenol.
  • In all these experiments, the hydrochloride or hydrobromide salts can be obtained by dissolving for example N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester in an organic solvant such as methanol, ethanol, isopropanol, petroleum ether, diethyl ether, toluene and adding at least a stoechiometric amount of mineral acid (HCl or HBr) in water or an organic solvant (such as HCl in isopropanol).
  • The invention is illustrated in the following non-limiting examples, in which all percentages are on a weight basis unless otherwise stated.
  • In the examples, the abbreviated component identifications have the following meaning:
  • DEQA
    : Di-(tallowoyl-oxy-ethyl) dimethyl ammonium chloride
    Fatty acid
    : Stearic acid of IV=1
    Electrolyte
    : Calcium chloride
    DGGE
    : N-dodecylglycine geranyl ester hydrochloride
    PEG
    : Polyethylene Glycol 4000
    CTAB
    : C16 trimethyl ammonium bromide
    Cetrimide
    : C14 trimethyl ammonium bromide
    Dobanol® 23-3
    : C12-C13 ethoxylated alcohol with an average degree of ethoxylation of 3, available from Shell
    Lutensol® AO 30
    : C13-15 alcohol ethoxylated with an average degree of ethoxylation of 30, available from BASF
    Dobanol® 91-10
    : C19-C21 ethoxylated alcohol with an average degree of ethoxylation of 10, available from Shell
    Dobanol® 23-6.5
    : C12-C13 ethoxylated alcohol with an average degree of ethoxylation of 6.5, available from Shell
    Alkyl sulphate
    : Based on Isalchem 123 ® alcohol, C12-13 alcohol, 94% branched, available from Enichem
    Example 1
  • The following fabric softening compositions according to the present invention were prepared:
    Component A B C D E
    DEQA 2.6 2.9 18.0 19.0 19.0
    Fatty acid 0.3 - 1.0 - -
    Hydrochloride acid 0.02 0.02 0.02 0.02 0.02
    PEG - - 0.6 0.6 0.6
    Perfume 1.0 1.0 1.0 1.0 1.0
    Silicone antifoam 0.01 0.01 0.01 0.01 0.01
    DGGE 1 0.5 1 0.5 1
    Electrolyte - - 600ppm 600ppm 1200ppm
    Dye 10ppm 10ppm 50ppm 50ppm 50ppm
    Water and minors to balance to 100
  • Example 2
  • The following hard surface cleaner compositions according to the present invention were prepared by mixing the listed ingredients
    F G H I
    CTAB 3.2 - - -
    Cetrimide - 4.2 - -
    C8-10 dimethyl amine oxide - - - 4.40
    Lutensol® AO 30 - - 0.75 3.0
    Dobanol® 91-10 - - 2.60 -
    Dobanol® 23-6.5 - - 0.90 -
    Dobanol® 23-3 - - 1.75 -
    Maleic acid 8.0 8.6 - -
    Citric acid - - - 5.50
    Alkyl sulphate - - - 4.0
    Ammonia (as NH4OH) - - - 0.40
    Propane diol - - - 1.30
    H2O2 - - 7.0 -
    H2SO4 up to pH - - 4.0 -
    DGGE 1.0 0.5 1.0 0.6
    water and miscellaneous to balance
    pH as is 1.0 0.9 4.0 3.2

Claims (25)

  1. An aqueous acidic composition comprising
    a) a betaine ester of an active alcohol which, at a concentration of from 0.01% to 10% by weight in said composition, is predominantly in the form of micelles and/ or is capable of being incorporated into micelles,
    b) a surfactant,
    said composition comprising an acidic material in sufficient amount to render the pH of the composition of less than 7.
  2. An aqueous acidic composition according to Claim 1, wherein said betaine ester has the formula:
    Figure imgb0006
    wherein each R1, R2, R3 independently, is selected from hydrogen, alkyl group, aryl group,
    Figure imgb0007
    and with the proviso that where each R1, R2 and R3, independently, are only selected from hydrogen, aryl or alkyl groups, then at least one of R1, R2 or R3 is an alkyl or aryl group having at least 8 carbon atoms,
    wherein R4 is an alkyl group having from 7 to 19 carbon atoms,
    wherein each R'1, R'2, independently, is selected from hydrogen, alkyl group, aryl group, -CH2-COOH, -CH2-COOR, -CH2-CH2-COOH and - CH2-CH2-COOR,
    wherein each n, n1, independently, is an integer lying in the range from 1 to 20, and
    wherein n2 is an integer lying in the range of 0 to 20,
    wherein each n3, independently, is an integer lying in the range from 1 to 3, and
    wherein each R, independently, is an organic chain of an active alcohol.
  3. An aqueous acidic composition according to Claim 2, wherein said n2 is an integer lying in the range of 0 to 6.
  4. An aqueous acidic composition according to either one of Claims 2 or 3, wherein each n3, independently, is an integer of value 1 or 2, more preferably 1.
  5. An aqueous acidic composition according to any one of Claims 2-4, wherein said R'1, R'2 are, each, independently selected from H, alkyl chain having 1 to 3 carbon atoms and phenyl.
  6. An aqueous acidic composition according to any one of Claims 2-5, wherein said R1, R2, R3 are each, independently selected from H, alkyl chain having from 1 to 20 carbon atoms.
  7. An aqueous acidic composition according to any one of Claims 2-6, wherein said R group is the organic chain of an active alcohol, said active alcohol being selected from a flavour alcohol ingredient, a pharmaceutical alcohol active, a biocontrol alcohol agent, a perfume alcohol component.
  8. An aqueous acidic composition according to Claim 7, wherein said R group is the organic chain of a perfume alcohol.
  9. An aqueous acidic composition according to Claim 8, wherein said R group is the organic chain of a perfume alcohol, said alcohol being selected from 2-phenoxyethanol, phenylethylalcohol, geraniol, citronellol, 3-methyl-5-phenyl-1-pentanol, 2,4-dimethyl-3-cyclohexene-1-methanol, linalool, tetrahydrolinalool, 1,2-dihydromyrcenol, hydroxycitronellal, farnesol, menthol, eugenol, vanilin, cis-3-hexenol, terpineol and mixtures thereof, preferably selected from geraniol, citronellol, linalool, dihydromyrcenol and mixtures thereof.
  10. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from geranyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; citronellyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; linalyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride; dihydromyrcenyloxycarbonyl-N,N-dimethyl-N-dodecylmethanaminium bromide or chloride.
  11. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N-dodecylglycine geranyl ester hydrobromide or hydrochloride; N-dodecylglycine citronellyl ester hydrobromide or hydrochloride; N-dodecylglycine linalyl ester hydrobromide or hydrochloride; N-dodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  12. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N,N-dioctylglycine geranyl ester hydrobromide or hydrochloride; N,N-dioctylglycine citronellyl ester hydrobromide or hydrochloride; N,N-dioctylglycine linalyl ester hydrobromide or hydrochloride; N,N-dioctylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  13. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N,N-didodecylglycine geranyl ester hydrobromide or hydrochloride; N,N-didodecylglycine citronellyl ester hydrobromide or hydrochloride, N,N-didodecylglycine linalyl ester hydrobromide or hydrochloride; N,N-didodecylglycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  14. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N-(2-geranyloxy-2-oxoethyl)-N,N-dimethyl-2-geranyloxy-2-oxoethanaminium bromide or chloride; N-(2-citronellyloxy-2-oxoethyl)-N,N-dimethyl-2-citronellyloxy-2-oxoethanaminium bromide or chloride; N-(2-linalyloxy-2-oxoethyl)-N,N-dimethyl-2-linalyloxy-2-oxoethanaminium bromide or chloride; N-(2-dihydromyrcenyloxy-2-oxoethyl)-N,N-dimethyl-2-dihydromyrcenyloxy-2-oxoethanaminium bromide or chloride and mixtures thereof.
  15. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N-butyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-butyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N-butyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N-butyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  16. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N-dodecyl-N-(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N-dodecyl-N-(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  17. An aqueous acidic composition according to Claim 9, wherein said betaine ester is selected from N,N-bis(2-geranyloxy-2-oxoethyl)glycine geranyl ester hydrobromide or hydrochloride; N,N-bis(2-citronellyloxy-2-oxoethyl)glycine citronellyl ester hydrobromide or hydrochloride; N,N-bis(2-linalyloxy-2-oxoethyl)glycine linalyl ester hydrobromide or hydrochloride; N,N-bis(2-dihydromyrcenyloxy-2-oxoethyl)glycine dihydromyrcenyl ester hydrobromide or hydrochloride.
  18. An aqueous acidic composition according to any one of Claims 1-17, wherein said surfactant is selected from anionic, nonionic and cationic surfactant, preferably a cationic surfactant.
  19. An aqueous acidic composition according to Claim 18, wherein said cationic surfactant is a cationic fabric softener compound.
  20. An aqueous acidic composition according to Claim 19, wherein said cationic surfactant is a cationic biodegradable fabric softener compound selected from quaternary ammonium compounds and amine precursors having the formula (I) or (II), below :
    Figure imgb0008
    wherein Q is selected from -O-C(O)-, -C(O)-O-, -O-C(O)-O-, -NR4-C(O)-, -C(O)-NR4-;
    R1 is (CH2)n-Q-T2 or T3;
    R2 is (CH2)m-Q-T4 or T5 or R3;
    R3 is C1-C4 alkyl or C1-C4 hydroxyalkyl or H;
    R4 is H or C1-C4 alkyl or C1-C4 hydroxyalkyl;
    T1, T2, T3, T4, T5 are independently C11-C22 alkyl or alkenyl;
    n and m are integers from 1 to 4; and
    X- is a softener-compatible anion.
  21. An aqueous acidic composition according to any one of Claims 1-20, wherein said acidic material is selected from inorganic mineral acids, carboxylic acids, alkyl sulfonic acids and mixtures thereof.
  22. An aqueous acidic composition according to any one of Claims 1-21, wherein said composition is a fabric softening composition.
  23. A process for preparing a composition according to any one of Claims 1-22, which comprises the steps of
    a) mixing the surfactant and optional components, if any, at a temperature above the melting point of the surfactant,
    b) preparing a waterseat,
    c) dispersing the mixture prepared in step a) in the waterseat,
    d) adding the betaine ester to
    d1) the mixture prepared under point a), or
    d2) the waterseat under point b), or
    d3) the surfactant dispersion under c), or
    d4) combination of any of the above,
    e) optionally, cooling the resulting dispersion.
  24. A process according to Claim 23, wherein the mixture of step d3) is at a temperature above the Krafft temperature of the surfactant.
  25. A process according to either one of Claims 23 or 24, wherein said resulting dispersion is cooled below the Krafft temperature of the surfactant.
EP96302291A 1996-04-01 1996-04-01 Betaine ester compounds of active alcohols Withdrawn EP0799885A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP96302291A EP0799885A1 (en) 1996-04-01 1996-04-01 Betaine ester compounds of active alcohols
PCT/US1997/004959 WO1997036978A1 (en) 1996-04-01 1997-03-27 Betaine ester compounds of active alcohols
AU25908/97A AU2590897A (en) 1996-04-01 1997-03-27 Betaine ester compounds of active alcohols
JP53540697A JP3770916B2 (en) 1996-04-01 1997-03-27 Betaine ester composition of active alcohol
CA002250837A CA2250837C (en) 1996-04-01 1997-03-27 Betaine ester compounds of active alcohols
US09/155,779 US5958870A (en) 1996-04-01 1997-03-27 Betaine ester compounds of active alcohols
BR9710416A BR9710416A (en) 1996-04-01 1997-03-27 Betaine ïÕïster compounds of active alcohols
CN97195159A CN1220693A (en) 1996-04-01 1997-03-27 Betaine ester compound of active alcohols
ARP970101299A AR008583A1 (en) 1996-04-01 1997-04-01 AQUEOUS ACID COMPOSITION CONTAINING A BETAINE ESTER OF AN ACTIVE ALCOHOL AND PROCEDURE FOR PREPARING SUCH COMPOSITION
ZA9702775A ZA972775B (en) 1996-04-01 1997-04-01 Betaine ester compounds of active alcohols.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96302291A EP0799885A1 (en) 1996-04-01 1996-04-01 Betaine ester compounds of active alcohols

Publications (1)

Publication Number Publication Date
EP0799885A1 true EP0799885A1 (en) 1997-10-08

Family

ID=8224873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96302291A Withdrawn EP0799885A1 (en) 1996-04-01 1996-04-01 Betaine ester compounds of active alcohols

Country Status (9)

Country Link
EP (1) EP0799885A1 (en)
JP (1) JP3770916B2 (en)
CN (1) CN1220693A (en)
AR (1) AR008583A1 (en)
AU (1) AU2590897A (en)
BR (1) BR9710416A (en)
CA (1) CA2250837C (en)
WO (1) WO1997036978A1 (en)
ZA (1) ZA972775B (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027234A1 (en) * 1999-10-08 2001-04-19 Henkel Kommanditgesellschaft Auf Aktien Cleaning agent components with dual-controlled fragrance release
WO2002077074A1 (en) 2001-03-27 2002-10-03 Firmenich Sa Compounds for a controlled release of active compounds
DE10132174A1 (en) * 2001-07-03 2003-03-27 Goldschmidt Ag Th New betaine ester compounds are useful in hair and skin care products and in cleaning agents
WO2003038022A1 (en) * 2001-10-27 2003-05-08 Henkel Kommanditgesellschaft Auf Aktien Agents containing betaine esters
WO2003089558A1 (en) * 2002-04-20 2003-10-30 Goldschmidt Rewo Gmbh & Co. Kg Washing-softening rinsing formulations containing betaine ester derivatives and method for improving the washing performance of washing agents
US6677297B2 (en) 1999-10-18 2004-01-13 Firmenich Sa Esters comprising a secondary carbamoyl function and their use as odorant alcohol precursors
WO2004020729A1 (en) * 2002-08-27 2004-03-11 Ciba Specialty Chemicals Holding Inc. Method for delivering biologically active substances
US6897263B2 (en) 2001-07-03 2005-05-24 Goldschmidt Ag Betaine esters
US7229958B2 (en) 2005-06-09 2007-06-12 Degussa Ag Fragrance alcohol-releasing polysiloxane
DE102007012909A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, reactive polyorganosiloxanes
DE102007012910A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, branched polyorganosiloxanes
EP2008637A1 (en) 2007-06-18 2008-12-31 Firmenich Sa Malodor counteracting compositions and method for their use
DE102007037147A1 (en) 2007-08-07 2009-02-12 Henkel Ag & Co. Kgaa Fragrance composites with improved fragrance release
US8022030B2 (en) 2006-10-10 2011-09-20 Firmenich Sa Polymer conjugates for a controlled release of active molecules
US8399499B2 (en) 2007-05-22 2013-03-19 Firmenich Sa 3- to 7-membered 1,3-diaza-4-OXO-heterocyclic derivatives capable of releasing active aldehydes or ketones
WO2013139766A1 (en) 2012-03-20 2013-09-26 Firmenich Sa Compounds for a controlled release of active perfuming molecules
WO2014029695A1 (en) 2012-08-21 2014-02-27 Firmenich Sa Method to improve the performance of encapsulated fragrances
WO2015032885A1 (en) 2013-09-09 2015-03-12 Firmenich Sa Thioether derivatives as precursors for a controlled release of active molecules
WO2016091815A1 (en) 2014-12-10 2016-06-16 Firmenich Sa Polysiloxanes as fragrance delivery systems in fine perfumery
US9765282B2 (en) 2013-06-19 2017-09-19 Firmenich Sa Polysiloxane conjugates as fragrance delivery systems
WO2018002214A1 (en) 2016-06-30 2018-01-04 Firmenich Sa Core-composite shell microcapsules
US10034819B2 (en) 2012-09-24 2018-07-31 Firmenich Sa Multilayered core/shell microcapsules
US10323127B2 (en) 2015-02-17 2019-06-18 Firmenich Sa Poly(aspartic acid) derived co-polymers for a controlled release of perfuming ingredients
US10377965B2 (en) 2015-01-21 2019-08-13 Firmenich Sa Photolabile acetal and ketal compounds for the controlled release of active volatile carbonyl compounds
WO2019243369A1 (en) 2018-06-21 2019-12-26 Firmenich Sa Compounds for providing a long-lasting strawberry odor
WO2020127708A1 (en) 2018-12-20 2020-06-25 Firmenich Sa Alkyl enol ether properfume
WO2021023670A1 (en) 2019-08-08 2021-02-11 Firmenich Sa Compounds for providing a long-lasting mint odor
WO2021110680A1 (en) 2019-12-03 2021-06-10 Firmenich Sa Enol ether properfume
WO2021122997A1 (en) 2019-12-19 2021-06-24 Firmenich Sa Compounds for providing a long-lasting floral and fruity odor
WO2021123144A1 (en) 2019-12-20 2021-06-24 Firmenich Sa Pro-perfume compositions
WO2021209396A1 (en) 2020-04-14 2021-10-21 Firmenich Sa Compounds for providing a long-lasting odor
WO2021250164A1 (en) 2020-06-12 2021-12-16 Firmenich Sa Enol ether properfume
WO2022084437A1 (en) 2020-10-21 2022-04-28 Firmenich Sa Improved freshness imparting compositions
WO2023067072A1 (en) 2021-10-20 2023-04-27 Firmenich Sa Improved perfume compositions comprising sulfur-containing pro-fragrance compounds
WO2023067063A1 (en) 2021-10-20 2023-04-27 Firmenich Sa Improved perfume compositions comprising sulfur-containing pro-fragrance compounds
WO2023078909A1 (en) 2021-11-03 2023-05-11 Firmenich Sa Cyclic acetals and ketals for the light-induced release of active aldehydes and ketones
WO2023111006A1 (en) 2021-12-14 2023-06-22 Firmenich Sa Enol ether properfume

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080139378A1 (en) * 2006-12-07 2008-06-12 Degussa Ag Urine-absorbing composition with fragrance release upon use
US9585826B2 (en) * 2012-11-07 2017-03-07 Kimberly-Clark Worldwide, Inc. Triggerable compositions for two-stage, controlled release of active chemistry
CN108342263B (en) * 2017-01-25 2022-01-28 花王株式会社 Liquid detergent composition
CN108387559B (en) * 2018-01-15 2023-05-12 南方医科大学 Surfactant critical micelle concentration test paper and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1950643A1 (en) * 1969-10-08 1971-04-15 Manzke Oswald Dr Dipl Chem Quaternary ammonium betaine ester derivs - for body care and cosmetic products
EP0192145A2 (en) * 1985-02-15 1986-08-27 Hoechst Aktiengesellschaft Quaternary alkylamidobetain esters, process for their preparation and their use as laundry softening agents
DE3527974A1 (en) * 1985-08-03 1987-02-12 Wella Ag Acidic hair care composition
EP0293953A2 (en) * 1987-05-01 1988-12-07 The Procter & Gamble Company Quaternary mono-ester ammonium compounds as fibre and fabric treatment compositions
WO1995008976A1 (en) * 1993-09-30 1995-04-06 The Procter & Gamble Company Active substance delivery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256600A (en) * 1978-03-13 1981-03-17 The Greyhound Corp. Translucent soap bar containing citronellyl esters as lime soap dispersants
EP0752465A1 (en) * 1995-06-01 1997-01-08 The Procter & Gamble Company Betaine esters for delivery of alcohols
US5562847A (en) * 1995-11-03 1996-10-08 The Procter & Gamble Company Dryer-activated fabric conditioning and antistatic compositions with improved perfume longevity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1950643A1 (en) * 1969-10-08 1971-04-15 Manzke Oswald Dr Dipl Chem Quaternary ammonium betaine ester derivs - for body care and cosmetic products
EP0192145A2 (en) * 1985-02-15 1986-08-27 Hoechst Aktiengesellschaft Quaternary alkylamidobetain esters, process for their preparation and their use as laundry softening agents
DE3527974A1 (en) * 1985-08-03 1987-02-12 Wella Ag Acidic hair care composition
EP0293953A2 (en) * 1987-05-01 1988-12-07 The Procter & Gamble Company Quaternary mono-ester ammonium compounds as fibre and fabric treatment compositions
WO1995008976A1 (en) * 1993-09-30 1995-04-06 The Procter & Gamble Company Active substance delivery system

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027234A1 (en) * 1999-10-08 2001-04-19 Henkel Kommanditgesellschaft Auf Aktien Cleaning agent components with dual-controlled fragrance release
US6677297B2 (en) 1999-10-18 2004-01-13 Firmenich Sa Esters comprising a secondary carbamoyl function and their use as odorant alcohol precursors
WO2002077074A1 (en) 2001-03-27 2002-10-03 Firmenich Sa Compounds for a controlled release of active compounds
DE10132174A1 (en) * 2001-07-03 2003-03-27 Goldschmidt Ag Th New betaine ester compounds are useful in hair and skin care products and in cleaning agents
US6897263B2 (en) 2001-07-03 2005-05-24 Goldschmidt Ag Betaine esters
WO2003038022A1 (en) * 2001-10-27 2003-05-08 Henkel Kommanditgesellschaft Auf Aktien Agents containing betaine esters
WO2003089558A1 (en) * 2002-04-20 2003-10-30 Goldschmidt Rewo Gmbh & Co. Kg Washing-softening rinsing formulations containing betaine ester derivatives and method for improving the washing performance of washing agents
US7056878B2 (en) 2002-04-20 2006-06-06 Goldschmidt Rewo Gmbh & Co. Kg Rinse cycle fabric softener formulations containing betaine ester derivatives and method for improving the washing performance of detergents
WO2004020729A1 (en) * 2002-08-27 2004-03-11 Ciba Specialty Chemicals Holding Inc. Method for delivering biologically active substances
US7229958B2 (en) 2005-06-09 2007-06-12 Degussa Ag Fragrance alcohol-releasing polysiloxane
US8022030B2 (en) 2006-10-10 2011-09-20 Firmenich Sa Polymer conjugates for a controlled release of active molecules
DE102007012909A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, reactive polyorganosiloxanes
DE102007012910A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, branched polyorganosiloxanes
US8399499B2 (en) 2007-05-22 2013-03-19 Firmenich Sa 3- to 7-membered 1,3-diaza-4-OXO-heterocyclic derivatives capable of releasing active aldehydes or ketones
EP2008637A1 (en) 2007-06-18 2008-12-31 Firmenich Sa Malodor counteracting compositions and method for their use
US8772354B2 (en) 2007-06-18 2014-07-08 Firmenich Sa Malodor counteracting compositions and method for their use
DE102007037147A1 (en) 2007-08-07 2009-02-12 Henkel Ag & Co. Kgaa Fragrance composites with improved fragrance release
WO2013139766A1 (en) 2012-03-20 2013-09-26 Firmenich Sa Compounds for a controlled release of active perfuming molecules
US11155772B2 (en) 2012-03-20 2021-10-26 Firmenich Sa Compounds for a controlled release of active perfuming molecules
WO2014029695A1 (en) 2012-08-21 2014-02-27 Firmenich Sa Method to improve the performance of encapsulated fragrances
US9487733B2 (en) 2012-08-21 2016-11-08 Firmenich Sa Method to improve the performance of encapsulated fragrances
US10034819B2 (en) 2012-09-24 2018-07-31 Firmenich Sa Multilayered core/shell microcapsules
US9765282B2 (en) 2013-06-19 2017-09-19 Firmenich Sa Polysiloxane conjugates as fragrance delivery systems
US9758749B2 (en) 2013-09-09 2017-09-12 Firmenich Sa Thioether derivatives as precursors for a controlled release of active molecules
WO2015032885A1 (en) 2013-09-09 2015-03-12 Firmenich Sa Thioether derivatives as precursors for a controlled release of active molecules
US9902920B2 (en) 2014-12-10 2018-02-27 Firmenich Sa Polysiloxanes as fragrance delivery systems in fine perfumery
WO2016091815A1 (en) 2014-12-10 2016-06-16 Firmenich Sa Polysiloxanes as fragrance delivery systems in fine perfumery
US10377965B2 (en) 2015-01-21 2019-08-13 Firmenich Sa Photolabile acetal and ketal compounds for the controlled release of active volatile carbonyl compounds
US10508252B2 (en) 2015-01-21 2019-12-17 Firmenich Sa Photolabile acetal and ketal compounds for the controlled release of active volatile carbonyl compounds
US10323127B2 (en) 2015-02-17 2019-06-18 Firmenich Sa Poly(aspartic acid) derived co-polymers for a controlled release of perfuming ingredients
WO2018002214A1 (en) 2016-06-30 2018-01-04 Firmenich Sa Core-composite shell microcapsules
US11179302B2 (en) 2016-06-30 2021-11-23 Firmenich Sa Core-composite shell microcapsules
EP4272861A2 (en) 2016-06-30 2023-11-08 Firmenich SA A consumer product comprising core-composite shell microcapsules
WO2019243369A1 (en) 2018-06-21 2019-12-26 Firmenich Sa Compounds for providing a long-lasting strawberry odor
WO2020127708A1 (en) 2018-12-20 2020-06-25 Firmenich Sa Alkyl enol ether properfume
WO2021023670A1 (en) 2019-08-08 2021-02-11 Firmenich Sa Compounds for providing a long-lasting mint odor
WO2021110680A1 (en) 2019-12-03 2021-06-10 Firmenich Sa Enol ether properfume
WO2021122997A1 (en) 2019-12-19 2021-06-24 Firmenich Sa Compounds for providing a long-lasting floral and fruity odor
WO2021123144A1 (en) 2019-12-20 2021-06-24 Firmenich Sa Pro-perfume compositions
WO2021209396A1 (en) 2020-04-14 2021-10-21 Firmenich Sa Compounds for providing a long-lasting odor
WO2021250164A1 (en) 2020-06-12 2021-12-16 Firmenich Sa Enol ether properfume
WO2022084437A1 (en) 2020-10-21 2022-04-28 Firmenich Sa Improved freshness imparting compositions
WO2023067072A1 (en) 2021-10-20 2023-04-27 Firmenich Sa Improved perfume compositions comprising sulfur-containing pro-fragrance compounds
WO2023067063A1 (en) 2021-10-20 2023-04-27 Firmenich Sa Improved perfume compositions comprising sulfur-containing pro-fragrance compounds
WO2023078909A1 (en) 2021-11-03 2023-05-11 Firmenich Sa Cyclic acetals and ketals for the light-induced release of active aldehydes and ketones
WO2023111006A1 (en) 2021-12-14 2023-06-22 Firmenich Sa Enol ether properfume

Also Published As

Publication number Publication date
CN1220693A (en) 1999-06-23
ZA972775B (en) 1997-10-24
AR008583A1 (en) 2000-02-09
CA2250837C (en) 2002-02-19
BR9710416A (en) 1999-08-17
JP2000509107A (en) 2000-07-18
JP3770916B2 (en) 2006-04-26
CA2250837A1 (en) 1997-10-09
AU2590897A (en) 1997-10-22
WO1997036978A1 (en) 1997-10-09

Similar Documents

Publication Publication Date Title
US5958870A (en) Betaine ester compounds of active alcohols
CA2250837C (en) Betaine ester compounds of active alcohols
DE69923351T2 (en) AMINATION PRODUCTS CONTAINING ONE OR MORE ACTIVE SUBSTANCES
US6586639B2 (en) Functional alcohol releasing substance
DE69924847T3 (en) AMINATION PRODUCTS CONTAINING ONE OR MORE ACTIVE SUBSTANCES
JPH0329908B2 (en)
ES2363271T3 (en) SOFTENING OF UNFINISHED FABRICS.
EP0523287A1 (en) Perfume additives for fabric-softening compositions
JPH11506486A (en) Betaine esters for alcohol delivery
EP2947138B1 (en) Concentrated perfume compositions
EP0922755A1 (en) Process for making a liquid fabric softening composition
WO2008012129A1 (en) Esterquats containing oh groups for improved fragrance effect
US6218354B1 (en) Process for making a liquid fabric softening composition
CA2888944C (en) Esterquat composition having high triesterquat content
MXPA98008113A (en) Betaine ester compounds of alcohols acti
EP2956532B1 (en) Fabric softener
EP0856045B1 (en) Fabric softener compositions
WO2000040687A1 (en) Fabric care composition containing a protein
JP5188047B2 (en) Cleaning composition for bathroom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19980318

17Q First examination report despatched

Effective date: 20010927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020208